

FLOWGEN: SYNTHESIZING DIVERSE FLOWCHARTS TO ENHANCE AND BENCHMARK MLLM REASONING

Kaiwen Shi, Sichen Liu, Ziyue Lin, Hangrui Guo, Gong Cheng*

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

{kaiwenshi, sichenliu, 221240094, 221240069}@smail.nju.edu.cn
gcheng@nju.edu.cn

ABSTRACT

Flowcharts are widely used to represent processes and relationships through intuitive visual representations. However, accurately interpreting these diagrams remains challenging due to their structural complexity and high visual diversity. Existing flowchart datasets often lack fine-grained control over key properties such as graph complexity and rendering style, limiting their utility for training and testing of multimodal large language models (MLLMs) on visual reasoning tasks. To address these limitations, we introduce FlowGen, a controllable synthesizer that generates flowcharts that have customizable structural features and supports multiple renderer backends. FlowGen enables fine-grained control over graph properties such as graph order and size, branched arrows, and nested subgraphs, facilitating systematic evaluation of MLLMs’ capabilities. Extensive experiments on open-source and proprietary MLLMs show that training on FlowGen substantially improves flowchart parsing and question answering (QA), while also enhancing generalization to other public datasets. Furthermore, FlowGen provides challenging test datasets that expose consistent weaknesses in current MLLMs, particularly related to high structural complexity and varied rendering styles. Our code and data are publicly available at <https://github.com/nju-websoft/FlowGen>.

1 INTRODUCTION

Flowcharts, as illustrated in Figure 1, are widely used to represent processes, relationships, and workflows, prevalent in domains such as scientific communication, business process modeling (BPMN), software engineering documentation, and education (Bhushan et al., 2024). As a graphical language, flowcharts integrate symbolic information with spatial layout, enabling humans to quickly understand complex processes. However, this same structural complexity makes automatic parsing highly challenging (Montalvo, 1990). Building models to extract structured representations from flowcharts is crucial for enabling downstream applications, including code generation, knowledge extraction from documents, automated reasoning over workflows, and multimodal question answering (Vasudevan et al., 2008; Bashir & Giri, 2013; Hu et al., 2024).

Motivation. Recent advances in vision language models (VLMs) and MLLMs have shown potential to understand flowcharts, enabling end-to-end reasoning from images (Ye et al., 2024). However, the development of such capabilities is hindered by the limitations of existing datasets. On the one hand, existing *test sets* provide limited control over complex structures, such as branching factor and hierarchical nesting. They are also usually

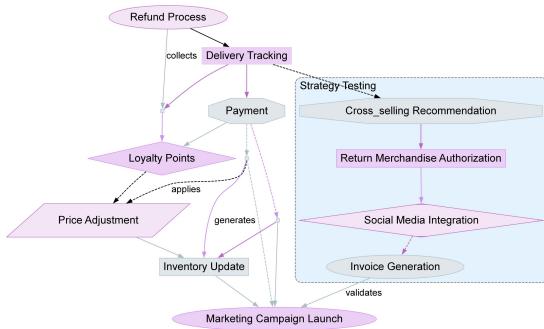


Figure 1: Example flowchart synthesized by FlowGen.

*Corresponding Author: Gong Cheng.

Table 1: Comparison between our proposed synthesizer (FlowGen) and existing flowchart datasets.

Dataset	Complexity	Renderer(s)	Source	#Train	#Test
FlowchartQA (Tannert et al., 2023)	NA	Graphviz	Synthetic	Not released	Not released
FlowVQA (Singh et al., 2024)	NA	Mermaid	Synthetic	1,319	953
CBD (Bhushan & Lee, 2022)	NA	NA	Web crawling	300	96
FC_A (Awal et al., 2011)	Branching	NA	Hand-drawn flowcharts	248	145
FC_B (Bresler et al., 2016)	Branching	NA	Hand-drawn flowcharts	280	196
hdBPMN (Schäfer et al., 2021b)	Branching & Nesting	NA	Hand-drawn BPMN diagrams	0	173
FlowLearn (Pan et al., 2024)	Branching	Mermaid	Synthetic	8,000	2,000
FlowGen (ours)	Branching & Nesting	Mermaid, Graphviz, PlantUML, Diagrams	Synthetic	Unlimited	Unlimited

rendered in a single visual style, which prevents evaluating the robustness to stylistic variation, while real-world flowcharts are highly diverse (Awal et al., 2011; Bresler et al., 2016; Schäfer et al., 2021b; Bhushan & Lee, 2022; Tannert et al., 2023). On the other hand, existing *training sets* are small, narrowly focused on specific domains, or missing important structural features (Sun et al., 2022; Singh et al., 2024; Bhushan et al., 2024; Pan et al., 2024). These issues hinder effective model training, and models fail when confronted with high structural complexity or cross-renderer settings. These limitations call for a more principled way to generate both training and test resources. More related work is discussed in Appendix B.

Our Work. To bridge both training and test gaps in previous work, as compared in Table 1, we introduce FlowGen, a controllable flowchart synthesizer that generates diagrams with tunable structural features and supports multiple rendering styles. Figure 1 presents an example flowchart synthesized by FlowGen, demonstrating split arrows, merge arrows, nested structures, and variations in colors, node shapes, and edge styles. This diversity enriches the distribution of generated flowcharts to better approximate real-world practices.

With FlowGen, we: (1) build a large-scale synthetic *training set* and demonstrate that fine-tuning open-source MLLMs on it substantially boosts their ability of flowchart parsing and flowchart QA, with strong transfer gains to multiple existing datasets, in some cases even surpassing proprietary MLLMs; (2) construct synthetic *test sets* with controlled complexity and renderer diversity, and use them to comprehensively test both open-source and proprietary MLLMs, revealing their consistent weaknesses in handling nested structures and cross-renderer generalization. Together, these results establish controllable flowchart synthesis as a practical and effective strategy to advance the machine understanding of such diagrams.

Our contributions are summarized as follows:

- We introduce a controllable flowchart synthesizer capable of generating flowcharts with adjustable structural complexity and multiple renderer styles, enabling the principled construction of both training and test resources.
- We synthesize large training sets and show that fine-tuning with them significantly improves MLLM reasoning on flowcharts, with strong transferability to a wide range of existing flowchart parsing and QA datasets.
- We synthesize challenging test sets that systematically expose weaknesses of both open-source and proprietary MLLMs, providing insights into their limitations under high complexity and cross-renderer variation.

2 SYNTHESIZER FRAMEWORK

Figure 2 provides an overview of our FlowGen synthesizer pipeline. The synthesizer converts a compact, user-specified configuration into structurally valid graphs, then semantically annotates and renders them with multiple, stylistically diverse backends. The pipeline is organized into three core stages: (1) configuration, (2) graph construction, and (3) rendering. These stages jointly enable fine-grained control over structural complexity, semantic richness, and visual appearance.

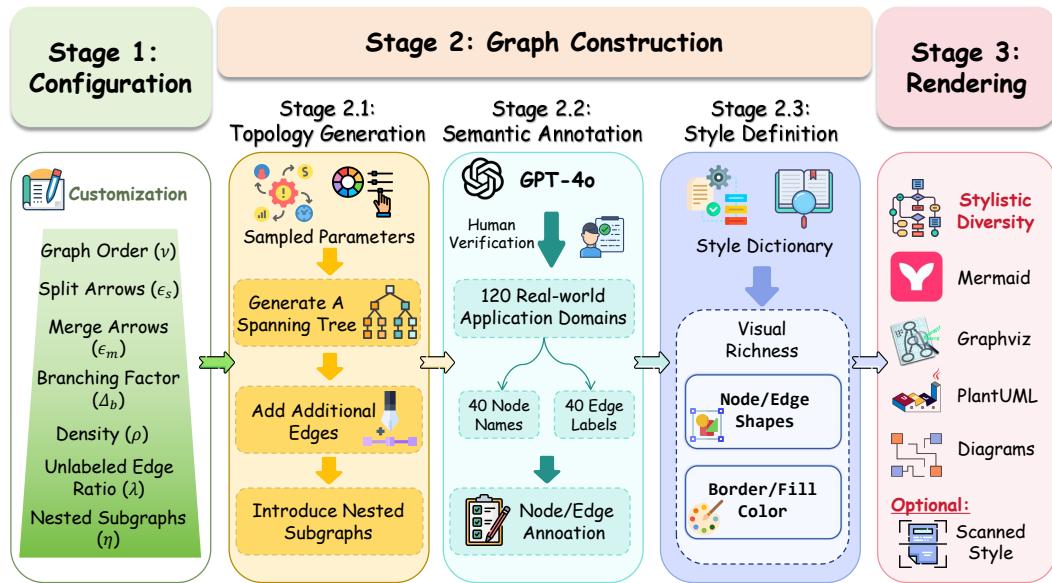


Figure 2: Overview of our FlowGen synthesizer pipeline.

2.1 CONFIGURATION

The synthesizer begins by sampling a set of structural parameters that govern the topological and semantic complexity of generated flowcharts. We define seven controllable parameters.

Graph Order (ν). This specifies the total number of nodes in a flowchart, including those contained in nested subgraphs. We categorize the scale into three levels: *small* (8–12 nodes), *medium* (13–20 nodes), and *large* (21–30 nodes). This parameter is the primary factor controlling the overall length and complexity of the synthesized flowcharts.

Split Arrows (ϵ_s). Split arrows introduce virtual nodes that model the divergence of a single process into multiple concurrent branches. Although they do not carry domain-specific semantics, they substantially increase structural variability. The parameter ϵ_s specifies the number of such virtual nodes, which regulates the branching complexity of the graph structure.

Merge Arrows (ϵ_m). Merge arrows capture the convergence of multiple parallel streams into a single unified process. Each merging structure introduces a virtual node with multiple incoming edges, and the total number of such virtual nodes is controlled by ϵ_m . Together with split arrows, these constructs enable simulation of complex control-flow patterns.

Branching Factor (Δ_b). This governs the maximum fan-in and fan-out degrees of virtual nodes created for the split and merge arrows. During construction, up to Δ_b outgoing edges are assigned to a split node, and up to Δ_b incoming edges to a merge node. This provides fine-grained control over the degree of divergence and convergence.

Density (ρ). This is defined as the edge-to-node ratio $\rho = \epsilon/\nu$, where ϵ denotes the total number of edges and ν the number of nodes. This parameter controls the overall visual density of the graph. Higher values of ρ indicate denser connectivity patterns, leading to visually cluttered graphs, whereas lower values produce sparser and more tree-like structures.

Unlabeled Edge Ratio (λ). This parameter $\lambda \in [0, 1]$ specifies the proportion of edges that do not carry textual labels. A higher λ increases semantic ambiguity and makes the reasoning task

harder. When $\lambda = 0$, all edges are annotated with labels; when $\lambda = 1$, no edges contain labels. This parameter allows for controlled adjustment of semantic sparsity.

Nested Subgraphs (η). This determines the number of hierarchically embedded subgraphs, which introduce structural depth in addition to the global node count ν . Each nested subgraph is assigned depth 1, and the edges incident to a subgraph connect directly to its internal nodes.

2.2 GRAPH CONSTRUCTION

Given the sampled parameters, the synthesizer constructs an abstract directed acyclic graph with semantically coherent labels to serve as the structural backbone of the flowchart. The process consists of three stages: topology generation, semantic annotation, and style definition.

2.2.1 TOPOLOGY GENERATION

We begin by generating a random spanning tree on ν nodes to establish an acyclic backbone for node positioning. To increase connectivity, additional edges are then introduced according to the sampled ϵ_s , ϵ_m , and Δ_b . If the resulting number of edges is still below the target density ρ , further random acyclic edges are added until the specified ratio is met. To incorporate hierarchical depth, nested subgraphs are created by randomly selecting 2 to 5 connected nodes and grouping them into a higher-level node, controlled by the nesting count η . Nested subgraphs are constrained to be disjoint, preventing overlap and preserving clarity. If η exceeds the feasible number of disjoint groupings for a given graph size, the generator halts further nesting to maintain structural validity.

2.2.2 SEMANTIC ANNOTATION

Once the abstract topology is constructed, the synthesizer assigns a semantic domain by sampling a topic from 120 predefined application domains. Each topic provides 40 node names and 40 edge labels, initially generated with GPT-4o and refined through human verification. The nodes and edges are annotated with topic-specific labels to maintain semantic coherence, and the edges are labeled with probability $1 - \lambda$, where $\lambda \in [0, 1]$ denotes the unlabeled edge ratio. Additional details of the application domains and representative node and edge vocabularies are provided in Appendix C.

2.2.3 STYLE DEFINITION

After topology generation and semantic annotation, the visual appearance of nodes and edges is determined using renderer-specific definitions from a predefined style dictionary. The node and edge shapes are randomly sampled from the available ones, with possible repetition to emulate the variability of real-world diagrams. To introduce color variation, five palettes are randomly drawn from a pool of 90 predefined schemes for each flowchart topic instance, and node borders, fills, and edge colors are sampled from these palettes. This rendering strategy enhances stylistic diversity and visual richness while ensuring thematic consistency within each flowchart synthesized.

2.3 RENDERING

The final stage of the synthesizer converts abstract annotated graph codes into visual flowcharts. To capture the diversity of real-world styles, we integrate four complementary rendering backends: Mermaid¹, Graphviz², PlantUML³, and Diagrams⁴. Each backend provides its own syntax, layout algorithms, and visual conventions. For instance, Mermaid emphasizes lightweight web-native diagrams, Graphviz offers fine-grained control over hierarchical layouts, PlantUML supports modular subgraph definitions, and Diagrams provides programmatic composition of clusters and entities.

During rendering, abstract nodes and edges, which have been annotated with textual labels and style attributes, are translated into renderer-specific elements such as shapes, connectors, and nesting sub-

¹<https://mermaid-js.github.io/>

²<https://graphviz.org/>

³<https://plantuml.com/>

⁴<https://diagrams.mingrammer.com/>

graphs. By applying the user-specified renderer, our synthesizer produces visually rich and diverse flowcharts that closely resemble diagrams created in real-world scenarios.

3 FLOWGEN FOR MLLMs TRAINING

In this section, we systematically evaluate the performance gains of MLLMs fine-tuned on the FlowGen-synthesized training set for flowchart parsing and flowchart QA tasks. We further conduct ablation experiments to dissect the impact of key synthesis components.

3.1 EXPERIMENTAL SETUP

3.1.1 EVALUATION DATASETS

We evaluate a wide range of MLLMs on datasets covering two task categories. For **flowchart parsing**, we use FlowVQA (Singh et al., 2024), CBD (Bhushan & Lee, 2022), FC_A (Awal et al., 2011), FC_B (Bresler et al., 2016), hdBPMN (Schäfer et al., 2021b), and FlowLearn (Pan et al., 2024). These datasets provide flowcharts with structural annotations, enabling direct assessment of parsing accuracy. For **flowchart QA**, we adopt FlowVQA, FlowLearn, AI2D (Kembhavi et al., 2016), and MISS-QA (Zhao et al., 2025), which contain diagram-based questions that require reasoning over both structure and semantics. Details of these datasets are provided in Appendix D.1.

3.1.2 EVALUATION METRICS

For flowchart parsing, we represent the graph structure as triplets that capture both topology and semantics. We distinguish: (1) labeled edges (A, X, B) , where X denotes a directed relation from node A to node B ; (2) unlabeled edges $(A, \text{connectedTo}, B)$, which use the predefined relation connectedTo to indicate an unlabeled relation between A and B ; and (3) nested subgraphs (A, partOf, B) , where node A belongs to a container group B , capturing hierarchical containment.

Strict Precision, Recall, and F1. Based on triplets, we compute standard parsing metrics:

$$\text{Precision} = \frac{|T_{\text{pred}} \cap T_{\text{gold}}|}{|T_{\text{pred}}|}, \text{Recall} = \frac{|T_{\text{pred}} \cap T_{\text{gold}}|}{|T_{\text{gold}}|}, \text{F1} = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}. \quad (1)$$

These strict metrics require exact string matches between predicted (T_{pred}) and gold-standard triplets (T_{gold}), thus capturing topological fidelity but sensitive to textual mismatches.

Relaxed Precision, Recall, and F1. To tolerate minor textual variations, we define a relaxed matching rule based on the normalized Levenshtein distance (Levenshtein, 1965). The edit similarity (ES) between two strings S_1 and S_2 is given by:

$$\text{ES}(S_1, S_2) = 1 - \frac{\text{EditDistance}(S_1, S_2)}{\max(|S_1|, |S_2|)}. \quad (2)$$

A predicted triplet (h_p, r_p, t_p) matches a gold-standard triplet (h_g, r_g, t_g) if and only if

$$\min\{\text{ES}(h_p, h_g), \text{ES}(r_p, r_g), \text{ES}(t_p, t_g)\} > 0.85. \quad (3)$$

Using this relaxed criterion, we recompute precision, recall, and F1, which provide robustness to minor OCR errors while still strictly evaluating structural correctness.

Accuracy. For flowchart QA datasets (e.g., AI2D, MISS-QA), we report *Accuracy*, defined as the proportion of questions for which the model prediction exactly matches the gold-standard answer. This metric captures end-to-end reasoning performance and complements the triplet-based metrics.

3.1.3 PARTICIPATING MODELS

We evaluate the performance of 10 MLLMs across two categories: (1) **open-source models**, including Qwen2.5-VL-3B/7B (Bai et al., 2025), InternVL3-2B (Zhu et al., 2025), MiniCPM-V2.6-8B (Yao et al., 2024), Llava-V1.6-Mistral-7B-HF (Liu et al., 2024), and the Gemma3 series (4B,

Table 2: Configurations for synthesizing the training set. Ranges indicate values to sample.

Difficulty	ν	ϵ_s	ϵ_m	Δ_b	η	ρ	λ
Easy	(8, 12)	(0, 0)	(0, 0)	(1, 2)	0	(1.0, 1.1)	(0.3, 0.6)
Medium	(13, 20)	(1, 2)	(1, 2)	(2, 3)	1	(1.1, 1.2)	(0.6, 0.8)
Hard	(21, 30)	(2, 3)	(2, 3)	(3, 4)	2	(1.2, 1.3)	(0.8, 1.0)

Table 3: Performance comparison of MLLMs on flowchart parsing datasets. We report strict F1 and relaxed F1 (rF1) scores. We compare each model with its variant fine-tuned on FlowGen (+ SFT).

Model	FlowVQA		CBD		FC_A		FC_B		hdBPMN		FlowLearn	
	F1	rF1										
<i>Proprietary Multimodal Large Language Models</i>												
GPT-4o	88.2	89.1	64.5	67.1	41.9	44.3	52.6	55.3	26.5	35.8	53.9	58.6
Gemini-2.5-Flash	62.3	63.3	63.2	66.2	38.5	40.9	52.9	55.8	8.1	10.5	82.1	86.2
GLM-4V-Plus	74.0	74.5	55.6	58.7	33.0	34.0	46.8	49.3	8.6	11.3	31.6	40.8
<i>Open-Source Multimodal Large Language Models</i>												
Qwen2.5-VL-3B	12.7	13.0	17.9	18.3	2.8	3.0	8.6	9.1	2.3	3.3	20.6	25.4
+ SFT	51.3	52.9	49.8	52.0	22.4	23.0	34.6	37.2	8.4	11.3	41.6	55.5
Qwen2.5-VL-7B	59.4	59.7	49.1	51.2	25.8	27.2	32.0	33.2	16.6	20.6	43.2	48.3
+ SFT	70.9	71.9	55.4	57.7	29.5	31.4	40.8	43.7	18.3	24.2	60.1	71.2
InternVL3-2B	15.7	17.0	18.4	19.5	4.6	5.7	8.3	9.1	3.2	4.3	21.8	32.6
+ SFT	34.6	39.4	37.8	40.7	13.7	14.7	21.6	24.3	2.1	2.8	13.2	25.2
MiniCPM-V2.6-8B	17.6	18.5	20.4	20.9	7.5	8.7	8.8	10.2	3.4	5.3	9.1	12.7
+ SFT	44.0	47.2	37.9	39.5	13.4	14.3	22.9	24.9	3.6	5.7	20.0	31.0
Llava-V1.6-Mistral-7B-HF	2.6	3.3	12.2	13.1	2.8	3.7	4.5	5.3	1.0	1.3	3.6	8.9
+ SFT	4.9	8.7	14.0	17.4	2.3	2.7	4.8	5.4	1.1	1.5	4.4	13.5
Gemma3-4B-IT	8.4	9.9	17.3	17.8	3.6	5.4	4.2	6.3	2.2	2.9	17.0	24.8
+ SFT	19.6	29.8	28.6	35.7	15.3	18.8	7.5	11.2	1.2	1.7	11.4	21.0
Gemma3-12B-IT	36.4	40.9	36.2	39.0	11.6	14.8	12.7	19.0	10.1	13.7	29.7	37.3
+ SFT	38.9	46.3	39.3	45.5	13.1	15.8	17.9	23.1	3.7	4.6	24.4	39.0

12B) (Team et al., 2025a); and (2) **proprietary models**, including GPT-4o (OpenAI, 2024), Gemini-2.5-Flash (Comanici et al., 2025), and GLM4V-Plus (Team et al., 2025b). Appendix D.2 summarizes the details of each model. All experiments are carried out on a standardized software and hardware stack, using PyTorch 2.6.0, Transformers 4.53.1, and CUDA 12.4 on NVIDIA RTX 5880 Ada Generation 48GB GPUs. The training and test code is implemented in Python 3.10, with reproducibility ensured by fixed random seeds and deterministic dataloaders. Detailed experimental settings, including prompts, are provided in Appendix D.3 and Appendix E.

3.2 SYNTHESIZED TRAINING SET

To synthesize a training set with FlowGen, we systematically define three configurations of parameters representing different levels of difficulty: easy, medium, and hard, as shown in Table 2.

For each renderer (Mermaid, Graphviz, PlantUML, Diagrams), we generate flowcharts across all three difficulty levels. Each difficulty level is combined with 120 topics, with eight random instantiations per topic. This yields a total of 11,520 flowcharts in the synthesized training set.

3.3 EXPERIMENTAL RESULTS

3.3.1 MAIN RESULTS

Table 3 reports the flowchart parsing results on six benchmarks. *Models fine-tuned on FlowGen (+ SFT) generally yield substantial improvements across models and datasets.* For instance, Qwen2.5-VL-3B improves from 12.7% to 51.3% F1 on FlowVQA and from 2.8% to 22.4% on FC_A, while InternVL3-2B increases from 15.7% to 34.6% on FlowVQA. Qwen2.5-VL-7B improves from 43.2% to 60.1% F1 on FlowLearn, demonstrating strong cross-domain generalization rather than overfitting to synthetic data. Importantly, these improvements also manifest under edit similarity. Although performance on the challenging hdBPMN benchmark remains modest, the gains confirm that synthetic training substantially boosts generalization to real-world datasets.

Moreover, open-source models fine-tuned with FlowGen are comparable to proprietary models on some datasets. For instance, Qwen2.5-VL-7B attains 60.1% on FlowLearn and 18.3% on hdBPMN, outperforming GLM4V-Plus (31.6% and 8.6%). These findings highlight FlowGen’s potential to broaden access to high-performing models with limited resources.

We further evaluate models on flowchart QA benchmarks, as reported in Table 4. All QA evaluations are conducted under zero-shot prompting (see Appendix E). As expected, prompting with gold-standard triplets establishes an upper bound on achievable gains. Notably, triplets extracted by FlowGen consistently achieve performance close to gold-standard annotations across models and datasets, while substantially outperforming triplets extracted by the base model itself. For example, Qwen2.5-VL-3B reaches 88.2% on FlowLearn with FlowGen-extracted triplets, approaching the gold-standard result of 89.1%, and markedly exceeding the 77.1% obtained with self-extracted triplets. Similarly, on AI2D, MiniCPM-V2.6-8B attains 42.8% using FlowGen-extracted triplets, compared to 45.0% with gold-standard triplets and only 32.6% with self-extraction. Similar trends are observed on MISS-QA and FlowVQA.

Besides triplet-augmented QA, we also fine-tune QA models on FlowGen-synthesized flowchart parsing tasks. Specifically, on FlowVQA and FlowLearn, we fine-tune each model under two settings: (i) SFT on the original QA training set, and (ii) SFT on an equal-sized mixed training set where half of the original QA samples are replaced with FlowGen-synthesized flowchart parsing tasks. As shown in Table 5, incorporating FlowGen generally improves end-to-end QA accuracy across models and datasets. For instance, Qwen2.5-VL-7B increases from 85.3% to 89.1% on FlowLearn, while MiniCPM-V2.6-8B improves from 73.2% to 77.6% on FlowVQA. *These gains indicate that FlowGen enhances models’ intrinsic ability to understand flowcharts, even when evaluated directly on downstream QA tasks using their fine-tuned checkpoints.* Together with the triplet-augmented QA results, this end-to-end evaluation demonstrates that FlowGen delivers genuine performance improvements by effectively enhancing models’ structure-aware visual reasoning capabilities, rather than merely providing auxiliary intermediate representations.

We also investigate whether fine-tuning on FlowGen transfers to broader multimodal reasoning abilities, with detailed results reported in Appendix F.

Table 4: Performance comparison (accuracy) of MLLMs on flowchart QA datasets. We compare each model with its variants prompted with gold-standard triplets (+ Gold-Standard Triplets), with triplets extracted by itself (+ Self-Extracted Triplets), and with triplets extracted by Qwen2.5-VL-7B fine-tuned on FlowGen (+ FlowGen-Extracted Triplets).

Model	FlowVQA	FlowLearn	AI2D	MISS-QA
GPT-4o	90.2	83.2	71.7	63.0
Gemini-2.5-Flash	88.0	83.4	63.2	67.3
GLM-4V-Plus	86.4	89.8	74.6	57.0
Qwen2.5-VL-3B	64.6	72.3	50.7	35.6
+ Gold-Standard Triplets	75.6	89.1	53.5	47.3
+ Self-Extracted Triplets	66.2	77.1	51.2	37.2
+ FlowGen-Extracted Triplets	73.4	88.2	51.4	38.7
Qwen2.5-VL-7B	74.6	71.1	60.9	42.1
+ Gold-Standard Triplets	83.2	73.9	62.5	55.3
+ Self-Extracted Triplets	77.1	70.7	60.5	44.6
+ FlowGen-Extracted Triplets	81.1	68.6	61.1	49.2
MiniCPM-V2.6-8B	61.6	80.9	32.0	31.1
+ Gold-Standard Triplets	71.4	85.9	45.0	37.8
+ Self-Extracted Triplets	61.0	81.1	32.6	31.5
+ FlowGen-Extracted Triplets	69.1	85.5	42.8	33.4

Table 5: Performance comparison (accuracy) of MLLMs on flowchart QA datasets. We compare each model with its variants fine-tuned on the original training set (+ SFT on the original training set) and on a mixture of the original training set and FlowGen (+ SFT on a mixed training set).

Model	FlowVQA	FlowLearn
Qwen2.5-VL-3B	64.6	72.3
+ SFT on the original training set	81.3	85.1
+ SFT on a mixed training set	85.6	84.7
Qwen2.5-VL-7B	74.6	71.1
+ SFT on the original training set	88.2	85.3
+ SFT on a mixed training set	89.2	89.1
MiniCPM-V2.6-8B	61.6	80.9
+ SFT on the original training set	73.2	86.2
+ SFT on a mixed training set	77.6	87.5

Table 6: Ablation results (strict F1) of FlowGen under different settings.

Training Variant	FlowVQA	CBD	FC_A	FC_B	bdBPMN	FlowLearn
Full FLOWGEN (All Features)	70.9	55.4	29.5	40.8	18.3	60.1
w/o Multi-Renderer (Only Mermaid)	76.2	53.3	28.5	38.1	17.0	60.9
w/o Nested Subgraphs	70.0	54.6	29.2	40.6	16.6	59.2
w/o Split/Merge Arrows	69.6	54.3	28.4	38.8	17.7	58.3

3.3.2 ABLATION STUDY

We perform ablation experiments on Qwen2.5-VL-7B, using synthetic data generated under different constraints while keeping the total training data size identical to the main experiment. We evaluate each variant on six flowchart parsing benchmarks, as reported in Table 6.

- (1) **Multi-renderer:** Restricting training data to a single renderer (Mermaid) substantially reduces cross-domain generalization, as shown by drops on CBD (from 55.4% to 53.3%) and FC_B (from 40.8% to 38.1%). In contrast, FlowVQA and FlowLearn slightly improve under this setting, since they exclusively use Mermaid and thus align better with the single-renderer distribution. In general, these results highlight the importance of style variation for learning representations that generalize between renderers and improve robustness.
- (2) **Nested subgraphs:** Removing hierarchical nesting leads to markedly reduced accuracy on bdBPMN, the only benchmark among the six that extensively features nested grouping structures, where performance decreases from 18.3% to 16.6%. Smaller declines are also observed on other datasets. This suggests that additional exposure to nested structures provides the model with richer structural signals, enabling it to better capture flowchart organization even when explicit nesting is absent. In general, these results underscore the value of modeling hierarchical layouts.
- (3) **Split/merge arrows:** Excluding split/merge arrows results in performance degradation on several benchmarks, including FC_B (from 40.8% to 38.8%), and FlowLearn (from 60.1% to 58.3%). This confirms that such structures are critical for accurately modeling branching logic and parallel workflows, which are common in real-world flowcharts.

To further isolate the contribution of structural information, we perform an additional ablation where all node names and edge labels are replaced with random meaningless strings, preserving the original graph structure while removing semantic annotation. The results are reported in Appendix G.

3.3.3 ERROR ANALYSIS

We analyze 50 cases where models fine-tuned with FlowGen fail, including 25 cases from FlowVQA and 25 from bdBPMN. Note that a single failure case may contain multiple error types; the percentages reported in the following can be added to more than 100%. Three main error types emerge.

- (1) **Complex nesting (40%):** Deeply nested structures, particularly in bdBPMN, often lead to incorrect handling of hierarchical groupings and subgraph boundaries. Models often flatten or misplace `partOf` relations. Examples are presented in Appendix H.1.
- (2) **Edge ambiguity (44%):** For high edge density or overlapping connectors, models sometimes confuse edge directionality or misinterpret relation labels. Examples are presented in Appendix H.2.
- (3) **OCR-driven failures (56%):** Although public benchmarks are primarily composed of visually clear diagrams, covering both digitally rendered and handwritten flowcharts, occasional recognition errors still occur (e.g., due to small font or stylized text in node labels). These OCR-related errors lead to incorrect or missing node labels. Illustrative cases are shown in Appendix H.3.

4 FLOWGEN FOR MLLMs TESTING

In this section, we construct a challenging test set using FlowGen to evaluate the robustness of MLLMs in flowchart parsing. The evaluation is designed to assess model capabilities in cross-renderer generalization, comprehension of nested structures, and parsing from noisy scanned inputs.

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS

The FlowGen test set is designed to evaluate model performance along two challenging dimensions: graph complexity and scanned document degradation. Accordingly, we construct six evaluation subsets by systematically configuring these two factors.

(1) **Graph subsets (Easy/Medium/Hard).** Following the definition in Section 3.2, the structural difficulty of a flowchart is determined by a set of parameters. These configurations yield three levels of complexity: Easy, Medium, and Hard. For each difficulty level, we synthesize 1,440 flowcharts (4 renderers \times 120 topics \times 3 instances), resulting in a total of 4,320 flowcharts across the Graph-Easy/Medium/Hard subsets.

(2) **Scanned subsets (Easy/Medium/Hard).** To evaluate robustness against simulated scanning effects, we further rasterize flowcharts into scanned-like images with degradations such as blur, perspective distortion, and lossy compression using `pillow 10.4.0`⁵ and `opencv-python 4.10.0.84`⁶. The severity of these perturbations increases from Easy to Hard. To avoid confounding structural variation, each scanned subset is generated by sampling one instance per topic from Graph-Easy/Medium/Hard. Each subset again contains 1,440 diagrams, leading to 4,320 flowcharts in total. The full configuration ranges for scanned degradations are provided in Appendix I.

The training set is synthesized with the same pipeline and configurations as the test set, ensuring matched distributions, while remaining strictly disjoint to prevent overlap.

4.1.2 EVALUATION METRICS

For evaluation on the test set, we follow the strict precision, recall, and F1 score metrics introduced in Section 3.1.2, thus maintaining consistency with the criteria used during the training experiment.

4.1.3 PARTICIPATING MODELS

We evaluate the same set of models described in Section 3.1.3.

4.2 EXPERIMENTAL RESULTS

4.2.1 MAIN RESULTS

Table 7 summarizes model performance on the FlowGen test set. *Overall, we observe that both open-source and proprietary MLLMs struggle on this benchmark:* even state-of-the-art proprietary systems such as GPT-4o and Gemini-2.5-Flash achieve less than 25% F1 on most subsets. Open-source base models also perform poorly, highlighting the structural and stylistic challenges posed by FlowGen. In this experiment, FlowGen-synthesized flowcharts are used for both training and testing as a deliberate stress-test setting. Notably, even under this potentially favorable condition, where renderer-level regularities could in principle be exploited during training, model performance remains far from saturation across all subsets. *This suggests that the challenge of FlowGen primarily arises from its complex and diverse topological structures (e.g., branching, nesting, and heterogeneous layouts), rather than superficial rendering effects.*

We further observe that training on the subset combining samples from all the six subsets (+ SFT on Combined) consistently improves performance across all test subsets, demonstrating a degree of cross-subset generalization. However, this unified training strategy typically underperforms subset-specific fine-tuning, indicating that different subsets capture distinct characteristics. Even with combined supervision, the absolute performance on hard subsets (i.e., Graph-Hard and Scanned-Hard) remains limited. *These results demonstrate that FlowGen constitutes a challenging benchmark for current MLLMs: even when sample distributions overlap and unified training is applied, models still struggle to robustly parse complex flowchart structures, highlighting the diversity and difficulty of the underlying graph distributions.* We also conduct an extra experiment to quantitatively assess the diversity of flowcharts synthesized by FlowGen, with details provided in Appendix J.

⁵<https://pypi.org/project/pillow/10.4.0/>

⁶<https://pypi.org/project/opencv-python/4.10.0.84/>

Table 7: Performance comparison (strict F1) of MLLMs on FlowGen test subsets.

Model	Test Subsets					
	Graph-Easy	Graph-Medium	Graph-Hard	Scanned-Easy	Scanned-Medium	Scanned-Hard
GPT-4o	38.4	16.2	12.0	24.0	23.2	20.5
Gemini-2.5-Flash	43.2	13.7	9.7	22.9	23.1	21.6
GLM-4V-Plus	30.0	9.4	5.3	15.3	19.3	18.3
Qwen2.5-VL-3B	20.4	6.2	2.9	10.2	10.0	9.0
+ SFT on Graph Easy	50.2	24.0	16.0	33.0	30.5	29.0
+ SFT on Graph Medium	36.3	32.9	28.2	33.1	33.1	31.3
+ SFT on Graph Hard	26.9	30.5	30.3	29.4	29.8	28.4
+ SFT on Scanned Easy	45.1	31.8	29.0	34.8	35.3	34.1
+ SFT on Scanned Medium	43.6	32.2	28.5	34.8	35.5	33.8
+ SFT on Scanned Hard	43.7	32.6	29.3	35.6	35.5	35.0
+ SFT on Combined	49.9	31.0	24.6	36.3	35.7	33.1
Qwen2.5-VL-7B	35.7	10.9	7.7	18.9	18.5	17.2
+ SFT on Graph Easy	74.9	35.0	21.2	45.3	44.3	41.9
+ SFT on Graph Medium	67.3	52.4	44.0	56.2	55.3	52.3
+ SFT on Graph Hard	39.1	43.6	43.3	42.6	42.9	40.8
+ SFT on Scanned Easy	66.8	47.8	41.6	53.9	53.1	49.7
+ SFT on Scanned Medium	68.8	48.1	42.0	54.4	53.6	51.0
+ SFT on Scanned Hard	66.0	47.1	42.0	53.0	52.6	50.2
+ SFT on Combined	66.5	47.2	42.6	52.8	51.7	50.2
MiniCPM-V2.6-8B	7.3	2.1	2.1	4.0	4.3	3.5
+ SFT on Graph Easy	33.0	13.1	9.0	18.8	18.1	17.7
+ SFT on Graph Medium	23.9	19.6	15.2	20.0	19.9	18.1
+ SFT on Graph Hard	17.5	17.4	17.4	17.8	17.9	16.8
+ SFT on Scanned Easy	29.6	19.1	16.5	22.2	22.1	20.8
+ SFT on Scanned Medium	29.6	19.0	16.1	22.3	22.3	20.4
+ SFT on Scanned Hard	27.1	18.0	16.3	21.3	20.4	19.4
+ SFT on Combined	39.5	24.2	20.6	29.0	28.8	27.1

4.2.2 ERROR ANALYSIS

We analyze 50 failure cases on the FlowGen’s test set and identify four major error categories: Cross-renderer generalization, Complex nesting, Edge ambiguity, and OCR-driven failures. Compared to previous datasets, FlowGen highlights an additional challenge—**Cross-renderer generalization**, where stylistic differences between renderers (e.g., PlantUML vs. Mermaid) frequently lead to structural misinterpretations. Detailed error breakdowns and examples are provided in Appendix K.

5 CONCLUSION

In this work, we present FlowGen, a controllable flowchart synthesizer that exposes explicit structural configurations and supports diverse rendering styles, providing both a scalable training resource and a systematic test benchmark. Our experiments show that current MLLMs, including leading proprietary models, perform poorly on the FlowGen test set, particularly under high structural complexity and varied rendering styles. However, fine-tuning on FlowGen substantially boosts the robustness and generalization of open-source models, highlighting controllable synthesis as an effective strategy for advancing flowchart understanding and its downstream reasoning tasks. By releasing FlowGen, we provide the community with a reproducible and extensible framework for training, testing, and advancing models for graph-structured visual reasoning.

To address the limitations of our work, our future work includes exploring diverse implementations of split/merge arrows beyond introducing virtual nodes, incorporating more features of real flowcharts into our synthesizer pipeline, and experimenting with more complex flowchart-based tasks such as root cause analysis in IT operations.

REPRODUCIBILITY STATEMENT

The detailed experimental settings of synthesizer, models, hyper-parameter settings, and computational resources can be found in Section 3.1.3, Appendix D and Appendix E. The codes and datasets for reproducing our evaluation results are provided in the GitHub repository.

ACKNOWLEDGEMENTS

This work was supported by the National Science and Technology Innovation 2030 Major Program (2025ZD0544900) and sponsored by CCF-Lenovo Blue Ocean Research Fund.

REFERENCES

Ahmad-Montaser Awal, Guihuan Feng, Harold Mouchere, and Christian Viard-Gaudin. First experiments on a new online handwritten flowchart database. In *Document Recognition and Retrieval XVIII*, volume 7874, pp. 81–90. SPIE, 2011. [2, 5, 15](#)

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization, text reading, and beyond, 2023. URL <https://arxiv.org/abs/2308.12966>. [15](#)

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL <https://arxiv.org/abs/2502.13923>. [5](#)

Rumaan Bashir and Kaiser J. Giri. Diagram recognition: Domain knowledge based approach. In *2013 International Conference on Machine Intelligence and Research Advancement*, pp. 445–449, 2013. doi: 10.1109/ICMIRA.2013.94. [1](#)

Shreyanshu Bhushan and Minho Lee. Block diagram-to-text: Understanding block diagram images by generating natural language descriptors. In Yulan He, Heng Ji, Sujian Li, Yang Liu, and Chua-Hui Chang (eds.), *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2022*, pp. 153–168, Online only, November 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.15. URL <https://aclanthology.org/2022.findings-acl.15/>. [2, 5, 15](#)

Shreyanshu Bhushan, Eun-Soo Jung, and Minho Lee. Unveiling the power of integration: Block diagram summarization through local-global fusion. In *Findings of the Association for Computational Linguistics ACL 2024*, pp. 13837–13856, 2024. [1, 2](#)

Martin Bresler, Daniel Pržša, and Václav Hlaváč. Online recognition of sketched arrow-connected diagrams. *Int. J. Doc. Anal. Recognit.*, 19(3):253–267, September 2016. ISSN 1433-2833. doi: 10.1007/s10032-016-0269-z. URL <https://doi.org/10.1007/s10032-016-0269-z>. [2, 5, 15](#)

Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa, Soravit Changpinyo, Jialin Wu, Carlos Riquelme Ruiz, Sebastian Goodman, Xiao Wang, Yi Tay, Siamak Shakeri, Mostafa Dehghani, Daniel Salz, Mario Lucic, Michael Tschannen, Arsha Nagrani, Hexiang Hu, Mandar Joshi, Bo Pang, Ceslee Montgomery, Paulina Pietrzky, Marvin Ritter, AJ Piergiovanni, Matthias Minderer, Filip Pavetic, Austin Waters, Gang Li, Ibrahim Alabdulmohsin, Lucas Beyer, Julien Amelot, Kenton Lee, Andreas Peter Steiner, Yang Li, Daniel Keysers, Anurag Arnab, Yuanzhong Xu, Keran Rong, Alexander Kolesnikov, Mojtaba Seyedhosseini, Anelia Angelova, Xiaohua Zhai, Neil Houlsby, and Radu Soricut. Pali-x: On scaling up a multilingual vision and language model, 2023. URL <https://arxiv.org/abs/2305.18565>. [15](#)

Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the

frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities. *arXiv preprint arXiv:2507.06261*, 2025. 6

Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang, Zheng Yuan, Chang Zhou, and Jingren Zhou. How abilities in large language models are affected by supervised fine-tuning data composition. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 177–198, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.12. URL <https://aclanthology.org/2024.acl-long.12/>. 20

Anwen Hu, Yaya Shi, Haiyang Xu, Jiabo Ye, Qinghao Ye, Ming Yan, Chenliang Li, Qi Qian, Ji Zhang, and Fei Huang. mplug-paperowl: Scientific diagram analysis with the multimodal large language model. In *Proceedings of the 32nd ACM International Conference on Multimedia*, MM '24, pp. 6929–6938, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400706868. doi: 10.1145/3664647.3681294. URL <https://doi.org/10.1145/3664647.3681294>. 1

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali Farhadi. A diagram is worth a dozen images, 2016. 5

Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. *Soviet physics. Doklady*, 10:707–710, 1965. URL <https://api.semanticscholar.org/CorpusID:60827152.5>

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models, 2023. URL <https://arxiv.org/abs/2301.12597>. 15

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023. URL <https://arxiv.org/abs/2304.08485>. 15

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning, 2024. URL <https://arxiv.org/abs/2310.03744>. 5

Pan Lu, Liang Qiu, Jiaqi Chen, Tony Xia, Yizhou Zhao, Wei Zhang, Zhou Yu, Xiaodan Liang, and Song-Chun Zhu. Iconqa: A new benchmark for abstract diagram understanding and visual language reasoning, 2022. URL <https://arxiv.org/abs/2110.13214>. 15

Fanya S. Montalvo. *Diagram Understanding*, pp. 5–27. Springer US, Boston, MA, 1990. ISBN 978-1-4613-0569-9. doi: 10.1007/978-1-4613-0569-9_2. URL https://doi.org/10.1007/978-1-4613-0569-9_2. 1

OpenAI. Hello gpt-4, 2024. URL <https://openai.com/index/hello-gpt-4/>. 6

Huitong Pan, Qi Zhang, Cornelia Caragea, Eduard Dragut, and Longin Jan Latecki. Flowlearn: Evaluating large vision-language models on flowchart understanding, 2024. URL <https://arxiv.org/abs/2407.05183>. 2, 5, 15

Bernhard Schäfer, Margret Keuper, and Heiner Stuckenschmidt. Arrow r-cnn for handwritten diagram recognition. *International Journal on Document Analysis and Recognition (IJDAR)*, 24(1): 3–17, 2021a. 15

Bernhard Schäfer, Han van der Aa, Henrik Leopold, and Heiner Stuckenschmidt. Sketch2bpmn: Automatic recognition of hand-drawn bpmn models. In Marcello La Rosa, Shazia Sadiq, and Ernest Teniente (eds.), *Advanced Information Systems Engineering*, pp. 344–360, Cham, 2021b. Springer International Publishing. ISBN 978-3-030-79382-1. 2, 5, 15

Shubhankar Singh, Purvi Chaurasia, Yerram Varun, Pranshu Pandya, Vatsal Gupta, Vivek Gupta, and Dan Roth. Flowvqa: Mapping multimodal logic in visual question answering with flowcharts, 2024. URL <https://arxiv.org/abs/2406.19237>. 2, 5, 15

Lianshan Sun, Hanchao Du, and Tao Hou. Fr-detr: End-to-end flowchart recognition with precision and robustness. *IEEE Access*, 10:64292–64301, 2022. doi: 10.1109/ACCESS.2022.3183068. 2, 15

Simon Tannert, Marcelo G. Feighelstein, Jasmina Bogojeska, Joseph Shtok, Assaf Arbelle, Peter W. J. Staar, Anika Schumann, Jonas Kuhn, and Leonid Karlinsky. FlowchartQA: The first large-scale benchmark for reasoning over flowcharts. In Piyush Aggarwal, {\O}zge Ala{\c{c}}am, Carina Silberer, Sina Zarrie{\ss}, and Torsten Zesch (eds.), *Proceedings of the 1st Workshop on Linguistic Insights from and for Multimodal Language Processing*, pp. 34–46, Ingolstadt, Germany, September 2023. Association for Computational Linguistics. URL <https://aclanthology.org/2023.limo-1.5/>. 2, 15

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman, Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi, Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivakumar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wieting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh, Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine, Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Niley Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Rubenstein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu, Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti Sheth, Siim Pöder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry, Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Barra, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry Lepikhin, Sebastian Borgeaud, Olivier Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot. Gemma 3 technical report, 2025a. URL <https://arxiv.org/abs/2503.19786>. 6

GLM-V Team, ., Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng, Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean Cheng, Zehai He, Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Bin Chen, Boyan Shi, Changyu Pang, Chenhui Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazheng Xu, Jiale Zhu, Jiali Chen, Jing Chen, Jinhao Chen, Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian Gong, Leyi Pan, Mingdao Liu, Mingde Xu, Mingzhi Zhang, Qinkai Zheng, Sheng Yang, Shi Zhong, Shiyu Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu, Shengbiao Meng, Tianshu Zhang, Tianwei Luo, Tianxiang Hao, Tianyu Tong, Wenkai Li, Wei Jia, Xiao Liu, Xiaohan Zhang, Xin Lyu, Xinyue Fan, Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yanzi Wang, Yifan An, Yifan Du, Yiming Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen

Li, Yutao Zhang, Yuting Wang, Yu Wang, Yuxuan Zhang, Zhao Xue, Zhenyu Hou, Zhengxiao Du, Zihan Wang, Peng Zhang, Debing Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, and Jie Tang. Glm-4.5v and glm-4.1v-thinking: Towards versatile multimodal reasoning with scalable reinforcement learning, 2025b. [6](#)

Bintu G. Vasudevan, Sorawish Dhanapanichkul, and Rajesh Balakrishnan. Flowchart knowledge extraction on image processing. *2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)*, pp. 4075–4082, 2008. URL <https://api.semanticscholar.org/CorpusID:12429917.1>

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li, Weilin Zhao, Zihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. *arXiv preprint arXiv:2408.01800*, 2024. [5](#)

Junyi Ye, Ankan Dash, Wenpeng Yin, and Guiling Wang. Beyond end-to-end vlms: Leveraging intermediate text representations for superior flowchart understanding, 2024. URL <https://arxiv.org/abs/2412.16420.1>

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun, Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and Wenhui Chen. Mmmu: A massive multi-discipline multimodal understanding and reasoning benchmark for expert agi. In *Proceedings of CVPR*, 2024. [20](#)

Yilun Zhao, Chengye Wang, Chuhan Li, and Arman Cohan. Can multimodal foundation models understand schematic diagrams? an empirical study on information-seeking qa over scientific papers. In *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 18598–18631, Vienna, Austria, July 2025. Association for Computational Linguistics. URL <https://aclanthology.org/2025.findings-acl.957/>. [5](#)

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen Duan, Weijie Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xuehui Wang, Yue Cao, Yangzhou Liu, Xingguang Wei, Hongjie Zhang, Haomin Wang, Weiye Xu, Hao Li, Jiahao Wang, Nianchen Deng, Songze Li, Yinan He, Tan Jiang, Jiapeng Luo, Yi Wang, Conghui He, Botian Shi, Xingcheng Zhang, Wenqi Shao, Junjun He, Yingtong Xiong, Wenwen Qu, Peng Sun, Penglong Jiao, Han Lv, Lijun Wu, Kaipeng Zhang, Huipeng Deng, Jiaye Ge, Kai Chen, Limin Wang, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhui Wang. Internvl3: Exploring advanced training and test-time recipes for open-source multimodal models, 2025. URL <https://arxiv.org/abs/2504.10479.5>

A THE USE OF LARGE LANGUAGE MODELS (LLMs)

As indicated in the submission form, we answer “Large Language Models: Yes, to aid or polish writing.” LLMs were only used for language refinement, such as polishing wording, improving clarity, and ensuring consistency. They were not involved in research ideation, methodology design, or experimental analysis. All scientific contributions and results are solely due to the authors.

B RELATED WORK

B.1 EXISTING DATASETS

Research on flowchart understanding has traditionally relied on fixed datasets rather than controllable synthesizers. Existing datasets such as IconQA (Lu et al., 2022), FlowchartQA (Tannert et al., 2023), FlowVQA (Singh et al., 2024), and FlowLearn (Pan et al., 2024) provide important benchmarks for evaluating models on tasks ranging from flowchart parsing to flowchart QA. Other datasets such as CBD (Bhushan & Lee, 2022), FC_A (Awal et al., 2011), FC_B (Bresler et al., 2016), and hdBPMN (Schäfer et al., 2021b) provide domain-specific diagram test resources. However, these resources share several limitations. First, they lack controllability: users cannot systematically vary structural properties such as node count, edge density, or nesting depth. Second, stylistic diversity is limited, since most datasets rely on a single renderer or annotation style, whereas real-world flowcharts come from heterogeneous sources. Finally, most existing datasets are designed for evaluation only, and do not support large-scale, controllable synthesis for training purposes. To date, there are no general-purpose flowchart synthesizers that can flexibly generate both training and test sets with controllable complexity and rendering diversity, leaving an important gap in the field. Table 1 provides a systematic comparison between our proposed synthesizer and existing datasets. Our FlowGen is unique in combining controllable structural features, multi-renderer diversity, and scalability to both training and test, filling a critical gap in the field.

B.2 EXISTING METHODS

Alongside datasets, a range of methods have been explored for flowchart-based visual reasoning. Early approaches adopt a detection-and-association paradigm, such as Arrow R-CNN (Schäfer et al., 2021a) and FR-DETR (Sun et al., 2022), which first localize symbols and arrows before reconstructing the underlying graph. While these pipelines can handle relatively simple diagrams, they typically depend on handcrafted heuristics and degrade under high structural complexity or stylistic variation. More recent work has shifted toward end-to-end VLMs and MLLMs, including BLIP-2 (Li et al., 2023), LLaVA (Liu et al., 2023), PaLI-X (Chen et al., 2023), and Qwen-VL (Bai et al., 2023). These models integrate perception and reasoning within a unified framework, achieving strong performance on natural-image VQA tasks. However, they remain limited in structural parsing of flowcharts, where precise recovery of hierarchical and relational information is required. In this work, we focus exclusively on evaluating representative MLLMs. By systematically analyzing their performance on controlled test datasets, we aim to reveal their strengths, limitations, and the specific challenges posed by flowchart understanding.

C APPLICATION DOMAINS AND SEMANTIC VOCABULARIES

This appendix provides additional details on semantic annotation in the construction of FlowGen. Specifically, FlowGen covers 120 distinct application domains, spanning a wide range of real-world scenarios. For each domain, we curate a vocabulary consisting of 40 node names and 40 edge labels, which are initially generated using GPT-4o. These domain-specific vocabularies are used to annotate graph nodes and edges, ensuring semantic cohesiveness within graphs and domain diversity across graphs. Representative examples from several domains are presented below. The complete lists are available in [/Synthesizer/my_dictionary.py](#) in our GitHub repository.

Application Domains and Semantic Vocabularies

```

APPLICATIONS = [
    'Finance', 'Healthcare', 'Manufacturing',
    'Education', 'E_commerce', 'Transportation', 'Energy',
    'Legal', 'Logistics', 'Telecom', 'Agriculture', 'Tourism',
    'Real Estate', 'Public Safety', 'Entertainment',
    'Environment', 'Government', 'Retail', 'Automotive',
    'Aerospace', 'Insurance', 'Cybersecurity', 'Smart Home',
    'Smart City', 'Biotechnology', 'Pharmaceuticals', 'Robotics',
    'Construction', 'Media', 'Sports', 'Fashion', 'Human Resources',
    ...
]

NODE_NAMES = {
    'Finance': [
        'Account Verification', 'Credit Scoring',
        'Approval Decision', 'Fraud Check', 'Transaction Audit',
        'Investment Planning', 'Financial Advisory',
        ...
    ],
    'Healthcare': [
        'Patient Intake', 'Lab Test', 'Diagnosis', 'Prescription',
        'Medical History', 'Health Screening', 'Allergy Test',
        'Genetic Counseling', 'Pain Management', 'Patient Transfer',
        ...
    ],
    ...
}

EDGE_LABELS = {
    'Finance': [
        'verifies', 'approves', 'rejects', 'checks',
        'calculates', 'recommends', 'consults', 'plans',
        'allocates', 'monitors', 'models', 'settles',
        ...
    ],
    'Healthcare': [
        'diagnoses', 'examines', 'tests', 'treats', 'scans',
        'monitors', 'records', 'administers', 'researches',
        'prevents', 'educates', 'surveys', 'immunizes',
        ...
    ],
    ...
}

```

D IMPLEMENTATION DETAILS

D.1 SUMMARY OF EVALUATION DATASETS

Table 8 summarizes the public datasets used in our evaluation experiments, providing their task, size, source, and license to facilitate reproducibility and transparency.

D.2 MODEL VERSIONS AND SOURCES

Table 9 summarizes the proprietary and open-source MLLMs evaluated in this study, organized by provider with release dates and official access sources. Open-source models are linked to their Hugging Face repositories, while proprietary models are accessed through their respective APIs.

Table 8: Summary of evaluation datasets used in our experiments.

Dataset	Task	Size	Source	License
FlowVQA	Parsing & QA	956	Synthetic flowcharts	MIT License
CBD	Parsing	96	Computerized block diagrams	Research-only
FC_A	Parsing	145	Hand-written flowcharts	CC-BY-NC-SA
FC_B	Parsing	196	Hand-written flowcharts	NA
hdBPMN	Parsing	173	Hand-drawn BPMN diagrams	CC-BY-4.0
FlowLearn	Parsing & QA	2,000	Scientific literature & Synthetic	CC-BY-NC-SA-4.0
AI2D	QA	4,060	Scientific Diagrams	CC BY-SA
MISS-QA	QA	173	Schematic Diagrams	CC-BY-4.0

Table 9: Evaluated proprietary and open-source MLLMs.

Provider	Model	Release	Source
<i>Proprietary Multimodal Large Language Models</i>			
OpenAI	GPT-4o	2024-08	OpenAI API
Google	Gemini-2.5-Flash	2025-04	Google AI Studio API
Zhipu AI	GLM-4V-Plus	2024-08	Zhipu AI API
<i>Open-Source Multimodal Large Language Models</i>			
Alibaba	Qwen2.5-VL-3B	2025-01	https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct
	Qwen2.5-VL-7B	2025-01	https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
OpenGVLab	InternVL3-2B	2025-01	https://huggingface.co/OpenGVLab/InternVL3-2B
OpenBMB	MiniCPM-V2.6-8B	2025-04	https://huggingface.co/openbmb/MiniCPM-V-2_6
LLaVA Team	LLaVA-v1.6-Mistral-7B	2024-12	https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf
Google	Gemma3-4B	2025-03	https://huggingface.co/google/gemma-3-4b-it
	Gemma3-12B	2025-03	https://huggingface.co/google/gemma-3-12b-it

D.3 FINE-TUNING HYPERPARAMETERS

For open-source models, we perform supervised fine-tuning (SFT) on FlowGen-synthesized training set using the configuration shown in Table 10. The training employs LoRA adapters on both language and vision components, with other modules frozen for efficiency.

Table 10: Hyperparameter configuration for SFT on FlowGen-synthesized training set.

Hyperparameter	Value
Framework	PyTorch 2.6.0 + DeepSpeed (ZeRO-3)
Precision	BF16 (FP16 disabled)
Gradient checkpointing	Enabled
Optimizer	AdamW ($\beta_1 = 0.9, \beta_2 = 0.999$, weight decay=0.1)
Learning rate	5×10^{-4} (cosine scheduler)
Warmup ratio	0.03
Global batch size	32
Per-device batch size	4
Gradient accumulation steps	8
Epochs	1
LoRA rank / alpha / dropout	64 / 64 / 0.05
Vision tower	Frozen (with vision LoRA enabled)
LLM backbone	Frozen
Merger	Frozen
Image resolution range	$256 \times 28 \times 28 - 1280 \times 28 \times 28$

This configuration ensures efficient training with limited GPU resources while still adapting both textual and visual representations through LoRA.

E PROMPT TEMPLATES

Prompt Template for Flowchart Parsing

[System Input]

You are an expert assistant specialized in flowchart understanding.
Your task is to parse flowchart images into structured knowledge triples that capture both topology and semantics.

[User Input]

{image input: flowchart}

{text input: <image>Please describe all the information in the flowchart image in the form of triples:

For each arrow labeled with X directed from node A to node B, output a triple: <A, X, B>;
For each unlabeled arrow directed from node A to node B, output a triple: <A, connectedTo, B>;
For each node A fully inside node group B, output a triple <A, partOf, B>.

The following triples are example outputs:

<Food Packaging Improvement, secures, Quantum Computing Integration>
<Graphene Production, catalyzes, Nanosensors>
<Graphene Production, partOf, Drug Delivery Systems>
<Nanocomposites, connectedTo, Spectroscopy>
<Nanodevice Fabrication, connectedTo, Graphene Production>
<Nanosensors, connectedTo, Nanocomposites>
<Spectroscopy, educates, Nanodevice Fabrication>}

An Example Prompt for Answering Flowchart-based Yes/No Questions

[System Input]

You are an expert assistant specialized in flowchart understanding.
Your task is to parse flowchart images into structured knowledge triples that capture both topology and semantics.

[User Input]

{image input: flowchart}

{text input: Determine whether the following description of the image is correct (just answer Yes or No) :

“Consistent failures through this type of intervention constitute a challenging group for the perception model as seen on the right.” connectedto “Perception Model is used for discovery of failures at the scene level.”

The following description, extracted in the form of triples from the image, is provided for reference and may contain errors.

<BERT, connectedTo, Coca-Cola Truck>
<Coca-Cola Truck, connectedTo, Perception Model>
<Coca-Cola Truck, connectedTo, Perception Model>
.....
<Police Car, partOf, Interventions>
<Police Car, partOf, Scene Understanding>
<Scene Understanding, connectedTo, Police Car>”

The answer is: }

An Example Prompt for Answering Flowchart-based Multiple-Choice Questions

[System Input]

You are an expert assistant specialized in flowchart understanding.
 Your task is to parse flowchart images into structured knowledge triples that capture both topology and semantics.

[User Input]

{image input: flowchart}

{text input: <image>Please answer the following multiple-choice question about the image:

The sexual or asexual process by which organisms generate new individuals of the same kind is called?

- (A).reproduction
- (B).pollination
- (C).growth
- (D).germination

The following description, extracted in the form of triples from the image, is provided for reference and may contain errors.

<Fertilization, connectedTo, Green Bean>
 <Growth, connectedTo, Germination>
 <Growth, connectedTo, Reproduction>

 <Reproduction, connectedTo, Pollination>
 <Reproduction, connectedTo, Growth>
 <Green Bean, connectedTo, Germination>

The answer is: }

Prompt for Topic and Node/Edge Names Generation

[System Input]

You are tasked with helping build a synthetic flowchart dataset. Please generate 120 distinct application domains (topics).

For each topic:

- (1) Provide the topic name.
- (2) List 40 concise node names that could appear in flowcharts within this topic.
- (3) List 40 concise edge names that describe interactions or relationships among the nodes.

Constraints:

- Use short phrases (1–4 words) for node and edge names.
- Avoid redundancy across different topics.
- Ensure that node names are realistic to the chosen topic.
- Ensure that edge names reflect meaningful relationships.
- Output in structured JSON format:

[GPT-4o Output]

```
{
  "Topic": "Finance",
  "Nodes names": ["Account Verification", "Credit Scoring", "Risk Assessment" ...],
  "edges names": ["verifies", "approves", "budgets", ...] },
  {"Topic": "Healthcare",
  "Node names": ["Patient Intake", "Medical History", "Emergency Response", ...],
  "Edge names": ["diagnoses", "treats", "examines", ...] },
  ....
}
```

F EXPERIMENTS ON MMMU

Recent studies have shown that the composition of SFT data plays a critical role in determining the resulting capabilities of multimodal models. In particular, Dong et al. (2024) demonstrate that naively mixing heterogeneous tasks often leads to optimization conflicts, while sequential fine-tuning can induce catastrophic forgetting. Motivated by these findings, and following their interleaved training paradigm, we investigate whether fine-tuning on FlowGen transfers beyond flowchart parsing to broader multimodal reasoning.

Specifically, we examine whether incorporating FlowGen-synthesized flowchart parsing tasks during SFT improves performance on MMMU (Yue et al., 2024), a diverse benchmark covering general-domain multimodal reasoning tasks that are not directly related to flowcharts. This experiment aims to assess whether FlowGen only induces task-specific gains, or it promotes more generalizable structural reasoning abilities.

Since MMMU does not provide an official training split, we follow common practice and use its 900 validation samples for SFT and 150 development samples as test cases. For each model, we consider two SFT settings:

- Fine-tuning solely on MMMU samples.
- Fine-tuning on an equal-sized mixed dataset, where 50% of MMMU samples are replaced with FlowGen-synthesized flowchart parsing samples. We adopt an interleaved training strategy at the batch level, ensuring that FlowGen and MMMU samples are jointly optimized throughout training.

Table 11: Performance comparison (accuracy) of MLLMs on MMMU. We compare each model with its variants fine-tuned on the original training set (+ SFT on the original training set) and on a mixture of the original training set and FlowGen (+ SFT on a mixed training set).

Training Variant	Qwen2.5-VL-3B	Qwen2.5-VL-7B	MiniCPM-V2.6-8B
Base Model	53.3	58.6	49.4
+ SFT on the original training set	59.3	62.6	53.3
+ SFT on a mixed training set	60.2	65.3	54.0

As shown in Table 11, models fine-tuned with the mixed dataset consistently outperform their MMMU-only counterparts on the MMMU benchmark. Notably, these improvements are observed despite replacing half of the MMMU supervision with FlowGen data, indicating that FlowGen does not dilute task-relevant learning but instead provides complementary signals.

We attribute this behavior to the structural nature of FlowGen supervision. FlowGen emphasizes explicit modeling of entities, relations, and spatial layouts through triplet extraction, which encourages the model to learn transferable representations of graph structure and visual organization. Such inductive biases are broadly applicable across multimodal reasoning tasks, including those in MMMU that require compositional understanding, spatial grounding, or multi-step inference.

G ABLATION ON SEMANTIC ANNOTATION

To further isolate the contribution of structural information in flowchart parsing, we conduct an additional ablation in which all node names and edge labels are replaced with random meaningless strings. Specifically, node names are substituted with random strings starting with uppercase letters, while edge labels are replaced with random lowercase strings of length 5–12. This preserves minimal formatting conventions while eliminating meaningful semantics. This experiment evaluates whether FlowGen-trained models can still leverage structural cues when textual semantics are removed.

Table 12: Ablation results (strict F1) of FlowGen using semantic annotation (+ SFT on Full FlowGen) or random strings (+ SFT on FlowGen w/o Semantic Annotation) for node names and edge labels.

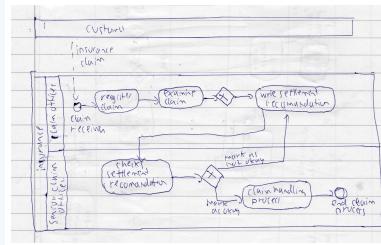
Model	FlowVQA	CBD	FC_A	FC_B	hdBPMN	FlowLearn
Qwen2.5-VL-3B	12.7	17.9	2.8	8.6	2.3	20.6
+ SFT on Full FlowGen	51.3	49.8	22.4	34.6	8.4	41.6
+ SFT on FlowGen w/o Semantic Annotation	50.9	44.1	13.6	24.1	5.9	39.5
Qwen2.5-VL-7B	59.4	49.1	25.8	32.0	16.6	43.2
+ SFT on Full FlowGen	70.9	55.4	29.5	40.8	18.3	60.1
+ SFT on FlowGen w/o Semantic Annotation	64.5	52.9	28.4	34.8	17.4	56.0
MiniCPM-V2.6-8B	17.6	20.4	7.5	8.8	3.4	9.1
+ SFT on Full FlowGen	44.0	37.9	13.4	22.9	3.6	20.0
+ SFT on FlowGen w/o Semantic Annotation	35.2	29.8	9.7	13.9	3.6	19.1

Table 12 reports the results. Compared to models trained with FlowGen’s original random but semantically meaningful labels, performance with meaningless labels shows a moderate degradation. Importantly, the performance gains of SFT remain consistent and significant across different models and datasets. *These results indicate that the benefits from using FlowGen are primarily driven by learning structural patterns, topological relations, and spatial layouts from flowcharts, rather than relying solely on textual semantics.*

H ERROR ANALYSIS ON PUBLIC DATASETS

H.1 COMPLEX NESTING ERROR ON PUBLIC DATASET

An Example of Complex Nesting Error on hdBMPN Dataset



[System Input]

You are an expert assistant specialized in flowchart understanding.

Your task is to parse flowchart images into structured knowledge triples that capture both topology and semantics.

[User Input]

{image input: flowchart}

{text input: <image>Please describe all the information in the flowchart image in the form of triples:

For each arrow labeled with X directed from node A to node B, output a triple: <A, X, B>;

For each unlabeled arrow directed from node A to node B, output a triple: <A, connectedTo, B>;

For each node A fully inside node group B, output a triple <A, partOf, B>.

The following triples are example outputs:

<Food Packaging Improvement, secures, Quantum Computing Integration>
 <Graphene Production, catalyzes, Nanosensors>
 <Graphene Production, partOf, Drug Delivery Systems>
 <Nanocomposites, connectedTo, Spectroscopy>
 <Nanodevice Fabrication, connectedTo, Graphene Production>
 <Nanosensors, connectedTo, Nanocomposites>
 <Spectroscopy, educates, Nanodevice Fabrication>}

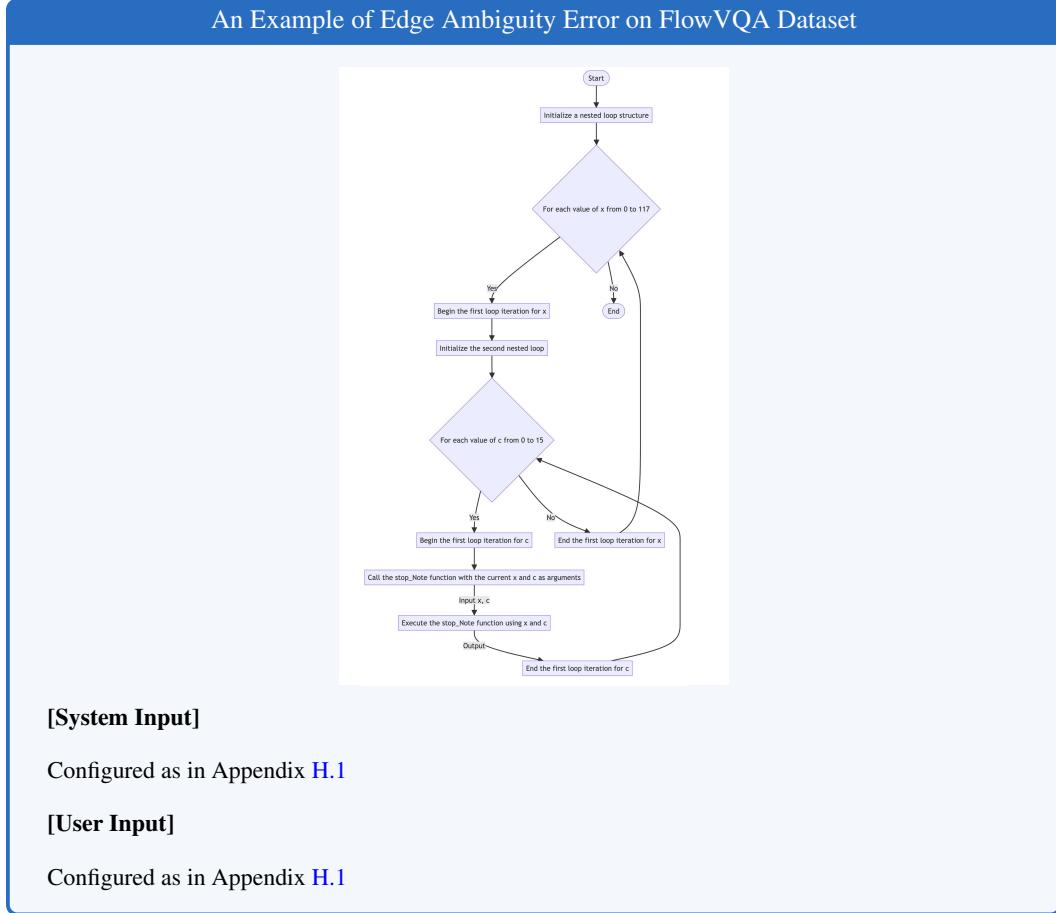
Qwen2.5-VL-7B Output:

<Claim Handling Process, connectedTo, End Claim Payers>
 <Claim Handling Process, mark as Not Okay, Write Settlement Recommendation>
 <Check Settlement Recommendation, connectedTo, Claim Handling Process>
 <Customer Insurance Claim, connectedTo, Senior Claim Officer>
 <Customer Insurance Claim, connectedTo, Write Settlement Recommendation>
 <Examine Claim, connectedTo, Check Settlement Recommendation>
 <Examine Claim, connectedTo, Write Settlement Recommendation>
 <End Claim Payers, connectedTo, Claim Handling Process>
 <Rewrites Claim, connectedTo, Examine Claim>
 <Senior Claim Officer, claim receives, Rewrites Claim>
 <Write Settlement Recommendation, connectedTo, Check Settlement Recommendation>

Error Analysis:

Qwen2.5-VL-7B's prediction fails to capture the hierarchical containment between roles and tasks. In the gold standard, operations such as "register claim", "examine claim", and "write settlement recommendation" are explicitly nested under "claim officer" and further within "insurance". The model instead flattens this structure, inventing entities like "End Claim Payers" and producing spurious links (e.g., <Senior Claim Officer, claim receives, Rewrites Claim>), while omitting key *partOf* relations. This collapse of nested dependencies leaves the explanation structurally inconsistent and semantically incomplete.

H.2 EDGE AMBIGUITY ERROR ON PUBLIC DATASET

**Qwen2.5-VL-7B Output:**

```

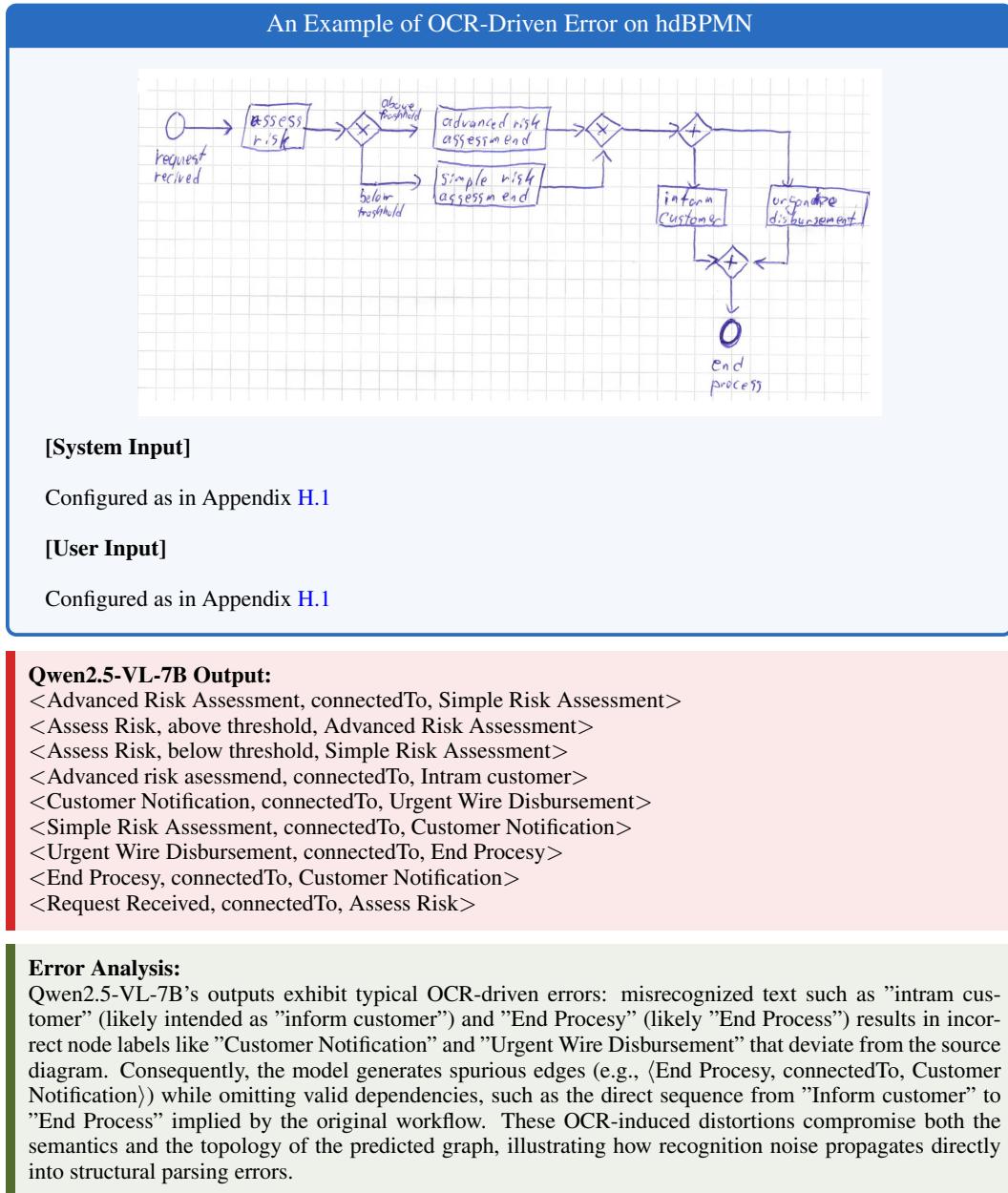
<Begin the first loop iteration for c, connectedTo, Call the stop_note function with the current x and c as arguments>
<Begin the first loop iteration for x, connectedTo, Initialize the second nested loop>
<Call the stop_note function with the current x and c as arguments, Input x, c, Execute the stop_note function using x and c>
<Execute the stop_note function using x and c, Output, End the first loop iteration for c>
<End, No, For each value of x from 0 to 117>
<End the first loop iteration for c, connectedTo, For each value of c from 0 to 15>
<End the first loop iteration for x, connectedTo, For each value of c from 0 to 15>
<For each value of c from 0 to 15, Yes, Begin the first loop iteration for c>
<For each value of x from 0 to 117, Yes, Begin the first loop iteration for x>
<Initialize a nested loop structure, connectedTo, For each value of x from 0 to 117>
<Initialize the second nested loop, connectedTo, For each value of c from 0 to 15>
<Start, connectedTo, Initialize a nested loop structure>

```

Error Analysis:

Qwen2.5-VL-7B's prediction suffers from edge ambiguity, misrepresenting the direction and semantics of key transitions in the flow loop. In the gold standard, control flow edges clearly encode how each loop iteration branches back to its condition (e.g., `<End the first loop iteration for c, connectedTo, For each value of c from 0 to 15>`) and how termination is handled (e.g., `<For each value of x from 0 to 117, No, End>`). The model instead reverses or distorts these relations, producing edges such as `<End, No, For each value of x from 0 to 117>` and `<End the first loop iteration for x, connectedTo, For each value of c from 0 to 15>`, which invert the intended logic. While many node labels are preserved, the predicted edges fail to capture whether they represent continuation, termination, or loop-back connections, resulting in a structurally inconsistent flow and an inaccurate representation of the looping process.

H.3 OCR DRIVEN ERROR ON PUBLIC DATASET



I SCANNED STYLE CONFIGURATIONS

Table 13 summarizes the configuration used to synthesize scanned-style flowcharts with three difficulty levels.

Table 13: Configurations for scanned-style flowcharts generation with three difficulty levels.

Difficulty	Blur radius	Vignette	Rotation	Perspective	Color tint	Noise level	JPEG quality
Easy	0.8	0.1	1.0°	No	Yellowish	0.005	90
Medium	1.0	0.3	1.2°	No	Yellowish	0.008	70
Hard	1.2	0.5	1.5°	Yes	Gray	0.015	40

J ANALYSIS OF INTRA-TOPIC FLOWCHART DIVERSITY

To quantitatively assess the diversity of graph structures synthesized under the same topic, we measure the structural dissimilarity between flowcharts using graph edit distance (GED). GED is defined as the minimum number of elementary graph operations, including node or edge insertion, deletion, and substitution, required to transform one graph into another.

Table 14: Mean graph edit distance (GED) with standard deviation (SD) over intra-topic graphs constructed by FlowGen.

	Mean GED	SD
<i>Within the same difficulty level</i>		
Easy	18.0	2.2
Medium	28.5	4.1
Hard	36.8	6.4
<i>Between difficulty levels</i>		
Easy-Medium	38.0	5.1
Easy-Hard	76.8	8.9
Medium-Hard	48.5	7.2

Table 14 reports the mean GED with standard deviation (SD) between flowcharts from the same topic, evaluated both within the same difficulty level and between different difficulty levels. The results show substantial structural variation among intra-topic flowcharts: mean GED values range from 18.0 to 36.8 for flowcharts of the same difficulty level, and further increase to 76.8 when comparing flowcharts across difficulty levels. *These findings demonstrate that FlowGen produces highly diverse flowchart structures even within a single topic, supporting the diversity and challenge of the test subsets.*

K ERROR ANALYSIS ON FLOWGEN TEST SET

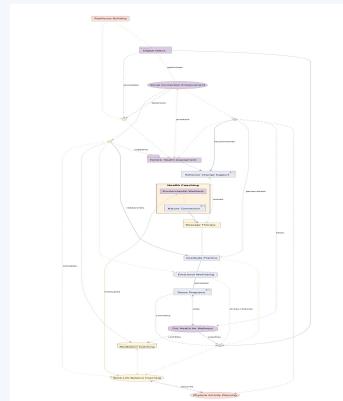
We further analyze 50 failure cases on FlowGen’s test sets, which incorporates renderer diversity and simulated scanning artifacts. Note that a single failure case may exhibit multiple error types, so the percentages reported below can sum to more than 100%. Four major error types emerge.

- (1) **Cross-renderer generalization (48%)**: Visual conventions differ substantially across renderers (e.g., PlantUML vs. Mermaid). As a result, models often fail to generalize across styles, misinterpreting arrowheads, connector boundaries, or nesting layouts. Such renderer-specific artifacts cause structural discrepancies even when the underlying abstract topology is identical. Representative cases are shown in Appendix K.1.
- (2) **Complex nesting (38%)**: Similar to the errors observed on other benchmarks, models frequently mishandle deeply nested `partOf` relations. Examples are provided in Appendix K.2.
- (3) **Edge ambiguity (54%)**: When multiple edges overlap or connectors are visually congested, models still confuse edge directionality or labels. These cases resemble the ambiguity observed in Section 3.3.3 but are further exacerbated by renderer-induced variations. Examples are given in Appendix K.3.
- (4) **OCR-driven failures (66%)**: In scanned test subsets, text recognition errors often corrupt node labels or generate extra nodes that do not exist in the original flowchart. Examples are provided in Appendix K.4.

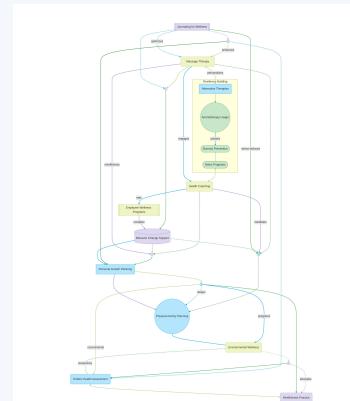
K.1 CROSS-RENDERER ERROR ON FLOWGEN TEST SET

An Example of Cross-Renderer Error on FlowGen Test Set

[System Input]



Graph Medium From PlantUML



Graph Medium From Mermaid

[System Input]

Configured as in Appendix [H.1](#)

[User Input]

Configured as in Appendix H.1

Qwen2.5-VL-7B For PlantUML Flowchart Output:

<Behavior Change Support, connectedTo, Holistic Health Assessment><Behavior Change Support, protects, Social Connection Enhancement><Detox Programs, assesses, Emotional Well-being><Detox Programs, eats, Gut Health for Wellness><Detox Programs, moves, Environmental Wellness><Detox Programs, stress-reduces, Physical Activity Planning><Digital Detox, connectedTo, Resilience Building><Digital Detox, optimizes, Social Connection Enhancement><Digital Detox, promotes, Holistic Health Assessment><Digital Detox, tests, Physical Activity Planning><Emotional Well-being, connectedTo, Gratitude Practice><Environmental Wellness, connectedTo, Nature Connection><Environmental Wellness, partOf, Health Coaching><Gut Health for Wellness, certifies, Work-Life Balance Coaching><Gut Health for Wellness, coaches, Physical Activity Planning><Holistic Health Assessment, connectedTo, Behavior Change Support><Holistic Health Assessment, connectedTo, Social Connection Enhancement><Meditation Coaching, connectedTo, Work-Life Balance Coaching><Meditation Coaching, motivates, Holistic Health Assessment><Massage Therapy, connectedTo, Gratitude Practice><Massage Therapy, partOf, Health Coaching><Nature Connection, connectedTo, Environmental Wellness><Nature Connection, partOf, Health Coaching><Physical Activity Planning, connectedTo, Digital Detox><Physical Activity Planning, connectedTo, Work-Life Balance Coaching><Physical Activity Planning, eats, Detox Programs><Resilience Building, complies, Quantum Computing Integration><Resilience Building, connectedTo, Digital Detox><Resilience Building, connectedTo, Holistic Health Assessment><Resilience Building, connectedTo, Meditation Coaching><Resilience Building, connectedTo, Physical Activity Planning><Resilience Building, personalizes, Physical Activity Planning><Resilience Building, researches, Gratitude Practice><Resilience Building, supports, Holistic Health Assessment><Social Connection Enhancement, balances, Holistic Health Assessment><Social Connection Enhancement, connectedTo, Holistic Health Assessment><Social Connection Enhancement, optimizes, Digital Detox><Social Connection Enhancement, protects, Behavior Change Support><Social Connection Enhancement, recommends, Behavior Change Support><Work-Life Balance Coaching, connectedTo, Meditation Coaching><Work-Life Balance Coaching, connectedTo, Physical Activity Planning><Work-Life Balance Coaching, connects, Detox Programs><Work-Life Balance Coaching, secures, Physical Activity Planning>

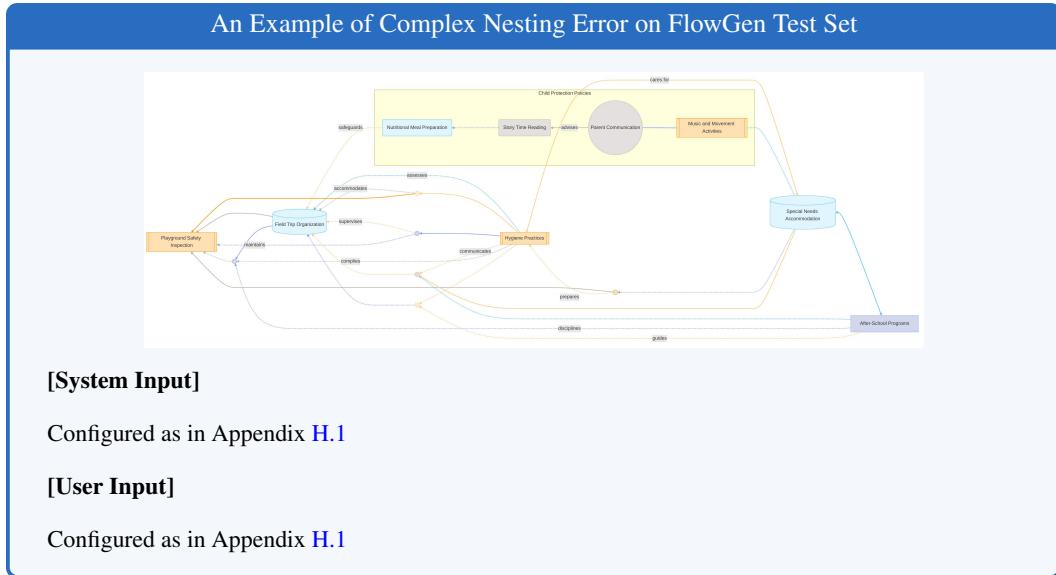
Qwen2.5-VL-7B For Mermaid Flowchart Output: <Aromatherapy Usage, advises, Burnout Prevention><Aromatherapy Usage, connectedTo, Alternative Therapies><Aromatherapy Usage, partOf, Holistic Health Services>

Resilience Building><Alternative Therapies, connectedTo, Aromatherapy Usage><Alternative Therapies, partOf, Resilience Building><Behavior Change Support, connectedTo, Personal Growth Planning><Behavior Change Support, connectedTo, Physical Activity Planning><Burnout Prevention, connectedTo, Detox Programs><Burnout Prevention, partOf, Resilience Building><Detox Programs, connectedTo, Burnout Prevention><Detox Programs, partOf, Resilience Building><Employee Wellness Programs, complies, Behavior Change Support><Employee Wellness Programs, eats, Health Coaching><Environmental Wellness, connectedTo, Holistic Health Assessment><Environmental Wellness, connectedTo, Mindfulness Practice><Environmental Wellness, connectedTo, Physical Activity Planning><Environmental Wellness, sleeps, Physical Activity Planning><Health Coaching, connectedTo, Detox Programs><Health Coaching, connectedTo, Environmental Wellness><Health Coaching, connectedTo, Personal Growth Planning><Health Coaching, eats, Employee Wellness Programs><Holistic Health Assessment, recommends, Personal Growth Planning><Journaling for Wellness, connectedTo, Mindfulness Practice><Journaling for Wellness, connectedTo, Personal Growth Planning><Journaling for Wellness, connectedTo, Physical Activity Planning><Journaling for Wellness, enhances, Massage Therapy><Journaling for Wellness, optimizes, Massage Therapy><Journaling for Wellness, stress-reduces, Environmental Wellness><Mindfulness Practice, connectedTo, Environmental Wellness><Mindfulness Practice, educates, Spectroscopy><Massage Therapy, connectedTo, Personal Growth Planning><Massage Therapy, engages, Health Coaching><Massage Therapy, meditates, Environmental Wellness><Massage Therapy, mindfulness, Personal Growth Planning><Massage Therapy, personalizes, Alternative Therapies><Personal Growth Planning, connectedTo, Behavior Change Support><Personal Growth Planning, connectedTo, Holistic Health Assessment><Personal Growth Planning, connectedTo, Physical Activity Planning><Personal Growth Planning, recommends, Holistic Health Assessment><Physical Activity Planning, connectedTo, Environmental Wellness><Physical Activity Planning, researches, Holistic Health Assessment><Physical Activity Planning, sleeps, Environmental Wellness>”

Error Analysis:

Qwen2.5-VL-7B exhibits inconsistent predictions across different renderers for the same underlying topic. For example, in the PlantUML rendering, the gold-standard graph emphasizes role-task relations such as \langle Detox Programs, eats, Gut Health for Wellness \rangle and \langle Social Connection Enhancement, protects, Holistic Health Assessment \rangle . However, the model output drifts into spurious links like \langle Resilience Building, complies, Quantum Computing Integration \rangle , which are entirely unrelated. In contrast, when the same topic is rendered with Mermaid, the gold standard encodes alternative therapy structures (e.g., \langle Aromatherapy Usage, advises, Burnout Prevention \rangle , \langle Alternative Therapies, partOf, Resilience Building \rangle), yet the model prediction introduces inconsistent or shallow associations, failing to capture the intended containment and functional dependencies. These examples illustrate a clear cross-renderer sensitivity: even for the same semantic topic, the model’s outputs diverge substantially depending on the renderer, resulting in structurally mismatched and semantically incoherent graphs.

K.2 COMPLEX NESTING ERROR ON FLOWGEN TEST SET



Owen2.5-VL-7B Output:

```

<After-School Programs, connectedTo, Special Needs Accommodation>
<After-School Programs, disciplines, Field Trip Organization>
<After-School Programs, guides, Hygiene Practices>
<Field Trip Organization, connectedTo, Playground Safety Inspection>
<Field Trip Organization, maintains, Playground Safety Inspection>
<Field Trip Organization, safeguards, Nutritional Meal Preparation>
<Hygiene Practices, assesses, Nutritional Meal Preparation>
<Hygiene Practices, communicates, Field Trip Organization>
<Hygiene Practices, connectedTo, Field Trip Organization>
<Hygiene Practices, connectedTo, Playground Safety Inspection>
<Hygiene Practices, supervises, Field Trip Organization>
<Music and Movement Activities, connectedTo, Special Needs Accommodation>
<Music and Movement Activities, partOf, Child Protection Policies>
<Nutritional Meal Preparation, connectedTo, Field Trip Organization>
<Nutritional Meal Preparation, partOf, Child Protection Policies>
<Parent Communication, advises, Story Time Reading>
<Parent Communication, connectedTo, Music and Movement Activities>
<Parent Communication, partOf, Child Protection Policies>
<Playground Safety Inspection, connectedTo, Field Trip Organization>
<Special Needs Accommodation, cares for, Hygiene Practices>
<Special Needs Accommodation, connectedTo, Music and Movement Activities>
<Special Needs Accommodation, connectedTo, Playground Safety Inspection>
<Special Needs Accommodation, prepares, Field Trip Organization>
<Story Time Reading, advises, Parent Communication>
<Story Time Reading, partOf, Child Protection Policies>
<Transmission Electron Microscopy, connectedTo, Nanodevice Fabrication>
<Transmission Electron Microscopy, connectedTo, Solar Cell Efficiency Enhancement>

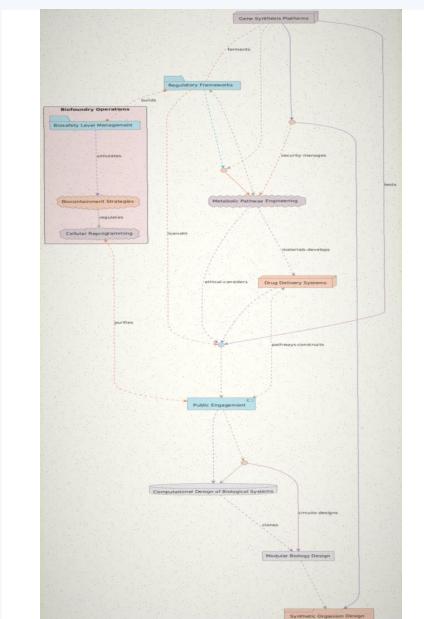
```

Error Analysis:

Owen2.5-VL-7B fails to capture hierarchical containment and role-task dependencies present in the gold standard. While the gold-standard graph encodes explicit *partOf* relations—e.g., situating “Music and Movement Activities”, “Parent Communication”, “Story Time Reading”, and “Nutritional Meal Preparation” under “Child Protection Policies”, the model’s prediction, however, flattens or distorts these structures: it omits key containment relations, incorrectly shifts responsibilities (e.g., assigning *<Nutritional Meal Preparation, partOf, Child Protection Policies>* while failing to preserve its other nested *partOf* relations), and even hallucinates irrelevant nodes such as Transmission Electron Microscopy, demonstrating difficulty in preserving complex hierarchies across multiple functional domains.

K.3 EDGE AMBIGUITY ERROR ON FLOWGEN TEST SET

An Example of Edge Ambiguity Error on FlowGen Test Set



[System Input]

Configured as in Appendix H.1

[User Input]

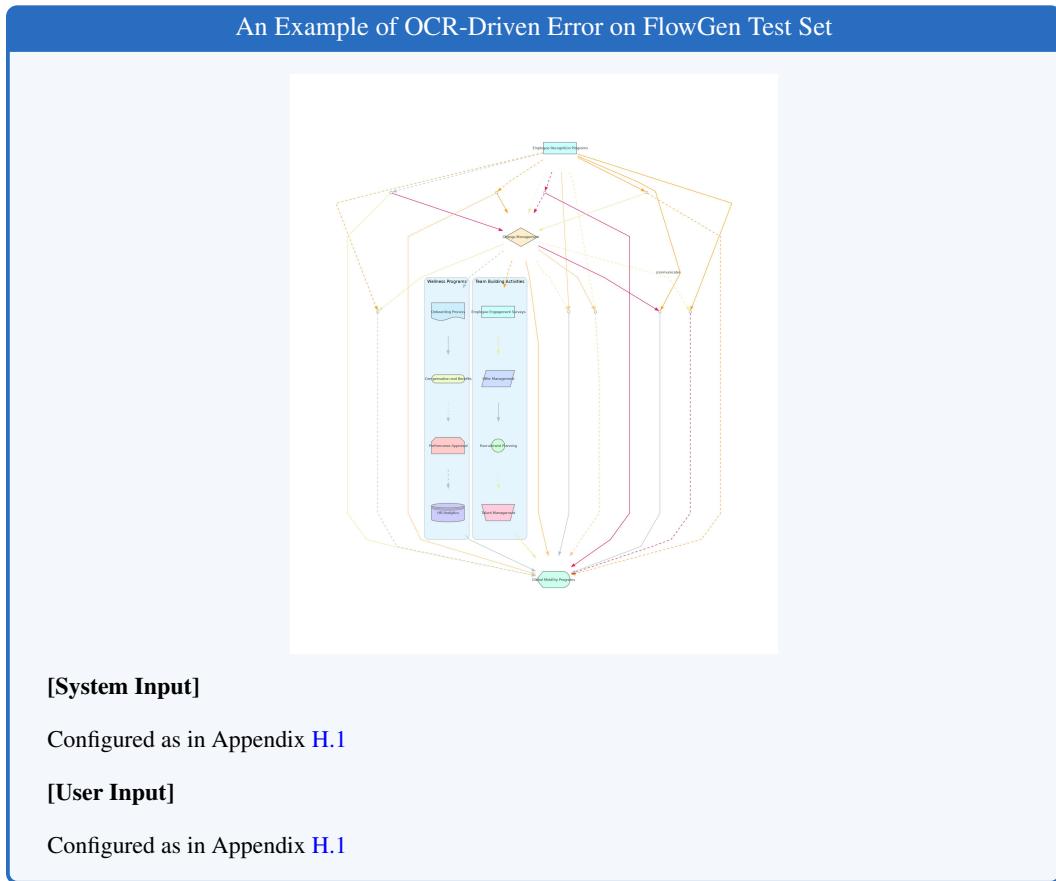
Configured as in Appendix H.1

Qwen2.5-VL-7B Output:

<Biocontainment Strategies, partOf, Biofoundry Operations>
<Biocontainment Strategies, regulates, Cellular Reprogramming>
<Biosafety Level Management, builds, Regulatory Frameworks>
<Biosafety Level Management, partOf, Biofoundry Operations>
<Biocontainment Strategies, simulates, Biosafety Level Management>
<Cellular Reprogramming, partOf, Biofoundry Operations>
<Cellular Reprogramming, purifies, Public Engagement>
<Computational Design of Biological Systems, clones, Modular Biology Design>
<Computational Design of Biological Systems, connectedTo, Public Engagement>
<Drug Delivery Systems, circuits-designs, Synthetic Organism Design>
<Drug Delivery Systems, materials-develops, Metabolic Pathway Engineering>
<Gene Synthesis Platforms, connectedTo, Metabolic Pathway Engineering>
<Gene Synthesis Platforms, ferments, Regulatory Frameworks>
<Gene Synthesis Platforms, security-manages, Metabolic Pathway Engineering>
<Gene Synthesis Platforms, tests, Synthetic Organism Design>
<Metabolic Pathway Engineering, connectedTo, Drug Delivery Systems>
<Metabolic Pathway Engineering, ethical-considers, Public Engagement>
<Metabolic Pathway Engineering, materials-develops, Drug Delivery Systems>
<Modular Biology Design, connectedTo, Synthetic Organism Design>
<Public Engagement, connectedTo, Computational Design of Biological Systems>
<Public Engagement, connectedTo, Synthetic Organism Design>
<Public Engagement, purifies, Cellular Reprogramming>
<Regulatory Frameworks, builds, Biosafety Level Management>
<Regulatory Frameworks, connectedTo, Metabolic Pathway Engineering>
<Regulatory Frameworks, licenses, Public Engagement>
<Transmission Electron Microscopy, connectedTo, Nanodevice Fabrication>

Error Analysis:

Qwen2.5-VL-7B's prediction exhibits clear *edge ambiguity* errors, where the directions of edges are frequently misrepresented. In the gold standard, edges encode regulatory or constructive relations (e.g., `<Biosafety Level Management, simulates, Biocontainment Strategies>`), while the model frequently reverses them (e.g., `<Biocontainment Strategies, simulates, Biosafety Level Management>`), inverting the causal logic. In addition, spurious edges and nodes are introduced (e.g., `<Transmission Electron Microscopy, connectedTo, Nanodevice Fabrication>`), which do not exist in the input diagram. As a result, the predicted graph fails to preserve the structural consistency of the scanned flowchart, producing ambiguous and logically inconsistent edge relations.

K.4 OCR-DRIVEN ERROR ON FLOWGEN TEST SET**Qwen2.5-VL-7B Output:**

```

<Employee Engagement Surveys, connectedTo, Offer Management>
<Employee Recognition Programs, connectedTo, Change Management>
<Employee Recognition Programs, connectedTo, Global Mobility Programs>
<Employee Recognition Programs, connectedTo, Nanodevice Fabrication>
<Employee Recognition Programs, connectedTo, Talent Management>
<HR Analytics, connectedTo, Performance Appraisal>
<Offer Management, connectedTo, Recruitment Planning>
<Performance Appraisal, connectedTo, HR Analytics>
<Recruitment Planning, connectedTo, Talent Management>
<Change Management, connectedTo, Employee Engagement Surveys>
<Change Management, connectedTo, Global Mobility Programs>
<Change Management, connectedTo, Nanodevice Fabrication>
<Global Mobility Programs, connectedTo, Onboarding Process>
<Onboarding Process, connectedTo, Compensation and Benefits>
<Talent Management, connectedTo, Global Mobility Programs>

```

Error Analysis:

Qwen2.5-VL-7B's output reveals typical OCR-driven errors: misrecognized text leads to hallucinated nodes such as “Nanodevice Fabrication”, which do not exist in the gold standard. As a result, the model generates spurious edges (e.g., \langle Employee Recognition Programs, connectedTo, Nanodevice Fabrication \rangle) while omitting valid dependencies like \langle HR Analytics, connectedTo, Global Mobility Programs \rangle . These OCR-induced distortions corrupt both the semantics and the topology of the predicted graph, illustrating how recognition noise directly propagates into structural parsing errors.