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Abstract
Model immunization aims to pre-train models
that are difficult to fine-tune on harmful tasks
while retaining their utility on other non-harmful
tasks. Though prior work has shown empirical ev-
idence for immunizing text-to-image models, the
key understanding of when immunization is pos-
sible and a precise definition of an immunized
model remain unclear. In this work, we pro-
pose a framework, based on the condition num-
ber of a Hessian matrix, to analyze model im-
munization for linear models. Building on this
framework, we design an algorithm with regular-
ization terms to control the resulting condition
numbers after pre-training. Empirical results on
linear models and non-linear deep-nets demon-
strate the effectiveness of the proposed algorithm
on model immunization. The code is available
at https://github.com/amberyzheng/
model-immunization-cond-num.

1. Introduction
Model immunization, recently proposed by Zheng & Yeh
(2024), studies how to pre-train a model that is more difficult
to fine-tune on harmful content, but not others. The aim
is to mitigate the risk of misuse (Brundage et al., 2018;
Marchal et al., 2024) associated with open-sourced models
by immunizing them before they are released to the public.

Zheng & Yeh (2024) focus on immunizing text-to-image
models, where they formulate immunization as a bi-level op-
timization. Empirically, they show that pre-trained diffusion
models that undergo immunization are more difficult to fine-
tune on a given harmful concept dataset. To quantify this
difficulty, they compare the generation quality of models
with and without immunization after a fixed number of fine-
tuning iterations. While the empirical results are promising,
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a definition of an immunized model and the circumstances
that make immunization possible remain unclear.

To tackle this issue, we propose a framework to study
model immunization using the condition number (Gloub
& Van Loan, 1996). The effectiveness of immunization can
be characterized by the condition number of the Hessian
matrix. When using gradient-based methods during fine-
tuning, a condition number closer to one indicates faster
convergence (Boyd & Vandenberghe, 2004), i.e., easier to
fine-tune. With this perspective, we observe that the ex-
istence of an effective immunization for linear models is
related to the angle between the singular vectors of the
harmful fine-tuning dataset’s covariance matrix and the pre-
training dataset’s covariance matrix.

From this condition number perspective, we propose an
immunization algorithm to find such a model. In detail,
we propose two additional terms to regularize the condi-
tion number during pre-training. Each of the introduced
regularization terms can be shown to ensure a monotonic
increase/decrease of the condition number under gradient
updates.

Beyond the theoretical results, we empirically validate the
proposed algorithm on linear models for regression and
image classification tasks. Lastly, we conduct experiments
using the proposed algorithm on non-linear models, i.e.,
deep-nets. Despite the gap in theory, we observe that the
proposed approach remains effective at model immunization
across ResNet (He et al., 2016) and ViT (Dosovitskiy, 2021).

Our contributions are summarized as follows:

• We introduce a framework based on the condition number
to study the task of model immunization. This framework
leads to a concrete definition of an immunized model
along with a novel experiment setup and evaluation met-
ric to compare the quality of different immunization tech-
niques.

• We propose regularizers to maximize/minimize the con-
dition number, with a guaranteed monotonic increase/de-
crease when updated with the gradient-based method.

• Together with the task objective and regularizers, we
demonstrate that the proposed algorithm effectively im-
munizes linear models and deep-nets on regression/image
classification tasks.
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2. Preliminaries
This section provides the background of the condition num-
ber and its connection to gradient descent. Additionally, we
briefly review transfer learning (Zhuang et al., 2020), as it
can be a technique for misusing open-source models.

Condition number and convergence of gradient descent.
Given a general matrix S, the condition number (Gloub &
Van Loan, 1996) is defined as

κ(S) ≜ ∥S∥2
∥∥S†∥∥

2
= σmax

S /σmin
S , (1)

where † is the pseudoinverse and σS corresponds to the
max/min singular value of S. The condition number is
related to the convergence rate of gradient-based algorithms.

Consider an optimization problem minw L(w) where L
is strongly convex and has a Hessian ∇2L with max/min
singular values denoted as σmax/min. In this case, the con-
stant step-size steepest descent algorithm has a convergence
rate (Bubeck, 2015) of the following

∥wt −w∗∥2 ≤
(
1− σmin

σmax

)t

∥w0 −w∗∥2, (2)

where w∗ denotes the optimal solution, and wt denotes the
steepest descent iterate at step t. We can observe that a larger
condition number corresponds to a slower convergence.

Condition number regularization. Nenov et al. (2024)
proposed a regularizer for minimizing the condition number
of some general matrix S

Rwell(S) =
1

2
∥S∥22 −

1

2p
∥S∥2F , (3)

in which p is the minimum dimension of S, and the norms
correspond to the spectral norm and Frobenius norm. They
showed that Rwell(S) is a valid regularizer by proving its
nonnegativity, and is an upper bound on log (κ (S)). In
addition, they showed that Rwell(S) is differentiable under
some mild conditions, and if updated with gradient descent,
it is guaranteed to decrease the condition number monotoni-
cally. See Appendix A for the exact statements.

Different from Nenov et al. (2024), we propose a differen-
tiable regularizer that is guaranteed to increase the condi-
tion number as an upper bound on 1/log (κ (S)). For model
immunization, instead of a general matrix S, we need to
consider the regularization of the Hessian of linear models
composed of a feature extractor and a classifier, while pre-
serving their differentiability and monotonicity guarantees
during gradient updates to the feature extractor.

Transfer learning via linear probing. In this work, we
focus on the transfer learning method of linear probing.
Given a pre-trained feature extractor fθ : RDin → RDhid ,
linear probing learns an a linear classifier hw : RDhid →

RDout over the target dataset D = {(x,y)} using the frozen
feature extractor fθ. This model learning is formulated as
the following optimization problem

min
w

L(D,w, θ) ≜ min
w

∑
(x,y)∈D

ℓ(hw ◦ fθ(x),y) (4)

where ℓ denotes a suitable loss function, e.g., cross-entropy.
By keeping θ fixed, the model leverages features learned
from pre-training task and transfers them to the target task.
This approach is effective when the target dataset is too
small to train a model from scratch.

3. Immunization with Condition Number
The goal of model immunization is to learn a pre-trained
model gω ◦ fθI , consisting of a classifier gω and an immu-
nized feature extractor fθI , such that fine-tuning fθI on a
harmful task is difficult, but not for other tasks. The model
should also maintain a good pre-training task performance.
Specifically, we study the setting when a bad actor uses
linear probing on a pre-trained linear feature extractor with
gradient descent.

Immunization setting. We denote a pre-training dataset
as DP = {(x,y)} and a harmful dataset as DH = {(x, ỹ)}
where x ∈ RDin . The bad actor performs linear probing us-
ing DH following Eq. (4) with an ℓ2 loss. We will focus our
analysis on linear pre-trained feature extractor without di-
mensionality reduction, i.e., fθ ≜ x⊤θ with θ ∈ RDin×Din .

Definition 3.1. Under this setting, a model is said to be
immunized if it satisfies the following:

(a) It is more difficult to apply linear probing on the harmful
task DH using the immunized feature extractor fθI than
directly on the input data, i.e.,

κ(∇2
wL(DH,w, θI)) ≫ κ(∇2

wL(DH,w, I)), (5)

where I denotes the identity matrix.

(b) It is not more difficult to apply linear probing on other
tasks. As there is only one other task DP, an immunized
feature extractor should have

κ(∇2
ωL(DP, ω, θ

I)) ≤ κ(∇2
ωL(DP, ω, I)). (6)

Note: we use ω to denote the classifier parameters of the
pre-training task and w for the harmful task.

(c) The immunized model should maintain a competitive
task performance on the pre-training dataset DP, i.e.,

min
ω,θ

L(DP, ω, θ) ≈ min
ω

L(DP, ω, θ
I). (7)

For linear models, as long as θI is invertible, exact equality
can be achieved.
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3.1. Analysis on Immunized Linear Models

To provide some intuition on how the feature extractor θ
affects the convergence of linear probing, we study the
analytical form of the singular values of the Hessian. For
readability, we will rewrite linear probing in Eq. (4) by
considering fθ ≜ x⊤θ and a ℓ2-loss.

Let XH ∈ RN×Din and YH ∈ RN×Dout denote data from
DH stacked into matrices with N ≜ |DH|. When using a
ℓ2-loss, Eq. (4) can be written as

min
w

L(DH,w, θ) = min
w

∥(XHθ)w − Y ∥22 . (8)

In this case, the Hessian matrix

HH(θ) ≜ ∇2
wL(DH,w, θ) = θ⊤KHθ, (9)

where KH ≜ X⊤
H XH is the data covariance matrix.

Proposition 3.2. The singular values of the Hessian matrix
in Eq. (9) are given by

σi =

Din∑
j=1

(
σθ,i(u

⊤
θ,iqj)

√
γj
)2

, ∀i ∈ {1, . . . , Din}. (10)

Here, σθ,i and uθ,i correspond to the i-th singular value
and vector of θ. Next, γj and qj correspond to the j-th
singular value and vector of the covariance K.
Proof sketch. This result can be shown by using the fact
that KH is a symmetric positive semi-definite matrix and
decomposing via SVD. The complete proof is provided in
Appendix B.1. □

From Eq. (10), we can see that the singular value of the
Hessian depends on the relative angle between the singu-
lar vectors between feature extractor θ and the covariance
matrix of the data KH. As the feature extractor is shared
between the pretrained DP and harmful DH datasets, the
strength of the immunization depends on the relative angle
between the singular vectors of KP and KH. For exam-
ple, if the singular vectors (sorted by the singular values)
are all perfectly aligned between the two, then no θ can si-
multaneously maximize κ(∇2

wL(DH,w, θ)) and minimize
κ(∇2

ωL(DP, ω, θ)).

With a better understanding of the effect of the feature ex-
tractor θ on the condition number, we will next present an
algorithm to immunize a model.

4. Algorithm for Immunizing a Model
We formulate model immunization as an optimization prob-
lem with the following objective:

min
ω,θ

Rill(HH(θ)) +Rwell(HP(θ)) + L(DP, ω, θ), (11)

where Rill, to be defined in Sec. 4.1, denotes our pro-
posed regularizer to maximize the condition number, Rwell

Algorithm 1 Condition number regularized gradient descent
for model immunization
input Primary task DP = (XP,YP), harmful task input

XH, supervised loss L, learning rate η, regularizing
constants λP, λH ∈ R+, model initialization θ0, ω0

1: KP = X⊤
P XP

2: KH = X⊤
H XH

3: for t = 0, 1, . . . , T − 1 do
4: ωt+1 = ωt − η∇ωL(ωt, θt;DP)
5: HP (θt) = θ⊤t KPθt, HH (θt) = θ⊤t KHθt
6: θt+1 = θt − η∇θL(ωt, θt;X1)

− ηλPK
−1
P ∇θRwell (HP (θt))

− ηλHK
−1
H ∇θRill (HH (θt))

7: end for
output Immunized feature extractor θI ≜ θT .

in Eq. (3) denotes the regularizer to minimize the condi-
tion number, HP(θ) ≜ ∇2

ωL(DP, ω, θ) = θ⊤KPθ is the
Hessian matrix of the pre-training task, and L denotes the
supervised loss.

Each of the terms encourages the model to satisfy the three
immunization requirements in Definition 3.1. For readabil-
ity, we have dropped the scalar hyperparameters balancing
the terms. We propose to solve Eq. (11) using a gradient-
based method as outlined in Alg. 1.

In the remainder of this section, we will first introduce the
novel regularizer to maximize general matrices’ condition
number and their relevant properties (Sec. 4.1). We then
show how to incorporate the regularizers Rill and Rwell

into the immunization setup (Sec. 4.2). Finally, we dis-
cuss the provable guarantees with respect to each of the
regularizers (Sec. 4.3).

4.1. Regularizer for Maximizing the Condition Number

We analyze the condition number of a general matrix S ∈
Rpr×pc , p = min{pr, pc}, and rank (S) = k ≤ p. The
compact SVD of S is given by S = UDiag(σ)V ⊤, in
which σ = [σ1, · · · , σk]

⊤ such that σmax
S = σ1 ≥ σ2 ≥

· · · ≥ σk = σmin
S > 0 and ui, vi denotes the ith column

vector of U , V for i ∈ [k].

Inspired by the regularizer for minimizing the condition
number, we propose its counterpart for maximizing the
condition number

Rill(S) =
1

1
2k ∥S∥2F − 1

2 (σ
min
S )

2 , (12)

which satisfies the properties in the following theorem.

Theorem 4.1 (Properties of κ-maximizing regularizer
Rill(S)).
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(1) [Nonnegativity] For any S ∈ Rpr×pc , Rill (S) ≥ 0,
and Rill (S) = 0 if and only if κ (S) = ∞.

(2) [Upper Bound] 1
log(κ(S)) ≤ (σmax

S )
2 Rill (S), i.e.,

Rill(S) upper bounds 1
log(κ(S)) when σmax

S is reason-
ably away from ∞.

(3) [Differentiability] If σmin
S = σk < σi for any i < k,

i.e., σmin
S is unique, then Rill(S) is differentiable and

∇SRill(S) =
σkukv

⊤
k − 1

kS(
1
2k ∥S∥2F − 1

2 (σ
min
S )

2
)2 . (13)

(4) [Monotonic Increase] If σmin
S is unique, update S

with ∇SRill(S) such that S′ = S − η2∇SRill(S)

for 0 < η2 < k
k−1

(
1
2k ∥S∥2F − 1

2 (σ
min
S )

2
)2

, then

κ (S′) > κ (S).

Proof sketch. We provide some intuitive illustrations of the
proof and defer the complete version to Appendix B.2.

For (1), as the squared Frobenius norm of a matrix equals
the sum of the squares of its singular values, the denominator
of Rill (S) is the average of the squared singular values
minus their minimum, ensuring it is nonnegative. It can be
shown that Rill (S) is inversely related to κ (S), which
indicates that Rill (S) = 0 if and only if κ (S) = ∞.

For (2) the upper bound holds by the design of Rill (S)
and applying the mean value inequality on

log
(
κ(S)2

)
= log

(
(σmax

S )
2
)
− log

((
σmin
S

)2)
. (14)

For (3), even though σmin
S is not differentiable since it in-

volves taking the minimum of the singular values, its sub-
differential is well-defined (Lewis, 1995). When σmin

S is
unique, its subdifferential reduces to a singleton, i.e., its
gradient, making Rill (S) also differentiable.

For (4), one key observation is that the closed-form
∇SRill(S) shares the same set of singular vectors as S,
so that the linear relation in gradient update can be passed
on to singular values. By choosing a suitable step size, the
increase in condition number can be guaranteed. □

Theorem 4.1 demonstrates that the regularizer Rill (S) in-
troduced is a reasonable upper bound for maximizing con-
dition numbers and indicates that under some mild condi-
tion, i.e., the minimum singular value is unique, simple
first-order algorithms like gradient descent can be used to
minimize the regularizer with guaranteed increase in condi-
tion number.

4.2. Incorporating Regularizers into Immunization

Given the immunization setup, we now analyze the regular-
izer Rill and Rwell for matrices with the specific structure

of feature covariance matrices, and propose the correspond-
ing algorithm for model immunization.

As illustrated in the immunization setup, the feature extrac-
tor θ is the trainable parameter. For data X ∈ RN×Din

of the feature extractor, we analyze the condition number
of H(θ) ≜ θ⊤Kθ ∈ RDin×Din with rank (H) = k, and
compact SVD H = UDiag(σ)V ⊤. Recall, we define
K = X⊤X to be the covariance matrix of the data.

In the following theorem, we show that under the same con-
ditions, the introduced regularizers Rill (·) and Rwell (·)
are also differentiable w.r.t. θ when applied to θ⊤Kθ.

Theorem 4.2. For H (θ) = θ⊤Kθ, if its maximum and
minimum singular values σ1 and σk are unique, then

(1) ∇θRwell (H (θ)) = 2Kθ
(
σ1v1v

⊤
1 − 1

Din
θ⊤Kθ

)
,

(2) ∇θRill (H (θ)) =
2Kθ(σkvkv

⊤
k − 1

k θ⊤Kθ)
( 1

2k ∥θ⊤Kθ∥2
F− 1

2σ
2
k)

2 .

Proof sketch. The differentiability follows from the same
argument of Theorem 4.1 (3) under the condition that the
maximum and minimum singular values are unique. The
closed-form gradients are computed with the chain rule in
matrix calculus defined by the Frobenius inner product. The
complete proof can be found in Appendix B.3. □

With the closed-form gradient of the regularizers w.r.t. θ, we
propose our algorithm for model immunization in Alg. 1.
Specifically, Alg. 1 employs the general gradient descent
framework. Line 4 conducts standard updates for the clas-
sifier ω, minimizing the supervised loss L. In lines 5 to 6,
the regularizers Rill and Rwell are applied on the feature
covariance HH(θ) of the harmful task and HP(θ) of the pre-
training task. This is done by updating the feature extractor
θ with the gradients ∇θRill(HH) and ∇θRwell(HP) nor-
malized by their input covariances and the gradient from the
supervised loss ∇θL.

4.3. Condition Number Guarantees

We show in the following theorem that the condition number
decrease/increase guarantees introduced in Theorem A.1 (4)
and Theorem 4.1 (4) are preserved for θ⊤Kθ even when
the gradient updates are taken in θ as in Alg. 1, instead of
θ⊤Kθ.

Theorem 4.3. For the trainable feature extractor θ, fea-
ture covariance HP (θ) = θ⊤KPθ of the primary task
and HH (θ) = θ⊤KHθ of the immunization task with
rank (HP) = kP, rank (HH) = kH and compact SVD
HP (θ) = UPDiag(σP)V

⊤
P , HH (θ) = UHDiag(σH)V

⊤
H ,

for σP = [σP,1, · · · , σP,kP
], σH = [σH,1, · · · , σH,kH

],

(1) if σmax
HP

is unique, i.e., σmax
HP

= σP,1 > σP,2, update
θ such that θ′ = θ − ηPK

−1
P ∇θRwell(HP (θ)) for

0 < ηP < min

{
1

(1− 1
Din

)σP,1
,
√
σP,1σP,2−σP,2

2
Din

σ2
P,2

}
, then
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κ
(
θ′

⊤
KPθ

′
)
< κ

(
θ⊤KPθ

)
,

(2) if σmin
HH

is unique, i.e., σmin
HH

= σH,kH
< σH,kH−1, update

θ such that θ′ = θ − ηHK
−1
H ∇θRill(HH (θ)) for 0 <

ηH < 1
1−2σmin

HH
/kH

(
1

2kH

∥∥θ⊤KHθ
∥∥2
F
− 1

2

(
σmin
HH

)2)2
,

then κ
(
θ′

⊤
KHθ

′
)
> κ

(
θ⊤KHθ

)
.

Proof sketch. There is a mismatch between the gradient
update on θ and the condition number update, which is ob-
served for H (θ). To address this, we carefully leverage the
structure of the problem, noting that H (θ), unlike a general
matrix, is symmetric and positive semidefinite, with identi-
cal left and right singular vectors. Exploiting this property,
along with our algorithm design, ensures that the linear-
ity in singular value updates is preserved when expanding
H (θ′) using the closed-form gradient in Theorem 4.2. Con-
sequently, a monotonic increase or decrease in the condition
number can be guaranteed by appropriately selecting the
step size. The full proof is provided in Appendix B.4. □

4.4. Additional Discussion

Implementation considerations. At a glance, it may seem
that to implement Alg. 1 using automatic differentiation
packages, e.g., Pytorch (Paszke et al., 2019), one would
have to implement a custom optimizer and involve multiple
update steps. Instead, we observe that by directly modify-
ing the computation graph, it would only involve a single
backward pass. This is done by introducing a “dummy
layer” with an identified function as its forward pass and
its backward pass multiplies the gradient by the inverse fea-
ture covariance matrix. The “dummy layer” implementation
is inspired by prior works in gradient estimator (Bengio
et al., 2013; Roeder et al., 2017). Pseudo-code is provided
in Appendix C.3.

Limitations. The monotonicity guarantees in Theorem 4.3
serve as a theoretical justification for our proposed algo-
rithm, albeit a partial reflection of the application setup.
Note that the feature extractor is updated with the gradi-
ents of the two regularizers jointly together with that of the
supervised loss and the guarantees may not linearly com-
bine as such. In practice, maintaining the balance between
κ (HP (θ)) and κ (HH (θ)) requires a proper choice of hy-
perparameters.

Next, the current framework we analyzed focuses on linear
feature extractors and using linear probing for transfer learn-
ing. We are aware of the practical limitations of this setting.
To address this, in the experiments, we empirically study
the effect of the proposed method on non-linear models, i.e.,
deep-nets, and demonstrate our method’s potential despite
the theoretical gap.

Table 1. Quantitative results of immunization in House Price
dataset (Montoya & DataCanary, 2016), computed over 5 ran-
dom seeds.

Method Eq. (15) (i)↑ Eq. (15) (ii) ↓ RIR ↑
Rill Only 90.02±3.773 72.415±3.545 1.244±0.021

IMMA 7.053±1.662 3.545±0.880 2.001±0.187

Opt κ 1.518±0.027 0.016±0.001 92.58±4.492

Ours 18.92±2.056 0.053±0.002 356.20±5.491

5. Experiments
We evaluate the proposed Alg. 1 on regression and image
classification tasks using linear models, and also explored
immunizing non-linear models, i.e., deep-nets. Experiment
and implementation details are provided in Appendix C.

Evaluation metrics. We introduce the relative immuniza-
tion ratio (RIR) to quantify the effectiveness of the immu-
nization based on the ratio of the condition number of Hes-
sian, defined as follows:

RIR ≜

(
κ(HH(θI))

κ(HH(I))

)
︸ ︷︷ ︸

(i)

/(
κ(HP(θI))

κ(HP(I))

)
︸ ︷︷ ︸

(ii)

(15)

where I denotes the identity matrix. Each term here mea-
sures the ratio between condition numbers with and without
the pre-trained feature extractor on the (i) harmful task or
(ii) on the pre-training task.

A successful immunization is characterized by:

(i) a large ratio κ(HH(θI))
κ(HH(I))

, i.e., using the immunized fea-
ture extractor makes the optimization of linear prob-
ing more difficult on the harmful task.

(ii) a small ratio κ(HP(θI))
κ(HP(I))

), i.e., using the pre-trained
extractor do not make optimization more difficult on
the pre-training task.

To obtain a single metric, we compare (i) and (ii) relative to
each other. In other words, an effective immunized model
should have a relative immunization ratio RIR ≫ 1.

Baselines. We consider three baselines for comparisons:
• Rill Only immunizes the model by minimizing only the

regularizer Rill(HH) as defined in Eq. (12) using gradi-
ent descent.

• IMMA (Zheng & Yeh, 2024) is formulated as a bi-level
optimization program where both lower and upper tasks
are solved via gradient descent. In the lower-level, it
minimizes L(DH,w, θ) w.r.t. θ to obtain θ⋆, and in the
upper-level, it maximizes L(DH,w, θ⋆) − L(DP, ω, θ

⋆)
w.r.t. θ by backpropagating through θ⋆.

• Opt κ directly minimizes κ(HP(θ))− κ(HH(θ)) w.r.t. θ
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Figure 1. Norm ratio Eq. (16) vs. Epochs. We visualize the convergence of linear probing of different immunized models using gradient
descent with an exact line search. Here, Identity corresponds to not using a feature extractor, i.e., θI = I . Observe that Ours made the
convergence faster on DP while slower in DH when compared to the other baselines; consistent with the results in Tab. 1.

via gradient descent instead of using our proposed regu-
larizers.

5.1. Experiments on Immunizing Linear Models

Linear regression task. We use the regression task from the
House prices dataset (Montoya & DataCanary, 2016). We
split the data into DP and DH based on the feature MSZoning.
For the pre-training task, we use the target of LotArea and
for the harmful task we use the target of SalePrice. Both
DP and DH contain input vectors of dimension 79. We
immunized the model by running Alg. 1 for 100 epochs
with η = 0.005. We choose λP and λH by balancing the
gradient norm of Rwell and Rill. The implementation
details can be found in Appendix C.2.

In Tab. 1, we present the empirical results of immunizing
a linear feature extractor θ. We observe that only Opt κ
and our method successfully immunize the model achieving
an RIR that’s much greater than 1. For Rill Only and
IMMA, while they successfully made the harmful task more
ill-conditioned, i.e., Eq. (15) (i) went up, however, this is at
the cost of making the other task ill-conditioned as well, i.e.,
Eq. (15) (ii) went up.

Next, we demonstrate how a large condition number slows
down the convergence of linear probing on the harmful task
by analyzing the norm ratio defined as

∥wt −w⋆∥22/∥w0 −w⋆∥22, (16)

which measures how the classifier weights wt at step t ap-
proach the optimal weights w⋆ during fine-tuning. Note,
naively choosing a step size will not reflect the differ-
ence in condition number. Hence, we use the exact line
search (Boyd & Vandenberghe, 2004) which chooses the
step size that minimizes the loss at each iteration.

As illustrated in Fig. 1, both our method and Opt κ slow
down convergence in DH compared to Identity while ac-
celerating convergence in DP. Furthermore, our method

Table 2. Quantitative results of immunization in MNIST (LeCun,
1998), computed over 3 random seeds and averaged over all digit
pairs. Note that Opt κ has large STD in RIR, resulting in the
deviation between RIR and the ratio of the averaged values.

Method Eq. (15) (i)↑ Eq. (15) (ii) ↓ RIR ↑
Rill Only 14.832±1.039 8.654±0.606 1.933±0.046

IMMA 4.522±0.139 2.774±0.094 1.774±0.041

Opt κ 3.196±1.225 0.756±1.171 69.73±54.00

Ours 6.345±0.188 0.149±0.009 70.04±3.280

achieves a stronger immunization effect than Opt κ. In con-
trast, Rill Only and IMMA slowed the convergence on both
the harmful task DH and the pre-training task DP.

Image classification task. For image classification, we
conduct experiments using MNIST (LeCun, 1998). The
MNIST dataset consists of images over 10-digit classes,
which can be formulated into 10 independent binary clas-
sification tasks. Across all pairs of tasks, we choose one
to be the harmful task DH and the other the pre-training
DP resulting in a total of 90 experiments. We ran Alg. 1
for 30 epochs with η = 0.005 for these experiments. The
implementation details can be found in Appendix C.2.

In Tab. 2, we present the quantitative results on these binary
task pairs. For each entry, the values are averaged over all
90 pairs. Based on the averaged results, we observe that our
method effectively immunizes the linear feature extractor
θ on DH without compromising performance on DP. Al-
though Opt κ achieves comparable RIR with our method,
the variances of the metric values are relatively large. This
indicates that Opt κ is sensitive to random initialization
while our method is robust.

In Fig. 2 we further analyze the results by visualizing the
log(RIR) for each digit pair. A blue block indicates success-
ful immunization, while a red block indicates failure. It can
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Figure 2. Visualization of log(RIR) of binary classification tasks created from MNIST. Each element in the figure corresponds to the
log(RIR) of a model immunized against DH from the pre-training task of DP. We color the block blue if RIR ≫ 1, and red otherwise.
Our method succeeds in immunizing the model across all digit pairs, while the baselines failed in most pairs.

be observed that Rill Only fails for all digit pairs, IMMA
only succeeds in one pair, and Opt κ fails for 32 out of 90
pairs. In contrast, our method achieves success across all
digit pairs demonstrating its effectiveness for immunization.

Thus far, we have conducted experiments strictly following
the immunization setting that we have proposed in Sec. 3.
However, one limitation of the setting is that the feature
extractor is assumed to be linear, which limits its real-world
potential. To further study the practicality of our method,
despite the theoretical gap, we conduct experiments with
non-linear models, i.e., deep-nets, on a larger-scale image
classification dataset of ImageNet.

5.2. Experiments on Immunizing Deep-Nets

Immunization task. In this experiment, we consider a com-
mon setup of linear probing on models pre-trained on Ima-
geNet (Deng et al., 2009), i.e., ImageNet serves as DP. For
DH we experiment with the Stanford Cars Dataset (Krause
et al., 2013) and Country211 Dataset (Radford et al., 2021).
These datasets have been previously used for studying trans-
fer learning (Radford et al., 2021) for image classification.
More dataset details are deferred to Appendix C.1.

Experiment setup. For non-linear models, we experiment
with the architecture of ResNet18 (He et al., 2016) and
ViT (Dosovitskiy, 2021). Here we study a practical setting
where a given model with parameters θ0 has already been
trained on DP and would undergo immunization to obtain
θI to be released to the public.

Note that as we are now using an initialization of θ0 and a
non-linear feature extractor fθ, we extend the RIR metric
to consider those changes. Specifically, we propose

RIRθ0 ≜

(
κ(H̃H(θI))

κ(H̃H(θ0))

)
︸ ︷︷ ︸

(i)

/(
κ(H̃P(θI))

κ(H̃P(θ0))

)
︸ ︷︷ ︸

(ii)

(17)

where we compare the immunized model θI relative to the

initialization model θ0. Here, H̃(θ) denotes the Hessian for
linear probing on DH with a non-linear fθ, i.e.,

H̃H(θ) = ∇2
wL(DH,w, θ) = X̃H(θ)

⊤X̃H(θ). (18)

Here, X̃H(θ) ≜ [fθ(x);∀x ∈ DH] ∈ RN×Dhid denotes
the concatenation of the features, with dimensions Dhid,
extracted from the input data. Due to memory constraints,
we approximate Eq. (17) by randomly sampling 20 groups
of training data, each containing 100 samples, and reporting
the average values.

Finally, we also report the task performance after immuniza-
tion. This is because, as the feature extractor is non-linear
we are no longer guaranteed to retain the task performance.
For ResNet18, we immunize only the last two convolutional
blocks of the trained feature extractor and keep the rest of
the parameters frozen as in θ0. For ViT, we only immunize
the final transformer block. We optimize Eq. (11) using
SGD with momentum, the default optimizer on ImageNet.
Further details are provided in Appendix C.2.

Results. We present the quantitative results of immunizing
deep-nets in Tab. 3. On both Cars and Country211 datasets,
our method demonstrates strong performance when applied
to ResNetg18 and ViT, as indicated by RIRθ0 ≫ 1. In
comparison, Rill Only and IMMA did not effectively im-
munize the models in all evaluated settings. Next, Opt κ
also succeeds in immunizing the models but our proposed
method outperforms it in RIRθ0 .

Next, we report the test accuracy of the immunized models
on DP, i.e., ImageNet1K. On the ResNet18 architecture, we
observe a reduction in test-accuracy from the initialization
model θ0 of 68.24% to 62.36% when DH is Cars and 65.01%
when DH is Country211. Interestingly, on the ViT architec-
ture the test-accuracy increased from 81.78% to 82.79% for
Cars, and 83.17% for Country211. These results suggested
that it is possible to immunize a non-linear model against
the harmful task without losing the effectiveness of the other
task.

7



Model Immunization from a Condition Number Perspective

Table 3. Quantitative results of immunization of model pre-trained on ImageNet (Deng et al., 2009), computed over 3 random seeds. The
DP test accuracy for the off-the-shelf model initialization of θ0 on ResNet18 is 68.24% and that of ViT is 81.78%. We report RIRθ0 to
measure the quality of immunization. Test accuracy of DP is reported to ensure the performance on the pre-training task is maintained.

DH Method
ResNet18 ViT

Eq. (17) (i)↑ Eq. (17) (ii) ↓ RIRθ0 ↑ DP Test Acc. (%) ↑ Eq. (17) (i)↑ Eq. (17) (ii) ↓ RIRθ0 ↑ DP Test Acc. (%) ↑

C
ar

s

Init. θ0 1.0 1.0 1.0 68.24 1.0 1.0 1.0 81.78

Rill Only 1.878±0.034 1.786±0.025 1.057±0.026 63.84±0.292 13.121±0.038 4.097±0.098 3.342±0.048 82.21±0.035

IMMA 0.866±0.002 0.889±0.001 0.974±0.002 63.57±0.234 1.422±0.006 2.090±0.043 0.702±0.007 81.89±0.010

Opt κ 1.217±0.021 0.798±0.005 1.527±0.019 63.65±0.148 3.598±0.510 0.171±0.033 26.369±2.814 82.51±0.085

Ours 2.386±0.442 0.699±0.062 3.467±0.358 62.36±0.173 7.945±0.247 0.323±0.086 34.517±0.886 82.79±0.200

C
ou

nt
ry

21
1 Rill Only 20.727±0.791 20.675±1.685 1.038±0.05 62.17±1.599 69.291±1.198 63.519±6.62 1.122±0.097 80.73±0.129

IMMA 0.791±0.005 0.814±0.006 0.972±0.007 67.03±0.146 6.242±0.203 7.599±0.717 0.845±0.048 82.47±0.036

Opt κ 1.538±0.155 1.053±0.091 1.472±0.043 66.81±0.115 4.589±0.079 0.300±0.106 16.498±5.183 82.79±0.023

Ours 3.287±0.33 0.399±0.034 8.714±0.672 65.01±0.143 20.894±1.425 0.700±0.082 41.341±0.967 83.17±0.075

To further show a larger Eq. (17) (i) indicating that a model
is better immunized, we report the linear probed (fine-tuned)
results on different feature extractors and provide the test
accuracy on DH, where DH is the Stanford Cars dataset.
As shown in Fig. 3, our method exhibits the slowest con-
vergence rate on both ResNet18 and ViT, indicated by the
lowest test accuracy compared with baselines. In summary,
our method remains effective on deep-nets, producing mod-
els that satisfy the requirements of an immunized model as
in Definition 3.1.

6. Related Work

We briefly discuss related research on AI safety and the
condition number.

AI safety, model un/re-learning, and immunization. AI
safety has received attention lately, specifically in generative
AI, due to the impressive progress. We refer the reader
to Brundage et al. (2018); Marchal et al. (2024); Bengio
et al. (2025) for a more in-depth discussion on this topic. In
the following, we will discuss model unlearning, one of the
ways to mitigate the potential of misuse, followed by model
immunization, which protects a model against relearning.

Machine unlearning was first introduced by Cao & Yang
(2015) to remove a user’s private information from a model.
Approximate unlearning aims to achieve this by modify-
ing the pre-trained model directly using the specific data
samples to erase, without requiring full retraining (Nguyen
et al., 2020; Wu et al., 2022; Guo et al., 2019; Sekhari et al.,
2021; Neel et al., 2021). In the context of text-to-image
models, several methods for concept erasure have been pro-
posed. These include inference-time approaches (Brack
et al., 2023; Schramowski et al., 2023), fine-tuning of dif-
fusion models (Gandikota et al., 2023; Kim et al., 2023;
Kumari et al., 2023), and direct model editing (Zhang et al.,
2024; Gandikota et al., 2024).

While promising, these works still face potential risks of

the re-emergence/re-learning of harmful data (Zheng & Yeh,
2024; Zheng et al., 2024; Zhan et al., 2024; Bertran et al.,
2024; Xu et al., 2025). To avoid relearning or further fine-
tuning on harmful data, Zheng & Yeh (2024) propose to
immunize the text-to-image models against malicious fine-
tuning and Zheng & Yeh (2025) extend model immunization
to multi-concept settings. Recent work highlights the impor-
tance of preventing re-finetuning or distillation on harmful
tasks in language models (Huang et al., 2024; Savani et al.,
2025) and encoder probing (Ding et al., 2025), which is
closely related to our goal. While we also study the task of
model immunization, different from Zheng & Yeh (2024)
that primarily focuses on empirical applications on genera-
tive tasks, our work aims to provide a more principled un-
derstanding of model immunization by analyzing it through
the lens of the condition number.

Minimizing Condition Number. Condition number has
been a key factor in the convergence rates and accuracies
of iterative methods, e.g., Jacobi method (Arioli & Romani,
1985), steepest descent (Luenberger et al., 1984), conjugate
gradient (Hestenes et al., 1952), for solving optimization
problems from classic linear systems (Saad, 2003) to those
with general nonlinear objectives (Nesterov, 2018) concern-
ing modern machine learning applications. It is widely
observed that a small condition number tends to speed up
convergence and improve accuracy whereas a large condi-
tion number could lead to an unstable optimization proce-
dure (Saarinen et al., 1993; Kress, 2012; Bengio et al., 2017;
Guille-Escuret et al., 2021).

As a result, methods to minimize the condition number
in various contexts have been proposed. Precondition-
ing (Evans, 1968), a technique that involves finding a ma-
trix, i.e., the preconditioner, to multiply with the original
matrix, resulting in a new matrix with a significantly smaller
condition number, is widely used for solving linear sys-
tems. The preconditioner can be constructed using methods
such as semidefinite programming (Jambulapati et al., 2020;
2023; Qu et al., 2024) or matrix equilibration (Van der Sluis,
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Figure 3. Test accuracy vs. Fine-tuning Epochs on DH. We visualize the test accuracy of linear probing on ImageNet of different
immunized models using gradient descent. Here DH is the Stanford Cars dataset.

1969), and has recently found applications in deep learning
(Saratchandran et al., 2024).

Most related to this work, Balazs et al. (2024) propose to reg-
ularize the condition number of weight matrices by directly
adding the condition number term into the optimization
objective and applying (sub)gradient descent. Observing
that the condition number is discontinuous and nonconvex,
Nenov et al. (2024) proposed a differentiable regularizer that
minimizes the matrix condition number with a monotonic
decrease guarantee if optimized with gradient descent. To
the best of our knowledge, no notable effort has been made
to increase or maximize the condition number.

7. Conclusion
We propose a framework for studying model immunization
through the condition number of the Hessian matrix. We
show that immunization can be achieved by increasing the
condition number of harmful datasets while keeping it sta-
ble for the pre-training task. To achieve this, we introduce
two differentiable regularizers and propose an algorithm
that incorporates these regularizers into a gradient-based
optimization algorithm. Empirical results on both linear
and deep models demonstrate the effectiveness of our ap-
proach to model immunization. We believe that our pro-
posed framework is a first step towards a more principled
understanding of model immunization and will ultimately
make open-sourced models safer.
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Appendix
The appendix is organized as follows:

• In Sec. A, we provide the complete statements of the properties of Rwell(S) for minimizing the condition number.
• In Sec. B, we provide the complete proof for the Theorems stated in the main paper.
• In Sec. C, we provide additional experiment details. The code will be open-sourced upon the acceptance of this paper.

A. Properties of the Condition Number Minimizing Regularizer
Theorem A.1 (Properties of κ-minimizing regularizer Rwell(S), Theorem 2.1, 2.2, 3.1, 3.2 in Nenov et al. (2024)).

(1) [Nonnegativity] ∀ S ∈ Rpr×pc , Rwell(S) ≥ 0. If S ̸= 0, Rwell(S) = 0 if and only if S has full rank and κ(S) = 1.

(2) [Upper Bound] κ(S) ≤ ep(σ
min
S )

−2Rwell(S), i.e., r(S) is an upper bound of log(κ(S)) as long as σmin
S is bounded away

from 0.

(3) [Differentiability] If σmax
S = σ1 > σi for any i > 1, i.e., σmax

S is unique, then Rwell(S) is differentiable and its gradient
is given by ∇SRwell(S) = σ1u1v

⊤
1 − 1

pS.

(4) [Monotonic Decrease] If σmax
S is unique, update S with ∇SRwell(S) such that S′ = S − η1∇SRwell(S) for

0 < η1 < κ(S)−1

(1− 1
p )κ(S)+ 1

p

, then κ(S′) < κ(S).

B. Proof of Propositions and Theorems
B.1. Proof of Proposition 3.2.

Proposition 3.2. The singular values of the Hessian matrix in Eq. (9) are given by

σi =

Din∑
j=1

(
σθ,i(u

⊤
θ,iqj)

√
γj
)2

, ∀i ∈ {1, . . . , Din}. (10)

Here, σθ,i and uθ,i correspond to the i-th singular value and vector of θ. Next, γj and qj correspond to the j-th singular
value and vector of the covariance K.

Proof. Substitute the SVD of θ and the eigendecomposition of K into θ⊤Kθ:

θ⊤Kθ = (UθΣθV
⊤
θ )⊤(QΓ2Q⊤)(UθΣθV

⊤
θ ).

Simplify the expression:

θ⊤Kθ = Vθ(ΣθU
⊤
θ QΓ2Q⊤UθΣθ)V

⊤
θ .

Define M = ΣθU
⊤
θ QΓ, so that:

θ⊤Kθ = Vθ(MM⊤)V ⊤
θ .

The elements of M are:

M [i, j] = σθ,i(u
⊤
θ,iqj)γj ,

where σθ,i’s for i ∈ [d] are the singular values of θ, γj’s for i ∈ [d] are the diagonal entries of Γ, and (u⊤
θ,iqj) measures the

alignment between the i-th column of Uθ and the j-th column of Q.

12
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We observe the following decomposition of M in to two matrices O and D:

M =


. . .

... . .
.

. . . σθ,i(u
⊤
θ,iqj)γj . . .

. .
. ...

. . .



=


. . .

... . .
.

. . .
σθ,i(u

⊤
θ,iqj)γj√∑

j′ (σθ,i(u⊤
θ,iqj′ )γj′ )

2
. . .

. .
. ...

. . .




. . . 0 0

0
√∑

j′(σθ,i(u⊤
θ,iqj′γj)

2 0

0 0
. . .


= OD

where O is an orthonormal matrix, i.e., O⊤O = I , and D = diag(d1, . . . , dd) with di =
√∑

j′(σθ,i(u⊤
θ,iqj′)γj′)

2 is a

diagonal matrix. As a result, diagonal entries of D2 are:

d2i =

d∑
j=1

(
σθ,i(u

⊤
θ,iqj)γj

)2
.

Thus, MM⊤ = (OD)(OD)⊤ = OD2O⊤, and the eigenvalues of θ⊤Kθ are the diagonal entries of D2, given by:

σi = d2i =

d∑
j=1

(
σθ,i(u

⊤
θ,iqj)γj

)2
, i = 1, . . . , d.

B.2. Proof of Theorem 4.1

B.2.1. PROOF OF THEOREM 4.1 (1)

Theorem 4.1. (1) For any S ∈ Rpr×pc , Rill (S) ≥ 0, and Rill (S) = 0 if and only if κ (S) = ∞.

Proof. By definition, Rill(S) =
1

1
2k ∥S∥2

F− 1
2 (σmin

S )
2 . Denote R′

ill(S) =
1
2

(
(σmin

S )
2 − 1

k ∥S∥2F
)

, then we have Rill (S) =

1
−R′

ill(S) , and

R′
ill(S) =

1

2

(
σ2
k − 1

k

k∑
i=1

σ2
i

)

=
1

2k

k∑
i=1

(
σ2
k − σ2

i

)
≤ 0,

since ∀ i ∈ [k], σmin
S = σk ≤ σi. As a result, −R′

ill(S) ≥ 0 and Rill (S) =
1

−R′
ill(S) ≥ 0, i.e., Rill (S) is non-negative.

13



Model Immunization from a Condition Number Perspective

Also, by definition, σ1 = κ (S)σk. Therefore,

Rill (S) =
2

1
k

∑k
i=1 σ

2
i − (σmin

S )
2

≤ 2
1
kσ

2
1 +

k−1
k (σmin

S )
2 − (σmin

S )
2

=
2

1
k

(
σ2
1 − (σmin

S )
2
)

=
2k

(κ(S)2 − 1) (σmin
S )

2 .

If κ(S) = ∞, Rill(S) ≤ 2k

(κ(S)2−1)(σmin
S )

2 = 0 for σmin
S > 0, which yields Rill(S) = 0 given that Rill(S) ≥ 0.

Similarly, we have

Rill (S) =
2

1
k

∑k
i=1 σ

2
i − (σmin

S )
2

≥ 2
k−1
k σ2

1 +
1
k (σmin

S )
2 − (σmin

S )
2

=
2

k−1
k

(
σ2
1 − (σmin

S )
2
)

=
2k
k−1

(κ(S)2 − 1) (σmin
S )

2 .

If Rill(S) = 0, we have κ (S) ≥
√

2k
k−1

Rill(S)(σmin
S )

2 + 1 = ∞ which yields κ (S) = ∞.

B.2.2. PROOF OF THEOREM 4.1 (2)

To prove Theorem 4.1 (2), we start by analyzing R′
ill(S) =

1
2

(
(σmin

S )
2 − 1

k ∥S∥2F
)

with the following lemma.

Lemma B.1. For R′
ill(S) =

1
2

(
(σmin

S )
2 − 1

k ∥S∥2F
)

,

1

κ(S)
≤ e

k
k−1σ

−2
1 R′

ill(S) (19)

That is, R′
ill(S) is an upper bound of log

(
1

κ(S)

)
, i.e., − log(κ(S)).

Proof. Similar to the proof of Theorem 3.2 in (Nenov et al., 2024),

2R′
ill(S) =

(
σmin
S

)2 − 1

k
∥S∥2F

=
(
σmin
S

)2 − 1

k

k∑
i=1

σ2
i

≥
(
σmin
S

)2 − 1

k

(
(k − 1)σ2

1 +
(
σmin
S

)2)
=

(
1− 1

k

)((
σmin
S

)2 − σ2
1

)
14
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In the meantime,

2 log

(
1

κ(S)

)
= − log

(
κ(S)2

)
= log

((
σmin
S

)2)− log
(
σ2
1

)
≤ − 1

σ2
1

(
σ2
1 −

(
σmin
S

)2)
=

1

σ2
1

((
σmin
S

)2 − σ2
1

)
in which the inequality follows from the Mean Value Theorem. As a result,

1

κ(S)
≤ e

1

2σ2
1

(
(σmin

S )
2−σ2

1

)

≤ e
1

2σ2
1
( k

k−1 2R
′
ill(S))

= e
k

k−1σ
−2
1 R′

ill(S)

Theorem 4.1. (2) 1
log(κ(S)) ≤ (σmax

S )
2 Rill (S), i.e., Rill(S) upper bounds 1

log(κ(S)) when σmax
S is reasonably away from

∞.

Proof. Taking the logarithm of Lemma B.1, we have

− log (κ (S)) ≤ k

k − 1
σ−2
1 R′

ill (S) .

Negating both sides,

log (κ (S)) ≥ − k

k − 1
σ−2
1 R′

ill (S) .

Finally, taking the reciprocal,

1

log (κ (S))
≤ k − 1

k

σ2
1

−R′
ill (κ (S))

=
k − 1

k

σ2
1

1
2 (σ

min
S )

2 − 1
2k ∥S∥2F

≤ σ2
1Rill (S)

B.2.3. PROOF OF THEOREM 4.1 (3)

To analyze the differentiability of Rill(S) =
1

1
2k ∥S∥2

F− 1
2 (σmin

S )
2 , we start by analyzing the differentiability of R′

ill(S) =

1
2

(
(σmin

S )
2 − 1

k ∥S∥2F
)

, which needs the following lemma as a prerequisite.

Lemma B.2 (Theorem 3.1 in (Lewis, 1995) without Convexity). If a function f : Rp → R is absolutely symmetric, that is,
∀ x ∈ Rp and any y as a permutation of x, f(x) = f(y), then f ◦ σ is differentiable at matrix S ∈ Rp1×p2 if and only if
f is differentiable at σ = σ(S). In this case, for the singular value decomposition S = UDiag(σ)V ⊤,

∇ (f ◦ σ) (S) = UDiag(∇f(σ))V ⊤.

15
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Proof. For the forward direction, by Corollary 2.5 in (Lewis, 1995), for S = UDiag(σ)V ⊤,

∂ (f ◦ σ) (S) =
{
UDiag(µ)V ⊤

∣∣∣µ ∈ ∂f(σ)
}
.

By Theorem 25.1 in (Rockafellar, 1970), since f ◦ σ is differentiable at matrix S ∈ Rp1×p2 , we know that its subgradient
∂ (f ◦ σ) (S) is a singleton, meaning that UDiag(µ)V ⊤ is unique, and consequently, µ ∈ ∂f(σ) is unique. As a result,
∂f(σ) is also a singleton, which, again by Corollary 2.5 in (Lewis, 1995), indicates that f is differentiable at σ. The reverse
direction holds true following a similar argument.

Lemma B.3. For S = UDiag(σ)V ⊤, in which σ = [σ1, · · · , σk]
⊤ such that σmax

S = σ1 ≥ σ2 ≥ · · · > σk = σmin
S , i.e.,

σk < σi for any i < k, R′
ill(S) =

1
2

(
(σmin

S )
2 − 1

k ∥S∥2F
)

is differentiable and for uk, vk as the kth column vector of U ,
V ,

∇R′
ill(S) = σmin

S ukv
⊤
k − 1

k
S. (20)

Proof. For x ∈ Rk, denote

R′
ill,1(x) = min

i∈[k]

1

2
x2
i , R′

ill,2(x) =
1

2k

k∑
i=1

x2
i .

With R′
ill(S) =

1
2 (σ

min
S )

2 − 1
2k ∥S∥2F , we first analyze 1

2 (σ
min
S )

2. By the subdifferential of piecewise minimum given by
Proposition 4.9 in (Mordukhovich, 2018), we have for x ∈ Rk,

∂xR′
ill,1(x) ⊂

{
∂x

(
1

2
x2
i

) ∣∣∣i ∈ argmin
j∈[k]

1

2
x2
j

}

=

{
xiei

∣∣∣i ∈ argmin
j∈[k]

1

2
x2
j

}

=

{
xiei

∣∣∣i ∈ argmin
j∈[k]

|xj |

}

in which ei is the ith vector from the k-dimensional standard basis. Therefore,

∂σR′
ill,1(σ) ⊂

{
σiei

∣∣∣i ∈ argmin
j∈[k]

σj

}

Since for any i < k, σk < σi, i.e., the minimum non-zero singular value σmin
S is unique, we know that the subdifferential{

σiei

∣∣∣i ∈ argminj∈[k] σj

}
= {σmin

S } is a singleton. Therefore, by Theorem 25.1 in (Rockafellar, 1970), we know R′
ill,1

is differentiable with respect to σ and ∇σR′
ill,1(σ) = σmin

S ek. Regarding σ = σ (S) as a function of S in which σ (·)
represents taking the singular values of a matrix, we have by Corollary 2.5 in (Lewis, 1995)

∂S

(
1

2

(
σmin
S

)2)
= ∂S(R′

ill,1 ◦ σ)(S)

=
{
UDiag(µ)V ⊤

∣∣∣µ ∈ ∂σR′
ill,1(σ)

}
Given that R′

ill,1 is differentiable and apparently also absolutely symmetric with respect to σ, by Lemma B.2, we know
1
2 (σ

min
S )

2 is also differentiable and

∇
(
1

2

(
σmin
S

)2)
= UDiag(∇σR′

ill,1(σ))V
⊤

= UDiag(σmin
S ep)V

⊤

= σmin
S ukv

⊤
k .

16
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In addition, we have

∂S

(
1

2k
∥S∥2F

)
= ∂S

(
1

2k

k∑
i=1

σ (S)
2

)
=
{
UDiag(µ)V ⊤

∣∣∣µ ∈ ∂σR′
ill,2(σ)

}
by Corollary 2.5 in (Lewis, 1995). R′

ill,2 is apparently differentiable with ∇R′
ill,2(x) =

1
kx. Therefore, again by Lemma

B.2,

∇
(

1

2k
∥S∥2F

)
= UDiag(∇R′

ill,2(σS))V
⊤

=
1

k
UDiag (σS)V

⊤

=
1

k
S.

By the linearity of gradients,

∇R′
ill(S) = ∇

(
1

2

(
σmin
S

)2)−∇
(

1

2k
∥S∥2F

)
= σmin

S ukv
⊤
k − 1

k
S,

which completes the proof.

Theorem 4.1. (3) If σmin
S = σk < σi for any i < k, then Rill(S) is differentiable and ∇SRill(S) =

σkukv
⊤
k − 1

kS(
1
2k ∥S∥2

F− 1
2 (σmin

S )
2
)2 .

Proof. Since Rill(S) =
1

1
2k ∥S∥2

F− 1
2 (σmin

S )
2 , we have

∂Rill (S) =
−∂
(

1
2k ∥S∥2F − 1

2 (σ
min
S )

2
)

(
1
2k ∥S∥2F − 1

2 (σ
min
S )

2
)2

=
∂
(

1
2 (σ

min
S )

2 − 1
2k ∥S∥2F

)
(

1
2k ∥S∥2F − 1

2 (σ
min
S )

2
)2

=
∂R′

ill (S)(
1
2k ∥S∥2F − 1

2 (σ
min
S )

2
)2

By Lemma B.3, we know that if σmin
S = σk < σi for any i < k, R′

ill (S) is differentiable and ∇R′
ill(S) = σmin

S ukv
⊤
k − 1

kS.
Consequently, Rill(S) is differentiable and

∇Rill (S) =
σmin
S ukv

⊤
k − 1

kS(
1
2k ∥S∥2F − 1

2 (σ
min
S )

2
)2 .

B.2.4. PROOF OF THEOREM 4.1 (4)

Theorem 4.1. (4) If σmin
S is unique, update S with ∇SRill(S) such that S′ = S − η2∇SRill(S) for 0 < η2 <

k
k−1

(
1
2k ∥S∥2F − 1

2 (σ
min
S )

2
)2

, then κ (S′) > κ (S).
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Proof. Given that S′ = S − η2∇Rill(S) and that ∇Rill(S) =
σmin
S ukv

⊤
k − 1

kS(
1
2k ∥S∥2

F− 1
2 (σmin

S )
2
)2 = 1

R′
ill(S)2

(
σkukv

⊤
k − 1

kS
)

for

R′
ill(S) =

1
2

(
σ2
k − 1

k ∥S∥2F
)

,

S′ = S − η2∇Rill(S)

= S − η2
R′

ill(S)
2

(
σkukv

⊤
k − 1

k
S

)
=

(
1 +

η2
kR′

ill(S)
2

)
S − η2

R′
ill(S)

2
σkukv

⊤
k

=

(
1 +

η2
kR′

ill(S)
2

) k∑
i=1

σiuiv
⊤
i − η2

R′
ill(S)

2
σkukv

⊤
k

=

(
1 +

η2
kR′

ill(S)
2

) k−1∑
i=1

σiuiv
⊤
i +

(
1 +

η2
kR′

ill(S)
2
− η2

R′
ill(S)

2

)
σkukv

⊤
k

= UDiag(σS′)V ⊤.

where σS′ =
[(

1 + η2

kR′
ill(S)2

)
σ1, · · · ,

(
1 + η2

kR′
ill(S)2

)
σk−1,

(
1 + η2

kR′
ill(S)2 − η2

R′
ill(S)2

)
σk

]⊤
is the vector formed by

the singular values of S′ but not necessarily in the decreasing order.

Now we argue that
(
1 + η2

kR′
ill(S)2

)
σ1 remains to be the maximum singular value while

(
1 + η2

kR′
ill(S)2 − η2

R′
ill(S)2

)
σk

the minimum. Since σk < σi for any i < k, i.e., σmin
S = σk is unique, we must have 0 < β < 1 such that σk = βσk−1.

Also, given that η2 < k
k−1

(
1
2k ∥S∥2F − 1

2σ
2
k

)2
=

kR′
ill(S)2

k−1 , we have 1 + η2

kR′
ill(S)2 − η2

R′
ill(S)2 > 0. Therefore,(

1 +
η2

kR′
ill(S)

2
− η2

R′
ill(S)

2

)
σk

=

(
1 +

η2
kR′

ill(S)
2

) 1 + η2

kR′
ill(S)2 − η2

R′
ill(S)2

1 + η2

kR′
ill(S)2

σk

=

(
1 +

η2
kR′

ill(S)
2

)(
1−

η2

R′
ill(S)2

1 + η2

kR′
ill(S)2

)
σk

<

(
1 +

η2
kR′

ill(S)
2

)
σk

<

(
1 +

η2
kR′

ill(S)
2

)
1

β
σk

=

(
1 +

η2
kR′

ill(S)
2

)
σk−1.

Since σ1 ≥ σ2(S) ≥ · · · ≥ σk−1 > σk and 1 + η2

kR′
ill(S)2 > 0, we know that σmax

S′ =
(
1 + η2

kR′
ill(S)2

)
σ1 and

σmin
S′ =

(
1 + η2

kR′
ill(S)2 − η2

R′
ill(S)2

)
σk. Finally,

κ (S′) =
σmax
S′

σmin
S′

=

(
1 + η2

kR′
ill(S)2

)
σ1(

1 + η2

kR′
ill(S)2 − η2

R′
ill(S)2

)
σk

=
1 + η2

kR′
ill(S)2

1 + η2

kR′
ill(S)2 − η2

R′
ill(S)2

κ (S)

> κ (S) .

18



Model Immunization from a Condition Number Perspective

B.3. Proof of Theorem 4.2

Theorem 4.2. For H (θ) = θ⊤Kθ, if its maximum and minimum singular values σ1 and σk are unique, then

(1) ∇θRwell (H (θ)) = 2Kθ
(
σ1v1v

⊤
1 − 1

Din
θ⊤Kθ

)
,

(2) ∇θRill (H (θ)) =
2Kθ(σkvkv

⊤
k − 1

k θ⊤Kθ)
( 1

2k ∥θ⊤Kθ∥2
F− 1

2σ
2
k)

2 .

Proof. Given that H (θ) = θ⊤Kθ for K = X⊤X , we know H (θ) is symmetric and positive semidefinite. Therefore, for
compact SVD H (θ) = UDiag (σ)V ⊤, we have U = V .

(1) When the maximum singular value σ1 of H is unique, we know from Theorem A.1 (3) that Rwell (H (θ)) is
differentiable with respect to H , and ∇HRwell (H (θ)) = σ1u1v

⊤
1 − 1

Din
H = σ1v1v

⊤
1 − 1

Din
H .

Given the form H (θ) = θ⊤Kθ, we have dH = (dθ)
⊤
Kθ + θ⊤K (dθ). Furthermore,

(dRwell) (H (θ)) = ⟨∇HRwell (H (θ)) , dH⟩F

= Tr

((
σ1v1v

⊤
1 − 1

Din

H

)⊤ (
(dθ)

⊤
Kθ + θ⊤K (dθ)

))

= Tr

((
σ1v1v

⊤
1 − 1

Din

H

)⊤

(dθ)
⊤
Kθ

)
+Tr

((
σ1v1v

⊤
1 − 1

Din

H

)⊤

θ⊤K (dθ)

)

= Tr

(
Kθ

(
σ1v1v

⊤
1 − 1

Din

H

)⊤

(dθ)
⊤

)
+Tr

(
(dθ)

(
σ1v1v

⊤
1 − 1

Din

H

)⊤

θ⊤K

)
,

in which ⟨·, ·⟩F denotes the Frobenius inner product, and that last equality follows from the cyclic property of trace.
As a result, following the derivatives of traces as in Eq. (100) and Eq. (104) in Petersen et al. (2008),

∇θRwell(H (θ)) =
∂Rwell(H (θ))

∂θ

= Kθ

(
σ1v1v

⊤
1 − 1

Din

H

)⊤

+

((
σ1v1v

⊤
1 − 1

Din

H

)⊤

θ⊤K

)⊤

= Kθ

(
σ1

(
v1v

⊤
1

)⊤ − 1

Din

H⊤
)
+K⊤θ

(
σ1v1v

⊤
1 − 1

Din

H

)
= 2Kθ

(
σ1v1v

⊤
1 − 1

Din

H

)
.

(2) When the minimum singular value σk of H is unique, we know from Theorem 4.1 (3) that Rill (H (θ)) is differentiable

with respect to H , and ∇HRill (H (θ)) =
σkukv

⊤
k − 1

kH

( 1
2k ∥H∥2

F− 1
2σ

2
k)

2 . Following similar arguments as in (1), we have

∇θRill (H (θ)) =
2Kθ(σkukv

⊤
k − 1

kH)
( 1

2k ∥H∥2
F− 1

2σ
2
k)

2 .

B.4. Proof of Theorem 4.3

Theorem 4.3. For the trainable feature extractor θ, feature covariance HP (θ) = θ⊤KPθ of the primary task and HH (θ) =
θ⊤KHθ of the immunization task with rank (HP) = kP, rank (HH) = kH and compact SVD HP (θ) = UPDiag(σP)V

⊤
P ,

HH (θ) = UHDiag(σH)V
⊤
H , for σP = [σP,1, · · · , σP,kP

], σH = [σH,1, · · · , σH,kH
],

(1) if σmax
HP

is unique, i.e., σmax
HP

= σP,1 > σP,2, update θ such that θ′ = θ − ηPK
−1
P ∇θRwell(HP (θ)) for 0 < ηP <

min

{
1

(1− 1
Din

)σP,1
,
√
σP,1σP,2−σP,2

2
Din

σ2
P,2

}
, then κ

(
θ′

⊤
KPθ

′
)
< κ

(
θ⊤KPθ

)
,
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(2) if σmin
HH

is unique, i.e., σmin
HH

= σH,kH
< σH,kH−1, update θ such that θ′ = θ − ηHK

−1
H ∇θRill(HH (θ)) for 0 < ηH <

1
1−2σmin

HH
/kH

(
1

2kH

∥∥θ⊤KHθ
∥∥2
F
− 1

2

(
σmin
HH

)2)2
, then κ

(
θ′

⊤
KHθ

′
)
> κ

(
θ⊤KHθ

)
.

Proof. (1) By Theorem 4.2 (1), we know ∇θRwell (HP (θ)) = 2KPθ
(
σP,1vP,1v

⊤
P,1 − 1

Din
HP

)
. Since θ′ = θ −

ηPK
−1
P ∇θRwell(HP (θ)), we have

θ′
⊤
KPθ

′ =
(
θ − ηPK

−1
P ∇θRwell(HP (θ))

)⊤
KP

(
θ − ηPK

−1
P ∇θRwell(HP (θ))

)
=

(
θ − 2ηPK

−1
P KPθ

(
σP,1vP,1v

⊤
P,1 −

1

Din

HP

))⊤

KP

(
θ − 2ηPK

−1
P KPθ

(
σP,1vP,1v

⊤
P,1 −

1

Din

HP

))
=

(
θ − 2ηPθ

(
σP,1vP,1v

⊤
P,1 −

1

Din

HP

))⊤

KP

(
θ − 2ηPθ

(
σP,1vP,1v

⊤
P,1 −

1

Din

HP

))
= θ⊤KPθ − 2ηP

(
σP,1vP,1v

⊤
P,1 −

1

Din

HP

)⊤

θ⊤KPθ − 2ηPθ
⊤KPθ

(
σP,1vP,1vP,1 −

1

Din

HP

)
+ 4η2P

(
σP,1vP,1v

⊤
P,1 −

1

Din

HP

)⊤

θ⊤KPθ

(
σP,1vP,1vP,1 −

1

Din

HP

)
= HP − 2ηP

(
σP,1vP,1v

⊤
P,1 −

1

Din

HP

)⊤

HP − 2ηPHP

(
σP,1vP,1vP,1 −

1

Din

HP

)
+ 4η2P

(
σP,1vP,1v

⊤
P,1 −

1

Din

HP

)⊤

HP

(
σP,1vP,1vP,1 −

1

Din

HP

)
.

Since HP (θ) = θ⊤KPθ for KP = X⊤
P XP is symmetric and positive semidefinite, we know for HP (θ) =

UPDiag (σP)V
⊤
P , it holds that UP = VP. Furthermore,

σP,1vP,1v
⊤
P,1 −

1

Din

HP = σP,1vP,1v
⊤
P,1 −

1

Din

kP∑
i=1

σP,iuP,iv
⊤
P,i

=

(
1− 1

Din

)
σP,1uP,1v

⊤
P,1 −

1

Din

kP∑
i=2

σP,iuP,iv
⊤
P,i

= UPDiag (σ̃P)V
⊤
P

= VPDiag (σ̃P)V
⊤
P

for Diag (σ̃P) =
[(

1− 1
Din

)
σP,1,− 1

Din
σP,2, · · · ,− 1

Din
σP,kP

]
. Therefore, plugging this and the SVD of HP back in,

θ′
⊤
KPθ

′ = VPDiag (σP)V
⊤
P − 2ηP

(
VPDiag (σ̃P)V

⊤
P

)⊤
VPDiag (σP)V

⊤
P

− 2ηP
(
VPDiag (σP)V

⊤
P

)⊤
VPDiag (σ̃P)V

⊤
P

+ 4η2P
(
VPDiag (σ̃P)V

⊤
P

)⊤
VPDiag (σP)V

⊤
P VPDiag (σ̃P)V

⊤
P

= VPDiag (σP)V
⊤
P − 2ηPVPDiag (σ̃P)Diag (σP)V

⊤
P − 2ηPVPDiag (σP)Diag (σ̃P)V

⊤
P

+ 4η2PVPDiag (σ̃P)Diag (σP)Diag (σ̃P)V
⊤
P

= VPDiag (σP)V
⊤
P − 2ηPVPDiag (σ̃P ⊙ σP)V

⊤
P − 2ηPVPDiag (σP ⊙ σ̃P)V

⊤
P

+ 4η2PVPDiag (σ̃P ⊙ σP ⊙ σ̃P)V
⊤
P

= VPDiag
(
σP − 4ηPσ̃P ⊙ σP + 4η2P σ̃P ⊙ σP ⊙ σ̃P

)
V ⊤
P

= VPDiag (σ′
P)V

⊤
P ,

in which σ′
P =

[
σ′
P,1, · · · , σ′

P,kP

]⊤
for σ′

P,i =

σP,1 − 4ηP

(
1− 1

Din

)
σ2
P,1 + 4η2P

(
1− 1

Din

)2
σ3
P,1 if i = 1

σP,i +
4ηP
Din

σ2
P,i +

4η2
P

D2
in
σ3
P,i if i > 1

, ⊙ de-

notes element-wise product and the second equality holds by the fact that VP is orthonormal, i.e., V ⊤
P VP = I .
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Since σmax
HP

is unique, we know that ∃ α > 1 such that σP,1 = ασP,2. Therefore,

σ′
P,2 = σP,2 +

4ηP
Din

σ2
P,2 +

4η2P
D2

in

σ3
P,2

=

(
1 +

4ηP
Din

σP,2 +
4η2P
D2

in

σ2
P,2

)
σP,2

=
1 + 4ηP

Din
σP,2 +

4η2
P

D2
in
σ2
P,2

α
σP,1.

With ηP <
√
σP,1σP,2−σP,2

2
Din

σ2
P,2

, we have 1 + 4ηP
Din

σP,2 +
4η2

P

D2
in
σ2
P,2 < 1 − 4ηP

(
1− 1

Din

)
σP,1 + 4η2P

(
1− 1

Din

)2
σ2
P,1. As a

result,

1 + 4ηP
Din

σP,2 +
4η2

P

D2
in
σ2
P,2

1− 4ηP

(
1− 1

Din

)
σP,1 + 4η2P

(
1− 1

Din

)2
σ2
P,1

< 1 < α,

that is,

1 + 4ηP
Din

σP,2 +
4η2

P

D2
in
σ2
P,2

α
< 1− 4ηP

(
1− 1

Din

)
σP,1 + 4η2P

(
1− 1

Din

)2

σ2
P,1.

Plugging this result back in,

σ′
P,2 =

1 + 4ηP
Din

σP,2 +
4η2

P

D2
in
σ2
P,2

α
σP,1

<

(
1− 4ηP

(
1− 1

Din

)
σP,1 + 4η2P

(
1− 1

Din

)2

σ2
P,1

)
σP,1

= σ′
P,1.

In addition, σ′
P,2 = σP,2 +

4ηP
Din

σ2
P,2 +

4η2
P

D2
in
σ3
P,2 ≥ σP,i +

4ηP
Din

σ2
P,i +

4η2
P

D2
in
σ3
P,i = σ′

P,i for i = 3, · · · , kP since σP,2 ≥ σP,i

for i = 3, · · · , kP by definition. Therefore, σ′
P,1 remains to be the maximum singular value of θ′⊤KPθ

′, and σ′
P,kP

the
minimum. Finally,

κ
(
θ′

⊤
KPθ

′
)
=

σ′
P,1

σ′
P,kP

=
σP,1 − 4ηP

(
1− 1

Din

)
σ2
P,1 + 4η2P

(
1− 1

Din

)2
σ3
P,1

σP,kP
+ 4ηP

Din
σ2
P,kP

+
4η2

P

D2
in
σ3
P,kP

<
σP,1 − 4ηP

(
1− 1

Din

)
σ2
P,1 + 4η2P

(
1− 1

Din

)2
σ3
P,1

σP,kP

<
σP,1
σP,kP

= κ
(
θ⊤KPθ

)
where the second inequality holds when ηP < 1

(1− 1
Din

)σP,1
which indicates that −4ηP

(
1− 1

Din

)
σ2
P,1 +

4η2P

(
1− 1

Din

)2
σ3
P,1 < 0.
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(2) Denote R′
ill (HH) = 1

2σ
2
H,kH

− 1
2kH

∥HH∥2F , then by Theorem 4.2 (2), we know ∇θRill (HH (θ)) =
2KHθ(σH,kHuH,kHv

⊤
H,kH

− 1
kH

HH)
R′

ill(HH)
2 . Since θ′ = θ − ηHK

−1
H ∇θRill(HH (θ)), we have

θ′
⊤
KHθ

′ =
(
θ − ηHK

−1
H ∇θRill(HH (θ))

)⊤
KH

(
θ − ηHK

−1
H ∇θRill(HH (θ))

)
= θ⊤KHθ −

2ηH

R′
ill (HH)

2

(
σH,kH

uH,kH
v⊤
H,kH

− 1

kH
HH

)⊤

θ⊤KHθ −
2ηH

R′
ill (HH)

2 θ
⊤KHθ

(
σH,kH

uH,kH
v⊤
H,kH

− 1

kH
HH

)
+

4η2H

R′
ill (HH)

4

(
σH,kH

uH,kH
v⊤
H,kH

− 1

kH
HH

)⊤

θ⊤KHθ

(
σH,kH

uH,kH
v⊤
H,kH

− 1

kH
HH

)
= HH −

2ηH

R′
ill (HH)

2

(
σH,kH

uH,kH
v⊤
H,kH

− 1

kH
HH

)⊤

HH −
2ηH

R′
ill (HH)

2HH

(
σH,kH

uH,kH
v⊤
H,kH

− 1

kH
HH

)
+

4η2H

R′
ill (HH)

4

(
σH,kH

uH,kH
v⊤
H,kH

− 1

kH
HH

)⊤

HH

(
σH,kH

uH,kH
v⊤
H,kH

− 1

kH
HH

)
.

Since HP (θ) = θ⊤KHθ for KH = X⊤
H XH is also symmetric and positive semidefinite, we know for HH (θ) =

UHDiag (σH)V
⊤
H , it holds that UH = VH. Following similar arguments as in (1),

σH,kH
uH,kH

v⊤
H,kH

− 1

kH
HH = − 1

kH

kH−1∑
i=1

σH,iuH,iv
⊤
H,i +

(
1− 1

kH

)
σH,kH

uH,kH
v⊤
H,kH

= VHDiag (σ̃H)V
⊤
H

for Diag (σ̃H) =
[
− 1

kH
σH,1, · · · ,− 1

kH
σH,kH−1,

(
1− 1

kH

)
σH,kH

]
. Since VH is orthonormal, i.e., V ⊤

H VH = I ,

θ′
⊤
KHθ

′ = VHDiag (σH)V
⊤
H − 2ηH

R′
ill (HH)

2

(
VHDiag (σ̃H)V

⊤
H

)⊤
VHDiag (σH)V

⊤
H

− 2ηH

R′
ill (HH)

2

(
VHDiag (σH)V

⊤
H

)⊤
VHDiag (σ̃P)V

⊤
P

+
4η2H

R′
ill (HH)

4

(
VHDiag (σ̃H)V

⊤
H

)⊤
VHDiag (σH)V

⊤
H VHDiag (σ̃H)V

⊤
H

= VHDiag

(
σH −

4ηH

R′
ill (HH)

2 σ̃H ⊙ σH +
4η2H

R′
ill (HH)

4 σ̃H ⊙ σH ⊙ σ̃H

)
V ⊤
H

= VHDiag (σ′
H)V

⊤
H ,

for σ′
H =

[
σ′
H,1, · · · , σ′

H,kH

]⊤
, σ′

H,i =

σH,i +
4ηH

kHR′
ill(HH)

2σ2
H,i +

4η2
H

k2
HR′

ill(HH)
4σ3

H,i if i < kH

σH,kH
− 4ηH

R′
ill(HH)

2

(
1− 1

kH

)
σ2
H,kH

+
4η2

H

R′
ill(HH)

4

(
1− 1

kH

)2
σ3
H,kH

if i = kH
,

and ⊙ denotes element-wise product.

Since σmin
HH

is unique, we know that ∃ β ∈ (0, 1) such that σH,kH
= βσH,kH−1. Then we have

σ′
H,kH

= σH,kH
− 4ηH

R′
ill (HH)

2

(
1− 1

kH

)
σ2
H,kH

+
4η2H

R′
ill (HH)

4

(
1− 1

kH

)2

σ3
H,kH

=

(
1− 4ηH

R′
ill (HH)

2

(
1− 1

kH

)
σH,kH

+
4η2H

R′
ill (HH)

4

(
1− 1

kH

)2

σ2
H,kH

)
σH,kH

=

(
1− 4ηH

R′
ill (HH)

2

(
1− 1

kH

)
σH,kH

+
4η2H

R′
ill (HH)

4

(
1− 1

kH

)2

σ2
H,kH

)
βσH,kH−1

=

(
1 +

4ηHσH,kH

kHR′
ill (HH)

2 +
4η2Hσ

2
H,kH

k2HR′
ill (HH)

4 − 4ηHσH,kH

R′
ill (HH)

2 +
4η2Hσ

2
H,kH

R′
ill (HH)

4 −
8η2Hσ

2
H,kH

kHR′
ill (HH)

4

)
βσH,kH−1.
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Letting 0 < ηH <
R′

ill(HH)
2

1−2σH,kH/kH
= 1

1−2σmin
HH

/kH

(
1

2kH

∥∥θ⊤KHθ
∥∥2
F
− 1

2

(
σmin
HH

)2)2
, we have

− 4ηHσH,kH

R′
ill (HH)

2 +
4η2Hσ

2
H,kH

R′
ill (HH)

4 −
8η2Hσ

2
H,kH

kHR′
ill (HH)

4 < 0. (21)

Also, 1 − 4ηH
R′

ill(HH)
2

(
1− 1

kH

)
σH,kH

+
4η2

H

R′
ill(HH)

4

(
1− 1

kH

)2
σ2
H,kH

=
(
1− 2ηH

R′
ill(HH)

2

(
1− 1

kH

)
σH,kH

)2
> 0 for any

ηH > 0. Given that σH,kH−1 > σH,kH
and Eq. (21),

β < 1

<
1 + 4ηH

kHR′
ill(HH)

2σH,kH−1 +
4η2

H

k2
HR′

ill(HH)
4σ2

H,kH−1

1 + 4ηH
kHR′

ill(HH)
2σH,kH

+
4η2

H

k2
HR′

ill(HH)
4σ2

H,kH

<
1 + 4ηH

kHR′
ill(HH)

2σH,kH−1 +
4η2

H

k2
HR′

ill(HH)
4σ2

H,kH−1

1 + 4ηH
R′

ill(HH)
2σH,kH

+
4η2

H

k2
HR′

ill(HH)
4σ2

H,kH
− 4ηH

R′
ill(HH)

2σH,kH
+

4η2
H

R′
ill(HH)

4σ2
H,kH

− 8η2
H

kHR′
ill(HH)

4σ2
H,kH

,

indicating
(
1 + 4ηH

kHR′
ill(HH)

2σH,kH
+

4η2
H

k2
HR′

ill(HH)
4σ2

H,kH
− 4ηH

R′
ill(HH)

2σH,kH
+

4η2
H

R′
ill(HH)

4σ2
H,kH

− 8η2
H

kHR′
ill(HH)

4σ2
H,kH

)
β < 1+

4ηH
kHR′

ill(HH)
2σH,kH−1 +

4η2
H
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where the first inequality holds by Eq. (21) and the second by σH,1 > σH,kH

.

23



Model Immunization from a Condition Number Perspective

C. Detailed Experiment Setup
C.1. Datasets

Stanford Cars (Krause et al., 2013) contains 16,185 images of 196 car models and focuses on fine-grained image classification.
Country211 (Radford et al., 2021) is a dataset used for country classification based on satellite images, comprising 211
country-level labels, each with 150 training images. This is a subset of the YFCC100M dataset (Thomee et al., 2016)
providing user-generated photos and videos, used for domain adaptation evaluation.

C.2. Immunization training details

We summarize the hyper-parameters of training for model immunization in Tab. 4. We choose λP and λH by balancing the
gradient norm of Rwell and Rill. Specifically, we obtain the scale of λP and λH first and search over multiples of {1, 2, 3, 5}.
For linear models, we search over the set of {0.0005, 0.001, 0.005, 0.01} and report the best result. For ImageNet we
followed the default learning rate η = 1 × 10−5. The number of epochs is based on early stopping using RIR and the
test accuracy. All experiments are conducted using float64 precision to ensure numerical stability and reduce potential
inaccuracies in computations.

Table 4. Hyperparameters for immunization training.

Dataset Model η λP λH Epochs L
HousePrice Linear 0.005 100 1× 107 1000 Mean squared error
MNIST Linear 0.001 1 5× 107 30 Binary Cross-entropy (CE)
ImageNet vs. Stanford Cars ResNet18 1× 10−5 5× 10−5 2× 106 3 Label-smoothing CE
ImageNet vs. Country211 ResNet18 1× 10−5 1× 10−4 2× 106 3 Label-smoothing CE
ImageNet vs. Stanford Cars ViT 1× 10−5 3× 10−6 3× 108 2 Label-smoothing CE
ImageNet vs. Country211 ViT 1× 10−5 1× 10−6 1× 108 2 Label-smoothing CE

Details of immunizing linear models. For the regression task, the linear feature extractor θ ∈ R79×79 is a randomly
initialized dummy linear layer, as discussed in Sec. 4.4. We handle missing values in the tabular data by filling NaNs
with 0. Categorical features are converted into numerical values using LabelEncoder. Finally, the features and labels
are normalized using their respective mean and standard deviation. To create DP and DH, we split the House prices
dataset (Montoya & DataCanary, 2016) by the feature MSZoning. Specifically, all entries where MSZoning = ‘RL’ are
assigned to DH, while the remaining entries form DP.

For the binary classification task on MNIST, the linear feature extractor θ ∈ R784×784 is also a randomly initialized dummy
linear layer, and we construct a training dataset by selecting two specific target digits. The dataset is created using a custom
BinaryDataset class, which filters the original MNIST dataset to include only the chosen digits and assigns new labels: one
digit is mapped to label 0 and the other to label 1. To ensure balance in the dataset, we limit the number of samples for
each digit to the smaller count between the two. For optimization, we use Adam (Kingma, 2014) with β = (.9, 0.999) and
ϵ = 1× 10−8 instead of the basic gradient descent in Alg. 1. For the linear model, we computed the Hessian inverse by
solving a regularized least-squares system, where the Hessian is in the shape of RDin×Din . Here Din = 79 for the regression
task and Din = 784 for the image classification task.

Details of immunizing non-linear models. The pre-trained ResNet18 and ViT are loaded from Pytorch Image Mod-
els (Wightman, 2019) with the model name resnet18 and vit base patch16 clip 224. We also create the dataset
with the built-in function create dataset from Wightman (2019). The feature embedding sizes for ResNet18 and ViT
are 512 and 768, respectively. To facilitate balanced training when dataset sizes differ, we implement a CombinedLoader,
which pairs batches from two data loaders. The longer dataset dictates training duration, while the shorter dataset cycles
continuously using itertools. The number of epochs reported in Tab. 4 corresponds to the epochs of DH, i.e., the shorter
loader.

For optimization, we use SGD with Nesterov momentum to optimize Eq. (11), setting an initial learning rate of 1× 10−5

with momentum 0.9. The trainable feature extractor parameters are optimized with zero weight decay, while the classifier
parameters use a weight decay of 2× 10−5.
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C.3. Pseudo-code of the dummy layer

We provide the Pseudo-code for implementing the dummy layer in Fig. 4 below. The DummyLinear layer extends
torch.nn.Linear and incorporates an optional preconditioning mechanism in the backward pass using the inverse
feature covariance matrix. The LinearFunction class defines the forward and backward computations, where the
forward pass applies a standard linear transformation XW⊤ + b and stores the input, weight, and bias for gradient
computation. In the backward pass, the input gradient is computed normally, while the weight gradient is modified based
on whether preconditioning is enabled (use precond=True). If enabled, the weight gradient is adjusted by solving
a regularized least-squares system using the inverse of the feature covariance matrix X⊤X + ϵI , improving numerical
stability.

class LinearFunction:
@staticmethod
def forward(ctx, input, weight, bias, lambda_reg, use_precond):

# Save input tensors for backward
ctx.save_for_backward(input, weight, bias)
ctx.lambda_reg = lambda_reg
ctx.use_precond = use_precond

# Compute output
output = input.mm(weight.t())
if bias is not None:

output += bias.unsqueeze(0).expand_as(output)
return output

@staticmethod
def backward(ctx, grad_output):

# Retrieve saved tensors
input, weight, bias = ctx.saved_tensors
lambda_reg = ctx.lambda_reg
use_precond = ctx.use_precond

# Initialize gradients
grad_input = grad_weight = grad_bias = None

if ctx.needs_input_grad[0]:
grad_input = grad_output.mm(weight)

if ctx.needs_input_grad[1]:
base_grad_weight = grad_output.t().mm(input)
if use_precond:

XtX = input.t().mm(input)
lambda_eye = lambda_reg * torch.eye(XtX.size(0), device=XtX.device)
XtX_reg = XtX + lambda_eye
grad_weight = torch.linalg.solve(XtX_reg, base_grad_weight)

else:
grad_weight = base_grad_weight

if bias is not None and ctx.needs_input_grad[2]:
grad_bias = grad_output.sum(0)

return grad_input, grad_weight, grad_bias, None, None

class DummyLinear(nn.Linear):
def forward(self, input, lambda_reg, use_precond):

# Dynamically decide whether to use the covariance inversion as the preconditioner
return LinearFunction.apply(input, self.weight, self.bias, lambda_reg, use_precond)

Figure 4. Dummy layer with selective inverse feature covariance matrix in backward function.
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