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Abstract
This paper addresses the training of Neural Ordi-
nary Differential Equations (neural ODEs), and in
particular explores the interplay between numeri-
cal integration techniques, stability regions, step
size, and initialization techniques. It is shown how
the choice of integration technique implicitly reg-
ularizes the learned model, and how the solver’s
corresponding stability region affects training and
prediction performance. From this analysis, a
stability-informed parameter initialization tech-
nique is introduced. The effectiveness of the
initialization method is displayed across several
learning benchmarks and industrial applications.

1. Introduction
Learning dynamic systems from observations has a long his-
tory of applications, particularly in time-series analysis and
prediction. This research domain is intrinsically connected
to classical system identification and statistical model esti-
mation methods (Ljung, 1999). While there are many early
studies on using machine learning to adapt parameters of
continuous functions from observations (Cohen & Gross-
berg, 1983; Rico-Martinez & Kevrekidis, 1993; Anderson
et al., 1996; González-Garcı́a et al., 1998), using deep ar-
chitectures to learn from sequential data has largely been
dominated by Recurrent Neural Networks (RNNs) (LeCun
et al., 2015), with notable exceptions (Oord et al., 2016; Bai
et al., 2018; Vaswani et al., 2017; Gu et al., 2022). However,
with the introduction of Neural Ordinary Differential Equa-
tions (neural ODEs) (Chen et al., 2018), the idea of learning
continuous functions using Neural Networks (NNs) has at-
tracted the attention of several researchers. While neural
ODEs have been successfully applied in image classifica-
tion (Gholami et al., 2019; Zhang et al., 2019; Zhuang et al.,
2020; Gusak et al., 2020), motivated by their syntactic simi-
larities to that of Residual Networks (ResNets) (Chen et al.,
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2018; Gholami et al., 2019; Zhang et al., 2019; Queiruga
et al., 2020; Ott et al., 2021), their strong inductive bias
towards sequential modeling makes them attractive for ap-
plications that deal with sequential data (Rubanova et al.,
2019; Yildiz et al., 2019; Kidger et al., 2020; Huang et al.,
2020; Chen et al., 2021; Westny et al., 2023; Lipman et al.,
2023; Verma et al., 2024).

This paper examines the impact of numerical solver choice
on the performance and parameterization of models. We
demonstrate that by careful consideration of the stability
regions of the dynamic system with those of the selected
solver, and by analyzing the eigenvalues from linearizing
the models, the integration method and step size can sig-
nificantly limit the space of learnable parameter values of
NNs trained via stochastic gradient descent methods. Based
on these observations, a stability-informed initialization
technique is proposed for neural ODEs, yielding notable
enhancements in training efficiency and prediction accuracy.

1.1. Contributions

The primary contributions of this paper are:

• An investigation into the effects of the numerical inte-
gration method on the parameters of neural ODEs and
its connection to solver stability regions.

• Proposal of an Stability-Informed Initialization (SII)
technique for neural ODEs.

Implementations are made publicly available.2

1.2. Related Work

The interest in neural ODEs has grown considerably since
they were first introduced in (Chen et al., 2018). In light of
their successful application, numerous research for a more
comprehensive understanding of neural ODEs (Yan et al.,
2019; Massaroli et al., 2020; Zhang et al., 2020; Gusak et al.,
2020; Zhu et al., 2022) has been proposed with further im-
provements in (Gholami et al., 2019; Finlay et al., 2020;
Zhuang et al., 2020; Xia et al., 2021; Krishnapriyan et al.,
2022). The investigations in this paper target the effects
of the numerical integration method and step size on the

2https://github.com/westny/neural-stability
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learned model. A majority of related works that consider
these questions mainly focus on the effect on prediction per-
formance. However, an important aspect to consider when
it comes to the effect of solver selection is not only their
discretization error but also their stability regions (Ascher
& Petzold, 1998), something that could be important when
alternating solvers. Motivated by both the theoretical and
practical benefits in a deep learning context, our analysis
is mainly focused on fixed-step Runge-Kutta methods. In
fact, the limitations of variable-step solvers when training
neural ODEs was noted already in (Chen et al., 2018), some
of which have been the target of later research (Gholami
et al., 2019; Zhang et al., 2019; Zhuang et al., 2020).

It was observed in (Zhuang et al., 2020; Gusak et al., 2020;
Mohammadi et al., 2023) that exchanging the numerical
solver during testing from the one used during training con-
siderably influenced performance. In (Zhuang et al., 2020),
they demonstrated that training a neural ODE with an adap-
tive step solver and then utilizing fixed-step solvers of first,
second, and fourth-order during inference led to a rise in
error rates, albeit with a smaller increase as the order in-
creased. In (Queiruga et al., 2020) and (Ott et al., 2021),
these observations were explored in depth. In (Ott et al.,
2021), it was observed that employing coarse discretization
during training, followed by testing with an equally or less
precise solver led to a considerable drop in performance.

Neural ODEs share several similarities with Deep State
Space Models (SSMs), notably by using a continuous-time
formulation. In the study by (Gu et al., 2020), an initializa-
tion technique for SSMs that enhances their ability to cap-
ture long-range dependencies was introduced—effectively
integrated into the S4 model (Gu et al., 2022). However, S4
was observed to suffer from numerical instability during au-
toregressive generation, which was subsequently addressed
in (Goel et al., 2022) by ensuring that the state matrix is
constrained to be Hurwitz. Similarly, one can also draw
connections between this work and methods in the reser-
voir computing literature (Lukoševičius & Jaeger, 2009) as
well as the choice of stable dynamical systems in Random
Projection Filter Banks (Farahmand et al., 2017). While
these approaches share a thematic resemblance with our
emphasis on stability, a key distinction of our work is the
additional focus on the numerical solvers and their stabil-
ity regions—an essential aspect when solving differential
equations numerically and therefore also for the training
and prediction processes.

2. Stability of Dynamic Systems and Solvers
A continuous-time dynamic model is described in ODE
form by a state-transition function f as

ẋ = f(x,u; θ) (1)
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Figure 1: Stability regions for p ∈ {1, 2, 3, 4}-stage explicit
RK methods of order p where z = hλ. The innermost circle
represents the region of stability for the EF method, where
p = 1. As p increases, so does the stability region.

where x ∈ Rdx is the dynamic state, and u ∈ Rdu an ex-
ternal (control) input, and θ the parameters of the model.
Two important stability properties that are beneficial to con-
sider when learning the function f , in particular when f
is represented by a deep NN, are 1) the stability of the
continuous-time system (1), and 2) the stability region of
the numerical solver used to integrate (1).

2.1. Stability of Dynamic Systems

Stability in dynamic systems refers to the property of a sys-
tem to return to its equilibrium state or to maintain its state
of equilibrium after being subjected to disturbances (Ljung,
1999). In the context of control systems, stability is crucial
to ensure the desired response and performance. The stabil-
ity of a general dynamic system like (1) is complex (Khalil,
2002). However, for our purposes, it will prove sufficient to
consider the stability of

ẋ = Ax + Bu, (2)

where the stability is directly related to the eigenvalues λ
of the matrix A and exponential stability is ensured if all
eigenvalues lie in the complex left half-plane λ < 0.

2.2. Stability Regions of Numerical Solvers

Differential equations like (1) do not, in general, have ex-
plicit analytical solutions and numerical integration tech-
niques have to be used (Ascher & Petzold, 1998). Similarly
to the stability of the system itself, it is important to consider
the stability of the solver as this has a profound impact on
the accuracy and stability of the solution trajectory. There
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Figure 2: The figure depicts the scaled poles (green crosses)
of a synthetic dynamic system f and the simulated response
to a small perturbation using a 4th-order Runge-Kutta (RK4)
and EF method.

are strong relationships between the properties of the sys-
tem, the chosen solver, the step size, and the accuracy and
stability of obtained numerical solutions.

Figure 1 illustrates the regions of absolute stability of ex-
plicit pth-order, s = p ≤ 4 stage Runge-Kutta (RK) meth-
ods, where the 1-stage RK method is known as Euler for-
ward (EF). The stability regions are given by the expression∣∣∣∣1 + hλ+

(hλ)2

2
+ · · ·+ (hλ)p

p!

∣∣∣∣ ≤ 1, (3)

where h is the step size and λ is the eigenvalue (Ascher
& Petzold, 1998, pp. 87–89). From Figure 1 it can, e.g.,
be deduced which maximum step size h is possible given
the dynamics of a system. Here, only fixed-step explicit
methods are considered, but the approach can be directly
extended to other integration methods. For example, several
implicit solvers have well-defined stability regions (Ascher
& Petzold, 1998, p. 143).

3. Implications for Neural ODEs
The concept of stability regions is an important property of
numerical ODE solvers (Ascher & Petzold, 1998). However,
these stability regions and their implications on the learning
and prediction performance of neural ODEs have yet to be
investigated in detail.

Consider a dynamic system ẋ = f(x), modeled using a
feedforward NN with nonlinear activations. In Figure 2,
we illustrate the poles of the linearized system within the
complex plane, i.e., the eigenvalues of the Jacobian ma-
trix A = ∂f(x)

∂x |x=0, scaled by the step size h. Clearly,
the eigenvalues are well within the stability region of RK4
and simulating it using that particular solver yields a stable
response. However, for the EF method, the two complex
eigenvalues are outside of its stability region, and the sim-
ulated response exhibits oscillatory behavior resulting in
large prediction errors. This is an important property to

highlight in the context of neural ODEs, since training a
model using a higher-order method might yield a model with
eigenmodes that are problematic for a lower-order method.
For example, in (Queiruga et al., 2020; Ott et al., 2021) it
was observed that changing the numerical solver during in-
ference from the solver employed during training can have
a profound impact on the overall performance. While they
concluded that the behavior was due to the discretization
error, this could also be attributed to the solvers’ stability
regions (Mohammadi et al., 2023).

3.1. Learned Model Dynamics

The choice of numerical solver affects the placement of the
learned model dynamics. To illustrate, Figure 3 shows the
kernel density estimate of the eigenvalues, for a lineariza-
tion around a zero reference of 400 different neural ODEs,
depicted in the complex plane. The models are parametrized
using feedforward NNs and trained using the EF, Midpoint
(MP), and 3rd-order Runge-Kutta (RK3) methods, respec-
tively. They are all tasked with learning the dynamics of a
linear system (one unique reference system for each model)
with 3 dynamic states that are unattainable for each solver
since the eigenvalues of the state-transition jacobian of the
reference systems, shown with green crosses, are manually
placed outside of the respective solvers’ stability region.
With some slight abuse of notation, the eigenvalues of the
state-transition jacobian will be referred to as the system
poles.

The training and test data consist of N = 100 long se-
quences, generated by simulating the reference system using
RK4. The poles of the learned models used for the illustra-
tions are based on the version of the model that achieves
minimum test loss during training. Several important con-
clusions can be drawn from the observed results.

Regardless of the nature of the system that the model should
learn, the poles are contained within the stability region
of the solver. This follows intuition since poles outside of
the respective stability regions would yield poor prediction
performance (cf. Section 3).

It is evident from the illustrations and observations made
during training that the models display a limited tendency
to shift poles to the left within the complex plane. Note that
poles with large negative real parts give rise to states with
fast dynamics, and quick transient responses, something
the models struggle to learn. We hypothesize that this phe-
nomenon is related to the spectral bias of NNs (Rahaman
et al., 2019; Basri et al., 2020; Tancik et al., 2020), as it has
been observed that NNs encounter difficulties when learning
higher frequencies. Lack of excitation of high-frequency
dynamics could also be a contributing factor (Ljung, 1999).

Another important observation to note is the high density of
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poles around the origin. The cause of this can be traced back
to the initialization technique employed here — also the de-
fault in PyTorch (Paszke et al., 2019). In this method, param-
eter values are initialized from U(−1/

√
din,i, 1/

√
din,i),

where din,i is the input dimension of the i-th layer. When
initializing using this method, the linearized system poles
are contained within a ball around the origin with a radius
dependent on the number of parameters. This makes learn-
ing dynamic systems more difficult since they all have to
be moved from the origin during training. Further, with
such an initialization strategy some poles lie in the right
half-plane, thus rendering the system unstable which makes
training more difficult. An important consideration here is
also the effect of using regularization strategies for neural
ODEs since penalties on the learnable parameters would
have the effect of pushing the poles closer to the origin.

These findings motivate the potential need to develop ini-
tialization strategies more suitable for neural ODEs used
to learn dynamic systems. Since the poles of these models
are approximately contained within the stability region of
the employed solver, it makes intuitive sense to initialize
the model within that same region, while also adhering to
the stability requirements of dynamic systems. Furthermore,
since the model is stable from the start of training, this al-
lows for training with longer prediction horizons without
risking divergence. In addition, motivated by the increased
difficulty of learning fast dynamics, we hypothesize that
by initializing the model with poles further into the left-
half plane the model will experience a smoother learning
process.

Figure 3: Kernel density estimate of learned model poles
based on the approximate linearized system when using the
EF, MP, and an RK3 method (from left to right). The kernel
density estimates are based on a total of 3 · 400 poles (no.
of states× no. of models). The references are various linear
systems with 3 states. The combined poles of all linear
systems are illustrated with green crosses.

4. Stability-Informed Initialization
Consider a dynamic system in the form (1) where f is as-
sumed to be a feedforward NN with depth n in the form

f(x) = Wnσ(· · ·σ(W1x + b1) · · · ) + bn, (4)

where σ is any nonlinearity (activation function), Wi ∈
Rdhi×dhi−1 and bi ∈ Rdhi are the learnable weights and
biases of the model, and dhi is the hidden dimension of layer
i ∈ {1, . . . , n}. It is assumed that no layer has a dimension
less than the state dimension dx. Finally, the NN input is
x = x⊕ u, where ⊕ is the concatenation operation.

Uninformed random initialization of the weights Wi and
biases bi will with high probability give an initial model
that violates the stability constraints highlighted in Section 2.
As detailed in Section 3, this has a considerable impact on
training and will be further discussed in the remainder of
the paper. Now, a rejection sampling-based initialization
procedure of the parameters in (4) is described that respects
the stability region of the chosen solver.

4.1. Parameter Initialization

The key idea of the approach is to consider a linearization
of (4) for sufficiently small bi and assume an activation func-
tion σ with a linear region. This assumption holds for several
widely used activation functions such as the ReLU and its
variants. For activation functions with variable slopes, like
sigmoid or tanh, the linear coefficient can be conservatively
replaced by their maximum slope at the origin. This scales
the eigenvalues towards the origin while still maintaining
the stability properties of the system.

Note that the stability of the linearized system does not
necessarily imply the stability of the nonlinear system, or
even of a linear time-varying system, as discussed in (Khalil,
2002). However, analyzing the stability of the linearized
system can provide a useful starting point for initialization.

Let κ be the slope of the activation function around the
origin, then it holds that

∂f(x)

∂x
≈ κnWnWn−1 · · ·W1 = A, (5)

which is exactly an n-layer linear feedforward network.
This expression is central to the initialization technique—
outlined next. Without loss of generality and for simplicity
of the presentation, κ is from now on assumed 1. Note that,
Wi should be scaled by 1/κi if κi 6= 1.

Weight matrices To illustrate the procedure, first, con-
sider the simple case where the desired eigenvalues of A
in (5) are λj ∈ R and let Wi ∈ Rdx×dx be all identical
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diagonal square matrices

W1 = · · · = Wn = diag(λ1, λ2, . . . , λdx)1/n. (6)

Then, clearly, A in (5) has the desired eigenvalues λj . The
nth root is used to allocate information about each eigen-
value throughout the whole feedforward network. This
constitutes one alternative to initializing the weights Wi but
the approach has several restrictions, described next.

First, consider the case when one wants the eigenvalues to
be complex. With real weights Wi ∈ Rdhi×dhi−1 in (4),
this requires that complex eigenvalues come in conjugate
pairs. Consequently, when dx is odd, the system must have
a least one real eigenvalue. Regardless, the construction is
still straightforward. Let λk ∈ C and, as before, compute
the nth (principal) root as λ1/nk = µk + jωk where j is the
imaginary unit. First, note that the matrix

Jλk =

[
µk ωk
−ωk µk

]
(7)

has exactly the eigenvalues µk ± jωk. Next, block-diagonal
Wi:s are constructed where the kth block Jλk from above
yields

W1 = · · · = Wn = Jλ1
⊕ Jλ2

⊕ · · · ⊕ Jλdx/2 =

=


µ1 ω1 0 · · · 0
−ω1 µ1 0 · · · 0

...
...

...
. . .

...
0 0 0 µdx/2 ωdx/2
0 0 0 −ωdx/2 µdx/2


(8)

where Wi has all real entries and the compound A has the
desired eigenvalues.

Next, we need to address the dimensionality and sparsity of
the weight matrices. Certainly, dim(Wi) 6= dim(A) is most
often the case when constructing a feedforward network like
(4). Additionally, to avoid sparse weight matrices where
there is a risk of slow learning due to the vanishing gradi-
ent problem (Basodi et al., 2020; Pascanu et al., 2013), we
would like to avoid matrix elements with a value of zero. Fi-
nally, similar to established initialization techniques (Glorot
& Bengio, 2010; Saxe et al., 2014; He et al., 2015), adding
randomness to the weight initialization assures that diverse
models can be generated, but also crucially breaks symme-
try among neurons—enabling diverse feature extraction. To
meet these requirements, the previous ideas presented above
are generalized as

A = ΛnΠ−1n−1︸ ︷︷ ︸
Wn

Πn−1Λn−1Π−1n−2︸ ︷︷ ︸
Wn−1

· · ·Π2Λ2Π−11︸ ︷︷ ︸
W2

Π1Λ1︸ ︷︷ ︸
W1

, (9)

where Λi is used to address the dimension property and Πi

the denseness and randomness property.

The matrices Λi ∈ Rdhi×dhi−1 are constructed to inherit the
properties of (6) and (8) for real and complex eigenvalues
respectively such that they contain a factor of the system
eigenvalues. To ensure that the dimensions of the respective
matrix products adhere to the hidden dimensions of the
layers in the network, the matrices are extended with blocks
of zeros. Consider for example the simple case when dx = 2
and dh1

= 4, then

Λ1 =

[
µ1 ω1 0 0
−ω1 µ1 0 0

]T

(10)

The matrices Πi ∈ Rdhi×dhi are random orthogonal ma-
trices sampled from the Haar distribution (Stewart, 1980;
Mezzadri, 2006). In practice, these are constructed by apply-
ing QR decomposition of a dhi×dhi matrix whose elements
are independently normally distributed with zero mean and
unit variance (Mezzadri, 2006). The choice of using or-
thogonal matrices is natural since their eigenvalues being 1
ensures that the complete model’s eigenvalues are neither
attenuated nor amplified along the computational graph and
their property of having their transpose equal to their inverse
offers numerical and implementational benefits. Note that
introducing the random matrices Πi does not change (9)
since

A = ΛnΠ−1n−1 · · ·Π2Λ2Π−11 Π1Λ1 = Λn · · ·Λ2Λ1, (11)

although their inclusion assures that ∀wj,k ∈Wi,wj,k 6= 0
with probability 1. Although not explored in this work, we
note that it is possible to use other eigenvectors than the
standard basis when constructing A.

Dynamic inputs To include external inputs, the vector u
is assumed to be concatenated with the state vector x prior
to propagation. This is easily accounted for by modifying
Λ1 such that Λ1 ∈ Rdh1×(dx+du). Continuing the example
in (10), with du = 1, then

Λ1 =

 µ1 ω1 0 0
−ω1 µ1 0 0
ν1 ν2 0 0

T

, (12)

where νk ∼ U(−ζ, ζ) and ζ = 1
n

∑
i=n |µi|.

Bias terms Given that the linearization holds for bi close
to 0, it might seem appealing to initialize bi = 0 in order
to satisfy the approximation. However, this could lead to
ineffective learning of bi. To that end, initialization of the
bias terms bi is done according to

bi ∼ U(−ε · 1dhi , ε · 1dhi ), (13)

where 1dhi is a vector of ones with size dhi and ε is a
tunable (small) value, here set to ε = 10−4.
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Algorithm 1 Stability Region Rejection Sampling

Input: Solver order p, step size h, state dimension dx
Initialize: E ← {}
repeat

Sample: µ ∼ U(−3.0,−0.1)
if |E| < dx − 2 and use complex then

Sample: ω ∼ U(−3.0, 3.0)
else

Set: ω = 0
end if
Form: λ = µ+ jω

if
∣∣∣1 + λ+ λ2

2 + · · ·+ λp

p!

∣∣∣ < 1− ε then
E ← E ∪ {λ/h}
if ω 6= 0 then
E ← E ∪ {λ̄/h}

end if
else

Reject and proceed to the next iteration
end if

until |E| = dx
Return: E

Summary Now that a method to randomly initialize the
feedforward network (4) given a set of eigenvalues has been
outlined, the procedure is completed using a simple rejec-
tion sampling algorithm. This involves randomizing real
and/or complex-conjugate eigenvalue pairs within the stabil-
ity region of the selected solver for a given step size based
on condition (3). This procedure is outlined in Algorithm 1.
The rejection-sampling algorithm produces a set of eigenval-
ues that are utilized to form Λi as described in (10) and (12).
Subsequently, random orthogonal matrices Πi are sampled.
These matrices, together with Λi are used to construct the
weights Wi as outlined in (9). The process concludes with
the construction of the bias terms as in (13).

5. Teacher-Student Regression
Model We examine a teacher-student NN setting in which
a student network is trained to replicate the output of a
teacher network. The teacher is designed to simulate a non-
linear dynamic system and is adaptable to various dynamic
states and inputs, allowing for a rich simulation study. Both
the teacher and student models are outfitted with nonlinear
ELU (Clevert et al., 2015) activation functions. The main
considered input was in the form of pulse-width modulated
waveforms w, meant to model a continuous-time input that
excites model dynamics. The training and test set inputs
u are constructed using different periodic functions with
varying frequencies together with added noise

u = [wk + vk . . . wk+N + vk+N ], (14)

10−5 10−4 10−3

Test loss

0

25

50

F
re

q
u
e
n
c
y

Euler forward

SII

Default

10−5 10−4

Test loss

0

25

50

Midpoint

10−5 10−3

Test loss

0

25

50

RK4

Figure 4: Histogram over minimum test loss when training
on 500 different teachers, initialized with poles within the
first-order region.
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Figure 5: Histogram over minimum test loss when training
on 500 different teachers, initialized with poles outside of
all stability regions.

where v ∼ N (0, 0.1) and N is the number of samples.
Data generation then proceeds by solving the Initial Value
Problem (IVP)

x = x0 +

∫ t

0

T (τ,x(τ),u(τ))dτ, t = N ·∆t (15)

where T is the teacher model, x0 ∼ U [0, 1) the initial state,
and x the corresponding solution, recovered using a numer-
ical solver, in this case, the variable-step Dormand-Prince
method (Dormand & Prince, 1980). The state trajectory x
is determined by the integration length t, where ∆t is the
sampling period. When solving the IVP, the teacher utilizes
linear interpolation to compute intermediate input values.

Training We conduct a study, using 500 random seeds
(and teachers), training various student models using differ-
ent hyperparameters, solvers, and initialization techniques.

Results The first investigation is done by initializing the
teacher model with 4 dynamic states using the proposed
technique such that the poles are inside of the first-order
stability region. Each student model has the same hyperpa-
rameter configuration as the teachers, in this case, 3 layers
with 128 nodes in each layer. Despite the randomness in the
example, there is a clear tendency toward lower loss values
using the proposed technique, with orders of magnitude
smaller losses (see Figure 4).

In general, the eigenvalues of the true system to be learned
from training data are rarely known. To simulate the case
when neither the solver nor the step size is chosen optimally,
the second investigation is conducted to study how well the
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nonlinear students can approximate the data regardless. This
is done by initializing the teacher model with 2 dynamic
states using the proposed technique such that the poles are
outside of the stability region of the employed solver. To
add to the difficulty of the task, each student model is under-
parameterized relative to the teacher. While the teacher has
3 layers with 128 nodes in each layer, the student has 2
layers with 32 nodes in each layer.

In Figure 5, the histograms of the minimum test loss are
shown for the different solvers and initializations. Similar to
the first investigation, the results show a clear improvement.

6. Experiments
To assess the performance and usability of the proposed tech-
nique, several experiments are conducted across a diverse
set of problem domains. Our choice of experimental cases
was guided by three principal criteria: (i) prevalence in the
literature, (ii) complexity and diversity of the tasks, and (iii)
real-world applicability and relevance. For each experimen-
tal scenario, multiple instances of the models are trained
under different random seeds to ensure the reproducibility
and statistical significance of the results. Importantly, the
configuration of hyperparameters, e.g., batch size and learn-
ing rate may differ with the task but is always the same for
all methods. Unless stated otherwise, the models are trained
and tested using the Midpoint method.

6.1. Pixel-Level Image Classification

Drawing inspiration from (Le et al., 2015; Gu et al., 2022),
the original MNIST (LeCun et al., 1998) and CIFAR-
10 (Krizhevsky et al., 2009) datasets are modified for a
sequential classification task. This modification involves
presenting images to the model one pixel at a time, requir-
ing the model to classify the image only after all pixels
have been observed. These tasks have been popularized as
benchmarks for long-range dependency problems.

Model We utilize an encoder-decoder-like architecture,
embedding each pixel uk ∈ [0, 1] into a high-dimensional
vector ũk ∈ Rdũ through a linear-affine transformation.
These vectors are sequentially fed into a neural ODE, which
are used to compute the time derivative of the latent state
zk ∈ Rdz , expressed as ż = f(z, ũ), where f is a neural
network. Through numerical integration, the latent state is
updated for each new pixel. After processing all pixels, the
sequence’s final state is input into a two-layer feedforward
network to predict the class probabilities ŷN = h(zN ),
where N is the number of pixels.

Training and testing We incorporate principles from
early-exit networks (Teerapittayanon et al., 2016) to enhance
feature propagation during the encoding stage by training
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Figure 6: Test accuracy over training epochs on sequential
MNIST and CIFAR-10. Solid lines represent the mean test
accuracy, and the shaded regions illustrate the approximate
99% confidence interval around the mean.

the model to predict the correct class at all intermediate
steps. The loss function is formulated as

LCE =

N∑
k=1

`CE
(
ŷk,y

)
·wk, (16)

where `CE is the standard Cross-Entropy (CE) criterion, and
wk is an exponentially increasing term that assigns more
importance to later predictions. During testing, the model
output is taken as the final prediction ŷN in the sequence.

Results For each dataset, 10 model instances for each ini-
tializing technique were trained. The resulting accuracy is
summarized in Table 1, reporting the mean and standard
deviation. Here, pMNIST refers to the permuted MNIST
variant (Goodfellow et al., 2013). It is clear from the results
that using the proposed initializing technique provides posi-
tive improvements in test accuracy. Additionally, employing
SII shows clear enhancement in training efficiency, achiev-
ing convergence at greater speed. This effect is depicted
in Figure 6, where the test acccuracy curves are illustrated
across the training epochs.

Table 1: Pixel-Level Classification Accuracy (mean ± std.)

sMNIST spMNIST sCIFAR

Default 97.9± 0.20 % 90.4± 0.41 % 67.6± 0.15 %
SII 99.0± 0.09 % 94.4± 0.26 % 73.3± 0.32 %

6.2. Latent Dynamics

This evaluation centers on benchmarks introduced in (Botev
et al., 2021). These benchmarks encompass three core tasks:
(1) embed a sequence of images (x0, . . . ,xt) to a lower-
dimensional abstract state zt, (2) simulating the system in
the latent space using a continuous dynamic model, and
(3) mapping the predicted sequence (zt+1, . . . ,zt+N ) back
into the image domain (xt+1, . . . ,xt+N ).

Model While our approach is largely inspired by the pro-
posal in (Toth et al., 2020), the model structure used is based
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on the U-Net architecture (Ronneberger et al., 2015). Given
a sequence of images [x0, . . . ,xt] ∈ Rt×3×32×32, the first
step is to transpose the channel and temporal dimension.
By treating the temporal dimension as an additional feature
alongside the image height and width, 3D convolution and
pooling operations are utilized for input embedding. The
encoder (contracting path), compresses the image sequence
into the abstract state zt ∈ Rdz×4×4 while simultaneously
increasing the channel dimension (dz � 3). After forward
integration of the initial abstract state, the decoder (expan-
sive path) reconstructs the predicted states into a sequence
of images [x̂t+1, . . . , x̂t+N ] ∈ RN×3×32×32.

Training and testing For this study, a simple summed
Mean-Squared Error (MSE) loss is used for training

LMSE =
N∑
k=1

(
x̂t+k − xt+k

)2
(17)

where x̂ is the prediction and x is the ground truth image.
During training, we set N = 60 and t = 10.

During testing, the prediction horizon is increased in order
to assess the long-term prediction and extrapolation capabil-
ities of the respective models. For a more fair comparison
across datasets, performance is reported using the normal-
ized MSE (Zhong et al., 2021):

MSEn =
1

N

N∑
k=1

(
x̂t+k − xt+k

)2
x2
t+k

(18)

Results Investigations are conducted on four out of the
17 datasets in (Botev et al., 2021): the Spring-mass system
(Mass Spring), the Double Pendulum, Molecular Dynam-
ics (16 particles), and the 3D Room (consisting of Mu-
JoCo (Todorov et al., 2012) scenes). Ten model instances
were trained for each dataset under each initialization tech-
nique. The resulting normalized MSE is summarized in
Table 2, illustrating clear improvements across all datasets
when employing SII. Notably, the experiments revealed that
the benefits of SII became increasingly evident as the predic-
tion horizon was extended, a trend that can be hypothesized
to stem from its stability properties.

Table 2: Latent Dynamics MSEn (mean ± std.)

Default SII

Mass Spring 0.102± 0.015 0.066± 0.008
Double Pend. 0.084± 0.017 0.061± 0.002
Molecular Dyn. 0.151± 0.036 0.106± 0.011
3D Room 0.588± 0.102 0.176± 0.055

0 50 100

Epoch

0.0

0.1

0.2

T
e
st

lo
ss

Combustion Engine

0 50 100

Epoch

0.0

0.6

1.2

Human Activity

SII

Default

0 50 100

Epoch

0.0

0.6

1.2

Air Quality

Figure 7: Test loss over the total number of training epochs
on the time-series forecasting datasets. Solid lines repre-
sent the mean test loss and the shaded regions illustrate the
approximate 99% confidence interval around the mean.

6.3. Multivariate Time-Series Forecasting

This study aims to develop a model capable of simulating
the dynamics of an unknown system. The model is tasked
with forecasting specific sensor reference values based on
signals received from other components within the system:

ż = fγ(z,u) (19a)
ŷ = hθ(z,u) (19b)

where ŷ ∈ Rdy is the measurement prediction, and u ∈ Rdu
is a vector of input measurement signals. Importantly, the
system is partly described by a state-transition function
(19a), with unknown states and dynamics. In order to
compute predictions according to (19b), the latent states
z ∈ Rdz must be solved for, which requires that z0 is known.
Inspired by Variational Autoencoders (VAEs) (Kingma &
Welling, 2014; Rezende et al., 2014), we employ an encoder
network gφ that outputs the variational posterior over the
initial state z0 ∼ qφ(z0|u0) and parametrize it as a diagonal
Gaussian with learnable parameters.

The study utilizes three distinct datasets. The first dataset
features standard signals (commonly found in commercial
vehicles) from an internal combustion engine, recorded over
multiple driving cycles (Jung, 2022). The second dataset, re-
ferred to as the Human Activity dataset (Vidulin et al., 2010),
features data from five individuals, each wearing four local-
ization tags (left ankle, right ankle, belt, chest). The third
dataset, referenced as the Air Quality dataset (Vito, 2016)
encompasses a set of air quality measurements from an ur-
ban monitoring station in Italy. It provides measurements
of various air pollutants and particulate matter, along with
environmental factors such as temperature and humidity.

Training and testing Training targets the optimization of
the sequential Evidence Lower Bound (ELBO):

LELBO = Eqφ(z0|u0)

[∑N
k=1 log pθ(yk|zk,uk)

]
−DKL

(
qφ(z0|u0) || p(z0)

)
,

(20)

where y is the ground truth measurement and p(z0) =
N (0, I) is the prior over the initial latent states. The omis-
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sion of 1
N in front of the reconstruction term is done inten-

tionally to force the model to focus more on the prediction
error, something that was found to improve validation per-
formance. Test performance is reported using MSE.

Results A total of 3×10 different models per initialization
method were trained, consisting of 3 random data splits (to
mitigate some selection bias (Cawley & Talbot, 2010)) with
10 different model configurations each. Test performance
is presented in Table 3. Using SII results in a significant
improvement in test performance compared to the default
initialization. This enhancement is further supported by the
faster convergence rate, as depicted in Figure 7.

Table 3: Multivariate Time-Series MSE (mean ± std.)

Combustion Engine Human Activity Air Quality

Default 0.04± 0.019 0.29± 0.006 0.57± 0.103
SII 0.01± 0.005 0.11± 0.003 0.22± 0.020

7. Scope and limitations
Learnable model While the proposed technique is spe-
cific to a single class of feedforward NNs, the method could
potentially be extended to any model class with linear op-
erations, e.g., convolutional neural networks. Furthermore,
the hidden dimension of each layer must be equal to or
larger than the number of dynamic states to preserve the
eigenvalues.

8. Conclusions
This paper analyses how the stability properties of the sys-
tem and stability regions of the chosen numerical solver
affect the training and prediction performance of neural
ODEs. Further, it is illustrated how standard techniques for
the initialization of the network, without considering the
stability properties of the system and solver, may lead to
slow training and suboptimal performance. Based on this, a
general stability-informed initialization (SII) method is de-
veloped that adapts to the stability region of a chosen solver.
The effectiveness of the approach is demonstrated in various
machine-learning tasks, including successful applications
to real-world measurement data. In all cases, increased effi-
ciency of training, less susceptibility to random fluctuations,
and improved model performance are demonstrated.
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