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Abstract

We focus on enhancing the performance of CNNs, es-
pecially against natural perturbations. Existing CNNs
show outstanding performance on image classification, but
training CNNs require large training datasets. We tackle
this problem by incorporating elastic perturbations which
approximate (local) view-point changes of the object in
CNNs. We present elastically-augmented convolutions (EA-
Conv) by parameterizing filters as a combination of fixed
elastically-perturbed bases functions and trainable weights.
We show an improvement in the general robustness of CNNs
on the CIFAR-10 and STL-10 datasets, while even improv-
ing the performance on clean images without any data aug-
mentation.

1. Introduction
Convolutional Neural Networks (CNNs) achieve state-

of-the-art performance on image classification tasks, how-
ever learning powerful features using CNNs require large
amounts of training dataset [11, 6, 8]. One way to solve
this problem is to pretrain on a similar dataset to the test set
[15]. However, in the real-world, large datasets similar to
the target domain are not always available for pretraining.
Yet another option is to incorporate prior geometric knowl-
edge in the network [8, 12].

A straight forward method to incorporate prior knowl-
edge in the training framework is through data augmenta-
tion. However, here we assume there are no more images
or their transformed versions are available. We begin with
the argument that in practice frequent and important defor-
mations occur in the image when the camera changes its
viewing angle, when the lighting conditions are not suitable
which leads to the noisy image, and when the object is par-
tially hidden. Hence, it is important to test the robustness of
networks against such perturbations before deploying them
in the real world. For all such perturbations, elastic trans-
forms will provide a better variation of input features to the
next layer.

Global elastic transformations correspond to view point
changes, and local elastic transformations cover out-of-

plane rotations of the object. Typical examples are in medi-
cal images, when the shape and volume of organs may vary
[16, 1]. Similar behavior is observed when the object is still
and the scene is dynamic as in ocean waves, or when the
camera moves as in video segmentation or tracking. We
pronounce that local elastic transforms provide a good ap-
proximation of many practical local variations in the image
space one wants to be invariant under.

Our contributions are: (i). We propose the theory for
elastically-augmented convolutional neural networks. (ii).
We introduce Elastically-Augmented Convolutions to inte-
grate unseen viewpoints in the CNNs for enhancing their
general robustness. (iii). We demonstrate that by incorpo-
rating local elastic variations in the convolutions of the net-
work, we enhance the performance on clean images. (iv).
We demonstrate specific robustness for elastic transforms
and, remarkably, general robustness for Gaussian and oc-
clusion perturbations unseen during training.

2. Related Work
Built-in Image Transformations. Initially, geometric
transformations were modeled in the neural networks by
small units that locally transformed their inputs for mod-
eling geometric changes, i.e. capsules [7]. Later [9] intro-
duced a transformer module in the network to wrap feature
maps by global transformations. However, learning the pa-
rameters of the transformations introduced by [9] is known
to be difficult and computationally expensive. In similar
spirit, [4, 3] focused on integrating spatial deformations in
CNNs. Both methods require large datasets for learning,
while our aim is to learn from small datasets and generalize
the performance to include perturbations on images never
seen before.

Robustness to Natural Perturbations To improve the
robustness against natural perturbations, [14] introduced a
noise generator that learns uncorrelated noise distributions.
Training on these noisy images enhanced the performance
against natural perturbations. [5] trained on images with
adversarial as well as natural perturbations, while achiev-
ing good generalization for unseen perturbations. [13, 17]
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Figure 1. An illustration of a standard CNN with 4 convolutional layers and its elastically-augmented variant.

Figure 2. An illustration of how a set of elastic kernels is repre-
sented as a trainable linear combination of elastically-augmented
fixed basis functions.

argued that it is impossible to capture all possible natural
perturbations mathematically. Therefore, they used gener-
ative models to generate images with perturbations to train
the network. Instead of training with perturbed inputs, in
this work we integrate predefined perturbations into the net-
work to enhance robustness.

3. Method
3.1. Image Transformations

Consider an image f . It can be reshaped as a vector f . A
wide range of image transformations can be parametrized
by a linear operator: scaling, in-plane rotations, shearing.
Other transformations, such as out-of-plane rotations, can
not be parametrized in an image agnostic way. However, for
small deviation from the original image Taylor expansions
can be used, which gives a linear approximation for many
image transformations of practical use. Indeed,

T [f ](ε) ≈ T [f ](0) + ε
(∂T [f ]

∂ε

)∣∣∣∣
ε=0

= f + εLT × f

= (I + εLT )× f = T× f

(1)

where T is a transformation, ε is the parameter of the trans-
formation and T is a linear approximation of T for small

values of the parameter. For scaling the parameter is the
logarithm of the scaling factor, for rotations it is the angle,
and so on. LT is a matrix representation of an infinitesimal
generator of T .

An image f can also be viewed as a real-value function
of its coordinates f : x → f(x). We focus here on trans-
formations which can be represented by a smooth field of
displacements τ in the space of coordinates. Equation 1 can
then be rewritten as follows:

T [f(x)](ε) ≈ f(x+ ετ(x)) (2)

We will refer to such transformations as elastic transforma-
tions. We will consider them as a linear approximation of a
wide range of complex (camera) transformations.

3.2. Elastically-Augmented Convolutions

Let us consider a convolutional layer Φ parameterized by
a filter κ and an input image f . The output is:

Φ(f, κ) = f ? κ = K× f (3)

where K is a matrix representation of the filter. While,
when data augmentation is used, a transformed version of
the image can be fed as an input.

Φ(T [f ], κ) = T [f ] ? κ = K× (T× f)

= (K×T)× f = Φ(f, T ′[κ])
(4)

In general, when KT is a matrix representation of some
kernel, the result can be achieved by transforming the kernel
instead of transforming the input.

To incorporate the data augmentation into the convo-
lutional layers of the network, we propose elastically-
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Figure 3. Top: vector fields of smooth displacements for the proposed set of rotation-scaling transformations. Bottom: the original filter
and its versions transformed after applying the corresponding displacements.

Model Clean Perturbed-1 Perturbed-2

Standard Network 0.00 −5.89 −10.53
EAConv Network 0.00 +3.68 +6.36
Data Augmentation −1.57 +4.07 +8.02

Table 1. Comparing a standard network and EAConv Network for
CIFAR-10 clean and perturbed inputs. Negative values show the
drop in the performance, and positive values show recovery in the
drop.

augmented convolutions, shortly EAConv, as follows:

EAConv = max


β0Φ(f, κ)

β1Φ(f, T1[κ])
...

βnΦ(f, Tn[κ])

 (5)

where βi are trainable coefficients. We initialize them such
that β0 = 1 and the rest are zeros. The maximum is calcu-
lated per pixel among different transformations of the ker-
nel. At the beginning of training, the operation is thus iden-
tical to the original convolution with the same filter. If it is
required during training, the other coefficients will activate
the corresponding transformations.

3.3. Transformations of a Complete Basis

In order to apply elastic transformations to filters, we
parametrize each filter as a linear combination of basis func-
tions:

κ =
∑
i

wiψi (6)

where ψi are functions of a complete fixed basis and wi are
trainable parameters. The approach is illustrated in Figure
2. We follow [8] and choose a basis of 2-dimensional Gaus-
sian derivatives.

The transformations when applied to the basis form a
transformed basis. Thus, for every transformation from the
set, there is a corresponding transformed basis. Weights wi
are shared among all bases.

Let us assume that the center of a filter is a point with
coordinates (0, 0). For every function from the basis, we
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Figure 4. Evaluating the performance of elastically-augmented
convolutions on elastic perturbations at different levels of sever-
ity on x-axis.

first generate a grid of coordinates (x, y). Then we evaluate
the value of the function in the coordinates when projected
on the pixel grid. In order to transform the functions, we add
a small displacement to the coordinates, which leaves the
center untransformed. We propose a set of transformations
which we call rotations-scaling displacements. See Figure
3.

3.4. Elastically-Augmented Residual blocks

In order to transform residual networks, we propose a
straightforward generalization of the proposed convolution.
The standard residual block can be formulated as follows:

ResBlock = f +G(f, κ1, κ2, . . . ) (7)

The according augmented block is formulated as follows:

EAResBlock = f + max


β0G(f, κ1, κ2, . . . )

β1G(f, T1[κ1], T1[κ2], . . . )
...

βnG(f, Tn[κ1], Tn[κ2], . . . )


(8)

Elastic kernels augmented in the network architecture are
shown in the Figure.1.
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Figure 5. Evaluating EAConv on unseen occlusion perturbations.
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Figure 6. Evaluating EAConv on unseen Gaussian perturbations.

4. Experiments and Results
4.1. Standard Network

We began by training and testing standard networks for
CIFAR-10 [10] and STL-10 datasets [2] respectively on
clean images. For CIFAR-10, we trained a Resnet-50 net-
work and achieved 91.11 and for STL-10, we trained a
Wide-Resnet-16 and gained 88.28 on clean test set.

4.2. Elastically-Augmented Convolutional Network

Elastic CIFAR-10. We experimented by augmenting dif-
ferent layers of the network with EAConv and selected
the combination which gave the best performance on clean
samples, i.e. the first convolutional layer: 91.11.

Table.1 contrasts the performance of a standard network
with our elastically augmented network on CIFAR-10 clean
images as well as on elastic perturbed images causing a drop
of 5.89 and 10.53. Results show that our model without any
drop in the performance on clean images leads to a gain in
the performance on elastic perturbed images. On the other
hand, although data augmentation helps against perturbed
inputs, however it leads to a drop on clean images.

Elastic STL-10. For STL-10, we also experimented by
augmenting different layers of a Wide-Resnet-16 with EA-

Conv. We selected the augmented combination of layers
which gave the best performance on clean images, i.e. lay-
ers till Block2: 88.93.

Evaluating on Seen Perturbations. In Figure. 4 x-axis,
we have a clean test set and eight elastically perturbed test
sets with varying severity levels. While on the y-axis, we
have the drop in the accuracy with the clean test on a stan-
dard network with the drop zero and increasing drop with
the increase in the severity levels. The blue solid line shows
the drop on a standard network for elastically perturbed
samples.

Results show that with the increase in the perturbations
the accuracy drops (blue solid line), however, our EAConv
network especially rotation scaling transforms recover the
drop for all the severity levels while enhancing the perfor-
mance on clean test set (orange line with star symbols).
Although data augmentation helps against elastic perturba-
tions, but it leads to a drop in the performance on clean
images (green dotted line).

Evaluating on Unseen Perturbations. Figure. 5 shows
the performance of networks tested on a clean and five dif-
ferent occluded test sets with varying sizes of occlusion
from radius r = 10 to 50. We observe that the classification
accuracy drops with the increase in the size of occlusion
on a standard network (blue solid line). However, our EA-
Conv network (Orange solid line with star symbols) shows
recovery in the drop, hence generalizing to unseen occlu-
sion perturbations. Data augmentation with elastic pertur-
bations shows robustness for some occluded test sets, but
for others the improvement is less than our method.

Figure. 6 shows the effectiveness of our method on un-
seen Gaussian perturbations. On the x-axis, we have a clean
test set and five different test sets with the Gaussian pertur-
bations induced with the varying standard deviation std = 1
to 5. The plots show that with the increase in the severity
of Gaussian noise, the accuracy drops for a standard net-
work (blue solid line). However, when we test our EA-
Conv on these perturbations, it helps to recover the drop. In
contrast, data augmentation with elastic deformations show
very minimal improvement in the performance.

5. Conclusion
A method to integrate unseen view points in CNNs is

introduced for enhancing the robustness against local varia-
tions in the image space. We demonstrated the effectiveness
of our method by improving the performance on perturbed
inputs without the loss of generality on clean inputs. We
also showed the general robustness of our EAConv network
by testing on unseen occlusion and Gaussian perturbations.
Our results showed that elastically augmented convolutions
enhance the robustness against unseen viewpoint variations
while keeping the number of training parameters in the net-
work and the number of training images the same.
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