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Abstract

Social interactions often emerge from subtle, fine-grained cues such as facial
expressions, gaze, and gestures. However, existing methods for social interaction
detection overlook such nuanced cues and primarily rely on holistic representations
of individuals. Moreover, they directly detect social groups without explicitly
modeling the underlying interactions between individuals. These drawbacks limit
their ability to capture localized social signals and introduce ambiguity when group
configurations should be inferred from social interactions grounded in nuanced cues.
In this work, we propose a part-aware bottom-up group reasoning framework for
fine-grained social interaction detection. The proposed method infers social groups
and their interactions using body part features and their interpersonal relations. Our
model first detects individuals and enhances their features using part-aware cues,
and then infers group configuration by associating individuals via similarity-based
reasoning, which considers not only spatial relations but also subtle social cues that
signal interactions, leading to more accurate group inference. Experiments on the
NVI dataset demonstrate that our method outperforms prior methods, achieving
the new state of the art.

1 Introduction

Understanding the intentions and behaviors of others is a fundamental aspect of human perception
and social intelligence. In our daily lives, we rely not only on what people say, but also on how they
appear, move, and behave to make sense of others. Understanding such interactions enables broad
applications, including surveillance, human-robot interaction, and sports analysis. Social interaction
understanding encompasses a wide range of tasks, including group activity recognition [13, 19, 23,
29, 53, 55], pedestrian trajectory prediction [1, 2, 36, 51] and group activity detection [10, 11, 24, 44].
While these tasks have advanced the ability to model social interactions, most existing work primarily
focuses on group behaviors inferred from coarse visual cues such as appearances, actions, or geometric
configurations of group members. Consequently, they often overlook fine-grained social interactions,
such as identifying whether two people are smiling at each other, engaging in mutual gaze, or
performing gestures like pointing, that are essential for nuanced social perception. The ability to
understand such fine-grained social interactions is crucial for inferring intent, emotion, and social
relationships, particularly when verbal communication is limited or absent.

Recently, a new task of detecting multi-person interactions based on such fine-grained, nuanced, and
ambiguous social cues has been introduced along with a dedicated dataset, NVI [50]. The task, named
nonverbal interaction detection (NVI-DET), is formulated to detect each individual, identify the
social group they belong to, and classify their fine-grained social interaction, encapsulated as a triplet
<individual, group, interaction>. This formulation draws inspiration from human–object
interaction (HOI) detection [30, 43, 57], but differs in that it targets human–human social interactions,
including facial expression, gesture, posture, gaze, and touch, that are inherently more nuanced and
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relational. The task poses unique challenges, requiring both accurate localization of individuals and
the interpretation of subtle cues that define social groups and their interactions.

Previous approaches [30, 50] attempt to solve this task by utilizing transformer [5, 46] and hyper-
graph [60] to capture high-order interactions among individuals and social groups. While these
approaches are effective in capturing social interactions among individuals and groups, they have
several drawbacks as follows. First, these methods directly detect social groups without explicitly
modeling the underlying person-to-person relations. This design overlooks a fundamental principle
of social interaction detection: both social interactions and social group composition should emerge
from individual behavior and interactions between individuals. Predicting a group without accounting
for its members introduces ambiguity and uncertainty, especially when subtle interactions like gaze
occur between individuals who are spatially distant. Second, most existing methods embed each
person as a holistic representation, neglecting body parts information that are essential for recognizing
fine-grained social interactions. As a result, they struggle to distinguish interactions seemingly alike
but holding different semantics stemming from subtle visual cues, such as ‘mutual gaze’ versus ‘gaze
following’ or ‘wave’ versus ‘point,’ that require fine-grained social reasoning.

To address these limitations, we propose a part-aware bottom-up group reasoning model for fine-
grained social interaction detection. The core idea of our model is to infer group composition and
interactions by reasoning from fine-grained body part cues to relations between individuals. Instead of
directly detecting both individuals and social groups, we first detect individuals and construct group
representations by aggregating individual-level information based on learned similarities, allowing
social groups to naturally emerge from the interactions between individuals. Moreover, our model
enriches individual embeddings by incorporating part-aware features, which are learned under the
guidance of human pose estimation as privileged information [33] to attend specifically to different
body parts such as face, arms, and legs. These representations encode localized body part cues
such as facial expression, hand gesture, and posture, that are crucial for recognizing fine-grained
social interactions. The proposed group reasoning framework reflects the compositional nature of
social interactions and enables the model to detect fine-grained social interactions with improved
performance.

We evaluated the proposed method on the NVI dataset [50], where it demonstrated substantial
improvements over existing methods. In summary, our contribution is three-fold as follows:

• We propose a bottom-up group reasoning framework that infers social groups based on part-aware
individual representations, rather than directly detect social groups. This design ensures that
group composition naturally emerges from individuals.

• We introduce a part-aware representation learning that leverages pose-guided supervision as
privileged information to capture fine-grained social cues to improve interaction recognition.

• The proposed method outperforms existing approaches on NVI, demonstrating the effectiveness
of incorporating body part representations and bottom-up group reasoning for fine-grained social
interaction detection.

2 Related work

2.1 Social interaction understanding

Fine-grained social interaction recognition. Fine-grained social interaction recognition plays a
central role in interpreting intent, behavior, and social dynamics [3]. Recent advances in computer
vision have explored fine-grained social cues that are subtle yet essential for human communication,
including gaze, facial expression, and gestures. Gaze analysis has been a representative line of work
in fine-grained social interaction understanding, which aims to localize where individuals direct their
attention [6, 7, 15, 20, 42]. Specifically, MTGS [15] introduces a unified dataset for multi-person
gaze following and social gaze prediction, while Tafasca et al. [42] extend the gaze following task that
jointly predicts both the location and semantic label of the gaze target. Facial expression [22, 49, 59],
gesture [14, 37, 58] and posture [9] analysis form another line of research that targets specific types
of fine-grained social interactions. While these methods have shown success, they are typically
developed on specialized datasets that focus on specific signals.
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Group activity understanding. Group activity recognition (GAR) has long been studied as a
representative group activity understanding task, aiming to classify collective activity exhibited by
groups of people. Typical GAR approaches model spatio-temporal relations between individuals
utilizing graph neural networks [53, 55, 56] or transformers [13, 23, 29]. However, these methods are
built on the assumption of a single-group setting, which restricts their applicability to more complex,
real-world scenarios. Beyond recognizing a single group activity, some work tackles multi-group
scenarios in the form of social activity recognition [11, 44, 55] or group activity detection [24], which
aims to localize multiple groups and classify the activity performed by each group. While group
activity detection shares similarity with NVI-DET in that it localizes multiple social groups in a scene,
most of these methods treat individuals as holistic units and focus on activity-level classification,
overlooking fine-grained social cues.

Nonverbal interaction detection. Fine-grained social signals are a rich yet under-explored cue
for understanding social interactions [47]. Wei et al. [50] introduce NVI-DET task, which seeks to
detect fine-grained social interactions by identifying triplets ⟨individual,group,interaction⟩
in an image. This formulation enables unified reasoning over individual and social interaction
through visually grounded nonverbal cues. The accompanying NVI dataset includes annotations
for five interaction categories: facial expression, gesture, posture, gaze, and touch. The proposed
model, NVI-DEHR, leverages hypergraphs [60] to model high-order individual-to-individual and
group-to-group relations, improving its ability to recognize fine-grained social interactions. However,
NVI-DEHR detects social groups directly without explicitly modeling inter-person relations—a
limitation that becomes particularly problematic when detecting interactions like gaze, which often
occur between spatially distant individuals. Moreover, it relies on holistic person representations,
thereby overlooking body part-level cues that are essential for distinguishing visually similar but
semantically distinct interactions (e.g., wave vs.point, or mutual-gaze vs. gaze-following). Unlike this
approach, our method adopts a hierarchical reasoning strategy that first extracts part-aware individual
representations and then infers social groups and their interactions based on inter-personal relations
guided by fine-grained body part cues.

2.2 Human-object interaction detection

Human-object interaction detection (HOI-DET) [4, 12, 16, 21, 25, 28, 30, 35, 43, 57], which predicts
⟨human,object,interaction⟩ triplets, is closely related to NVI-DET. In that sense, HOI-DET
and NVI-DET share structural similarities in their problem formulation and modeling strategies,
such as the use of set-based prediction and relational reasoning. However, HOI-DET primarily
considers pairwise relations between a single human and an object whereas NVI-DET requires group-
aware reasoning among multiple humans. Recent HOI-DET methods explore fine-grained reasoning
to improve interaction understanding. For instance, Wan et al. [48] utilize the off-the-shelf pose
estimator for predicting confidence score. Wu et al. [52] incorporate pose cues to better capture spatial
configuration between humans and objects, highlighting the benefit of human prior in interaction
modeling. Lei et al. [27] leverages large language model (LLM) to reason over body-part contexts,
enabling the model to associate specific interaction types with relevant body regions. However, unlike
these methods, our model leverages human pose only for training, as privileged information [33].
This design allows the model to benefit from fine-grained supervision while maintaining efficient
inference without requiring additional inputs.

3 Proposed method

We propose a part-aware bottom-up group reasoning framework for fine-grained social interaction
detection. The core idea of our framework lies in bottom-up inference of group configurations and
interactions, by leveraging pose-guided part-aware representations and modeling their interpersonal
relations. This section describes the problem formulation of NVI-DET (Sec. 3.1), overall architecture
of the proposed model (Sec. 3.2), training objectives (Sec. 3.3), and inference procedure (Sec. 3.4).

3.1 Problem formulation

The task of fine-grained social interaction detection [50] aims to recognize interactions of each
individual with their respective social groups. Given an input image X ∈ RH0×W0×3, the goal is
to predict a set of triplets Y = {(bi,gi, ci)|bi ∈ R4,gi ∈ R4, ci ∈ RNC , i ∈ [1, N ]}, where each
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Figure 1: Overall architecture of the proposed model. Given an input image, our model extracts the
encoded visual feature using the backbone and the transformer encoder. It then detects individuals
and derives part-aware individual features through the individual embedding enhancer. Group queries
attend to both the encoded feature maps and part-aware individual embeddings to infer social groups
and interaction labels. Finally, triplets are obtained through the association module and NMS.

triplet (bi,gi, ci) consists of an individual bounding box bi, the corresponding group bounding
box gi, and interaction probabilities ci over NC predefined interaction classes. The interaction
probabilities indicate the presence of each interaction for each detected groups. Notably, this
formulation allows a single individual to participate in multiple co-occurring social groups and
interactions, similar to HOI-DET [16].

3.2 Model architecture

We introduce a part-aware bottom-up framework that detects social interactions by progressively
capturing subtle body part cues and leveraging them to infer social groups and their fine-grained
interactions. Fig. 1 illustrates the overall pipeline of our model. Unlike prior methods that directly
regress group bounding boxes and rely solely on holistic human features, our method first detects
individuals and enriches their features with body part cues to ground fine-grained social cues, and
then infers group association and interactions through part-aware reasoning.

Feature extractor. Given an input image X ∈ RH0×Wo×3, we extract a feature map using a
ResNet [17] backbone pretrained on ImageNet [8], followed by a standard transformer encoder [5, 46]
composed of L layers of multi-head self-attention and feed-forward network (FFN). To align the
dimension of the feature map with the dimension of the transformer encoder, a linear projection
is applied before feeding the features into the encoder. The resulting encoded feature map F ∈
RH×W×D enriches the visual features for subsequent reasoning modules.

Individual decoder. Unlike prior work [50], which predicts both individual and group bounding
boxes simultaneously, our individual decoder is dedicated solely to detecting individuals in the image.
We argue that directly predicting a group bounding box without modeling the interactions among
individuals is often ambiguous and counterintuitive. For instance, social groups engaged in mutual
gaze or pointing may be spatially distant, and naïvely predicting a bounding box around them can
inadvertently include unrelated people. To address this, we adopt a sequential approach: we first
detect individuals and subsequently infer groups based on their interactions. The individual decoder
adopts the standard transformer decoder architecture of DETR [5]. It employs a set of NI learnable
queries QI ∈ RNI×D, which attend to the encoded image features to produce individual embeddings
EI ∈ RNI×D. Each output embedding is then passed through a feed-forward network (FFN) to
predict the corresponding individual bounding box coordinates b ∈ RNI×4.

Individual embedding enhancer. To address the fine-grained social interaction detection, which
depends on subtle social cues from specific body parts such as the face, eyes, and hands, we introduce
the individual embedding enhancer, which incorporates localized, body part-aware features into each
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detected individuals. Instead of relying solely on holistic representation, which can obscure subtle
cues essential for distinguishing fine-grained social interactions, we decompose their appearance into
distinct body parts such as face, arms, hands, and legs. Given individual embedding EI , we generate
P part-specific queries for each individual using a set of learnable linear projections:

QP = EI · [W1,W2, . . . ,Wp, . . . ,WP ] ∈ RNI×P×D, (1)

where Wp ∈ RD×D is a learnable weight matrix for the p-th body part. The enhancer refines the
part queries QP via self-attention across part queries and cross-attention with the encoded feature
map F, producing the part embedding EP ∈ RNI×P×D. We then concatenate the part embeddings
EP with the corresponding individual embeddings EI to obtain part-aware individual features:

EA = [EI ,E
1
P , . . . ,E

p
P , . . . ,E

P
P ] ·Wfuse ∈ RNI×D, (2)

where Ep
P denotes the p-th body part embedding and Wfuse ∈ R(P+1)D×D is a learnable projection

matrix. The resulting part-aware individual embedding EA captures both holistic features of the
individual (e.g., appearance, position) and localized body cues (e.g., facial expression, gaze, and
gestures), which are critical for inferring group association and fine-grained social interaction class.

Group decoder. To address the difficulty of directly regressing group bounding boxes without
modeling interpersonal interactions, the group decoder performs group association and interaction
recognition by adopting part-aware bottom-up group reasoning approach. Unlike a standard trans-
former decoder that only attends to visual features, our group decoder leverages a richer context by
attending both the encoded image features F and the part-aware individual embeddings EA, enabling
the model to extract group-level features by aggregating information from relevant individuals includ-
ing their body parts and the feature map. Specifically, the group decoder utilizes a set of NG learnable
group queries QG ∈ RNG×D to produce group embeddings EG, each of which is further decoded
into two outputs: (1) a predicted group bounding box coordinate g ∈ RNG×4 and (2) a multi-label
classification score over the predefined fine-grained social interaction types c ∈ RNG×NC .

Similarity-based association. To associate each detected individual with its corresponding social
group, we adopt a similarity-based association approach. Individual embedding EI and group
embedding EG are separately projected and dot-producted to yield a similarity matrix:

S = MLP(EG) · MLP(EI)
T ∈ RNG×NI . (3)

This matrix represents the affinity between each group and individual, enabling the model to assign
individuals to social groups based on learned similarities. For each predicted group, we select the
individual who has the highest similarity as associated individuals. Unlike prior work that directly
predicts group bounding boxes as spatial proposals using group queries [50], our methods infer group
configuration in a bottom-up manner driven by fine-grained social cues and interpersonal relations.

3.3 Training objective

Our model is trained with five losses: Lind for individual objectness, Lcls for multi-label interaction
classification, Lloc for individual and group bounding box localization, Lpart for body part supervision,
and Lassn for group association. All losses are computed over matched predictions and ground-truth
using the Hungarian algorithm [26].

Standard NVI losses. Three among these five losses, namely Lind, Lcls, and Lloc, are adopted from
the previous work on NVI-DET [50]. Lind and Lcls are based on the focal loss [31] and asymmetric
loss (ASL) [41], respectively, to address the long-tailed and imbalanced nature of the labels. The
localization loss Lloc is computed as a weighted sum of ℓ1 and generalized IoU loss [40].

Part loss. To supervise each part query to focus on distinct body regions, we adopt pose-guided
pseudo-supervision that direct its attention toward the corresponding area. Fig. 2 illustrates the
overall pipeline of pose-guided binary mask generation. We used ViTPose [54] to extract keypoints
for each detected individual, other pose estimation models could also be used though; the pose
estimation model is used only for training as privileged information [33, 45], and thus imposes
no additional space-time complexity in testing. To convert each keypoint into a supervision mask,
we draw a square box centered at the keypoint location and convert it into a binary mask using a
Parzen window function. The size of the window is set proportional to the size of the corresponding
individual box, calculated as: si = α ·max(wi, hi), where (wi, hi) are the width and height of
the i-th individual’s bounding box. The binary mask Mp

i is defined over the feature map such that:
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Mp
i =

{
1 if |u− xp

i | ≤
si
2 and |v − ypi | ≤

si
2 ,

0 otherwise,
(4)

where (xp
i , y

p
i ) is the keypoint location for the p-th part

of the i-th individual, and (u, v) is a spatial coordinate on
the feature map. A mean squared error (MSE) loss is then
computed between each part query’s attention map Ap

σi

and its corresponding mask Mp
i :

Lpart =
1

NIP

NI∑
i=1

P∑
p=1

∥Ap
i −Mp

i ∥
2
2 , (5)

where Ap
i is the attention map of the p-th part query for

the i-th instance, and Mp
i is the corresponding pseudo

ground-truth mask. This supervision promotes localized
attention over the human body, which is particularly bene-
ficial for recognizing interaction types grounded in specific
body parts, including face, shoulders, elbows, wrists, hips,
knees, and ankles.

Association loss. To address the ambiguity of directly regressing group bounding boxes, we associate
individuals into a group based on their similarity scores. We use a binary cross-entropy (BCE) loss
between the predicted and ground-truth similarity scores, computed only over matched groups and
matched individuals. Let σ(i) be the predicted group matched to the i-th ground-truth group, and let
τ(j) be the predicted individual matched to the j-th ground-truth individual. The association loss is
defined as:

Lassn = − 1

|I||Ji|
∑
i

∑
j∈Ji

(
ai(j) logSσ(i)(τ(j)) + (1− ai(j)) log(1− Sσ(i)(τ(j))

)
, (6)

where ai(j) = 1 if the j-th individual belongs to the i-th ground-truth group, I and Ji denote the set
of groups and the set of matched individuals for group i, respectively. This loss encourages the group
embedding to attend to the individuals that belong to the corresponding group in the group decoder,
by increasing the similarity score between their embeddings.

Total loss. Our model is trained with five losses simultaneously in an end-to-end manner. Specifically,
the total training objective is a linear combination of the five losses as follows:

L = λiLind + λcLcls + λlLloc + λpLpart + λaLassn. (7)

3.4 Inference

At inference time, we associate the predicted individual and group embeddings to generate final
predictions in the form of <individual, group, interaction> triplets. To associate individuals
with predicted group embeddings, we use the similarity scores between the group embeddings and
the individual embeddings S ∈ RNG×NI . For each predicted group i, we construct a triplet as:
⟨bj∗ , gi, ci⟩, where bj∗ is the predicted bounding box coordinates of the individual with the highest
similarity j∗ = argmaxj Si(j), gi is the predicted group box coordinates, and ci is the predicted
interaction logits. Finally, we apply a triplet NMS to remove redundant predictions: triplets are
suppressed if their individual and group bounding boxes, as well as predicted interaction labels,
significantly overlap with those of a triplet with higher interaction scores.

4 Experiments

4.1 Experimental settings

Dataset. To verify the proposed method for diverse social scenarios, we considered two benchmarks:
NVI [50] and Café [24]. NVI contains 13,711 images, with 9,634 for training, 1,418 for validation,
and 2,659 for test. It defines 22 atomic-level interaction classes grouped into 5 categories: facial
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Table 1: Comparison with the state-of-the-art NVI models on NVI-DET.

Method val test
mR@25 mR@50 mR@100 AR mR@25 mR@50 mR@100 AR

m-QPIC [43] 56.89 69.52 78.36 68.26 59.44 71.46 80.07 70.32
m-CDN [57] 55.57 71.06 78.81 68.48 59.01 72.94 82.61 71.52

m-GEN-VLKT [30] 50.59 70.87 80.08 67.18 56.68 74.32 84.18 71.72
NVI-DEHR [50] 54.85 73.42 85.33 71.20 59.46 76.01 88.52 74.67

Ours 59.43 76.62 87.43 74.49 63.59 80.62 91.34 78.52

Table 2: Comparison with state of the arts on Café detection-based setting. Scores are from [24].

Method
Split by view Split by place

Group
mAP1.0

Group
mAP0.5

Outlier
mIoU

Group
mAP1.0

Group
mAP0.5

Outlier
mIoU

Joint [10] 9.14 31.83 42.93 6.08 18.43 2.83
JRDB-base [11] 12.63 35.53 31.85 8.15 22.68 33.03

HGC [44] 6.77 31.08 57.65 4.27 24.97 57.70
Café-base [24] 14.36 37.52 63.70 8.29 28.72 59.60

Ours 18.23 46.88 67.62 10.65 39.03 63.60

expression, gesture, posture, gaze, and touch. These include both 16 individual-wise and 6 group-wise
interactions, enabling the analysis of both fine-grained and group-level reasoning for fine-grained
social interaction detection. Café is a large-scale multi-view, multi-person video benchmark for group
activity detection. Each clip contains multiple co-occurring groups performing distinct activities,
allowing us to evaluate whether the proposed part-aware reasoning can generalize from fine-grained
social interactions to broader group activity understanding.

Evaluation metrics. Following NVI-DET protocol, we report mean Recall@K (K = {25, 50, 100}),
and their average (AR). Each recall is averaged over three IoU thresholds: 0.25, 0.5, and 0.75. For
Café, we use Group mAP at IoU thresholds of 0.5 and 1.0, and Outlier mIoU, which jointly capture
accuracy in detecting multiple simultaneous group activities.

Hyperparameters. Our model is initialized with the pretrained DETR ResNet-50. The feature
dimension C and the transformer dimension D are set to 2048 and 256, respectively. The encoder
consists of 6 layers with 8 attention heads, while the instance decoder, individual embedding enhancer,
and interaction decoder comprises 3 layers with 8 attention heads. The number of individual queries,
group queries, and parts are 24, 32, and 13, respectively. The NMS threshold is set to 0.5.

Training. We train our model for 90 epochs using the AdamW optimizer [34] with β1 = 0.9,
β2 = 0.999, and ϵ = 1e−8. The learning rate is set to 1e−4 initially and decayed to 1e−5 after 60
epochs. We use a mini-batch size of 4. Loss coefficients are set to λi = 1.0, λc = 2.0, λl = 1.0, ,
λℓ1 = 2.5, λGIoU = 1.0, λp = 10.0, and λa = 5.0. For part supervision, we use ViTPose [54] to
extract 13 keypoints per person, excluding four head-localized keypoints (left-eye, right-eye,
left-ear, right-ear) to avoid spatial overlap in pseudo-supervision masks. The window size
proportion α is set to 0.2 relative to the size of the individual box.

4.2 Quantitative analysis

We compare our method with three HOI-DET baselines, m-QPIC [43], m-CDN [57], and m-GEN-
VLKT [30], with modification to the NVI-DET setup, as well as the current state-of-the-art NVI-DET
model, NVI-DEHR [50]. Table 1 presents performance comparisons on the NVI dataset [50], where
our model outperforms all the others by substantial margins on both validation set and test set.
Specifically, our method outperforms NVI-DEHR by 3.29 improvement in AR on the validation set
and 3.85 improvement in AR on the test set. Notably, the gains are even more pronounced in mR@25,
with improvements of 4.58 and 4.13 on the validation set and test sets, respectively. It demonstrates
the efficacy of our part-aware bottom-up group reasoning framework in both detecting social groups
and inferring fine-grained social interactions.
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Table 3: Comparison with MLLMs.

Method mR@25 mR@50 mR@100 AR
Ours 63.59 80.62 91.34 78.52

LLaVA [32] 21.09 36.75 53.59 37.14
LLaVA-LoRA [18] 17.40 32.12 51.93 33.81

Table 4: Impact of pose supervision.

Setting mR@25 mR@50 mR@100 AR
Ours 59.43 76.62 87.43 74.49
VLM 55.18 76.94 86.96 73.02

Table 5: Impact of the proposed module.

Setting mR@25 mR@50 mR@100 AR
Ours 59.43 76.62 87.43 74.49

w/o enhancer 55.20 73.25 88.05 72.17
w/o sim-assn 55.95 74.95 87.36 72.75

w/o both 56.29 70.52 85.77 70.86

Table 6: Impact of the loss functions.

Setting mR@25 mR@50 mR@100 AR
Ours 59.43 76.62 87.43 74.49

w/o Lassn 30.38 47.20 64.49 48.32
w/o Lloc 49.56 71.73 83.59 68.29
w/o Lpart 54.32 78.80 87.60 73.58

Table 7: Impact of the number of parts.

P mR@25 mR@50 mR@100 AR
5 57.01 75.29 87.01 73.11
9 54.59 76.69 87.88 73.05

13 (Ours) 59.43 76.62 87.43 74.49
17 (All) 54.87 76.30 88.14 73.10

Table 8: Impact of the number of queries.

NI NG mR@25 mR@50 mR@100 AR
24 24 58.94 76.57 86.94 74.15
24 32 59.43 76.62 87.43 74.49
32 24 58.06 76.59 88.01 74.22
32 32 56.56 75.81 86.95 73.11

Table 2 shows experiments on Café [24], a recent and challenging benchmark for group activity
detection that emphasizes multi-group scenarios. Note that our method is not modified to perform
temporal modeling and rather we apply it as-is, in a frame-wise manner. Despite the lack of temporal
modeling, our method outperformed prior methods in terms of both Group mAP and Outlier mIoU.
These results demonstrate the effectiveness of our method in the related task and further suggest
that part-aware representations and bottom-up group reasoning not only benefit fine-grained social
interaction detection, but also contribute to group activity understanding tasks.

Table 3 presents a comparison between our method and a recent MLLM, LLaVA-1.6-vicuna-7B [32],
on the NVI test set. To support LLaVA, we provided ground-truth group bounding boxes and cropped
the image accordingly before querying the model to identify fine-grained social interactions. Even
under this favorable setup, LLaVA achieved only 37.14 AR, which is far lower than our method.
Moreover, we fine-tuned LLaVA using Low-rank adaptation (LoRA) [18] on the NVI training set.
We applied LoRA with rank 8 to the attention projection layers of LLaVA, enabling adaptation
with a relatively small number of trainable parameters. We trained the LoRA adapter using ADAM
optimizer with a learning rate of for 15k steps. However, the result shows that LoRA fine-tuning
does not yield additional gains. This suggests that even in a closed-world setting, naively fine-tuning
LLaVA may not be sufficient, and additional task-specific prompt design, longer training steps, or
full fine-tuning—may be required.

4.3 In-depth analysis

We verify the effectiveness of our model through in-depth analysis on NVI validation set.

Impact of the pose supervision. We employ CLIP [39] to learn specific body-parts using text
embeddings derived from body-part names. To this end, text prompts are constructed in the form of
“A photo of a person [body part]”. As summarized in Table 4, our method consistently outperformed
this VLM-guided variant, particularly in mR@25 and average recall (AR). It suggests that CLIP
guidance is less effective in providing fine-grained spatial cues than pose estimators. We attribute this
performance gap to the relatively weak spatial reasoning capabilities of current VLMs, which are
primarily trained via the image-text contrastive learning.

Impact of the proposed modules. To address the contribution of each proposed component, we
evaluate three ablated variants of our model: (1) removing the individual embedding enhancer,
resulting in individual embeddings without part-aware enrichment; (2) replacing the similarity-based
association with the conventional guided embedding [30, 50]; (3) removing both modules together.
As shown in Table 5, removing either component leads to a noticeable drop in performance, and the
degradation becomes more severe when both are excluded. It demonstrates the importance of both
pose-guided part-aware representation and similarity-based bottom-up group reasoning approach.
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Figure 3: Visualizations of the cross-attention map from the individual decoder, individual embedding
enhancer, and group decoder. Blue and green bounding boxes indicate individuals and groups,
respectively. Predicted interaction labels are shown on the right.

Impact of the loss function. To assess the impact of each loss, we ablate Lpart, Lassn, and Lloc for
group localization, as described in Sec. 3.3. As shown in Table 6, removing Lassn leads to a drastic
drop in performance, as the model can no longer associate individuals with their corresponding
groups, underscoring the importance of similarity-based reasoning in our framework. Excluding
Lloc also causes a clear performance degradation, suggesting that accurate spatial localization of
group boxes is helpful. Lastly, removing Lpart results in a slight performance drop, demonstrating the
effectiveness of pose-guided supervision for detecting fine-grained social cues.

Effect of the part size. Table 7 summarizes the effect of the part size P . We observe that using
13 parts, which excludes redundant facial keypoints, achieves the best overall performance. Using
fewer parts leads to a drop in performance. Interestingly, using all 17 keypoints does not improve
performance and even results in degradation. This highlights that not all key points are equally useful;
using overlapping or redundant parts may confuse the model and hurt model effectiveness.

Effect of the number of queries. Table 8 shows the effects of the number of individual queries
NI and group queries NG. To ensure sufficient capacity for representing multiple individuals and
interactions, we set both NI and NG to be at least 24, based on the maximum number of interactions
observed in the NVI training set. The best performance is achieved with 24 individual queries and
32 group queries. Unlike previous methods adopt guided embedding that require the number of
individual and group queries to be identical, our bottom-up reasoning framework with similarity-based
association allow for a flexible number of queries for each component.

4.4 Qualitative results

Attention visualization. We visualize the cross-attention map of the last layer in the individual
decoder, individual embedding enhancer, and group decoder for each predicted triplet in Fig 3. The
individual decoder shows attention focused on spatial boundaries of the dedicated individual boxes,
while the individual embedding enhancer attends to each body part of the individual; among these,
we select one representative body part attention. The group decoder attends to both the spatial
boundaries and regions that are essential for inferring interactions. As shown in Fig. 3 (a) and (b), the
group decoder attends to the facial regions of the individuals belonging to the social group, while in
Fig. 3 (d), it focuses on the hands to detect handshake interaction. In Fig. 3 (c), despite the incorrect
individual box predictions due to overlapping, our model successfully predict hug interaction by
leveraging part-aware feature attending to the arms through the individual embedding enhancer.
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Figure 4: Qualitative results of our model on the NVI test-set. The first column shows input images,
and the remaining columns visualize the predicted NVI-DET triplets. Blue and green boxes denote
individuals and groups, respectively. Predicted interaction labels are presented below, where wrong
predictions are highlighted in red.

Triplet visualization. Fig. 4 shows qualitative results of our model on NVI test set. For each image,
we select and visualize among top-10 predictions with the highest confidence scores. The results
demonstrate that our model effectively localize individuals, identifies their corresponding social
groups, and recognize fine-grained interactions through part-aware bottom-up reasoning. Even in
the failure cases—for example, arms-akimbo in the fourth row and wave in the last row—the model
attends to relevant part cues, such as arms and hands, resulting in plausible predictions.

5 Conclusion

We have presented a part-aware bottom-up group reasoning model for fine-grained social interaction
detection. Our approach addresses key limitations of prior methods that rely on holistic representations
of individuals and directly detect groups. By leveraging pose-guided supervision to enhances part-
aware features and apply bottom-up group reasoning, our method effectively captures localized social
signals that are essential for recognizing subtle and nuanced social behaviors. Extensive experiments
on NVI validate the effectiveness of our method. We believe this framework offers a promising
direction for advancing social interaction understanding.

Limitation. Our model relies on pretrained pose estimator to extract part-aware representations,
which depends on external model and predefined keypoints information. A valuable direction
for future would be to explore self-supervised or end-to-end approaches that can learn part-aware
representations without relying on pose estimator or predefined keypoints.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main contribution, introducing a part-aware bottom-up group reasoning
framework for fine-grained social interaction detection, is clearly presented in the abstract
and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations, the reliance on pose estimators, are discussed as
limitations in Sec. 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the proposed framework and its implementation details in Sec. 3.2
and Sec. 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code and the instructions in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe implementation details and hyperparameters in Sec. 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report error bars or statistical significance metrics, due to resource
and time constraints.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide computational resources in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully reviewed the NeuRIPS Code of Ethics and made every
effort to ensure that our research follow its principles.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our method detects fine-grained social interactions in an input image. While it
may contribute to future advances in social behavior understanding, we do not foresee direct
societal risks or harmful consequences from the proposed method in its current form.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our method does not release any model or dataset with high risk of misues.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use the NVI dataset [50] and the codebase of NVI-DEHR [50] and
ViTPose [54], which is publicly release under MIT license and Apache-2.0 license. All
assets are appropriately cited and follow the terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the code in the supplementary material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our method does not involve LLMs as the core methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix
This appendix provides contents omitted in the main paper due to the page limit. In Sec. A, we
describe the detailed architecture of the proposed model, with a particular focus on the group decoder.
Sec. B presents further implementation and training details. Additional experimental results and
in-depth analysis are presented in Sec. C. Qualitative comparison with the previous state-of-the-art
models, NVI-DEHR are presented in Sec. D. More qualitative results are illustrated in Sec. E.

A Details of the group decoder

We provide additional details of the group decoder to clarify the design and functionality, comple-
menting the description in Sec. 3.2. The group decoder plays a central role in our framework, as it
performs part-aware bottom-up group reasoning to infer both social group configurations and their
corresponding interactions. Fig. S1 illustrates detailed operations of the group decoder layers. As
described in Sec. 3.2, the proposed group decoder attends two information sources: (1) the part-aware
individual embeddings EA obtained through the individual decoder and individual enhancer, and (2)
the encoded feature map F. Each group decoder layer begins with multi-head self-attention among
a set of learnable queries QG. This is followed by a multi-head cross-attention layer where the
group queries attend to the part-aware individual embeddings. Through this attention layer, the group
decoder learns to associate socially relevant individuals by capturing fine-grained body part-aware
cues in a bottom-up manner. Finally, as in prior work, the group queries attend to the encoded
feature map to capture appearance and localize the corresponding group regions. The resulting group
embeddings are then used for three purposes: (1) interaction classification, (2) group bounding box
regression, and (3) computing similarity scores for determining group membership. These predictions
are made through separate feed-forward heads applied to each group query output.

B Experimental details

We provide additional implementation details to complement those described in Sec. 4.1. Table S1
presents the specific hyperparameters used in our experiments. All experiments are conducted on
four NVIDIA GeForce RTX 3090 GPUs. We implement our model using PyTorch [38] and some of
the official code repository of NVI [50] licensed under an MIT License.
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Figure S1: Detailed architecture of the group decoder.
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Table S1: Hyperparamaters. We provide hyperparameters used during training.

Hyperparameters Value
dimension in transformer D 256
# of individual queries NI 24

# of group queries NG 32
# of parts P 13

# of encoder layers 6
# of individual decoder layers 3

# of individual embedding enhancer layers 3
# of group decoder layers 3
Box window size ratio α 0.2

λi 1.0
λc 2.0
λl 1.0
λℓ1 2.5
λGIoU 1.0
λp 10.0
λa 5.0

# of epochs 90
batch size 16
optimizer AdamW

learning rate 1e−4
backbone learning rate 1e−5

learning rate drop at epoch 60
learning rate after drop 1e−5
NMS IoU threshold θ 0.5

Table S2: Impact of the pose-guided mask error.

ϵ mR@25 mR@50 mR@100 AR
0.0 59.43 76.62 87.43 74.49
0.2 59.90 75.16 87.84 74.30
0.5 58.52 76.54 86.64 73.90
1.0 53.26 74.67 88.34 72.09
2.0 53.89 74.73 87.94 72.19

C Additional experiments

Impact of the pose error. To verify the robustness of our method to pose errors, we perturb
the outputs of the off-the-shelf pose estimator. Specifically, for each keypoint, we apply random
displacements ∆x and ∆y sampled from a uniform distribution in the range [−ϵ · s, ϵ · s], where ϵ
controls the magnitude of the perturbation and s is the window size of the pose-guided mask. Table S2
summarizes the results across varying perturbation levels. We observe that even with substantial
noise, e.g., ϵ = 2.0, the performance drop is minor. These results indicate that our pose-guided
supervision is robust to moderate keypoint localization errors, and does not require highly accurate
keypoint estimation to remain effective.

Loss coefficients. We investigate the effect of loss coefficients λp and λa, which control the weights
of the part loss Lpart and the association loss Lassn, respectively. As shown in Table S3, removing the
association loss (i.e., λa = 0) leads to a dramatic performance drop, as the model is unable to associate
individuals with their corresponding groups. While a small coefficient (λa = 1.0) underperforms,
the model achieves robust performance when λa is in the range of 2.0 to 5.0. For the part loss
coefficient, our model achieves reasonably strong performance even with zero or small loss weight λp,
indicating that the model is not highly sensitive to this parameter. We hypothesize that this robustness
arises from the model’s ability to capture nuanced cues from individual embeddings through the part
projection layer and individual enhancer, even with limited explicit supervision. Since our model
performs well across a wide range of λp, from 0.0 to 10.0, we select the hyperparameter with the
highest mR@25 for our final model and set λp = 10.0 and λa = 5.0.
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Table S3: Impact of the loss coefficients.

Lassn Lpart mR@25 mR@50 mR@100 AR
0.0 10.0 30.38 47.20 64.49 48.32
1.0 10.0 40.18 57.12 75.53 57.61
2.0 10.0 57.35 78.31 88.96 74.88
5.0 0.0 54.32 78.80 87.60 73.58
5.0 2.0 59.10 75.09 88.06 74.08
5.0 5.0 54.48 75.15 87.37 72.33
5.0 10.0 59.43 76.62 87.43 74.49

Table S4: Impact of other loss coefficients.

λi λc λl mR@25 mR@50 mR@100 AR
(1) 1.0 2.0 1.0 59.43 76.62 87.43 74.49
(2) 0.5 2.0 1.0 52.78 78.19 88.94 73.31
(3) 2.0 2.0 1.0 52.88 74.56 87.49 71.64
(4) 1.0 1.0 1.0 46.32 73.66 85.85 68.61
(5) 1.0 5.0 1.0 56.83 75.56 88.78 73.72
(6) 1.0 2.0 0.5 54.31 75.01 86.88 72.09
(7) 1.0 2.0 2.0 51.17 73.62 89.00 71.26

We further investigated the effect of the other loss coefficients λi, λc and λl as suggested. Table S4
reports the performance under various combinations of these weights. First, for λi, comparing (1),
(2), and (3), we find that increasing λi to 2.0 leads the model to overly emphasize person detection,
resulting in a noticeable performance drop. Next, varying λc, a comparison of (1), (4), and (5) shows
that too small a value degrades performance, with the best result at 2.0, while 5.0 causes a slight
drop. Finally, for λl, comparing (1), (6), and (7) reveals that the performance remains relatively stable
across its values, but λl = 1.0 leads to the best overall results. As stated in Section 4.2 and Table S1,
we select configuration (1) as our final setting.

Triplet NMS IoU threshold. We investigate the effect of the triplet NMS threshold in post-processing,
as summarized in Table S5. As explained in Sec. 3.4, triplet NMS suppresses redundant predictions
by removing overlapping triplets that satisfy these conditions: (1) their individual bounding boxes
have an IoU above a threshold θ, (2) their group bounding boxes also have an IoU above θ, and (3)
their predicted interaction class is the same. In each such group of duplicates, only the triplets with
the highest confidence for the interaction class is remained. Without NMS, the performance drops
approximately 10p in all AR. If IoU threshold θ is set too low, NMS becomes overly aggressive and
removes too many predictions; if too high, duplicate predictions remain. Interestingly, we observe
different trends for individual-wise interactions and group-wise interactions. For individual-wise
interactions, using a high IoU threshold remains many duplicate predictions, which negatively impacts
performance. In contrast, for group-wise interactions, using a low IoU threshold aggressively removes
valid predictions, resulting in performance degradation. This suggests that individual-level predictions
benefit more from filtering redundant triplets, while group-level predictions are more sensitive to
the loss of relevant instances. On the validation set, we find that θ = 0.5 yields the best overall
performance, and we use it as the default triplet NMS threshold in all experiments.

Class-wise recall. Table S6 compares our method and NVI-DEHR [50] in a class-wise manner.
Among the 22 interaction classes, the two most underrepresented categories, beckon and palmout,
exhibit notably low performance for both methods due to their rarity. Nonetheless, our method
achieves notably higher recall (66.67% and 22.22%) compared to NVI-DEHR (16.67% and 11.11%),
suggesting improved robustness to data imbalance. We attribute this improvement to the use of
part-aware representations, which allow the model to explicitly focus on the specific body parts.
Unlike holistic representations that may overlook infrequent combinations of body parts, part-aware
modeling enables better generalization to individual body parts and consequently leads to more
reliable detection of fine-grained interactions such as beckon and palmout, even under limited training
examples for these classes.
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Table S5: Effect of the triplet NMS threshold.

IoU individual group all
mR@25 mR@50 mR@100 AR mR@25 mR@50 mR@100 AR AR

0.1 58.59 76.08 85.89 73.52 56.26 60.80 62.01 59.69 69.75
0.3 58.03 78.74 91.64 76.14 63.12 70.56 73.66 69.11 74.22
0.5 55.74 75.65 88.56 73.32 69.26 79.18 84.41 77.62 74.49
0.7 46.43 74.27 86.33 69.01 71.70 83.54 89.43 81.56 72.43
0.9 43.52 69.22 82.10 64.95 71.15 83.07 89.84 81.36 69.42
- 37.51 61.64 76.29 58.48 67.49 77.38 86.13 77.00 63.53

Table S6: Class-wise recall (%) comparison between Ours and NVI-DEHR.
Method neutral anger smile surprise sadness fear disgust wave point beckon palmout
Ours 93.17 72.38 92.29 82.35 76.06 66.92 81.24 72.22 81.59 66.67 22.22
NVI-DEHR [50] 92.75 72.83 94.57 82.52 78.35 74.42 70.49 64.14 73.18 16.67 11.11
Method arm-crossing leg-crossing slouching arms-akimbo bowing gaze-aversion mutual-gaze gaze-following hug handshake hit
Ours 88.19 87.40 88.03 87.79 88.81 70.56 80.67 78.91 73.74 74.68 100.00
NVI-DEHR [50] 79.79 85.91 55.13 70.34 84.28 60.89 78.34 83.20 83.73 74.28 100.00

D Qualitative comparison with previous work

Fig. S2 presents a comparison between the attention maps and predictions of our model and those of
the previous state-of-the-art, NVI-DEHR [50]. Specifically, we visualize the cross-attention maps
from the last layer of the interaction decoder in NVI-DEHR and the group decoder in our model.
We observe distinct characteristics in the attention maps of NVI-DEHR and our model. Since NVI-
DEHR adopts a guided embedding method, its attention maps tend to focus solely on the individual
bounding box area (shown in blue), even for group-level interactions such as ‘mutual gaze’ in (a)
and ‘handshake’ in (b). In contrast, our model distributes attention not only within the individual but
also across other relevant people with high similarity scores. In (a) and (b), our method shows strong
attention on regions such as the head or hands of the group members, demonstrating the benefits
of part-aware group reasoning. Examples (c) and (e), which involve individual-level interactions
such as ‘wave’, ‘point’, and ‘surprise’, demonstrate our model’s ability to focus on fine-grained body
parts like the face, hands, elbows, and legs. This part-aware reasoning enables our model to detect
subtle interactions that NVI-DEHR misses. In the failure case shown in (d), where both models make
incorrect predictions, our model attends to hand and elbow part cues associated with interactions like
‘handshake’ or ‘hit’—resulting in a more plausible prediction. Finally, in (g), we highlight a limitation
of direct group box prediction: since NVI-DEHR does not explicitly predict group membership, it
tends to attend to individuals who are spatially included in the predicted group box, even if they are
not actual group members, leading to incorrect interaction predictions. In contrast, our model, while
also attending to the seated person, distributes attention across relevant regions, such as the hands
and faces of interacting individuals, and correctly identifies the ‘mutual gaze’ interaction.

E Additional qualitative results

We visualize more qualitative results of our model on NVI test set as shown in Fig. S3. For each
image, we select among top-10 predictions with the highest confidence scores. These results further
demonstrate the model’s ability to capture diverse fine-grained social interactions. Notably, the
model successfully detects posture interactions such as ‘bowing’, ‘arm-crossing’, and ‘arms-akimbo’,
which require attention to subtle body parts. In the last column of the third row and the third column
of the fifth row, the model predicts a ‘slouching’ and ‘arm-crossing’, respectively. Although it is
not annotated in the ground-truth, it is a reasonable prediction based on the individual’s posture,
illustrating the model’s sensitivity to subtle body cues even in ambiguous cases. It also accurately
predicts gaze interactions such as ‘gaze-following’ and ‘mutual-gaze’, by attending to fine details.
Moreover, the results show that our model accurately detects various types of interactions, including
touch interactions like ‘hug’ and ‘handshake’, as well as expressions such as ‘smile’, ‘neutral’, ‘fear’,
and ‘disgust’, further highlighting its fine-grained perception capability.
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Figure S2: Visualization of cross-attention maps and predictions for NVI-DEHR [50] and our model.
In the attention maps, yellow indicates high attention and purple indicates low attention value. In
the prediction result, blue and green bounding boxes indicate individuals and groups, respectively.
Incorrect predictions are highlighted in red.
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Posture: bowing Gaze: gaze-following Expression: neutral Posture: leg-crossingImages

Images Posture: arm-crossing Posture: arms-akimbo Gaze: gaze-following Gaze: gaze-following

Expression: fear Expression: fear Gaze: gaze-following Posture: slouchingImages

Images
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Gaze: gaze-following Gaze: gaze-following Touch: hug Expression: smile

Touch: hug Expression: neutral Gaze: gaze-following Expression: smile
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Figure S3: Additional visualizations of our model’s predictions on the NVI test set. The first column
shows the input image, and the remaining columns visualize the predicted triplets. Blue and green
bounding boxes denote individual and groups, respectively. Predicted interaction classes are presented
below, with incorrect predictions highlighted in red.
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