
Published as a conference paper at ICLR 2026

FLOWGEN: SYNTHESIZING DIVERSE FLOWCHARTS
TO ENHANCE AND BENCHMARK MLLM REASONING

Kaiwen Shi, Sichen Liu, Ziyue Lin, Hangrui Guo, Gong Cheng∗
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
{kaiwenshi, sichenliu, 221240094, 221240069}@smail.nju.edu.cn
gcheng@nju.edu.cn

ABSTRACT

Flowcharts are widely used to represent processes and relationships through in-
tuitive visual representations. However, accurately interpreting these diagrams
remains challenging due to their structural complexity and high visual diversity.
Existing flowchart datasets often lack fine-grained control over key properties
such as graph complexity and rendering style, limiting their utility for training
and testing of multimodal large language models (MLLMs) on visual reason-
ing tasks. To address these limitations, we introduce FlowGen, a controllable
synthesizer that generates flowcharts that have customizable structural features
and supports multiple renderer backends. FlowGen enables fine-grained con-
trol over graph properties such as graph order and size, branched arrows, and
nested subgraphs, facilitating systematic evaluation of MLLMs’ capabilities. Ex-
tensive experiments on open-source and proprietary MLLMs show that train-
ing on FlowGen substantially improves flowchart parsing and question answer-
ing (QA), while also enhancing generalization to other public datasets. Further-
more, FlowGen provides challenging test datasets that expose consistent weak-
nesses in current MLLMs, particularly related to high structural complexity and
varied rendering styles. Our code and data are publicly available at https:
//github.com/nju-websoft/FlowGen.

1 INTRODUCTION

Flowcharts, as illustrated in Figure 1, are widely used to represent processes, relationships, and
workflows, prevalent in domains such as scientific communication, business process modeling
(BPMN), software engineering documentation, and education (Bhushan et al., 2024). As a graph-
ical language, flowcharts integrate symbolic information with spatial layout, enabling humans to
quickly understand complex processes. However, this same structural complexity makes automatic
parsing highly challenging (Montalvo, 1990). Building models to extract structured representations
from flowcharts is crucial for enabling downstream applications, including code generation, knowl-
edge extraction from documents, automated reasoning over workflows, and multimodal question
answering (Vasudevan et al., 2008; Bashir & Giri, 2013; Hu et al., 2024).

Figure 1: Example flowchart synthesized by FlowGen.

Motivation. Recent advances in vision
language models (VLMs) and MLLMs
have shown potential to understand
flowcharts, enabling end-to-end reasoning
from images (Ye et al., 2024). However,
the development of such capabilities is
hindered by the limitations of existing
datasets. On the one hand, existing test
sets provide limited control over complex
structures, such as branching factor and
hierarchical nesting. They are also usually

∗Corresponding Author: Gong Cheng.

1

https://github.com/nju-websoft/FlowGen
https://github.com/nju-websoft/FlowGen

Published as a conference paper at ICLR 2026

Table 1: Comparison between our proposed synthesizer (FlowGen) and existing flowchart datasets.
Dataset Complexity Renderer(s) Source #Train #Test

FlowchartQA (Tannert et al., 2023) NA Graphviz Synthetic Not released Not released
FlowVQA (Singh et al., 2024) NA Mermaid Synthetic 1,319 953
CBD (Bhushan & Lee, 2022) NA NA Web crawling 300 96
FC A (Awal et al., 2011) Branching NA Hand-drawn flowcharts 248 145
FC B (Bresler et al., 2016) Branching NA Hand-drawn flowcharts 280 196
hdBPMN (Schäfer et al., 2021b) Branching & Nesting NA Hand-drawn BPMN diagrams 0 173
FlowLearn (Pan et al., 2024) Branching Mermaid Synthetic 8,000 2,000

FlowGen (ours) Branching & Nesting Mermaid, Graphviz,
PlantUML, Diagrams Synthetic Unlimited Unlimited

rendered in a single visual style, which prevents evaluating the robustness to stylistic variation,
while real-world flowcharts are highly diverse (Awal et al., 2011; Bresler et al., 2016; Schäfer et al.,
2021b; Bhushan & Lee, 2022; Tannert et al., 2023). On the other hand, existing training sets are
small, narrowly focused on specific domains, or missing important structural features (Sun et al.,
2022; Singh et al., 2024; Bhushan et al., 2024; Pan et al., 2024). These issues hinder effective model
training, and models fail when confronted with high structural complexity or cross-renderer settings.
These limitations call for a more principled way to generate both training and test resources. More
related work is discussed in Appendix B.

Our Work. To bridge both training and test gaps in previous work, as compared in Table 1, we
introduce FlowGen, a controllable flowchart synthesizer that generates diagrams with tunable struc-
tural features and supports multiple rendering styles. Figure 1 presents an example flowchart syn-
thesized by FlowGen, demonstrating split arrows, merge arrows, nested structures, and variations in
colors, node shapes, and edge styles. This diversity enriches the distribution of generated flowcharts
to better approximate real-world practices.

With FlowGen, we: (1) build a large-scale synthetic training set and demonstrate that fine-tuning
open-source MLLMs on it substantially boosts their ability of flowchart parsing and flowchart QA,
with strong transfer gains to multiple existing datasets, in some cases even surpassing proprietary
MLLMs; (2) construct synthetic test sets with controlled complexity and renderer diversity, and use
them to comprehensively test both open-source and proprietary MLLMs, revealing their consistent
weaknesses in handling nested structures and cross-renderer generalization. Together, these results
establish controllable flowchart synthesis as a practical and effective strategy to advance the machine
understanding of such diagrams.

Our contributions are summarized as follows:

• We introduce a controllable flowchart synthesizer capable of generating flowcharts with
adjustable structural complexity and multiple renderer styles, enabling the principled con-
struction of both training and test resources.

• We synthesize large training sets and show that fine-tuning with them significantly im-
proves MLLM reasoning on flowcharts, with strong transferability to a wide range of ex-
isting flowchart parsing and QA datasets.

• We synthesize challenging test sets that systematically expose weaknesses of both open-
source and proprietary MLLMs, providing insights into their limitations under high com-
plexity and cross-renderer variation.

2 SYNTHESIZER FRAMEWORK

Figure 2 provides an overview of our FlowGen synthesizer pipeline. The synthesizer converts a
compact, user-specified configuration into structurally valid graphs, then semantically annotates and
renders them with multiple, stylistically diverse backends. The pipeline is organized into three core
stages: (1) configuration, (2) graph construction, and (3) rendering. These stages jointly enable
fine-grained control over structural complexity, semantic richness, and visual appearance.

2

Published as a conference paper at ICLR 2026

Stage 1：
Configuration

Stage 2: Graph Construction Stage 3:
Rendering

Customization

Graph Order (�)

Split Arrows (��)

Merge Arrows
(��)

Branching Factor
(��)

Unlabeled Edge
Ratio (�)

Nested Subgraphs
(�)

Density (�)

Generate A
Spanning Tree

Add Additional
Edges

Introduce Nested
Subgraphs

Sampled Parameters

120 Real-world
Application Domains

40 Node
Names

40 Edge
Labels

Human
Verification

GPT-4o

 Node/Edge
Annoation

Style Dictionary

Visual
Richness

Node/Edge
Shapes

Border/Fill
Color

Mermaid

Graphviz

PlantUML

Diagrams

Stylistic
Diversity

Optional:
Scanned

Style

Figure 2: Overview of our FlowGen synthesizer pipeline.

2.1 CONFIGURATION

The synthesizer begins by sampling a set of structural parameters that govern the topological and
semantic complexity of generated flowcharts. We define seven controllable parameters.

Graph Order (ν). This specifies the total number of nodes in a flowchart, including those con-
tained in nested subgraphs. We categorize the scale into three levels: small (8–12 nodes), medium
(13–20 nodes), and large (21–30 nodes). This parameter is the primary factor controlling the overall
length and complexity of the synthesized flowcharts.

Split Arrows (ϵs). Split arrows introduce virtual nodes that model the divergence of a single pro-
cess into multiple concurrent branches. Although they do not carry domain-specific semantics, they
substantially increase structural variability. The parameter ϵs specifies the number of such virtual
nodes, which regulates the branching complexity of the graph structure.

Merge Arrows (ϵm). Merge arrows capture the convergence of multiple parallel streams into a
single unified process. Each merging structure introduces a virtual node with multiple incoming
edges, and the total number of such virtual nodes is controlled by ϵm. Together with split arrows,
these constructs enable simulation of complex control-flow patterns.

Branching Factor (∆b). This governs the maximum fan-in and fan-out degrees of virtual nodes
created for the split and merge arrows. During construction, up to ∆b outgoing edges are assigned
to a split node, and up to ∆b incoming edges to a merge node. This provides fine-grained control
over the degree of divergence and convergence.

Density (ρ). This is defined as the edge-to-node ratio ρ = ϵ/ν, where ϵ denotes the total number
of edges and ν the number of nodes. This parameter controls the overall visual density of the
graph. Higher values of ρ indicate denser connectivity patterns, leading to visually cluttered graphs,
whereas lower values produce sparser and more tree-like structures.

Unlabeled Edge Ratio (λ). This parameter λ ∈ [0, 1] specifies the proportion of edges that do
not carry textual labels. A higher λ increases semantic ambiguity and makes the reasoning task

3

Published as a conference paper at ICLR 2026

harder. When λ = 0, all edges are annotated with labels; when λ = 1, no edges contain labels. This
parameter allows for controlled adjustment of semantic sparsity.

Nested Subgraphs (η). This determines the number of hierarchically embedded subgraphs, which
introduce structural depth in addition to the global node count ν. Each nested subgraph is assigned
depth 1, and the edges incident to a subgraph connect directly to its internal nodes.

2.2 GRAPH CONSTRUCTION

Given the sampled parameters, the synthesizer constructs an abstract directed acyclic graph with se-
mantically coherent labels to serve as the structural backbone of the flowchart. The process consists
of three stages: topology generation, semantic annotation, and style definition.

2.2.1 TOPOLOGY GENERATION

We begin by generating a random spanning tree on ν nodes to establish an acyclic backbone for
node positioning. To increase connectivity, additional edges are then introduced according to the
sampled ϵs, ϵm, and ∆b. If the resulting number of edges is still below the target density ρ, further
random acyclic edges are added until the specified ratio is met. To incorporate hierarchical depth,
nested subgraphs are created by randomly selecting 2 to 5 connected nodes and grouping them into a
higher-level node, controlled by the nesting count η. Nested subgraphs are constrained to be disjoint,
preventing overlap and preserving clarity. If η exceeds the feasible number of disjoint groupings for
a given graph size, the generator halts further nesting to maintain structural validity.

2.2.2 SEMANTIC ANNOTATION

Once the abstract topology is constructed, the synthesizer assigns a semantic domain by sampling
a topic from 120 predefined application domains. Each topic provides 40 node names and 40 edge
labels, initially generated with GPT-4o and refined through human verification. The nodes and edges
are annotated with topic-specific labels to maintain semantic coherence, and the edges are labeled
with probability 1 − λ, where λ ∈ [0, 1] denotes the unlabeled edge ratio. Additional details of the
application domains and representative node and edge vocabularies are provided in Appendix C.

2.2.3 STYLE DEFINITION

After topology generation and semantic annotation, the visual appearance of nodes and edges is
determined using renderer-specific definitions from a predefined style dictionary. The node and
edge shapes are randomly sampled from the available ones, with possible repetition to emulate the
variability of real-world diagrams. To introduce color variation, five palettes are randomly drawn
from a pool of 90 predefined schemes for each flowchart topic instance, and node borders, fills, and
edge colors are sampled from these palettes. This rendering strategy enhances stylistic diversity and
visual richness while ensuring thematic consistency within each flowchart synthesized.

2.3 RENDERING

The final stage of the synthesizer converts abstract annotated graph codes into visual flowcharts.
To capture the diversity of real-world styles, we integrate four complementary rendering backends:
Mermaid1, Graphviz2, PlantUML3, and Diagrams4. Each backend provides its own syntax, layout
algorithms, and visual conventions. For instance, Mermaid emphasizes lightweight web-native dia-
grams, Graphviz offers fine-grained control over hierarchical layouts, PlantUML supports modular
subgraph definitions, and Diagrams provides programmatic composition of clusters and entities.

During rendering, abstract nodes and edges, which have been annotated with textual labels and style
attributes, are translated into renderer-specific elements such as shapes, connectors, and nesting sub-

1https://mermaid-js.github.io/
2https://graphviz.org/
3https://plantuml.com/
4https://diagrams.mingrammer.com/

4

https://mermaid-js.github.io/
https://graphviz.org/
https://plantuml.com/
https://diagrams.mingrammer.com/

Published as a conference paper at ICLR 2026

graphs. By applying the user-specified renderer, our synthesizer produces visually rich and diverse
flowcharts that closely resemble diagrams created in real-world scenarios.

3 FLOWGEN FOR MLLMS TRAINING

In this section, we systematically evaluate the performance gains of MLLMs fine-tuned on the
FlowGen-synthesized training set for flowchart parsing and flowchart QA tasks. We further con-
duct ablation experiments to dissect the impact of key synthesis components.

3.1 EXPERIMENTAL SETUP

3.1.1 EVALUATION DATASETS

We evaluate a wide range of MLLMs on datasets covering two task categories. For flowchart pars-
ing, we use FlowVQA (Singh et al., 2024), CBD (Bhushan & Lee, 2022), FC A (Awal et al., 2011),
FC B (Bresler et al., 2016), hdBPMN (Schäfer et al., 2021b), and FlowLearn (Pan et al., 2024).
These datasets provide flowcharts with structural annotations, enabling direct assessment of parsing
accuracy. For flowchart QA, we adopt FlowVQA, FlowLearn, AI2D (Kembhavi et al., 2016), and
MISS-QA (Zhao et al., 2025), which contain diagram-based questions that require reasoning over
both structure and semantics. Details of these datasets are provided in Appendix D.1.

3.1.2 EVALUATION METRICS

For flowchart parsing, we represent the graph structure as triplets that capture both topology and
semantics. We distinguish: (1) labeled edges (A,X,B), where X denotes a directed relation
from node A to node B; (2) unlabeled edges (A, connectedTo,B), which use the predefined re-
lation connectedTo to indicate an unlabeled relation between A and B; and (3) nested subgraphs
(A, partOf,B), where node A belongs to a container group B, capturing hierarchical containment.

Strict Precision, Recall, and F1. Based on triplets, we compute standard parsing metrics:

Precision =
|Tpred ∩ Tgold|

|Tpred|
, Recall =

|Tpred ∩ Tgold|
|Tgold|

, F1 =
2 · Precision · Recall
Precision + Recall

. (1)

These strict metrics require exact string matches between predicted (Tpred) and gold-standard
triplets (Tgold), thus capturing topological fidelity but sensitive to textual mismatches.

Relaxed Precision, Recall, and F1. To tolerate minor textual variations, we define a relaxed
matching rule based on the normalized Levenshtein distance (Levenshtein, 1965). The edit simi-
larity (ES) between two strings S1 and S2 is given by:

ES(S1, S2) = 1− EditDistance(S1, S2)

max (|S1|, |S2|)
. (2)

A predicted triplet (hp, rp, tp) matches a gold-standard triplet (hg, rg, tg) if and only if

min{ES(hp, hg), ES(rp, rg), ES(tp, tg)} > 0.85. (3)

Using this relaxed criterion, we recompute precision, recall, and F1, which provide robustness to
minor OCR errors while still strictly evaluating structural correctness.

Accuracy. For flowchart QA datasets (e.g., AI2D, MISS-QA), we report Accuracy, defined as the
proportion of questions for which the model prediction exactly matches the gold-standard answer.
This metric captures end-to-end reasoning performance and complements the triplet-based metrics.

3.1.3 PARTICIPATING MODELS

We evaluate the performance of 10 MLLMs across two categories: (1) open-source models, in-
cluding Qwen2.5-VL-3B/7B (Bai et al., 2025), InternVL3-2B (Zhu et al., 2025), MiniCPM-V2.6-
8B (Yao et al., 2024), Llava-V1.6-Mistral-7B-HF (Liu et al., 2024), and the Gemma3 series (4B,

5

Published as a conference paper at ICLR 2026

Table 2: Configurations for synthesizing the training set. Ranges indicate values to sample.
Difficulty ν ϵs ϵm ∆b η ρ λ

Easy (8, 12) (0, 0) (0, 0) (1, 2) 0 (1.0, 1.1) (0.3, 0.6)
Medium (13, 20) (1, 2) (1, 2) (2, 3) 1 (1.1, 1.2) (0.6, 0.8)
Hard (21, 30) (2, 3) (2, 3) (3, 4) 2 (1.2, 1.3) (0.8, 1.0)

Table 3: Performance comparison of MLLMs on flowchart parsing datasets. We report strict F1 and
relaxed F1 (rF1) scores. We compare each model with its variant fine-tuned on FlowGen (+ SFT).

Model FlowVQA CBD FC A FC B hdBPMN FlowLearn
F1 rF1 F1 rF1 F1 rF1 F1 rF1 F1 rF1 F1 rF1

Proprietary Multimodal Large Language Models

GPT-4o 88.2 89.1 64.5 67.1 41.9 44.3 52.6 55.3 26.5 35.8 53.9 58.6
Gemini-2.5-Flash 62.3 63.3 63.2 66.2 38.5 40.9 52.9 55.8 8.1 10.5 82.1 86.2
GLM-4V-Plus 74.0 74.5 55.6 58.7 33.0 34.0 46.8 49.3 8.6 11.3 31.6 40.8

Open-Source Multimodal Large Language Models

Qwen2.5-VL-3B 12.7 13.0 17.9 18.3 2.8 3.0 8.6 9.1 2.3 3.3 20.6 25.4
+ SFT 51.3 52.9 49.8 52.0 22.4 23.0 34.6 37.2 8.4 11.3 41.6 55.5

Qwen2.5-VL-7B 59.4 59.7 49.1 51.2 25.8 27.2 32.0 33.2 16.6 20.6 43.2 48.3
+ SFT 70.9 71.9 55.4 57.7 29.5 31.4 40.8 43.7 18.3 24.2 60.1 71.2

InternVL3-2B 15.7 17.0 18.4 19.5 4.6 5.7 8.3 9.1 3.2 4.3 21.8 32.6
+ SFT 34.6 39.4 37.8 40.7 13.7 14.7 21.6 24.3 2.1 2.8 13.2 25.2

MiniCPM-V2.6-8B 17.6 18.5 20.4 20.9 7.5 8.7 8.8 10.2 3.4 5.3 9.1 12.7
+ SFT 44.0 47.2 37.9 39.5 13.4 14.3 22.9 24.9 3.6 5.7 20.0 31.0

Llava-V1.6-Mistral-7B-HF 2.6 3.3 12.2 13.1 2.8 3.7 4.5 5.3 1.0 1.3 3.6 8.9
+ SFT 4.9 8.7 14.0 17.4 2.3 2.7 4.8 5.4 1.1 1.5 4.4 13.5

Gemma3-4B-IT 8.4 9.9 17.3 17.8 3.6 5.4 4.2 6.3 2.2 2.9 17.0 24.8
+ SFT 19.6 29.8 28.6 35.7 15.3 18.8 7.5 11.2 1.2 1.7 11.4 21.0

Gemma3-12B-IT 36.4 40.9 36.2 39.0 11.6 14.8 12.7 19.0 10.1 13.7 29.7 37.3
+ SFT 38.9 46.3 39.3 45.5 13.1 15.8 17.9 23.1 3.7 4.6 24.4 39.0

12B) (Team et al., 2025a); and (2) proprietary models, including GPT-4o (OpenAI, 2024), Gemini-
2.5-Flash (Comanici et al., 2025), and GLM4V-Plus (Team et al., 2025b). Appendix D.2 summarizes
the details of each model. All experiments are carried out on a standardized software and hard-
ware stack, using PyTorch 2.6.0, Transformers 4.53.1, and CUDA 12.4 on NVIDIA
RTX 5880 Ada Generation 48GB GPUs. The training and test code is implemented in
Python 3.10, with reproducibility ensured by fixed random seeds and deterministic dataloaders.
Detailed experimental settings, including prompts, are provided in Appendix D.3 and Appendix E.

3.2 SYNTHESIZED TRAINING SET

To synthesize a training set with FlowGen, we systematically define three configurations of param-
eters representing different levels of difficulty: easy, medium, and hard, as shown in Table 2.

For each renderer (Mermaid, Graphviz, PlantUML, Diagrams), we generate flowcharts across all
three difficulty levels. Each difficulty level is combined with 120 topics, with eight random instan-
tiations per topic. This yields a total of 11,520 flowcharts in the synthesized training set.

3.3 EXPERIMENTAL RESULTS

3.3.1 MAIN RESULTS

Table 3 reports the flowchart parsing results on six benchmarks. Models fine-tuned on Flow-
Gen (+ SFT) generally yield substantial improvements across models and datasets. For instance,
Qwen2.5-VL-3B improves from 12.7% to 51.3% F1 on FlowVQA and from 2.8% to 22.4% on
FC A, while InternVL3-2B increases from 15.7% to 34.6% on FlowVQA. Qwen2.5-VL-7B im-
proves from 43.2% to 60.1% F1 on FlowLearn, demonstrating strong cross-domain generalization
rather than overfitting to synthetic data. Importantly, these improvements also manifest under edit
similarity. Although performance on the challenging hdBPMN benchmark remains modest, the
gains confirm that synthetic training substantially boosts generalization to real-world datasets.

6

Published as a conference paper at ICLR 2026

Moreover, open-source models fine-tuned with FlowGen are comparable to proprietary models on
some datasets. For instance, Qwen2.5-VL-7B attains 60.1% on FlowLearn and 18.3% on hdBPMN,
outperforming GLM4V-Plus (31.6% and 8.6%). These findings highlight FlowGen’s potential to
broaden access to high-performing models with limited resources.

Table 4: Performance comparison (accuracy) of MLLMs
on flowchart QA datasets. We compare each model
with its variants prompted with gold-standard triplets (+
Gold-Standard Triplets), with triplets extracted by itself
(+ Self-Extracted Triplets), and with triplets extracted
by Qwen2.5-VL-7B fine-tuned on FlowGen (+ FlowGen-
Extracted Triplets).

Model FlowVQA FlowLearn AI2D MISS-QA
GPT-4o 90.2 83.2 71.7 63.0
Gemini-2.5-Flash 88.0 83.4 63.2 67.3
GLM-4V-Plus 86.4 89.8 74.6 57.0

Qwen2.5-VL-3B 64.6 72.3 50.7 35.6
+ Gold-Standard Triplets 75.6 89.1 53.5 47.3
+ Self-Extracted Triplets 66.2 77.1 51.2 37.2
+ FlowGen-Extracted Triplets 73.4 88.2 51.4 38.7

Qwen2.5-VL-7B 74.6 71.1 60.9 42.1
+ Gold-Standard Triplets 83.2 73.9 62.5 55.3
+ Self-Extracted Triplets 77.1 70.7 60.5 44.6
+ FlowGen-Extracted Triplets 81.1 68.6 61.1 49.2

MiniCPM-V2.6-8B 61.6 80.9 32.0 31.1
+ Gold-Standard Triplets 71.4 85.9 45.0 37.8
+ Self-Extracted Triplets 61.0 81.1 32.6 31.5
+ FlowGen-Extracted Triplets 69.1 85.5 42.8 33.4

We further evaluate models on
flowchart QA benchmarks, as
reported in Table 4. All QA evalua-
tions are conducted under zero-shot
prompting (see Appendix E). As
expected, prompting with gold-
standard triplets establishes an upper
bound on achievable gains. No-
tably, triplets extracted by FlowGen
consistently achieve performance
close to gold-standard annotations
across models and datasets, while
substantially outperforming triplets
extracted by the base model itself.
For example, Qwen2.5-VL-3B
reaches 88.2% on FlowLearn with
FlowGen-extracted triplets, ap-
proaching the gold-standard result
of 89.1%, and markedly exceeding
the 77.1% obtained with self-
extracted triplets. Similarly, on
AI2D, MiniCPM-V2.6-8B attains
42.8% using FlowGen-extracted triplets, compared to 45.0% with gold-standard triplets and only
32.6% with self-extraction. Similar trends are observed on MISS-QA and FlowVQA.

Table 5: Performance comparison (accuracy) of
MLLMs on flowchart QA datasets. We compare each
model with its variants fine-tuned on the original train-
ing set (+ SFT on the original training set) and on a
mixture of the original training set and FlowGen (+
SFT on a mixed training set).

Model FlowVQA FlowLearn
Qwen2.5-VL-3B 64.6 72.3
+ SFT on the original training set 81.3 85.1
+ SFT on a mixed training set 85.6 84.7

Qwen2.5-VL-7B 74.6 71.1
+ SFT on the original training set 88.2 85.3
+ SFT on a mixed training set 89.2 89.1
MiniCPM-V2.6-8B 61.6 80.9
+ SFT on the original training set 73.2 86.2
+ SFT on a mixed training set 77.6 87.5

Besides triplet-augmented QA, we also
fine-tune QA models on FlowGen-
synthesized flowchart parsing tasks.
Specifically, on FlowVQA and FlowLearn,
we fine-tune each model under two set-
tings: (i) SFT on the original QA training
set, and (ii) SFT on an equal-sized mixed
training set where half of the original
QA samples are replaced with FlowGen-
synthesized flowchart parsing tasks. As
shown in Table 5, incorporating Flow-
Gen generally improves end-to-end QA
accuracy across models and datasets. For
instance, Qwen2.5-VL-7B increases from
85.3% to 89.1% on FlowLearn, while
MiniCPM-V2.6-8B improves from 73.2%
to 77.6% on FlowVQA. These gains
indicate that FlowGen enhances models’
intrinsic ability to understand flowcharts, even when evaluated directly on downstream QA tasks
using their fine-tuned checkpoints. Together with the triplet-augmented QA results, this end-to-end
evaluation demonstrates that FlowGen delivers genuine performance improvements by effectively
enhancing models’ structure-aware visual reasoning capabilities, rather than merely providing
auxiliary intermediate representations.

We also investigate whether fine-tuning on FlowGen transfers to broader multimodal reasoning abil-
ities, with detailed results reported in Appendix F.

7

Published as a conference paper at ICLR 2026

Table 6: Ablation results (strict F1) of FlowGen under different settings.
Training Variant FlowVQA CBD FC A FC B bdBPMN FlowLearn

Full FLOWGEN (All Features) 70.9 55.4 29.5 40.8 18.3 60.1
w/o Multi-Renderer (Only Mermaid) 76.2 53.3 28.5 38.1 17.0 60.9
w/o Nested Subgraphs 70.0 54.6 29.2 40.6 16.6 59.2
w/o Split/Merge Arrows 69.6 54.3 28.4 38.8 17.7 58.3

3.3.2 ABLATION STUDY

We perform ablation experiments on Qwen2.5-VL-7B, using synthetic data generated under dif-
ferent constraints while keeping the total training data size identical to the main experiment. We
evaluate each variant on six flowchart parsing benchmarks, as reported in Table 6.

(1) Multi-renderer: Restricting training data to a single renderer (Mermaid) substantially reduces
cross-domain generalization, as shown by drops on CBD (from 55.4% to 53.3%) and FC B (from
40.8% to 38.1%). In contrast, FlowVQA and FlowLearn slightly improve under this setting, since
they exclusively use Mermaid and thus align better with the single-renderer distribution. In general,
these results highlight the importance of style variation for learning representations that generalize
between renderers and improve robustness.

(2) Nested subgraphs: Removing hierarchical nesting leads to markedly reduced accuracy on
hdBPMN, the only benchmark among the six that extensively features nested grouping structures,
where performance decreases from 18.3% to 16.6%. Smaller declines are also observed on other
datasets. This suggests that additional exposure to nested structures provides the model with richer
structural signals, enabling it to better capture flowchart organization even when explicit nesting is
absent. In general, these results underscore the value of modeling hierarchical layouts.

(3) Split/merge arrows: Excluding split/merge arrows results in performance degradation on sev-
eral benchmarks, including FC B (from 40.8% to 38.8%), and FlowLearn (from 60.1% to 58.3%).
This confirms that such structures are critical for accurately modeling branching logic and parallel
workflows, which are common in real-world flowcharts.

To further isolate the contribution of structural information, we perform an additional ablation where
all node names and edge labels are replaced with random meaningless strings, preserving the original
graph structure while removing semantic annotation. The results are reported in Appendix G.

3.3.3 ERROR ANALYSIS

We analyze 50 cases where models fine-tuned with FlowGen fail, including 25 cases from FlowVQA
and 25 from hdBPMN. Note that a single failure case may contain multiple error types; the percent-
ages reported in the following can be added to more than 100%. Three main error types emerge.

(1) Complex nesting (40%): Deeply nested structures, particularly in hdBPMN, often lead to incor-
rect handling of hierarchical groupings and subgraph boundaries. Models often flatten or misplace
partOf relations. Examples are presented in Appendix H.1.

(2) Edge ambiguity (44%): For high edge density or overlapping connectors, models sometimes
confuse edge directionality or misinterpret relation labels. Examples are presented in Appendix H.2.

(3) OCR-driven failures (56%): Although public benchmarks are primarily composed of visually
clear diagrams, covering both digitally rendered and handwritten flowcharts, occasional recognition
errors still occur (e.g., due to small font or stylized text in node labels). These OCR-related errors
lead to incorrect or missing node labels. Illustrative cases are shown in Appendix H.3.

4 FLOWGEN FOR MLLMS TESTING

In this section, we construct a challenging test set using FlowGen to evaluate the robustness of
MLLMs in flowchart parsing. The evaluation is designed to assess model capabilities in cross-
renderer generalization, comprehension of nested structures, and parsing from noisy scanned inputs.

8

Published as a conference paper at ICLR 2026

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS

The FlowGen test set is designed to evaluate model performance along two challenging dimensions:
graph complexity and scanned document degradation. Accordingly, we construct six evaluation
subsets by systematically configurating these two factors.

(1) Graph subsets (Easy/Medium/Hard). Following the definition in Section 3.2, the structural
difficulty of a flowchart is determined by a set of parameters. These configurations yield three levels
of complexity: Easy, Medium, and Hard. For each difficulty level, we synthesize 1,440 flowcharts
(4 renderers × 120 topics × 3 instances), resulting in a total of 4,320 flowcharts across the Graph-
Easy/Medium/Hard subsets.

(2) Scanned subsets (Easy/Medium/Hard). To evaluate robustness against simulated scanning
effects, we further rasterize flowcharts into scanned-like images with degradations such as blur,
perspective distortion, and lossy compression using pillow 10.4.0 5 and opencv-python
4.10.0.84 6. The severity of these perturbations increases from Easy to Hard. To avoid confound-
ing structural variation, each scanned subset is generated by sampling one instance per topic from
Graph-Easy/Medium/Hard. Each subset again contains 1,440 diagrams, leading to 4,320 flowcharts
in total. The full configuration ranges for scanned degradations are provided in Appendix I.

The training set is synthesized with the same pipeline and configurations as the test set, ensuring
matched distributions, while remaining strictly disjoint to prevent overlap.

4.1.2 EVALUATION METRICS

For evaluation on the test set, we follow the strict precision, recall, and F1 score metrics introduced
in Section 3.1.2, thus maintaining consistency with the criteria used during the training experiment.

4.1.3 PARTICIPATING MODELS

We evaluate the same set of models described in Section 3.1.3.

4.2 EXPERIMENTAL RESULTS

4.2.1 MAIN RESULTS

Table 7 summarizes model performance on the FlowGen test set. Overall, we observe that both
open-source and proprietary MLLMs struggle on this benchmark: even state-of-the-art proprietary
systems such as GPT-4o and Gemini-2.5-Flash achieve less than 25% F1 on most subsets. Open-
source base models also perform poorly, highlighting the structural and stylistic challenges posed
by FlowGen. In this experiment, FlowGen-synthesized flowcharts are used for both training and
testing as a deliberate stress-test setting. Notably, even under this potentially favorable condition,
where renderer-level regularities could in principle be exploited during training, model performance
remains far from saturation across all subsets. This suggests that the challenge of FlowGen primarily
arises from its complex and diverse topological structures (e.g., branching, nesting, and heteroge-
neous layouts), rather than superficial rendering effects.

We further observe that training on the subset combining samples from all the six subsets (+ SFT
on Combined) consistently improves performance across all test subsets, demonstrating a degree of
cross-subset generalization. However, this unified training strategy typically underperforms subset-
specific fine-tuning, indicating that different subsets capture distinct characteristics. Even with com-
bined supervision, the absolute performance on hard subsets (i.e., Graph-Hard and Scanned-Hard)
remains limited. These results demonstrate that FlowGen constitutes a challenging benchmark for
current MLLMs: even when sample distributions overlap and unified training is applied, models
still struggle to robustly parse complex flowchart structures, highlighting the diversity and difficulty
of the underlying graph distributions. We also conduct an extra experiment to quantitatively assess
the diversity of flowcharts synthesized by FlowGen, with details provided in Appendix J.

5https://pypi.org/project/pillow/10.4.0/
6https://pypi.org/project/opencv-python/4.10.0.84/

9

https://pypi.org/project/pillow/10.4.0/
https://pypi.org/project/opencv-python/4.10.0.84/

Published as a conference paper at ICLR 2026

Table 7: Performance comparison (strict F1) of MLLMs on FlowGen test subsets.

Model Test Subsets

Graph-Easy Graph-Medium Graph-Hard Scanned-Easy Scanned-Medium Scanned-Hard

GPT-4o 38.4 16.2 12.0 24.0 23.2 20.5
Gemini-2.5-Flash 43.2 13.7 9.7 22.9 23.1 21.6
GLM-4V-Plus 30.0 9.4 5.3 15.3 19.3 18.3

Qwen2.5-VL-3B 20.4 6.2 2.9 10.2 10.0 9.0
+ SFT on Graph Easy 50.2 24.0 16.0 33.0 30.5 29.0
+ SFT on Graph Medium 36.3 32.9 28.2 33.1 33.1 31.3
+ SFT on Graph Hard 26.9 30.5 30.3 29.4 29.8 28.4
+ SFT on Scanned Easy 45.1 31.8 29.0 34.8 35.3 34.1
+ SFT on Scanned Medium 43.6 32.2 28.5 34.8 35.5 33.8
+ SFT on Scanned Hard 43.7 32.6 29.3 35.6 35.5 35.0
+ SFT on Combined 49.9 31.0 24.6 36.3 35.7 33.1

Qwen2.5-VL-7B 35.7 10.9 7.7 18.9 18.5 17.2
+ SFT on Graph Easy 74.9 35.0 21.2 45.3 44.3 41.9
+ SFT on Graph Medium 67.3 52.4 44.0 56.2 55.3 52.3
+ SFT on Graph Hard 39.1 43.6 43.3 42.6 42.9 40.8
+ SFT on Scanned Easy 66.8 47.8 41.6 53.9 53.1 49.7
+ SFT on Scanned Medium 68.8 48.1 42.0 54.4 53.6 51.0
+ SFT on Scanned Hard 66.0 47.1 42.0 53.0 52.6 50.2
+ SFT on Combined 66.5 47.2 42.6 52.8 51.7 50.2

MiniCPM-V2.6-8B 7.3 2.1 2.1 4.0 4.3 3.5
+ SFT on Graph Easy 33.0 13.1 9.0 18.8 18.1 17.7
+ SFT on Graph Medium 23.9 19.6 15.2 20.0 19.9 18.1
+ SFT on Graph Hard 17.5 17.4 17.4 17.8 17.9 16.8
+ SFT on Scanned Easy 29.6 19.1 16.5 22.2 22.1 20.8
+ SFT on Scanned Medium 29.6 19.0 16.1 22.3 22.3 20.4
+ SFT on Scanned Hard 27.1 18.0 16.3 21.3 20.4 19.4
+ SFT on Combined 39.5 24.2 20.6 29.0 28.8 27.1

4.2.2 ERROR ANALYSIS

We analyze 50 failure cases on the FlowGen’s test set and identify four major error categories: Cross-
renderer generalization, Complex nesting, Edge ambiguity, and OCR-driven failures. Compared to
previous datasets, FlowGen highlights an additional challenge—Cross-renderer generalization,
where stylistic differences between renderers (e.g., PlantUML vs. Mermaid) frequently lead to
structural misinterpretations. Detailed error breakdowns and examples are provided in Appendix K.

5 CONCLUSION

In this work, we present FlowGen, a controllable flowchart synthesizer that exposes explicit struc-
tural configurations and supports diverse rendering styles, providing both a scalable training re-
source and a systematic test benchmark. Our experiments show that current MLLMs, including
leading proprietary models, perform poorly on the FlowGen test set, particularly under high struc-
tural complexity and varied rendering styles. However, fine-tuning on FlowGen substantially boosts
the robustness and generalization of open-source models, highlighting controllable synthesis as an
effective strategy for advancing flowchart understanding and its downstream reasoning tasks. By
releasing FlowGen, we provide the community with a reproducible and extensible framework for
training, testing, and advancing models for graph-structured visual reasoning.

To address the limitations of our work, our future work includes exploring diverse implementa-
tions of split/merge arrows beyond introducing virtual nodes, incorporating more features of real
flowcharts into our synthesizer pipeline, and experimenting with more complex flowchart-based
tasks such as root cause analysis in IT operations.

10

Published as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The detailed experimental settings of synthesizer, models, hyper-parameter settings, and computa-
tional resources can be found in Section 3.1.3, Appendix D and Appendix E. The codes and datasets
for reproducing our evaluation results are provided in the GitHub repository.

ACKNOWLEDGEMENTS

This work was supported by the National Science and Technology Innovation 2030 Major Program
(2025ZD0544900) and sponsored by CCF-Lenovo Blue Ocean Research Fund.

REFERENCES

Ahmad-Montaser Awal, Guihuan Feng, Harold Mouchere, and Christian Viard-Gaudin. First exper-
iments on a new online handwritten flowchart database. In Document Recognition and Retrieval
XVIII, volume 7874, pp. 81–90. SPIE, 2011. 2, 5, 15

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
ization, text reading, and beyond, 2023. URL https://arxiv.org/abs/2308.12966.
15

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025.
URL https://arxiv.org/abs/2502.13923. 5

Rumaan Bashir and Kaiser J. Giri. Diagram recognition: Domain knowledge based approach. In
2013 International Conference on Machine Intelligence and Research Advancement, pp. 445–
449, 2013. doi: 10.1109/ICMIRA.2013.94. 1

Shreyanshu Bhushan and Minho Lee. Block diagram-to-text: Understanding block diagram im-
ages by generating natural language descriptors. In Yulan He, Heng Ji, Sujian Li, Yang Liu,
and Chua-Hui Chang (eds.), Findings of the Association for Computational Linguistics: AACL-
IJCNLP 2022, pp. 153–168, Online only, November 2022. Association for Computational Lin-
guistics. doi: 10.18653/v1/2022.findings-aacl.15. URL https://aclanthology.org/
2022.findings-aacl.15/. 2, 5, 15

Shreyanshu Bhushan, Eun-Soo Jung, and Minho Lee. Unveiling the power of integration: Block
diagram summarization through local-global fusion. In Findings of the Association for Computa-
tional Linguistics ACL 2024, pp. 13837–13856, 2024. 1, 2

Martin Bresler, Daniel Prźša, and Václav Hlaváăź. Online recognition of sketched arrow-
connected diagrams. Int. J. Doc. Anal. Recognit., 19(3):253–267, September 2016. ISSN
1433-2833. doi: 10.1007/s10032-016-0269-z. URL https://doi.org/10.1007/
s10032-016-0269-z. 2, 5, 15

Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa, Soravit Changpinyo, Jialin Wu, Car-
los Riquelme Ruiz, Sebastian Goodman, Xiao Wang, Yi Tay, Siamak Shakeri, Mostafa De-
hghani, Daniel Salz, Mario Lucic, Michael Tschannen, Arsha Nagrani, Hexiang Hu, Mandar
Joshi, Bo Pang, Ceslee Montgomery, Paulina Pietrzyk, Marvin Ritter, AJ Piergiovanni, Matthias
Minderer, Filip Pavetic, Austin Waters, Gang Li, Ibrahim Alabdulmohsin, Lucas Beyer, Julien
Amelot, Kenton Lee, Andreas Peter Steiner, Yang Li, Daniel Keysers, Anurag Arnab, Yuanzhong
Xu, Keran Rong, Alexander Kolesnikov, Mojtaba Seyedhosseini, Anelia Angelova, Xiaohua Zhai,
Neil Houlsby, and Radu Soricut. Pali-x: On scaling up a multilingual vision and language model,
2023. URL https://arxiv.org/abs/2305.18565. 15

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the

11

https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2502.13923
https://aclanthology.org/2022.findings-aacl.15/
https://aclanthology.org/2022.findings-aacl.15/
https://doi.org/10.1007/s10032-016-0269-z
https://doi.org/10.1007/s10032-016-0269-z
https://arxiv.org/abs/2305.18565

Published as a conference paper at ICLR 2026

frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025. 6

Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayiheng Liu, Wei
Wang, Zheng Yuan, Chang Zhou, and Jingren Zhou. How abilities in large language mod-
els are affected by supervised fine-tuning data composition. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 177–198, Bangkok, Thailand, Au-
gust 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.12. URL
https://aclanthology.org/2024.acl-long.12/. 20

Anwen Hu, Yaya Shi, Haiyang Xu, Jiabo Ye, Qinghao Ye, Ming Yan, Chenliang Li, Qi Qian,
Ji Zhang, and Fei Huang. mplug-paperowl: Scientific diagram analysis with the multimodal
large language model. In Proceedings of the 32nd ACM International Conference on Multime-
dia, MM ’24, pp. 6929–6938, New York, NY, USA, 2024. Association for Computing Machin-
ery. ISBN 9798400706868. doi: 10.1145/3664647.3681294. URL https://doi.org/10.
1145/3664647.3681294. 1

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
Farhadi. A diagram is worth a dozen images, 2016. 5

Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. So-
viet physics. Doklady, 10:707–710, 1965. URL https://api.semanticscholar.org/
CorpusID:60827152. 5

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models, 2023. URL https://arxiv.
org/abs/2301.12597. 15

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023. URL
https://arxiv.org/abs/2304.08485. 15

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2024. URL https://arxiv.org/abs/2310.03744. 5

Pan Lu, Liang Qiu, Jiaqi Chen, Tony Xia, Yizhou Zhao, Wei Zhang, Zhou Yu, Xiaodan Liang,
and Song-Chun Zhu. Iconqa: A new benchmark for abstract diagram understanding and visual
language reasoning, 2022. URL https://arxiv.org/abs/2110.13214. 15

Fanya S. Montalvo. Diagram Understanding, pp. 5–27. Springer US, Boston, MA, 1990. ISBN 978-
1-4613-0569-9. doi: 10.1007/978-1-4613-0569-9 2. URL https://doi.org/10.1007/
978-1-4613-0569-9_2. 1

OpenAI. Hello gpt-4, 2024. URL https://openai.com/index/hello-gpt-4o/. 6

Huitong Pan, Qi Zhang, Cornelia Caragea, Eduard Dragut, and Longin Jan Latecki. Flowlearn:
Evaluating large vision-language models on flowchart understanding, 2024. URL https://
arxiv.org/abs/2407.05183. 2, 5, 15

Bernhard Schäfer, Margret Keuper, and Heiner Stuckenschmidt. Arrow r-cnn for handwritten dia-
gram recognition. International Journal on Document Analysis and Recognition (IJDAR), 24(1):
3–17, 2021a. 15

Bernhard Schäfer, Han van der Aa, Henrik Leopold, and Heiner Stuckenschmidt. Sketch2bpmn:
Automatic recognition of hand-drawn bpmn models. In Marcello La Rosa, Shazia Sadiq, and
Ernest Teniente (eds.), Advanced Information Systems Engineering, pp. 344–360, Cham, 2021b.
Springer International Publishing. ISBN 978-3-030-79382-1. 2, 5, 15

Shubhankar Singh, Purvi Chaurasia, Yerram Varun, Pranshu Pandya, Vatsal Gupta, Vivek Gupta,
and Dan Roth. Flowvqa: Mapping multimodal logic in visual question answering with flowcharts,
2024. URL https://arxiv.org/abs/2406.19237. 2, 5, 15

12

https://aclanthology.org/2024.acl-long.12/
https://doi.org/10.1145/3664647.3681294
https://doi.org/10.1145/3664647.3681294
https://api.semanticscholar.org/CorpusID:60827152
https://api.semanticscholar.org/CorpusID:60827152
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2310.03744
https://arxiv.org/abs/2110.13214
https://doi.org/10.1007/978-1-4613-0569-9_2
https://doi.org/10.1007/978-1-4613-0569-9_2
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2407.05183
https://arxiv.org/abs/2407.05183
https://arxiv.org/abs/2406.19237

Published as a conference paper at ICLR 2026

Lianshan Sun, Hanchao Du, and Tao Hou. Fr-detr: End-to-end flowchart recognition with precision
and robustness. IEEE Access, 10:64292–64301, 2022. doi: 10.1109/ACCESS.2022.3183068. 2,
15

Simon Tannert, Marcelo G. Feighelstein, Jasmina Bogojeska, Joseph Shtok, Assaf Arbelle, Peter
W. J. Staar, Anika Schumann, Jonas Kuhn, and Leonid Karlinsky. FlowchartQA: The first large-
scale benchmark for reasoning over flowcharts. In Piush Aggarwal, {\”O}zge Ala{\c{c}}am,
Carina Silberer, Sina Zarrie{\ss}, and Torsten Zesch (eds.), Proceedings of the 1st Work-
shop on Linguistic Insights from and for Multimodal Language Processing, pp. 34–46, Ingol-
stadt, Germany, September 2023. Association for Computational Lingustics. URL https:
//aclanthology.org/2023.limo-1.5/. 2, 15

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Cas-
bon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xi-
aohai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Cole-
man, Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry,
Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,
Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe
Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa
Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András
György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia
Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,
Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivaku-
mar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eu-
gene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian
Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wi-
eting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh,
Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine,
Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael
Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Ni-
lay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Ruben-
stein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya
Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu,
Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti
Sheth, Siim Põder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi
Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry,
Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat
Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas
Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Bar-
ral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam
Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier
Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot.
Gemma 3 technical report, 2025a. URL https://arxiv.org/abs/2503.19786. 6

GLM-V Team, :, Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao
Tang, Jiale Cheng, Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean
Cheng, Zehai He, Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Bin Chen, Boyan
Shi, Changyu Pang, Chenhui Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazheng Xu, Jiale Zhu,
Jiali Chen, Jing Chen, Jinhao Chen, Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian
Gong, Leyi Pan, Mingdao Liu, Mingde Xu, Mingzhi Zhang, Qinkai Zheng, Sheng Yang, Shi
Zhong, Shiyu Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu, Shengbiao Meng, Tianshu Zhang,
Tianwei Luo, Tianxiang Hao, Tianyu Tong, Wenkai Li, Wei Jia, Xiao Liu, Xiaohan Zhang, Xin
Lyu, Xinyue Fan, Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yanzi Wang,
Yifan An, Yifan Du, Yiming Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen

13

https://aclanthology.org/2023.limo-1.5/
https://aclanthology.org/2023.limo-1.5/
https://arxiv.org/abs/2503.19786

Published as a conference paper at ICLR 2026

Li, Yutao Zhang, Yuting Wang, Yu Wang, Yuxuan Zhang, Zhao Xue, Zhenyu Hou, Zhengxiao
Du, Zihan Wang, Peng Zhang, Debing Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, and
Jie Tang. Glm-4.5v and glm-4.1v-thinking: Towards versatile multimodal reasoning with scalable
reinforcement learning, 2025b. 6

Bintu G. Vasudevan, Sorawish Dhanapanichkul, and Rajesh Balakrishnan. Flowchart knowledge
extraction on image processing. 2008 IEEE International Joint Conference on Neural Networks
(IEEE World Congress on Computational Intelligence), pp. 4075–4082, 2008. URL https:
//api.semanticscholar.org/CorpusID:12429917. 1

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. arXiv preprint
arXiv:2408.01800, 2024. 5

Junyi Ye, Ankan Dash, Wenpeng Yin, and Guiling Wang. Beyond end-to-end vlms: Leveraging
intermediate text representations for superior flowchart understanding, 2024. URL https://
arxiv.org/abs/2412.16420. 1

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun,
Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and
Wenhu Chen. Mmmu: A massive multi-discipline multimodal understanding and reasoning
benchmark for expert agi. In Proceedings of CVPR, 2024. 20

Yilun Zhao, Chengye Wang, Chuhan Li, and Arman Cohan. Can multimodal foundation models
understand schematic diagrams? an empirical study on information-seeking qa over scientific
papers. In Findings of the Association for Computational Linguistics: ACL 2025, pp. 18598–
18631, Vienna, Austria, July 2025. Association for Computational Linguistics. URL https:
//aclanthology.org/2025.findings-acl.957/. 5

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
Duan, Weijie Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xuehui Wang, Yue Cao, Yangzhou Liu,
Xingguang Wei, Hongjie Zhang, Haomin Wang, Weiye Xu, Hao Li, Jiahao Wang, Nianchen
Deng, Songze Li, Yinan He, Tan Jiang, Jiapeng Luo, Yi Wang, Conghui He, Botian Shi,
Xingcheng Zhang, Wenqi Shao, Junjun He, Yingtong Xiong, Wenwen Qu, Peng Sun, Penglong
Jiao, Han Lv, Lijun Wu, Kaipeng Zhang, Huipeng Deng, Jiaye Ge, Kai Chen, Limin Wang, Min
Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhai Wang. In-
ternvl3: Exploring advanced training and test-time recipes for open-source multimodal models,
2025. URL https://arxiv.org/abs/2504.10479. 5

14

https://api.semanticscholar.org/CorpusID:12429917
https://api.semanticscholar.org/CorpusID:12429917
https://arxiv.org/abs/2412.16420
https://arxiv.org/abs/2412.16420
https://aclanthology.org/2025.findings-acl.957/
https://aclanthology.org/2025.findings-acl.957/
https://arxiv.org/abs/2504.10479

Published as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

As indicated in the submission form, we answer “Large Language Models: Yes, to aid or polish
writing.” LLMs were only used for language refinement, such as polishing wording, improving
clarity, and ensuring consistency. They were not involved in research ideation, methodology design,
or experimental analysis. All scientific contributions and results are solely due to the authors.

B RELATED WORK

B.1 EXISTING DATASETS

Research on flowchart understanding has traditionally relied on fixed datasets rather than control-
lable synthesizers. Existing datasets such as IconQA (Lu et al., 2022), FlowchartQA (Tannert et al.,
2023), FlowVQA (Singh et al., 2024), and FlowLearn (Pan et al., 2024) provide important bench-
marks for evaluating models on tasks ranging from flowchart parsing to flowchart QA. Other datasets
such as CBD (Bhushan & Lee, 2022), FC A (Awal et al., 2011), FC B (Bresler et al., 2016), and
hdBPMN (Schäfer et al., 2021b) provide domain-specific diagram test resources. However, these
resources share several limitations. First, they lack controllability: users cannot systematically vary
structural properties such as node count, edge density, or nesting depth. Second, stylistic diver-
sity is limited, since most datasets rely on a single renderer or annotation style, whereas real-world
flowcharts come from heterogeneous sources. Finally, most existing datasets are designed for eval-
uation only, and do not support large-scale, controllable synthesis for training purposes. To date,
there are no general-purpose flowchart synthesizers that can flexibly generate both training and test
sets with controllable complexity and rendering diversity, leaving an important gap in the field. Ta-
ble 1 provides a systematic comparison between our proposed synthesizer and existing datasets.
Our FlowGen is unique in combining controllable structural features, multi-renderer diversity, and
scalability to both training and test, filling a critical gap in the field.

B.2 EXISTING METHODS

Alongside datasets, a range of methods have been explored for flowchart-based visual reasoning.
Early approaches adopt a detection-and-association paradigm, such as Arrow R-CNN (Schäfer et al.,
2021a) and FR-DETR (Sun et al., 2022), which first localize symbols and arrows before recon-
structing the underlying graph. While these pipelines can handle relatively simple diagrams, they
typically depend on handcrafted heuristics and degrade under high structural complexity or stylistic
variation. More recent work has shifted toward end-to-end VLMs and MLLMs, including BLIP-
2 (Li et al., 2023), LLaVA (Liu et al., 2023), PaLI-X (Chen et al., 2023), and Qwen-VL (Bai et al.,
2023). These models integrate perception and reasoning within a unified framework, achieving
strong performance on natural-image VQA tasks. However, they remain limited in structural pars-
ing of flowcharts, where precise recovery of hierarchical and relational information is required. In
this work, we focus exclusively on evaluating representative MLLMs. By systematically analyzing
their performance on controlled test datasets, we aim to reveal their strengths, limitations, and the
specific challenges posed by flowchart understanding.

C APPLICATION DOMAINS AND SEMANTIC VOCABULARIES

This appendix provides additional details on semantic annotation in the construction of FlowGen.
Specifically, FlowGen covers 120 distinct application domains, spanning a wide range of real-world
scenarios. For each domain, we curate a vocabulary consisting of 40 node names and 40 edge labels,
which are initially generated using GPT-4o. These domain-specific vocabularies are used to annotate
graph nodes and edges, ensuring semantic cohesiveness within graphs and domain diversity across
graphs. Representative examples from several domains are presented below. The complete lists are
available in /Synthesizer/my dictionary.py in our GitHub repository.

15

https://github.com/nju-websoft/FlowGen/blob/main/Synthesizer/my_dictionary.py

Published as a conference paper at ICLR 2026

Application Domains and Semantic Vocabularies

APPLICATIONS = [
’Finance’, ’Healthcare’, ’Manufacturing’,
’Education’, ’E_commerce’, ’Transportation’, ’Energy’,
’Legal’, ’Logistics’, ’Telecom’, ’Agriculture’,’Tourism’,
’Real Estate’,’Public Safety’,’Entertainment’,
’Environment’,’Government’, ’Retail’, ’Automotive’,
’Aerospace’, ’Insurance’, ’Cybersecurity’, ’Smart Home’,
’Smart City’, ’Biotechnology’, ’Pharmaceuticals’, ’Robotics’,
’Construction’, ’Media’, ’Sports’, ’Fashion’, ’Human Resources’,
...

]

NODE_NAMES = {
’Finance’: [

’Account Verification’, ’Credit Scoring’,
’Approval Decision’, ’Fraud Check’, ’Transaction Audit’,
’Investment Planning’, ’Financial Advisory’,
...

],
’Healthcare’: [

’Patient Intake’, ’Lab Test’, ’Diagnosis’, Prescription’,
’Medical History’, ’Health Screening’, ’Allergy Test’,
’Genetic Counseling’, ’Pain Management’, ’Patient Transfer’,
...

],
...

}

EDGE_LABELS = {
’Finance’: [

’verifies’, ’approves’, ’rejects’, ’checks’,
’calculates’, ’recommends’, ’consults’, ’plans’,
’allocates’, ’monitors’, ’models’, ’settles’,
...

],
’Healthcare’: [

’diagnoses’, ’examines’, ’tests’, ’treats’, ’scans’,
’monitors’, ’records’, ’administers’, ’researches’,
’prevents’, ’educates’, ’surveys’, ’immunizes’,
...

],
...

}

D IMPLEMENTATION DETAILS

D.1 SUMMARY OF EVALUATION DATASETS

Table 8 summarizes the public datasets used in our evaluation experiments, providing their task,
size, source, and license to facilitate reproducibility and transparency.

D.2 MODEL VERSIONS AND SOURCES

Table 9 summarizes the proprietary and open-source MLLMs evaluated in this study, organized
by provider with release dates and official access sources. Open-source models are linked to their
Hugging Face repositories, while proprietary models are accessed through their respective APIs.

16

Published as a conference paper at ICLR 2026

Table 8: Summary of evaluation datasets used in our experiments.
Dataset Task Size Source License

FlowVQA Parsing & QA 956 Synthetic flowcharts MIT License
CBD Parsing 96 Computerized block diagrams Research-only
FC A Parsing 145 Hand-written flowcharts CC-BY-NC-SA
FC B Parsing 196 Hand-written flowcharts NA
hdBPMN Parsing 173 Hand-drawn BPMN diagrams CC-BY-4.0
FlowLearn Parsing & QA 2,000 Scientific literature & Synthetic CC-BY-NC-SA-4.0
AI2D QA 4,060 Scientific Diagrams CC BY-SA
MISS-QA QA 173 Schematic Diagrams CC-BY-4.0

Table 9: Evaluated proprietary and open-source MLLMs.
Provider Model Release Source

Proprietary Multimodal Large Language Models

OpenAI GPT-4o 2024-08 OpenAI API
Google Gemini-2.5-Flash 2025-04 Google AI Studio API
Zhipu AI GLM-4V-Plus 2024-08 Zhipu AI API

Open-Source Multimodal Large Language Models

Alibaba Qwen2.5-VL-3B 2025-01 https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct
Qwen2.5-VL-7B 2025-01 https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct

OpenGVLab InternVL3-2B 2025-01 https://huggingface.co/OpenGVLab/InternVL3-2B
OpenBMB MiniCPM-V2.6-8B 2025-04 https://huggingface.co/openbmb/MiniCPM-V-2_6
LLaVA Team LLaVA-v1.6-Mistral-7B 2024-12 https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf
Google Gemma3-4B 2025-03 https://huggingface.co/google/gemma-3-4b-it

Gemma3-12B 2025-03 https://huggingface.co/google/gemma-3-12b-it

D.3 FINE-TUNING HYPERPARAMETERS

For open-source models, we perform supervised fine-tuning (SFT) on FlowGen-synthesized train-
ing set using the configuration shown in Table 10. The training employs LoRA adapters on both
language and vision components, with other modules frozen for efficiency.

Table 10: Hyperparameter configuration for SFT on FlowGen-synthesized training set.
Hyperparameter Value

Framework PyTorch 2.6.0 + DeepSpeed (ZeRO-3)
Precision BF16 (FP16 disabled)
Gradient checkpointing Enabled
Optimizer AdamW (β1 = 0.9, β2 = 0.999, weight decay=0.1)
Learning rate 5× 10−4 (cosine scheduler)
Warmup ratio 0.03
Global batch size 32
Per-device batch size 4
Gradient accumulation steps 8
Epochs 1
LoRA rank / alpha / dropout 64 / 64 / 0.05
Vision tower Frozen (with vision LoRA enabled)
LLM backbone Frozen
Merger Frozen
Image resolution range 256× 28× 28 – 1280× 28× 28

This configuration ensures efficient training with limited GPU resources while still adapting both
textual and visual representations through LoRA.

17

https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct
https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
https://huggingface.co/OpenGVLab/InternVL3-2B
https://huggingface.co/openbmb/MiniCPM-V-2_6
https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf
https://huggingface.co/google/gemma-3-4b-it
https://huggingface.co/google/gemma-3-12b-it

Published as a conference paper at ICLR 2026

E PROMPT TEMPLATES

Prompt Template for Flowchart Parsing

[System Input]

You are an expert assistant specialized in flowchart understanding.
Your task is to parse flowchart images into structured knowledge triples that capture both topology
and semantics.

[User Input]

{image input: flowchart}

{text input: <image>Please describe all the information in the flowchart image in the form of
triples:
For each arrow labeled with X directed from node A to node B, output a triple: <A, X, B>;
For each unlabeled arrow directed from node A to node B, output a triple: <A, connectedTo, B>;
For each node A fully inside node group B, output a triple <A, partOf, B>.

The following triples are example outputs:
<Food Packaging Improvement, secures, Quantum Computing Integration>
<Graphene Production, catalyzes, Nanosensors>
<Graphene Production, partOf, Drug Delivery Systems>
<Nanocomposites, connectedTo, Spectroscopy>
<Nanodevice Fabrication, connectedTo, Graphene Production>
<Nanosensors, connectedTo, Nanocomposites>
<Spectroscopy, educates, Nanodevice Fabrication>}

An Example Prompt for Answering Flowchart-based Yes/No Questions

[System Input]

You are an expert assistant specialized in flowchart understanding.
Your task is to parse flowchart images into structured knowledge triples that capture both topology
and semantics.

[User Input]

{image input: flowchart}

{text input: Determine whether the following description of the image is correct (just answer
Yes or No) :

“Consistent failures through this type of intervention constitute a challenging group for the
perception model as seen on the right.” connectedto “Perception Model is used for discovery of
failures at the scene level.”

The following description, extracted in the form of triples from the image, is provided for
reference and may contain errors.
<BERT, connectedTo, Coca-Cola Truck>
<Coca-Cola Truck, connectedTo, Perception Model>
<Coca-Cola Truck, connectedTo, Perception Model>
......
<Police Car, partOf, Interventions>
<Police Car, partOf, Scene Understanding>
<Scene Understanding, connectedTo, Police Car>”

The answer is: }

18

Published as a conference paper at ICLR 2026

An Example Prompt for Answering Flowchart-based Multiple-Choice Questions

[System Input]

You are an expert assistant specialized in flowchart understanding.
Your task is to parse flowchart images into structured knowledge triples that capture both topology
and semantics.

[User Input]

{image input: flowchart}

{text input: <image>Please answer the following multiple-choice question about the image:

The sexual or asexual process by which organisms generate new individuals of the same kind
is called?
(A).reproduction
(B).pollination
(C).growth
(D).germination

The following description, extracted in the form of triples from the image, is provided for
reference and may contain errors.
<Fertilization, connectedTo, Green Bean>
<Growth, connectedTo, Germination>
<Growth, connectedTo, Reproduction>
......
<Reproduction, connectedTo, Pollination>
<Reproduction, connectedTo, Growth>
<Green Bean, connectedTo, Germination>

The answer is: }

Prompt for Topic and Node/Edge Names Generation

[System Input]

You are tasked with helping build a synthetic flowchart dataset. Please generate 120 distinct
application domains (topics).
For each topic:
(1) Provide the topic name.
(2) List 40 concise node names that could appear in flowcharts within this topic.
(3) List 40 concise edge names that describe interactions or relationships among the nodes.

Constraints:
- Use short phrases (1–4 words) for node and edge names.
- Avoid redundancy across different topics.
- Ensure that node names are realistic to the chosen topic.
- Ensure that edge names reflect meaningful relationships.
- Output in structured JSON format:

[GPT-4o Output]

{
{ “Topic”: “Finance”,
“Nodes names”: [“Account Verification”, “Credit Scoring”, “Risk Assessment” ...],
“edges names”: [“verifies”, “approves”, “budgets”, ...] },
{ “Topic”: “Healthcare”,
“Node names”: [“Patient Intake”, “Medical History”, “Emergency Response”, ...],
“Edge names”: [“diagnoses”, “treats”, “examines”, ...] },
......
}

19

Published as a conference paper at ICLR 2026

F EXPERIMENTS ON MMMU

Recent studies have shown that the composition of SFT data plays a critical role in determining
the resulting capabilities of multimodal models. In particular, Dong et al. (2024) demonstrate that
naively mixing heterogeneous tasks often leads to optimization conflicts, while sequential fine-
tuning can induce catastrophic forgetting. Motivated by these findings, and following their inter-
leaved training paradigm, we investigate whether fine-tuning on FlowGen transfers beyond flowchart
parsing to broader multimodal reasoning.

Specifically, we examine whether incorporating FlowGen-synthesized flowchart parsing tasks dur-
ing SFT improves performance on MMMU (Yue et al., 2024), a diverse benchmark covering general-
domain multimodal reasoning tasks that are not directly related to flowcharts. This experiment aims
to assess whether FlowGen only induces task-specific gains, or it promotes more generalizable struc-
tural reasoning abilities.

Since MMMU does not provide an official training split, we follow common practice and use its
900 validation samples for SFT and 150 development samples as test cases. For each model, we
consider two SFT settings:

• Fine-tuning solely on MMMU samples.
• Fine-tuning on an equal-sized mixed dataset, where 50% of MMMU samples are replaced

with FlowGen-synthesized flowchart parsing samples. We adopt an interleaved training
strategy at the batch level, ensuring that FlowGen and MMMU samples are jointly opti-
mized throughout training.

Table 11: Performance comparison (accuracy) of MLLMs on MMMU. We compare each model
with its variants fine-tuned on the original training set (+ SFT on the original training set) and on a
mixture of the original training set and FlowGen (+ SFT on a mixed training set).

Training Variant Qwen2.5-VL-3B Qwen2.5-VL-7B MiniCPM-V2.6-8B
Base Model 53.3 58.6 49.4
+ SFT on the original training set 59.3 62.6 53.3
+ SFT on a mixed training set 60.2 65.3 54.0

As shown in Table 11, models fine-tuned with the mixed dataset consistently outperform their
MMMU-only counterparts on the MMMU benchmark. Notably, these improvements are observed
despite replacing half of the MMMU supervision with FlowGen data, indicating that FlowGen does
not dilute task-relevant learning but instead provides complementary signals.

We attribute this behavior to the structural nature of FlowGen supervision. FlowGen emphasizes ex-
plicit modeling of entities, relations, and spatial layouts through triplet extraction, which encourages
the model to learn transferable representations of graph structure and visual organization. Such in-
ductive biases are broadly applicable across multimodal reasoning tasks, including those in MMMU
that require compositional understanding, spatial grounding, or multi-step inference.

20

Published as a conference paper at ICLR 2026

G ABLATION ON SEMANTIC ANNOTATION

To further isolate the contribution of structural information in flowchart parsing, we conduct an
additional ablation in which all node names and edge labels are replaced with random meaningless
strings. Specifically, node names are substituted with random strings starting with uppercase letters,
while edge labels are replaced with random lowercase strings of length 5–12. This preserves minimal
formatting conventions while eliminating meaningful semantics. This experiment evaluates whether
FlowGen-trained models can still leverage structural cues when textual semantics are removed.

Table 12: Ablation results (strict F1) of FlowGen using semantic annotation (+ SFT on Full Flow-
Gen) or random strings (+ SFT on FlowGen w/o Semantic Annotation) for node names and edge
labels.

Model FlowVQA CBD FC A FC B hdBPMN FlowLearn
Qwen2.5-VL-3B 12.7 17.9 2.8 8.6 2.3 20.6
+ SFT on Full FlowGen 51.3 49.8 22.4 34.6 8.4 41.6
+ SFT on FlowGen w/o Semantic Annotation 50.9 44.1 13.6 24.1 5.9 39.5

Qwen2.5-VL-7B 59.4 49.1 25.8 32.0 16.6 43.2
+ SFT on Full FlowGen 70.9 55.4 29.5 40.8 18.3 60.1
+ SFT on FlowGen w/o Semantic Annotation 64.5 52.9 28.4 34.8 17.4 56.0

MiniCPM-V2.6-8B 17.6 20.4 7.5 8.8 3.4 9.1
+ SFT on Full FlowGen 44.0 37.9 13.4 22.9 3.6 20.0
+ SFT on FlowGen w/o Semantic Annotation 35.2 29.8 9.7 13.9 3.6 19.1

Table 12 reports the results. Compared to models trained with FlowGen’s original random but se-
mantically meaningful labels, performance with meaningless labels shows a moderate degradation.
Importantly, the performance gains of SFT remain consistent and significant across different models
and datasets. These results indicate that the benefits from using FlowGen are primarily driven by
learning structural patterns, topological relations, and spatial layouts from flowcharts, rather than
relying solely on textual semantics.

21

Published as a conference paper at ICLR 2026

H ERROR ANALYSIS ON PUBLIC DATASETS

H.1 COMPLEX NESTING ERROR ON PUBLIC DATASET

An Example of Complex Nesting Error on hdBMPN Dataset

[System Input]

You are an expert assistant specialized in flowchart understanding.
Your task is to parse flowchart images into structured knowledge triples that capture both topology
and semantics.

[User Input]

{image input: flowchart}

{text input: <image>Please describe all the information in the flowchart image in the form of
triples:
For each arrow labeled with X directed from node A to node B, output a triple: <A, X, B>;
For each unlabeled arrow directed from node A to node B, output a triple: <A, connectedTo, B>;
For each node A fully inside node group B, output a triple <A, partOf, B>.

The following triples are example outputs:
<Food Packaging Improvement, secures, Quantum Computing Integration>
<Graphene Production, catalyzes, Nanosensors>
<Graphene Production, partOf, Drug Delivery Systems>
<Nanocomposites, connectedTo, Spectroscopy>
<Nanodevice Fabrication, connectedTo, Graphene Production>
<Nanosensors, connectedTo, Nanocomposites>
<Spectroscopy, educates, Nanodevice Fabrication>}

Qwen2.5-VL-7B Output:
<Claim Handling Process, connectedTo, End Claim Payers>
<Claim Handling Process, mark as Not Okay, Write Settlement Recommendation>
<Check Settlement Recommendation, connectedTo, Claim Handling Process>
<Customer Insurance Claim, connectedTo, Senior Claim Officer>
<Customer Insurance Claim, connectedTo, Write Settlement Recommendation>
<Examine Claim, connectedTo, Check Settlement Recommendation>
<Examine Claim, connectedTo, Write Settlement Recommendation>
<End Claim Payers, connectedTo, Claim Handling Process>
<Rewrites Claim, connectedTo, Examine Claim>
<Senior Claim Officer, claim receives, Rewrites Claim>
<Write Settlement Recommendation, connectedTo, Check Settlement Recommendation>

Error Analysis:
Qwen2.5-VL-7B’s prediction fails to capture the hierarchical containment between roles and tasks. In the
gold standard, operations such as “register claim”, “examine claim”, and “write settlement recommenda-
tion” are explicitly nested under “claim officer” and further within “insurance”. The model instead flattens
this structure, inventing entities like “End Claim Payers” and producing spurious links (e.g., ⟨Senior Claim
Officer, claim receives, Rewrites Claim⟩), while omitting key partOf relations. This collapse of nested
dependencies leaves the explanation structurally inconsistent and semantically incomplete.

22

Published as a conference paper at ICLR 2026

H.2 EDGE AMBIGUITY ERROR ON PUBLIC DATASET

An Example of Edge Ambiguity Error on FlowVQA Dataset

[System Input]

Configured as in Appendix H.1

[User Input]

Configured as in Appendix H.1

Qwen2.5-VL-7B Output:
<Begin the first loop iteration for c, connectedTo, Call the stop Note function with the current x and c as
arguments>
<Begin the first loop iteration for x, connectedTo, Initialize the second nested loop>
<Call the stop Note function with the current x and c as arguments, Input x, c, Execute the stop Note
function using x and c>
<Execute the stop Note function using x and c, Output, End the first loop iteration for c>
<End, No, For each value of x from 0 to 117>
<End the first loop iteration for c, connectedTo, For each value of c from 0 to 15>
<End the first loop iteration for x, connectedTo, For each value of c from 0 to 15>
<For each value of c from 0 to 15, Yes, Begin the first loop iteration for c>
<For each value of x from 0 to 117, Yes, Begin the first loop iteration for x>
<Initialize a nested loop structure, connectedTo, For each value of x from 0 to 117>
<Initialize the second nested loop, connectedTo, For each value of c from 0 to 15>
<Start, connectedTo, Initialize a nested loop structure>

Error Analysis:
Qwen2.5-VL-7B’s prediction suffers from edge ambiguity, misrepresenting the direction and semantics of
key transitions in the flow loop. In the gold standard, control flow edges clearly encode how each loop
iteration branches back to its condition (e.g., ⟨End the first loop iteration for c, connectedTo, For each value
of c from 0 to 15⟩) and how termination is handled (e.g., ⟨For each value of x from 0 to 117, No, End⟩). The
model instead reverses or distorts these relations, producing edges such as ⟨End, No, For each value of x
from 0 to 117⟩ and ⟨End the first loop iteration for x, connectedTo, For each value of c from 0 to 15⟩, which
invert the intended logic. While many node labels are preserved, the predicted edges fail to capture whether
they represent continuation, termination, or loop-back connections, resulting in a structurally inconsistent
flow and an inaccurate representation of the looping process.

23

Published as a conference paper at ICLR 2026

H.3 OCR DRIVEN ERROR ON PUBLIC DATASET

An Example of OCR-Driven Error on hdBPMN

[System Input]

Configured as in Appendix H.1

[User Input]

Configured as in Appendix H.1

Qwen2.5-VL-7B Output:
<Advanced Risk Assessment, connectedTo, Simple Risk Assessment>
<Assess Risk, above threshold, Advanced Risk Assessment>
<Assess Risk, below threshold, Simple Risk Assessment>
<Advanced risk asessmend, connectedTo, Intram customer>
<Customer Notification, connectedTo, Urgent Wire Disbursement>
<Simple Risk Assessment, connectedTo, Customer Notification>
<Urgent Wire Disbursement, connectedTo, End Procesy>
<End Procesy, connectedTo, Customer Notification>
<Request Received, connectedTo, Assess Risk>

Error Analysis:
Qwen2.5-VL-7B’s outputs exhibit typical OCR-driven errors: misrecognized text such as ”intram cus-
tomer” (likely intended as ”inform customer”) and ”End Procesy” (likely ”End Process”) results in incor-
rect node labels like ”Customer Notification” and ”Urgent Wire Disbursement” that deviate from the source
diagram. Consequently, the model generates spurious edges (e.g., ⟨End Procesy, connectedTo, Customer
Notification⟩) while omitting valid dependencies, such as the direct sequence from ”Inform customer” to
”End Process” implied by the original workflow. These OCR-induced distortions compromise both the
semantics and the topology of the predicted graph, illustrating how recognition noise propagates directly
into structural parsing errors.

I SCANNED STYLE CONFIGURATIONS

Table 13 summarizes the configuration used to synthesize scanned-style flowcharts with three diffi-
culty levels.

Table 13: Configurations for scanned-style flowcharts generation with three difficulty levels.
Difficulty Blur radius Vignette Rotation Perspective Color tint Noise level JPEG quality

Easy 0.8 0.1 1.0◦ No Yellowish 0.005 90
Medium 1.0 0.3 1.2◦ No Yellowish 0.008 70
Hard 1.2 0.5 1.5◦ Yes Gray 0.015 40

24

Published as a conference paper at ICLR 2026

J ANALYSIS OF INTRA-TOPIC FLOWCHART DIVERSITY

To quantitatively assess the diversity of graph structures synthesized under the same topic, we mea-
sure the structural dissimilarity between flowcharts using graph edit distance (GED). GED is defined
as the minimum number of elementary graph operations, including node or edge insertion, deletion,
and substitution, required to transform one graph into another.

Table 14: Mean graph edit distance (GED) with standard deviation (SD) over intra-topic graphs
constructed by FlowGen.

Mean GED SD

Within the same difficulty level
Easy 18.0 2.2
Medium 28.5 4.1
Hard 36.8 6.4

Between difficulty levels
Easy-Medium 38.0 5.1
Easy-Hard 76.8 8.9
Medium-Hard 48.5 7.2

Table 14 reports the mean GED with standard deviation (SD) between flowcharts from the same
topic, evaluated both within the same difficulty level and between different difficulty levels. The
results show substantial structural variation among intra-topic flowcharts: mean GED values range
from 18.0 to 36.8 for flowcharts of the same difficulty level, and further increase to 76.8 when
comparing flowcharts across difficulty levels. These findings demonstrate that FlowGen produces
highly diverse flowchart structures even within a single topic, supporting the diversity and challenge
of the test subsets.

K ERROR ANALYSIS ON FLOWGEN TEST SET

We further analyze 50 failure cases on FlowGen’s test sets, which incorporates renderer diversity
and simulated scanning artifacts. Note that a single failure case may exhibit multiple error types, so
the percentages reported below can sum to more than 100%. Four major error types emerge.

(1) Cross-renderer generalization (48%): Visual conventions differ substantially across renderers
(e.g., PlantUML vs. Mermaid). As a result, models often fail to generalize across styles, misinter-
preting arrowheads, connector boundaries, or nesting layouts. Such renderer-specific artifacts cause
structural discrepancies even when the underlying abstract topology is identical. Representative
cases are shown in Appendix K.1.

(2) Complex nesting (38%): Similar to the errors observed on other benchmarks, models frequently
mishandle deeply nested partOf relations. Examples are provided in Appendix K.2.

(3) Edge ambiguity (54%): When multiple edges overlap or connectors are visually congested,
models still confuse edge directionality or labels. These cases resemble the ambiguity observed
in Section 3.3.3 but are further exacerbated by renderer-induced variations. Examples are given in
Appendix K.3.

(4) OCR-driven failures (66%): In scanned test subsets, text recognition errors often corrupt node
labels or generate extra nodes that do not exist in the original flowchart. Examples are provided in
Appendix K.4.

25

Published as a conference paper at ICLR 2026

K.1 CROSS-RENDERER ERROR ON FLOWGEN TEST SET

An Example of Cross-Renderer Error on FlowGen Test Set

[System Input]

Graph Medium From PlantUML Graph Medium From Mermaid

[System Input]

Configured as in Appendix H.1

[User Input]

Configured as in Appendix H.1

Qwen2.5-VL-7B For PlantUML Flowchart Output:
<Behavior Change Support, connectedTo, Holistic Health Assessment><Behavior Change Support,
protects, Social Connection Enhancement><Detox Programs, assesses, Emotional Well-being><Detox
Programs, eats, Gut Health for Wellness><Detox Programs, moves, Environmental Wellness><Detox
Programs, stress-reduces, Physical Activity Planning><Digital Detox, connectedTo, Resilience Build-
ing><Digital Detox, optimizes, Social Connection Enhancement><Digital Detox, promotes, Holistic
Health Assessment><Digital Detox, tests, Physical Activity Planning><Emotional Well-being, connect-
edTo, Gratitude Practice><Environmental Wellness, connectedTo, Nature Connection><Environmental
Wellness, partOf, Health Coaching><Gut Health for Wellness, certifies, Work-Life Balance Coach-
ing><Gut Health for Wellness, coaches, Physical Activity Planning><Holistic Health Assessment,
connectedTo, Behavior Change Support><Holistic Health Assessment, connectedTo, Social Connec-
tion Enhancement><Meditation Coaching, connectedTo, Work-Life Balance Coaching><Meditation
Coaching, motivates, Holistic Health Assessment><Massage Therapy, connectedTo, Gratitude Prac-
tice><Massage Therapy, partOf, Health Coaching><Nature Connection, connectedTo, Environmental
Wellness><Nature Connection, partOf, Health Coaching><Physical Activity Planning, connectedTo,
Digital Detox><Physical Activity Planning, connectedTo, Work-Life Balance Coaching><Physical Ac-
tivity Planning, eats, Detox Programs><Resilience Building, complies, Quantum Computing Integra-
tion><Resilience Building, connectedTo, Digital Detox><Resilience Building, connectedTo, Holistic
Health Assessment><Resilience Building, connectedTo, Meditation Coaching><Resilience Building,
connectedTo, Physical Activity Planning><Resilience Building, personalizes, Physical Activity Plan-
ning><Resilience Building, researches, Gratitude Practice><Resilience Building, supports, Holistic
Health Assessment><Social Connection Enhancement, balances, Holistic Health Assessment><Social
Connection Enhancement, connectedTo, Holistic Health Assessment><Social Connection Enhance-
ment, optimizes, Digital Detox><Social Connection Enhancement, protects, Behavior Change Sup-
port><Social Connection Enhancement, recommends, Behavior Change Support><Work-Life Balance
Coaching, connectedTo, Meditation Coaching><Work-Life Balance Coaching, connectedTo, Physical Ac-
tivity Planning><Work-Life Balance Coaching, connects, Detox Programs><Work-Life Balance Coach-
ing, secures, Physical Activity Planning>

Qwen2.5-VL-7B For Mermaid Flowchart Output: <Aromatherapy Usage, advises, Burnout Pre-
vention><Aromatherapy Usage, connectedTo, Alternative Therapies><Aromatherapy Usage, partOf,

26

Published as a conference paper at ICLR 2026

Resilience Building><Alternative Therapies, connectedTo, Aromatherapy Usage><Alternative Ther-
apies, partOf, Resilience Building><Behavior Change Support, connectedTo, Personal Growth Plan-
ning><Behavior Change Support, connectedTo, Physical Activity Planning><Burnout Prevention,
connectedTo, Detox Programs><Burnout Prevention, partOf, Resilience Building><Detox Programs,
connectedTo, Burnout Prevention><Detox Programs, partOf, Resilience Building><Employee Well-
ness Programs, complies, Behavior Change Support><Employee Wellness Programs, eats, Health
Coaching><Environmental Wellness, connectedTo, Holistic Health Assessment><Environmental Well-
ness, connectedTo, Mindfulness Practice><Environmental Wellness, connectedTo, Physical Activity
Planning><Environmental Wellness, sleeps, Physical Activity Planning><Health Coaching, connect-
edTo, Detox Programs><Health Coaching, connectedTo, Environmental Wellness><Health Coach-
ing, connectedTo, Personal Growth Planning><Health Coaching, eats, Employee Wellness Pro-
grams><Holistic Health Assessment, recommends, Personal Growth Planning><Journaling for Well-
ness, connectedTo, Mindfulness Practice><Journaling for Wellness, connectedTo, Personal Growth Plan-
ning><Journaling for Wellness, connectedTo, Physical Activity Planning><Journaling for Wellness,
enhances, Massage Therapy><Journaling for Wellness, optimizes, Massage Therapy><Journaling for
Wellness, stress-reduces, Environmental Wellness><Mindfulness Practice, connectedTo, Environmental
Wellness><Mindfulness Practice, educates, Spectroscopy><Massage Therapy, connectedTo, Personal
Growth Planning><Massage Therapy, engages, Health Coaching><Massage Therapy, meditates, Envi-
ronmental Wellness><Massage Therapy, mindfulness, Personal Growth Planning><Massage Therapy,
personalizes, Alternative Therapies><Personal Growth Planning, connectedTo, Behavior Change Sup-
port><Personal Growth Planning, connectedTo, Holistic Health Assessment><Personal Growth Plan-
ning, connectedTo, Physical Activity Planning><Personal Growth Planning, recommends, Holistic Health
Assessment><Physical Activity Planning, connectedTo, Environmental Wellness><Physical Activity
Planning, researches, Holistic Health Assessment><Physical Activity Planning, sleeps, Environmental
Wellness>”

Error Analysis:
Qwen2.5-VL-7B exhibits inconsistent predictions across different renderers for the same underlying topic.
For example, in the PlantUML rendering, the gold-standard graph emphasizes role-task relations such as
⟨Detox Programs, eats, Gut Health for Wellness⟩ and ⟨Social Connection Enhancement, protects, Holistic
Health Assessment⟩. However, the model output drifts into spurious links like ⟨Resilience Building, com-
plies, Quantum Computing Integration⟩, which are entirely unrelated. In contrast, when the same topic
is rendered with Mermaid, the gold standard encodes alternative therapy structures (e.g., ⟨Aromatherapy
Usage, advises, Burnout Prevention⟩, ⟨Alternative Therapies, partOf, Resilience Building⟩), yet the model
prediction introduces inconsistent or shallow associations, failing to capture the intended containment and
functional dependencies. These examples illustrate a clear cross-renderer sensitivity: even for the same se-
mantic topic, the model’s outputs diverge substantially depending on the renderer, resulting in structurally
mismatched and semantically incoherent graphs.

27

Published as a conference paper at ICLR 2026

K.2 COMPLEX NESTING ERROR ON FLOWGEN TEST SET

An Example of Complex Nesting Error on FlowGen Test Set

[System Input]

Configured as in Appendix H.1

[User Input]

Configured as in Appendix H.1

Qwen2.5-VL-7B Output:
<After-School Programs, connectedTo, Special Needs Accommodation>
<After-School Programs, disciplines, Field Trip Organization>
<After-School Programs, guides, Hygiene Practices>
<Field Trip Organization, connectedTo, Playground Safety Inspection>
<Field Trip Organization, maintains, Playground Safety Inspection>
<Field Trip Organization, safeguards, Nutritional Meal Preparation>
<Hygiene Practices, assesses, Nutritional Meal Preparation>
<Hygiene Practices, communicates, Field Trip Organization>
<Hygiene Practices, connectedTo, Field Trip Organization>
<Hygiene Practices, connectedTo, Playground Safety Inspection>
<Hygiene Practices, supervises, Field Trip Organization>
<Music and Movement Activities, connectedTo, Special Needs Accommodation>
<Music and Movement Activities, partOf, Child Protection Policies>
<Nutritional Meal Preparation, connectedTo, Field Trip Organization>
<Nutritional Meal Preparation, partOf, Child Protection Policies>
<Parent Communication, advises, Story Time Reading>
<Parent Communication, connectedTo, Music and Movement Activities>
<Parent Communication, partOf, Child Protection Policies>
<Playground Safety Inspection, connectedTo, Field Trip Organization>
<Special Needs Accommodation, cares for, Hygiene Practices>
<Special Needs Accommodation, connectedTo, Music and Movement Activities>
<Special Needs Accommodation, connectedTo, Playground Safety Inspection>
<Special Needs Accommodation, prepares, Field Trip Organization>
<Story Time Reading, advises, Parent Communication>
<Story Time Reading, partOf, Child Protection Policies>
<Transmission Electron Microscopy, connectedTo, Nanodevice Fabrication>
<Transmission Electron Microscopy, connectedTo, Solar Cell Efficiency Enhancement>

Error Analysis:
Qwen2.5-VL-7B fails to capture hierarchical containment and role-task dependencies present in the gold
standard. While the gold-standard graph encodes explicit partOf relations—e.g., situating “Music and
Movement Activities”, “Parent Communication”, “Story Time Reading”, and “Nutritional Meal Prepara-
tion” under “Child Protection Policies”, the model’s prediction, however, flattens or distorts these struc-
tures: it omits key containment relations, incorrectly shifts responsibilities (e.g., assigning ⟨Nutritional
Meal Preparation, partOf, Child Protection Policies⟩ while failing to preserve its other nested partOf re-
lations), and even hallucinates irrelevant nodes such as Transmission Electron Microscopy, demonstrating
difficulty in preserving complex hierarchies across multiple functional domains.

28

Published as a conference paper at ICLR 2026

K.3 EDGE AMBIGUITY ERROR ON FLOWGEN TEST SET

An Example of Edge Ambiguity Error on FlowGen Test Set

[System Input]

Configured as in Appendix H.1

[User Input]

Configured as in Appendix H.1

Qwen2.5-VL-7B Output:
<Biocontainment Strategies, partOf, Biofoundry Operations>
<Biocontainment Strategies, regulates, Cellular Reprogramming>
<Biosafety Level Management, builds, Regulatory Frameworks>
<Biosafety Level Management, partOf, Biofoundry Operations>
<Biocontainment Strategies, simulates, Biosafety Level Management>
<Cellular Reprogramming, partOf, Biofoundry Operations>
<Cellular Reprogramming, purifies, Public Engagement>
<Computational Design of Biological Systems, clones, Modular Biology Design>
<Computational Design of Biological Systems, connectedTo, Public Engagement>
<Drug Delivery Systems, circuits-designs, Synthetic Organism Design>
<Drug Delivery Systems, materials-develops, Metabolic Pathway Engineering>
<Gene Synthesis Platforms, connectedTo, Metabolic Pathway Engineering>
<Gene Synthesis Platforms, ferments, Regulatory Frameworks>
<Gene Synthesis Platforms, security-manages, Metabolic Pathway Engineering>
<Gene Synthesis Platforms, tests, Synthetic Organism Design>
<Metabolic Pathway Engineering, connectedTo, Drug Delivery Systems>
<Metabolic Pathway Engineering, ethical-considers, Public Engagement>
<Metabolic Pathway Engineering, materials-develops, Drug Delivery Systems>
<Modular Biology Design, connectedTo, Synthetic Organism Design>
<Public Engagement, connectedTo, Computational Design of Biological Systems>
<Public Engagement, connectedTo, Synthetic Organism Design>
<Public Engagement, purifies, Cellular Reprogramming>
<Regulatory Frameworks, builds, Biosafety Level Management>
<Regulatory Frameworks, connectedTo, Metabolic Pathway Engineering>
<Regulatory Frameworks, licenses, Public Engagement>
<Transmission Electron Microscopy, connectedTo, Nanodevice Fabrication>

29

Published as a conference paper at ICLR 2026

Error Analysis:
Qwen2.5-VL-7B’s prediction exhibits clear edge ambiguity errors, where the directions of edges are fre-
quently misrepresented. In the gold standard, edges encode regulatory or constructive relations (e.g.,
⟨Biosafety Level Management, simulates, Biocontainment Strategies⟩), while the model frequently reverses
them (e.g., ⟨Biocontainment Strategies, simulates, Biosafety Level Management⟩), inverting the causal
logic. In addition, spurious edges and nodes are introduced (e.g., ⟨Transmission Electron Microscopy, con-
nectedTo, Nanodevice Fabrication⟩), which do not exist in the input diagram. As a result, the predicted
graph fails to preserve the structural consistency of the scanned flowchart, producing ambiguous and logi-
cally inconsistent edge relations.

K.4 OCR-DRIVEN ERROR ON FLOWGEN TEST SET

An Example of OCR-Driven Error on FlowGen Test Set

[System Input]

Configured as in Appendix H.1

[User Input]

Configured as in Appendix H.1

Qwen2.5-VL-7B Output:
<Employee Engagement Surveys, connectedTo, Offer Management>
<Employee Recognition Programs, connectedTo, Change Management>
<Employee Recognition Programs, connectedTo, Global Mobility Programs>
<Employee Recognition Programs, connectedTo, Nanodevice Fabrication>
<Employee Recognition Programs, connectedTo, Talent Management>
<HR Analytics, connectedTo, Performance Appraisal>
<Offer Management, connectedTo, Recruitment Planning>
<Performance Appraisal, connectedTo, HR Analytics>
<Recruitment Planning, connectedTo, Talent Management>
<Change Management, connectedTo, Employee Engagement Surveys>
<Change Management, connectedTo, Global Mobility Programs>
<Change Management, connectedTo, Nanodevice Fabrication>
<Global Mobility Programs, connectedTo, Onboarding Process>
<Onboarding Process, connectedTo, Compensation and Benefits>
<Talent Management, connectedTo, Global Mobility Programs>

30

Published as a conference paper at ICLR 2026

Error Analysis:
Qwen2.5-VL-7B’s output reveals typical OCR-driven errors: misrecognized text leads to hallucinated nodes
such as “Nanodevice Fabrication”, which do not exist in the gold standard. As a result, the model gener-
ates spurious edges (e.g., ⟨Employee Recognition Programs, connectedTo, Nanodevice Fabrication⟩) while
omitting valid dependencies like ⟨HR Analytics, connectedTo, Global Mobility Programs⟩. These OCR-
induced distortions corrupt both the semantics and the topology of the predicted graph, illustrating how
recognition noise directly propagates into structural parsing errors.

31

