
Fast Benchmarking of Asynchronous Multi-Fidelity
Optimization on Zero-Cost Benchmarks

Shuhei Watanabe1,∗ Neeratyoy Mallik2 Edward Bergman2 Frank Hutter2

†shuheiwatanabe@preferred.jp, {mallik,bergmane,fh}@cs.uni-freiburg.de
1
Preferred Networks Inc., Japan

2
University of Freiburg, Department of Computer Science, Germany

∗
This work was done when the author was at the University of Freiburg.

Abstract While deep learning has celebrated many successes, its results often hinge on the meticulous

selection of hyperparameters (HPs). However, the time-consuming nature of deep learning

training makes HP optimization (HPO) a costly endeavor, slowing down the development of

e�cient HPO tools. While zero-cost benchmarks, which provide performance and runtime

without actual training, o�er a solution for non-parallel setups, they fall short in parallel

setups as each worker must communicate its queried runtime to return its evaluation in

the exact order. This work addresses this challenge by introducing a user-friendly Python

package that facilitates e�cient parallel HPO with zero-cost benchmarks. Our approach

calculates the exact return order based on the information stored in �le system, eliminating

the need for long waiting times and enabling much faster HPO evaluations. We �rst verify

the correctness of our approach through extensive testing and the experiments with 6

popular HPO libraries show its applicability to diverse libraries and its ability to achieve

over 1000x speedup compared to a traditional approach. Our package can be installed via

pip install mfhpo-simulator.

1 Introduction

Hyperparameter (HP) optimization of deep learning (DL) is crucial for strong performance (Zhang

et al., 2021; Sukthanker et al., 2022; Wagner et al., 2022) and it surged the research on HP op-

timization (HPO) of DL. However, due to the heavy computational nature of DL, HPO is often

prohibitively expensive and both energy and time costs are not negligible. This is the driving force

behind the emergence of zero-cost benchmarks such as tabular and surrogate benchmarks, which

enable yielding the (predictive) performance of a speci�c HP con�guration in a small amount of

time (Eggensperger et al., 2015, 2021; Arango et al., 2021; P�sterer et al., 2022; Bansal et al., 2022).

Although these benchmarks e�ectively reduce the energy usage and the runtime of experi-

ments in many cases, experiments considering runtimes between parallel workers may not be

easily bene�ted as seen in Figure 2b. For example, multi-�delity optimization (MFO) (Kandasamy

et al., 2017) has been actively studied recently due to its computational e�ciency (Jamieson and

Talwalkar, 2016; Li et al., 2017; Falkner et al., 2018; Awad et al., 2021). To further leverage e�ciency,

many of these MFO algorithms are designed to maintain their performance under multi-worker

asynchronous runs (Li et al., 2020; Falkner et al., 2018; Awad et al., 2021). However, to preserve

the return order of each parallel run, a naïve approach involves making each worker wait for the

actual DL training to run (see Figure 1 (Left)). This time is typically returned as cost of a query by

zero-cost benchmarks, leading to signi�cant time and energy waste, as each worker must wait for

a potentially long duration.

To address this problem, we introduce algorithms to not wait for large time durations and yet

return the correct order of evaluations for each worker via �le system synchronization. This is

provided as an open-sourced easy-to-use Python wrapper (see Figure 1 (Right) for the simplest

AutoML 2024 © 2024 the authors, released under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Figure 1: The simplest codeblock example of how our wrapper works. Left: a codeblock example

without our wrapper (naïve simulation). We let each worker call sleep for the time speci�ed

by the queried result. This implementation is commonly used to guarantee correctness, as

research often requires us to run optimizers from other researchers. Right: a codeblock

example with our wrapper (multi-core simulation). Users only need to wrap the objective

function with our module and remove the line for sleeping. In the end, both codeblocks yield

identical results.

codeblock) for existing benchmarking code. Although our wrapper should be applicable to an

arbitrary HPO library and yield the correct results universally, it is impossible to perfectly realize

it due to di�erent overheads by di�erent optimizers and di�erent multi-core processing methods

such as multiprocessing and server-based synchronization. For this reason, we limit our application

scope to HPO methods for zero-cost benchmarks with almost no benchmark query overheads.

Furthermore, we provide an option to simulate asynchronous optimization over multiple cores

only with a single core by making use of the ask-and-tell interface
1
.

In our experiments, we �rst empirically verify our implementation is correct using several edge

cases. Then we use various open source software (OSS) HPO libraries such as SMAC3 (Lindauer

et al., 2022) and Optuna (Akiba et al., 2019) on zero-cost benchmarks and we compare the changes

in the performance based on the number of parallel workers. The experiments demonstrated that

our wrapper (see Figure 1 (Right)) �nishes all the experiments 1.3 × 103 times faster than the naïve

simulation (see Figure 1 (Left)). The implementation for the experiments is also publicly available
2
.

2 Background
In this section, we de�ne our problem setup. Throughout the paper, we assume minimization

problems of an objective function
3 5 (x) : X → R de�ned on the search space X B X1 × X2 ×

· · · ×X� where X3 ⊆ R is the domain of the 3-th HP. Furthermore, we de�ne the (predictive) actual
runtime function g (x) : X → R+ of the objective function given an HP con�guration x . Although

5 (x) and g (x) could involve randomness, we only describe the deterministic version for the

notational simplicity. In this paper, we use x (=) for the =-th sample and x= for the =-th observation

and we would like to note that they are di�erent notations. In asynchronous optimization, the

sampling order is not necessarily the observation order, as certain evaluations can take longer. For

example, if we have two workers and the runtime for the �rst two samples are g (x (1)) = 200 and

g (x (2)) = 100, 5 (x (2)) will be observed �rst, yielding x1 = x (2) and x2 = x (1) .

2.1 Asynchronous Optimization on Zero-Cost Benchmarks

Assume we have a zero-cost benchmark that we can query 5 and g in a negligible amount of time, the

(# +1)-th HP con�guration x#+1 is sampled from a policy c (x |D#) where D# B {(x=, 5=)}#==1 is a

set of observations, and we have a set of parallel workers {,? }%?=1 where each worker,? : X → R2

is a wrapper of 5 (x) and g (x). Let a mapping 8 (=) : Z+ → [%] be an index speci�er of which worker

processed the =-th sample and I (#)? B {= ∈ [#] B {1, 2, . . . , # } | 8 (=) = ?} be a set of the indices

1https://optuna.readthedocs.io/en/stable/tutorial/20_recipes/009_ask_and_tell.html
2https://github.com/nabenabe0928/mfhpo-simulator-experiments
3
As mentioned in Appendix B, we can also simulate with multi-objective optimization and constrained optimization.

2

https://optuna.readthedocs.io/en/stable/tutorial/20_recipes/009_ask_and_tell.html
https://github.com/nabenabe0928/mfhpo-simulator-experiments

of samples the ?-th worker processed. When we de�ne the sampling overhead for the =-th sample

as C (=) , the (simulated) runtime of the ?-th worker is computed as follows:

)
(#)
? B

∑
=∈I (#)?

(g (=) + C (=)) .
(1)

Note that g (=) includes the benchmark query overhead C1 , but we consider it zero, i.e. C1 = 0. In

turn, the (# + 1)-th sample will be processed by the worker that will be free �rst, and thus the

index of the worker for the (# + 1)-th sample is speci�ed by argmin?∈[%])
(#)
? . On top of this, each

worker needs to free its evaluation when)
(#)
? ≤ min?′∈[%])

(#)
?′ + Cnow satis�es where Cnow is the

sampling elapsed time of the incoming sample x (#+1) .
The problems of this setting are that (1) the policy c is conditioned on D# , which is why the

order of the observations must be preserved, and (2) each worker must wait for the other workers

to match the order to be realistic. While an obvious approach is to let each worker wait for the

queried runtime g (=) as in Figure 1 (Left), it is a waste of energy and time. To address this problem,

we need a wrapper as in Figure 1 (Right).

2.2 Related Work

Although there have been many HPO benchmarks invented for MFO such as

HPOBench (Eggensperger et al., 2021), NASLib (Mehta et al., 2022), and JAHS-Bench-201 (Bansal

et al., 2022), none of them provides a module to allow researchers to simulate runtime internally.

We defer the survey by Li and Li (2024) for the details of MFO. Other than HPO benchmarks, many

HPO frameworks handling MFO have also been developed so far such as Optuna (Akiba et al.,

2019)), SMAC3 (Lindauer et al., 2022), Dragon�y (Kandasamy et al., 2020), and RayTune (Liaw

et al., 2018). However, no framework above considers the simulation of runtime. Although

HyperTune (Li et al., 2022) and SyneTune (Salinas et al., 2022) are internally simulating the runtime,

we cannot simulate optimizers of interest if the optimizers are not introduced in the packages. This

restricts researchers in simulating new methods, hindering experimentation and fair comparison.

Furthermore, their simulation backend assumes that optimizers take the ask-and-tell interface and

it requires the reimplementation of optimizers of interest in their codebase. Since reimplementation

is time-consuming and does not guarantee its correctness without tests, it is helpful to have

an easy-to-use Python wrapper around existing codes. Note that this work extends previous

work (Watanabe, 2023a), by adding the handling of optimizers with non-negligible overhead and

the empirical veri�cation of the simulation algorithm.

3 Automatic Waiting Time Scheduling Wrapper
As an objective function may take a random seed and �delity parameters in practice, we denote

a set of the arguments for the =-th query as a (=) . In this section, a job means to allocate the

=-th queried HP con�guration x (=) to a free worker and obtain its result A (=) B (5 (=) , g (=)) =
(5 (x (=) |a (=)), g (x (=) |a (=))). Besides that, we denote the =-th chronologically ordered result as A= .

Our wrapper outlined in Algorithm 1 is required to satisfy the following conditions:

• The 8-th result A8 comes earlier than the 9-th result A 9 for all 8 < 9 ,

• The wrapper recognizes each worker and allocates a job to the exact worker even when using

multiprocessing (e.g. joblib and dask) and multithreading (e.g. concurrent.futures),

• The evaluation of each job can be resumed in MFO, and

• Each worker needs to be aware of its own sampling overheads.

Note that an example of the restart of evaluation could be when we evaluate DL model instantiated

with HP x for 20 epochs and if we want to then evaluate the same HP con�guration x for 100

3

Our WrapperOptimizer

x(n), p

f (n)

Adapt to
API

Adapt to
Optimizer

f (n), (n)

Tp Tp + (n)

Objective Function

1 p P

Workers

f ()

T1

f (n)

Tp

f ()

TP

Core Part
Wait till

Tp = min Ti

(a) Wrapper Work�ow

0 200 400 600 800 1000

Worker 1

Worker 2

Worker 3

1 2 3 4 5 6 7 8Results

0.0 0.2 0.4 0.6 0.8 1.0

Compress the waiting time
while maintaining the order

Cumulative Time [s]

(b) Compression of Simulated Runtime

Figure 2: The conceptual visualizations of our wrapper. (a) The work�ow of our wrapper. The gray

parts are provided by users and our package is responsible for the light blue part. The blue

circles with the white cross must be modi�ed by users via inheritance to match the signature

used in our wrapper. The ?-th worker receives the =-th queried con�guration x (=) and

stores its result 5 (=) , g (=) in the �le system. Our wrapper sorts out the right timing to return

the =-th queried result 5 (=) to the optimizer based on the simulated runtime)? . (b) The

compression of simulated runtime. Each circle on each line represents the timing when

each result was delivered from each worker. Left: an example when we naïvely wait for the

(actual) runtime g (x) of each query as reported by the benchmark. Right: an example when

we use our wrapper to shrink the experiment runtime without losing the exact return order.

epochs, we start the training of this model from the 21st epoch instead of from scratch using the

intermediate state. Line 4 checks this condition and Line 5 ensures the intermediate state to restart

exists before the evaluation. To achieve these features, we chose to share the required information

via the �le system and create the following JSON �les that map:

• from a thread or process ID of each worker to a worker index ? ∈ [%],
• from a worker index ? ∈ [%] to its timestamp immediately after the worker is freed,

• from a worker index ? ∈ [%] to its (simulated) cumulative runtime)
(#)
? , and

• from the =-th con�guration x (=) to a list of intermediate states B (=) B (g (=) ,) (=)
8 (=)
, a (=)).

As our wrapper relies on �le system, we need to make sure that multiple workers will not edit the

same �le at the same time. Furthermore, usecases of our wrapper are not really limited to multi-

processing or multithreading that spawns child workers but could be �le-based synchronization.

Hence, we use fcntl to safely acquire �le locks.

We additionally provide an approach that also extends to the ask-and-tell interface by providing

a Single-Core Simulator (SCS) for single-core scenarios (details omitted for brevity). While the

Multi-Core Simulator (MCS) wraps optimizers running with % cores or % workers, SCS runs only on

a single core and simulates a %-worker run. Unlike previous work (Watanabe, 2023a), Algorithm 1

handles expensive optimizers by checking individual workers’ wait times during the latest sampling

measured by Cnow in Line 12. However, this check complicates race conditions, making it hard to

guarantee the correctness of implementation. For this reason, empirical veri�cation through edge

cases is provided in the next section.

4 Empirical Algorithm Veri�cation on Test Cases

In this section, we verify our algorithm using some edge cases. Throughout this section, we use

the number of workers % = 4. We also note that our wrapper behavior depends only on returned

runtime at each iteration in a non-continual setup and it is su�cient to consider only runtime g (=)

and sampling time C (=) at each iteration. Therefore, we use a so-called �xed-con�guration sampler,

4

Algorithm 1 Automatic Waiting Time Scheduling Wrapper (see Figure 2a as well)

1: function Worker(x (#+1) , a (#+1))
2: Get intermediate state B (#+1) B (g,) , a) = S.get(x (#+1) , (0, 0, a (#+1)))
3: if B (#+1) is invalid for (x (#+1) , a (#+1)) or) >)

(#)
? + C (#+1) then

4: ⊲ Cond. 1: The new �delity input in a (#+1) must be higher than that in a for restart

5: ⊲ Cond. 2: The registration of B (#+1) to S must happen before the sample of x (#+1)

6: B (#+1) ← (0, 0, a (#+1))
7: Query the result: (5 (#+1) , g (#+1))
8: Calibrate runtime for restart: g (#+1) ← g (#+1) − g
9:)now ← max()now,) (#)?) + C (#+1)

10:)
(#+1)
? ←)now + g (#+1) ,) (#+1)?′ ←)

(#)
?′ (? ′ ≠ ?)

11: ⊲ : is the number of results from the other workers that were appended during the wait

12: ⊲ Cnow is the sampling elapsed time of the incoming (# + : + 2)-th sample x (#+:+2)

13: Wait till)
(#+1)
? = min?′∈[%])

(#+:+1)
?′ or)

(#+1)
? ≤ min?′∈[%])

(#+:+1)
?′ + Cnow satis�es

14: Record the intermediate state S [x (#+1)] = (g (#+1) ,) (#+1)? , a (#+1))
15: return 5 (#+1)

c (an optimizer policy), get_n_results (a function that returns the number of recognized

results by our wrapper. The results include the ones that have not been reported to the

optimizer yet.).

D← ∅,) (0)? ← 0,)now ← 0,S ← dict()
16: while the budget is left do
17: ⊲ This codeblock is run by % di�erent workers in parallel

18: # ← get_n_results()
19: Get x (#+1) ∼ c (·|D) and a (#+1) with C (#+1) seconds

20: 5 (#+1) ← worker(x (#+1) , a (#+1))
21: D← D ∪ {(x (#+1) , 5 (#+1))}

which de�nes a sequence of HP con�gurations and their corresponding runtimes at the beginning

and samples from the �xed sequence iteratively. More formally, assume we would like to evaluate

#all HP con�gurations, then the sampler �rst generates {g (=) }#all

==1
and one of the free workers

receives an HP con�guration at the =-th sampling that leads to the runtime of g (=) . Furthermore,

we use two di�erent optimizers to simulate the sampling cost:

1. Expensive Optimizer: that sleeps for 2 (|D | + 1) seconds as a sampling overhead before giving

g (=) to a worker where |D | is the size of a set of observations and 2 ∈ R+ is a proportionality

constant, and

2. Cheap Optimizer: that gives g (=) to a worker immediately without a sampling overhead.

In principle, the results of each test case are uniquely determined by a pair of an optimizer and a

sequence of runtimes. Hence, we de�ne such pairs at the beginning of each section.

4.1 Quantitative Veri�cation on Random Test Cases

We test our algorithm quantitatively using some test cases. The test cases {g (=) }#all

==1
where#all = 100

for this veri�cation were generated from the following distributions: 1. Uniform)
1
∼ U (0, 2), 2.

Exponential)
1
∼ Exp(1), 3. Pareto)+1

1
∼ P (U = 1), and 4. LogNormal ln

√
4)

1
∼ N (0, 1), where)

is the probability variable of the runtime g and we used 1 = 5. Each distribution uses the default

5

0

50

Uniform Exponential

0 20 40 60 80
0

50

Pareto

With Our Wrapper Without Our Wrapper
0 20 40 60 80

Log Normal

(a) Cheap optimizer

0

50

Uniform Exponential

0 20 40 60 80
0

50

Pareto

With Our Wrapper Without Our Wrapper
0 20 40 60 80

Log Normal

(b) Expensive optimizer with 2 = 5 × 10−2

Figure 3: The return order veri�cation results. When we use our wrapper, the red dots are obtained.

If all the dots are aligned on ~ = G , it implies that the return order in a simulation with

our wrapper and that in its naïve simulation perfectly match. As expected, the red dots

completely overlap with~ = G . See the text in “Checking Return Orders” for the plot details.

setups of numpy.random and the constant number 1 calibrates the expectation of each distribution

except for the Pareto distribution to be 5. Furthermore, we used the cheap optimizer and the

expensive optimizer with 2 = 5 × 10−2. As #all = 100, the worst sampling duration for an expensive

optimizer will be 5 seconds. As we can expect longer waiting times for the expensive optimizer, it

is more challenging to yield the precise return order and the precise simulated runtime. Hence,

these test cases empirically verify our implementation if our wrapper passes every test case.

Checking Return Orders. We performed the following procedures to check whether the obtained

return orders are correct: (1) run optimizations with the naïve simulation (NS), i.e. Figure 1 (Left)
and without our wrapper, i.e. Figure 1 (Right), (2) de�ne the trajectories for each optimization

{gNS= }
#
all

==1
and {g=}#all

==1
, (3) sort {g=}#all

==1
so that {g8= }

#
all

==1
= {gNS= }

#
all

==1
holds, and (4) plot {(=, 8=)}#all

==1

(see Figure 3). If the simulated return order is correct, the plot {(=, 8=)}#all

==1
will look like ~ = G , i.e.

(=, =) for all = ∈ [#all], and we expect to have such plots for all the experiments. For comparison,

we also collect {g=}#all

==1
without our wrapper, i.e. Figure 1 (Left) without time.sleep in Line 4. As

seen in Figure 3, our wrapper successfully replicates the results obtained by the naïve simulation.

The test cases by the Pareto distribution are edge cases because it has a heavy tail and it sometimes

generates con�gurations with very long runtime, leading to blue dots located slightly above the red

dots. Although this completely confuses the implementation without our wrapper, our wrapper

appropriately handles the edge cases.

Checking Consistency in Simulated Runtimes. We check whether the simulated runtimes at each

iteration were correctly calculated using the same setups. Figure 4 presents the simulated runtimes

for each setup. As can be seen in the �gures, our wrapper got a relative error of 1.0×10−5 ∼ 1.0×10−3.
Since the expectation of runtime is 5 seconds except for the Pareto distribution, the error was

approximately 0.05 ∼ 5 milliseconds and this value comes from the query overhead in our wrapper

before each sampling. Although the error is su�ciently small, the relative error becomes much

smaller when we use more expensive benchmarks that will give a large runtime g (=) .

4.2 Performance Veri�cation on Actual Runtime Reduction

In the previous sections, we veri�ed the correctness of our algorithms and empirically validated our

algorithms. In this section, we demonstrate the runtime reduction e�ect achieved by our wrapper.

To test the runtime reduction, we optimized the multi-�delity 6D Hartmann function
4

(Kandasamy

4
We set the runtime function so that the maximum runtime for one evaluation becomes 1 hour. More precisely, we

used 10 × A (z) instead of A (z) in Appendix A.2.

6

100

101

102

Uniform Exponential

20 40 60 80 100100

101

102

Pareto

Naïve Our Wrapper Abs. Difference ×103

20 40 60 80 100

Log Normal

of Evaluations

Si
m

ul
at

ed
 R

un
tim

e
m

in
T(N

)
p

(a) Cheap optimizer

100

101

102

Uniform Exponential

20 40 60 80 100100

101

102

Pareto

Naïve Our Wrapper Abs. Difference ×103

20 40 60 80 100

Log Normal

of Evaluations

Si
m

ul
at

ed
 R

un
tim

e
m

in
T(N

)
p

(b) Expensive optimizer with 2 = 5 × 10−3

Figure 4: The veri�cation of the simulated runtime. The red dotted lines show the simulated runtime

of our wrapper and the black solid lines show the actual runtime of the naïve simulation. The

blue dotted lines show the absolute di�erence between the simulated runtime of our wrapper

and the actual runtime of the naïve simulation multiplied by 1000 to �t in the same scale

as the other lines. The red dotted lines and the black solid lines are expected to completely

overlap and the blue lines should exhibit zero ideally. That is, the closer the blue lines to the

G-axis, the less relative error we have.

et al., 2017) using random search with % = 4 workers over 10 di�erent random seeds. In the

noisy case, we added a random noise to the objective function. We used both MCS and SCS in

this experiment and the naïve simulation. Figure 5 (Left) shows that both MCS and SCS perfectly

reproduced the results by the naïve simulation while they �nished the experiments 6.7 × 103 times

and 1.3 × 10
5

times faster, respectively. Note that it is hard to see, but the rightmost curve of

Figure 5 (Left) has the three lines: (1) Simulated Runtime (MCS), (2) Simulated Runtime (SCS), and

(3) Actual Runtime (Naïve), and they completely overlap with each other. SCS is much quicker

than MCS because it does not require communication between each worker via the �le system.

Although MCS could reproduce the results by the naïve simulation even for the noisy case, SCS

failed to reproduce the results because the naïve simulation relies on multi-core optimization, while

SCS does not use multi-core optimization. This di�erence a�ects the random seed e�ect on the

optimizations. However, since SCS still reproduces the results for the deterministic case, it veri�es

our implementation of SCS. From the results, we can conclude that while SCS is generally quicker

because it does not require communication via the �le system, it may fail to reproduce the random

seed e�ect. This is because SCS wraps an optimizer by relying on the ask-and-tell interface instead

of using the multi-core implementation provided by the optimizer.

5 Experiments on Zero-Cost Benchmarks Using Various Open-Sourced HPO Tools

The aim of this section is to show that: (1) our wrapper is applicable to diverse HPO libraries

and HPO benchmarks, and that (2) ranking of algorithms varies under benchmarking of parallel

setups, making such evaluations necessary. We use random search and TPE (Bergstra et al., 2011;

Watanabe, 2023b) from Optuna (Akiba et al., 2019), random forest-based Bayesian optimization (via

the MFFacade) from SMAC3 (Lindauer et al., 2022), DEHB (Awad et al., 2021), HyperBand (Li et al.,

2017) and BOHB (Falkner et al., 2018) from HpBandSter, NePS
5
, and HEBO (Cowen-Rivers et al.,

2022) as optimizers. For more details, see Appendix B. Optuna uses multithreading, SMAC3 and

DEHB use dask, HpBandSter uses �le server-based synchronization, NePS uses �le system-based

synchronization, and HEBO uses the ask-and-tell interface. In the experiments, we used these

optimizers with our wrapper to optimize the MLP benchmark in HPOBench (Eggensperger et al.,

2021), HPOLib (Klein and Hutter, 2019), JAHS-Bench-201 (Bansal et al., 2022), LCBench (Zimmer

5
It was under development when we used it and the package is available at https://github.com/automl/neps/.

7

https://github.com/automl/neps/

10 2 100 102

2.5

2.0

1.5

1.0

0.5

0.0
Deterministic Objective

Actual Runtime (MCS)
Simulated Runtime (MCS)

Actual Runtime (SCS)
Simulated Runtime (SCS)

Actual Runtime (Naïve)

6721x
134435x

10 2 100 102

Noisy Objective

6721x
134437x

Wall-Clock Time [s]

C
um

ul
at

iv
e

M
in

im
um

 F
un

ct
io

n
Va

lu
e

Figure 5: The veri�cation of actual runtime reduction. The G-axis shows the wall-clock time and the ~-

axis shows the cumulative minimum objective value during optimizations. Naïve simulation

(black dotted line) serves the correct result and the simulated results (red/blue dotted lines)

for each algorithm should ideally match the result of the naïve simulation. Actual runtime

(red/blue solid lines) shows the runtime reduction compared to the simulated results and it

is better if we get the �nal result as quickly as possible. Left: optimization of a deterministic

multi-�delity 6D Hartmann function. The simulated results of our wrapper for both MCS

and SCS coincide with the correct result while both of them showed signi�cant speedups.

Right: optimization of a noisy multi-�delity 6D Hartmann function. While the simulated

result for MCS coincides with the correct result, SCS did not yield the same result. MCS

could reproduce the result because MCS still uses the same parallel processing procedure

and the only change is to wrap the objective function.

et al., 2021) in YAHPOBench (P�sterer et al., 2022), and two multi-�delity benchmark functions

proposed by Kandasamy et al. (2017). See Appendix A for more details. We used the number of

parallel workers % ∈ {1, 2, 4, 8} over 30 di�erent random seeds for each and [= 3 for HyperBand-

based methods, i.e. the default value of a control parameter of HyperBand that determines the

proportion of HP con�gurations discarded in each round of successive halving (Jamieson and

Talwalkar, 2016). The budget for each optimization was �xed to 200 full evaluations and this leads

to 450 function calls for HyperBand-based methods with [= 3. Note that random search and

HyperBand used 10 times more budget, i.e. 2000 full evaluations, compared to the others. All the

experiments were performed on bwForCluster NEMO, which has 10 cores of Intel(R) Xeon(R) CPU

E5-2630 v4 on each computational node, and we used 15GB RAM per worker.

According to Figure 6, while some optimizer pairs such as BOHB and HEBO, and random search

and NePS show the same performance statistically over the four di�erent numbers of workers

% ∈ {1, 2, 4, 8}, DEHB exhibited di�erent performance signi�cance depending on the number of

workers. For example, DEHB belongs to the top group with BOHB, TPE, and HEBO for % = 1, but it

belongs to the bottom group with random search and NePS for % = 8. As shown by the red bars, we

see statistically signi�cant performance di�erences between the top groups and the bottom groups.

Therefore, this directly indicates that we should study the e�ect caused by the number of workers %

in research. Furthermore, applying our wrapper to the listed optimizers demonstrably accelerated

the entire experiment by a factor of 1.3 × 103 times faster compared to the naïve simulation.

6 Broader Impact & Limitations
The primary motivation for this paper is to reduce the runtime of simulations for MFO. As shown

in Table 1, our experiments would have taken 5.6 × 10
10

seconds ' 1.8 × 10
3

CPU years with

8

Table 1: The total actual and simulated runtimes over all the experiments. Act.: total actual runtime

and Sim.: total simulated runtime. × Fast: speedup factor of simulation.

% = 1 % = 2 % = 4 % = 8

Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast Act. Sim. × Fast

9.2e+06/ 3.0e+10/ 3.3e+03 1.1e+07/ 1.5e+10/ 1.5e+03 1.1e+07/ 7.7e+09/ 6.9e+02 1.2e+07/ 3.9e+09/ 3.2e+02

2 4 6

BOHB [2.90]
TPE [3.20]

DEHB [3.47]
HEBO [3.60]

 [7.27] Random(x10)
 [6.30] NePS-HB
 [5.53] HyperBand(x10)
 [3.73] SMAC

P = 1
2 4 6

BOHB [2.23]
HEBO [2.67]

TPE [3.03]
SMAC [3.63]

 [7.00] Random(x10)
 [6.37] NePS-HB
 [5.57] DEHB
 [5.50] HyperBand(x10)

P = 2

2 4 6

BOHB [2.07]
HEBO [3.13]
SMAC [3.33]

TPE [3.80]

 [7.03] Random(x10)
 [5.70] HyperBand(x10)
 [5.47] NePS-HB
 [5.47] DEHB

P = 4
2 4 6

HEBO [2.20]
BOHB [2.23]

TPE [3.90]
SMAC [4.17]

 [6.87] Random(x10)
 [5.80] DEHB
 [5.77] NePS-HB
 [5.07] HyperBand(x10)

P = 8

Figure 6: The critical di�erence diagrams with 1/24 of the runtime budget for random search. “[x.xx]”

shows the average rank of each optimizer after using 1/24 of the runtime budget for random

search. For example, “BOHB [2.90]” means that BOHB achieved the average rank of 2.90

among all the optimizers after running the speci�ed amount of budget. % indicates the

number of workers used and the red bars connect all the optimizers that show no signi�cant

performance di�erence. Note that we used all the results except for JAHS-Bench-201 and

LCBench due to the incompatibility between SMAC3, and JAHS-Bench-201 and LCBench.

the naïve simulation. As the TDP of Intel(R) Xeon(R) CPU E5-2630 v4 used in our experiments

consumes about 85W and about 350 g of CO2 is produced per 1kWh, the whole experiment would

have produced about 9.333 t of CO2 if we estimate a core of the CPU needs 2W in its idole state. It

means that our wrapper saved 9.326 t of CO2 production at least. Therefore, researchers can also

reduce the similar amount of CO2 for each experiment. The main limitation of our current wrapper

is the assumption that none of the workers will not die and any additional workers will not be

added after the initialization. Besides that, our package cannot be used on Windows OS because

fcntl is not supported on Windows.

7 Conclusions

In this paper, we presented a simulator for parallel HPO benchmarking runs that maintains the

exact order of the observations without waiting for actual runtimes. Our algorithm is available

as a Python package that can be plugged into existing code and hardware setups. Although some

existing packages internally support a similar mechanism, they are not applicable to multiprocessing

or multithreading setups and they cannot be immediately used for newly developed methods. Our

package supports such distributed computing setups and researchers can simply wrap their objective

functions by our wrapper and directly use their own optimizers. We demonstrated that our package

signi�cantly reduces the CO2 production that experiments using zero-cost benchmarks would

have caused. Our package and its basic usage description are available at https://github.com/
nabenabe0928/mfhpo-simulator.

9

https://github.com/nabenabe0928/mfhpo-simulator
https://github.com/nabenabe0928/mfhpo-simulator

Acknowledgments

We acknowledge funding by European Research Council (ERC) Consolidator Grant “Deep Learning

2.0” (grant no. 101045765). Views and opinions expressed are however those of the authors only

and do not necessarily re�ect those of the European Union or the ERC. Neither the European Union

nor the ERC can be held responsible for them. This research was partially supported by TAILOR, a

project funded by EU Horizon 2020 research and innovation programme under GA No 952215. We

also acknowledge support by the state of Baden-Württemberg through bwHPC and the German

Research Foundation (DFG) through grant no INST 39/963-1 FUGG.

References

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next-generation

hyperparameter optimization framework. In International Conference on Knowledge Discovery &
Data Mining.

Arango, S., Jomaa, H., Wistuba, M., and Grabocka, J. (2021). HPO-B: A large-scale reproducible

benchmark for black-box HPO based on OpenML. arXiv:2106.06257.

Awad, N., Mallik, N., and Hutter, F. (2021). DEHB: Evolutionary HyperBand for scalable, robust

and e�cient hyperparameter optimization. arXiv:2105.09821.

Bansal, A., Stoll, D., Janowski, M., Zela, A., and Hutter, F. (2022). JAHS-Bench-201: A foundation

for research on joint architecture and hyperparameter search. In Advances in Neural Information
Processing Systems Datasets and Benchmarks Track.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-parameter optimiza-

tion. Advances in Neural Information Processing Systems.

Cowen-Rivers, A., Lyu, W., Tutunov, R., Wang, Z., Grosnit, A., Gri�ths, R., Maraval, A., Jianye, H.,

Wang, J., Peters, J., et al. (2022). HEBO: Pushing the limits of sample-e�cient hyper-parameter

optimisation. Journal of Arti�cial Intelligence Research, 74.

Dong, X. and Yang, Y. (2020). NAS-Bench-201: Extending the scope of reproducible neural architec-

ture search. arXiv:2001.00326.

Eggensperger, K., Hutter, F., Hoos, H., and Leyton-Brown, K. (2015). E�cient benchmarking of

hyperparameter optimizers via surrogates. In AAAI Conference on Arti�cial Intelligence.

Eggensperger, K., Müller, P., Mallik, N., Feurer, M., Sass, R., Klein, A., Awad, N., Lindauer, M., and

Hutter, F. (2021). HPOBench: A collection of reproducible multi-�delity benchmark problems for

HPO. arXiv:2109.06716.

Falkner, S., Klein, A., and Hutter, F. (2018). BOHB: Robust and e�cient hyperparameter optimization

at scale. In International Conference on Machine Learning.

Jamieson, K. and Talwalkar, A. (2016). Non-stochastic best arm identi�cation and hyperparameter

optimization. In International Conference on Arti�cial Intelligence and Statistics.

Kandasamy, K., Dasarathy, G., Schneider, J., and Póczos, B. (2017). Multi-�delity Bayesian optimisa-

tion with continuous approximations. In International Conference on Machine Learning.

10

Kandasamy, K., Vysyaraju, K., Neiswanger, W., Paria, B., Collins, C., Schneider, J., Poczos, B., and

Xing, E. (2020). Tuning hyperparameters without grad students: Scalable and robust Bayesian

optimisation with Dragon�y. Journal of Machine Learning Research, 21.

Klein, A. and Hutter, F. (2019). Tabular benchmarks for joint architecture and hyperparameter

optimization. arXiv:1905.04970.

Li, K. and Li, F. (2024). Multi-�delity methods for optimization: A survey. arXiv:2402.09638.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2017). HyperBand: A novel

bandit-based approach to hyperparameter optimization. Journal of Machine Learning Research,

18.

Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E., Ben-Tzur, J., Hardt, M., Recht, B., and Talwalkar,

A. (2020). A system for massively parallel hyperparameter tuning. Machine Learning and Systems,
2.

Li, Y., Shen, Y., Jiang, H., Zhang, W., Li, J., Liu, J., Zhang, C., and Cui, B. (2022). Hyper-Tune: towards

e�cient hyper-parameter tuning at scale. arXiv:2201.06834.

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J., and Stoica, I. (2018). Tune: A research

platform for distributed model selection and training. arXiv:1807.05118.

Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C., Ruhkopf,

T., Sass, R., and Hutter, F. (2022). SMAC3: A versatile Bayesian optimization package for

hyperparameter optimization. Journal of Machine Learning Research, 23.

Mehta, Y., White, C., Zela, A., Krishnakumar, A., Zabergja, G., Moradian, S., Safari, M., Yu, K., and

Hutter, F. (2022). NAS-Bench-Suite: NAS evaluation is (now) surprisingly easy. arXiv:2201.13396.

Müller, S. and Hutter, F. (2021). TrivialAugment: Tuning-free yet state-of-the-art data augmentation.

In International Conference on Computer Vision.

Ozaki, Y., Tanigaki, Y., Watanabe, S., Nomura, M., and Onishi, M. (2022). Multiobjective tree-

structured Parzen estimator. Journal of Arti�cial Intelligence Research, 73.

Ozaki, Y., Tanigaki, Y., Watanabe, S., and Onishi, M. (2020). Multiobjective tree-structured Parzen

estimator for computationally expensive optimization problems. In Genetic and Evolutionary
Computation Conference.

P�sterer, F., Schneider, L., Moosbauer, J., Binder, M., and Bischl, B. (2022). YAHPO Gym – an e�cient

multi-objective multi-�delity benchmark for hyperparameter optimization. In International
Conference on Automated Machine Learning.

Salinas, D., Seeger, M., Klein, A., Perrone, V., Wistuba, M., and Archambeau, C. (2022). Syne Tune:

A library for large scale hyperparameter tuning and reproducible research. In International
Conference on Automated Machine Learning.

Sukthanker, R., Dooley, S., Dickerson, J., White, C., Hutter, F., and Goldblum, M. (2022). On the im-

portance of architectures and hyperparameters for fairness in face recognition. arXiv:2210.09943.

Wagner, D., Ferreira, F., Stoll, D., Schirrmeister, R., Müller, S., and Hutter, F. (2022). On the importance

of hyperparameters and data augmentation for self-supervised learning. arXiv:2207.07875.

Watanabe, S. (2023a). Python wrapper for simulating multi-�delity optimization on HPO bench-

marks without any wait. arXiv:2305.17595.

11

Watanabe, S. (2023b). Tree-structured Parzen estimator: Understanding its algorithm components

and their roles for better empirical performance. arXiv:2304.11127.

Watanabe, S. and Hutter, F. (2022). c-TPE: Generalizing tree-structured Parzen estimator

with inequality constraints for continuous and categorical hyperparameter optimization.

arXiv:2211.14411.

Watanabe, S. and Hutter, F. (2023). c-TPE: tree-structured Parzen estimator with inequality con-

straints for expensive hyperparameter optimization. In International Joint Conference on Arti�cial
Intelligence.

Zhang, B., Rajan, R., Pineda, L., Lambert, N., Biedenkapp, A., Chua, K., Hutter, F., and Calandra,

R. (2021). On the importance of hyperparameter optimization for model-based reinforcement

learning. In International Conference on Arti�cial Intelligence and Statistics.

Zimmer, L., Lindauer, M., and Hutter, F. (2021). Auto-PyTorch: Multi-�delity metalearning for

e�cient and robust AutoDL. Transactions on Pattern Analysis and Machine Intelligence.

12

Submission Checklist
1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately re�ect the paper’s

contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Please check Section 6.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] This is out of

scope for our paper.

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes]

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same bench-

marks, data (sub)sets, available resources)? [Yes] Please check the source code available at

https://github.com/nabenabe0928/mfhpo-simulator-experiments.

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes] Please check Section 5.

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes] We used 10 di�erent random

seeds for Section 4 and 30 di�erent 30 random seeds for Section 5 as described in the

corresponding sections.

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [Yes] We reported for the necessary parts.

(e) Did you report the statistical signi�cance of your results? [Yes] Please check Figure 6.

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] Please check

Section 5.

(g) Did you compare performance over time and describe how you selected the maximum

duration? [N/A] This is out of scope for our paper.

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] Please check Section 5.

(i) Did you run ablation studies to assess the impact of di�erent components of your approach?

[N/A] This is out of scope for our paper.

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the sup-

plemental material or as a url)? [Yes] Please check https://github.com/nabenabe0928/
mfhpo-simulator-experiments.

(b) Did you include a minimal example to replicate results on a small subset of the experiments or

on toy data? [Yes] Minimal examples are available at https://github.com/nabenabe0928/
mfhpo-simulator/tree/main/examples/minimal.

(c) Did you ensure su�cient code quality and documentation so that someone else can execute

and understand your code? [Yes]

13

https://2022.automl.cc/ethics-accessibility/
https://github.com/nabenabe0928/mfhpo-simulator-experiments
https://github.com/nabenabe0928/mfhpo-simulator-experiments
https://github.com/nabenabe0928/mfhpo-simulator-experiments
https://github.com/nabenabe0928/mfhpo-simulator/tree/main/examples/minimal
https://github.com/nabenabe0928/mfhpo-simulator/tree/main/examples/minimal

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [No] As the raw results is 10+GB, it is not publicly available.

(e) Did you include the code, additional data, and instructions needed to generate the �g-

ures and tables in your paper based on the raw results? [Yes] Once you get all the data,

the visualizations are possible using the scripts at https://github.com/nabenabe0928/
mfhpo-simulator-experiments/tree/main/validation.

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes]

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [Yes]

(c) Did you discuss whether the data you are using/curating contains personally identi�able

information or o�ensive content? [Yes]

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

The license of our package is Apache-2.0 license.

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [Yes] We mention that our package can be installed via pip
install mfhpo-simulator.

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A] This is out of scope for our paper.

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] This is out of scope for our paper.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A] This is out of scope for our paper.

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A] This is out of scope

for our paper.

(b) Did you include complete proofs of all theoretical results? [N/A] This is out of scope for

our paper.

14

https://github.com/nabenabe0928/mfhpo-simulator-experiments/tree/main/validation
https://github.com/nabenabe0928/mfhpo-simulator-experiments/tree/main/validation

A Benchmarks

We �rst note that since the Branin and the Hartmann functions must be minimized, our functions

have di�erent signs from the prior literature that aims to maximize objective functions and when

z = [I1, I2, . . . , I] ∈ R , our examples take z = [I, I, . . . , I] ∈ R . However, if users wish, users

can specify z as z = [I1, I2, . . . , I] from fidel_dim.

A.1 Branin Function

The Branin function is the following 2� function that has 3 global minimizers and no local mini-

mizer:

5 (G1, G2) = 0(G2 − 1G21 + 2G1 − A)2 + B (1 − C) cosG1 + B (2)

where x ∈ [−5, 10] × [0, 15], 0 = 1, 1 = 5.1/(4c2), 2 = 5/c , A = 6, B = 10, and C = 1/(8c). The

multi-�delity Branin function was invented by Kandasamy et al. (2020) and it replaces 1, 2, C with

the following 1z, 2z, Cz :

1z B 1 − X1 (1 − I1),
2z B 2 − X2 (1 − I2), and
Cz B C + XC (1 − I3),

(3)

where z ∈ [0, 1]3, X1 = 10
−2

, X2 = 10
−1

, and XC = 5 × 10
−3

. X · controls the rank correlation

between low- and high-�delities and higher X · yields less correlation. The runtime function for the

multi-�delity Branin function is computed as
6
:

g (z) B � (0.05 + 0.95I3/2
1
) (4)

where � ∈ R+ de�nes the maximum runtime to evaluate 5 .

A.2 Hartmann Function

The following Hartmann function has 4 local minimizers for the 3� case and 6 local minimizers for

the 6� case:

5 (x) B −
4∑
8=1

U8 exp

[
−

3∑
9=1

�8, 9 (G 9 − %8, 9)2
]

(5)

where " = [1.0, 1.2, 3.0, 3.2]>, x ∈ [0, 1]� , � for the 3� case is

� =


3 10 30

0.1 10 35

3 10 30

0.1 10 35

 , (6)

� for the 6� case is

� =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

 , (7)

% for the 3� case is

% = 10
−4 ×


3689 1170 2673

4699 4387 7470

1091 8732 5547

381 5743 8828

 , (8)

6
See the implementation of Kandasamy et al. (2020): branin_mf.py at https://github.com/dragonfly/dragonfly/.

15

https://github.com/dragonfly/dragonfly/

and % for the 6� case is

% = 10
−4 ×


1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381

 . (9)

The multi-�delity Hartmann function was invented by Kandasamy et al. (2020) and it replaces "
with the following "z :

"z B X (1 − z) (10)

where z ∈ [0, 1]4 and X = 0.1 is the factor that controls the rank correlation between low- and

high-�delities. Higher X yields less correlation. The runtime function of the multi-�delity Hartmann

function is computed as
7
:

g (z) = 1

10

+ 9

10

I1 + I3
2
+ I3I4
3

(11)

for the 3� case and

g (z) = 1

10

+ 9

10

I1 + I22 + I3 + I34
4

(12)

for the 6� case where � ∈ R+ de�nes the maximum runtime to evaluate 5 .

A.3 Zero-Cost Benchmarks

In this paper, we used the MLP benchmark in Table 6 of HPOBench (Eggensperger et al., 2021),

HPOlib (Klein and Hutter, 2019), JAHS-Bench-201 (Bansal et al., 2022), and LCBench (Zimmer et al.,

2021) in YAHPOBench (P�sterer et al., 2022).

HPOBench is a collection of tabular, surrogate, and raw benchmarks. In our example, we

have the MLP (multi-layer perceptron) benchmark, which is a tabular benchmark, in Table 6 of

the HPOBench paper (Eggensperger et al., 2021). This benchmark has 8 classi�cation tasks and

provides the validation accuracy, runtime, F1 score, and precision for each con�guration at epochs

of {3, 9, 27, 81, 243}. The search space of MLP benchmark in HPOBench is provided in Table 2.

HPOlib is a tabular benchmark for neural networks on regression tasks (Slice Localization, Naval

Propulsion, Protein Structure, and Parkinsons Telemonitoring). This benchmark has 4 regression

tasks and provides the number of parameters, runtime, and training and validation mean squared

error (MSE) for each con�guration at each epoch. The search space of HPOlib is provided in Table 3.

JAHS-Bench-201 is an XGBoost surrogate benchmark for neural networks on image classi�-

cation tasks (CIFAR10, Fashion-MNIST, and Colorectal Histology). This benchmark has 3 image

classi�cation tasks and provides FLOPS, latency, runtime, architecture size in megabytes, test accu-

racy, training accuracy, and validation accuracy for each con�guration with two �delity parameters:

image resolution and epoch. The search space of JAHS-Bench-201 is provided in Table 4.

LCBench is a random-forest surrogate benchmark for neural networks on OpenML datasets.

This benchmark has 34 tasks and provides training/test/validation accuracy, losses, balanced

accuracy, and runtime at each epoch. The search space of HPOlib is provided in Table 5.

B Optimizers

In our package, we show examples using BOHB (Falkner et al., 2018), DEHB (Awad et al., 2021),

SMAC3 (Lindauer et al., 2022), and NePS
8
. BOHB is a combination of HyperBand (Li et al., 2017) and

7
See the implementation of Kandasamy et al. (2020): hartmann3_2_mf.py for the 3� case and hartmann6_4_mf.py

for the 6� case at https://github.com/dragonfly/dragonfly/.

8https://github.com/automl/neps/

16

https://github.com/dragonfly/dragonfly/
https://github.com/automl/neps/

Table 2: The search space of the MLP benchmark in HPOBench (5 discrete + 1 �delity parameters).

Note that we have 2 �delity parameters only for the raw benchmark. Each benchmark has

performance metrics of 30000 possible con�gurations with 5 random seeds.

Hyperparameter Choices

L2 regularization [10
−8, 1.0] with 10 evenly distributed grids

Batch size [4, 256] with 10 evenly distributed grids

Initial learning rate [10
−5, 1.0] with 10 evenly distributed grids

Width [16, 1024] with 10 evenly distributed grids

Depth {1, 2, 3}

Epoch (Fidelity) {3, 9, 27, 81, 243}

Table 3: The search space of HPOlib (6 discrete + 3 categorical + 1 �delity parameters). Each benchmark

has performance metrics of 62208 possible con�gurations with 4 random seeds.

Hyperparameter Choices

Batch size {2
3, 24, 25, 26}

Initial learning rate {5 × 10−4, 10−3, 5 × 10−3, 10−2, 5 × 10−2, 10−1}
Number of units {1,2} {2

4, 25, 26, 27, 28, 29}

Dropout rate {1,2} {0.0, 0.3, 0.6}

Learning rate scheduler {cosine, constant}

Activation function {1,2} {relu, tanh}

Epoch (Fidelity) [1, 100]

tree-structured Parzen estimator (Bergstra et al., 2011; Watanabe, 2023b). DEHB is a combination

of HyperBand and di�erential evolution. We note that DEHB does not natively support restarting

of models, which we believe contributes to it subpar performance. SMAC3 is an HPO framework.

SMAC3 supports various Bayesian optimization algorithms and uses di�erent strategies for di�erent

scenarios. The default strategies for MFO is the random forest-based Bayesian optimization and

HyperBand. NePS is another HPO framework jointly with neural architecture search. When we

used NePS, this package was still under developed and we used HyperBand, which was the default

algorithm at the time. Although we focused on multi-�delity optimization in this paper, our wrapper

is applicable to multi-objective optimization and constrained optimization. We give examples for

these setups using MO-TPE (Ozaki et al., 2020, 2022) and c-TPE (Watanabe and Hutter, 2022,

2023) at https://github.com/nabenabe0928/mfhpo-simulator/blob/main/examples/minimal/
optuna_mo_ctpe.py.

17

https://github.com/nabenabe0928/mfhpo-simulator/blob/main/examples/minimal/optuna_mo_ctpe.py
https://github.com/nabenabe0928/mfhpo-simulator/blob/main/examples/minimal/optuna_mo_ctpe.py

Table 4: The search space of JAHS-Bench-201 (2 continuous + 2 discrete + 8 categorical + 2 �delity

parameters). JAHS-Bench-201 is an XGBoost surrogate benchmark and the outputs are

deterministic.

Hyperparameter Range or choices

Learning rate [10−3, 1]
L2 regularization [10−5, 10−2]
Activation function {ReLU, Hardswish, Mish}

Trivial augment (Müller and Hutter (2021)) {True, False}

Depth multiplier {1, 2, 3}
Width multiplier {22, 23, 24}
Cell search space {none, avg-pool-3x3, bn-conv-1x1,

(NAS-Bench-201 (Dong and Yang (2020)), Edge 1 – 6) bn-conv-3x3, skip-connection}

Epoch (Fidelity) [1, 200]

Resolution (Fidelity) [0.0, 1.0]

Table 5: The search space of LCBench (3 discrete + 4 continuous + 1 �delity parameters). Although

the original LCBench is a collection of 2000 random con�gurations, YAHPOBench created

random-forest surrogates over the 2000 observations. Users can choose deterministic or

non-deterministic outputs.

Hyperparameter Choices

Batch size [2
4, 29]

Max number of units [2
6, 210]

Number of layers [1, 5]

Initial learning rate [10
−4, 10−1]

L2 regularization [10
−5, 10−1]

Max dropout rate [0.0, 1.0]

Momentum [0.1, 0.99]

Epoch (Fidelity) [1, 52]

18

	Introduction
	Background
	Asynchronous Optimization on Zero-Cost Benchmarks
	Related Work

	Automatic Waiting Time Scheduling Wrapper
	Empirical Algorithm Verification on Test Cases
	Quantitative Verification on Random Test Cases
	Performance Verification on Actual Runtime Reduction

	Experiments on Zero-Cost Benchmarks Using Various Open-Sourced HPO Tools
	Broader Impact & Limitations
	Conclusions
	Benchmarks
	Branin Function
	Hartmann Function
	Zero-Cost Benchmarks

	Optimizers

