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Towards Efficient and Scalable Implementation
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Abstract
Differentially private stochastic gradient descent
(DP-SGD) is the standard algorithm for training
machine learning models under differential pri-
vacy (DP). The most common DP-SGD privacy
accountants rely on Poisson subsampling to en-
sure the theoretical DP guarantees. Implement-
ing computationally efficient DP-SGD with Pois-
son subsampling is not trivial, which leads to
many implementations that ignore this require-
ment. We quantify the computational cost of
training deep learning models under differential
privacy by benchmarking efficient methods with
the correct Poisson subsampling requirement. We
find that using the naive implementation DP-SGD
with Opacus in PyTorch has a throughput between
2.6 and 8 times lower than that of SGD. How-
ever, efficient gradient clipping implementations
like Ghost Clipping can roughly halve this cost.
We propose alternative computationally efficient
ways of implementing DP-SGD with JAX that
use Poisson subsampling and performs compara-
bly with efficient clipping optimizations based on
PyTorch. We highlight important implementation
considerations with JAX. Finally, we study the
scaling behavior using up to 80 GPUs and find
that DP-SGD scales better than SGD.

1. Introduction
Machine learning (ML) models’ training data can be vulner-
able to extraction (Balle et al., 2022; Carlini et al., 2021).
Differential Privacy (DP) (Dwork et al., 2006) is the gold
standard for formalizing the privacy leakage of training data
in ML and mitigating the risk of privacy attacks on the train-
ing data. DP is deployed in many applications that involve
sensitive data (Abowd, 2018; Cormode et al., 2018).
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Figure 1. Relative throughput (FP32) to the respective non private
baseline (higher is better) on NVIDIA A100. For each optimization
method and each model size, we divide its throughput with the
non-private counterpart. Throughput is the number of processed
instances per second. In this benchmark we distinguish between
precision modes. They are available on both frameworks and
significantly improve the throughput for the different DP-SGD
implementations.

The established algorithm for integrating DP into the train-
ing pipeline of deep learning models is DP stochastic gradi-
ent descent (DP-SGD) (Rajkumar & Agarwal, 2012; Song
et al., 2013; Abadi et al., 2016), which is the DP adaptation
of SGD (see also Alg. 1). DP-SGD has two major drawbacks
in comparison to SGD: higher computational cost and loss
in utility. DP-SGD requires more memory and is compu-
tationally more expensive due to the per-example clipping.
The utility in comparison to non-DP training drops, but
this can be mitigated to some extent by using larger batch
sizes (Räisä et al., 2024) and training longer (Ponomareva
et al., 2023) which further increase the computational cost.

Standard DP privacy accountants assume so-called Poisson
subsampling, where each example is selected independently
at each iteration with a fixed probability. This implies that
different minibatches will be of different sizes, making ef-
ficient implementation more difficult. As a result, many
existing implementations forego proper implementation of
Poisson subsampling. Recent research (Lebeda et al., 2024;
Chua et al., 2024a;b; Annamalai et al., 2024) shows that
such implementations may have significantly weaker privacy
guarantees than claimed under the Poisson subsampling as-
sumption.
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List of contributions In this work we conduct an extensive
empirical study on the computational efficiency of DP-SGD
using Poisson sub-sampling, focusing on fine-tuning a wide
range of large image classification models. Our findings can
be applied to any other large models trained or fine-tuned
with DP-SGD. Our main contributions are as follows:

1. We re-implement all DP-SGD methods with Poisson
subsampling that is fully DP and share the source code.

2. We propose a JAX implementation relying on proper
Poisson sampling that is in comparison to a naive JAX
implementation not prone to re-compilation and outper-
forms its throughput by two times (See Sec. 3).

3. We find that non-optimized training with DP-SGD costs
per-epoch between 2.6 and 3.2 times more than non-
private training for ViT and 4 to 8 times for ResNets (See
Sec. 5). We identify the reasons that lead to the higher
computational cost of DP-SGD using profiling.

4. We benchmark different strategies that can drastically
reduce this cost: (i) More efficient gradient clipping
implementations of DP-SGD (See Fig. 1 and Sec. 6.1).
(ii) Lower Precision with TF32 (See Sec. 6.2).

5. We scale up the training to 80 GPUs and find that DP-
SGD scales better than non-private training (See Sec. 8).

2. Background
This section will explain the main DP-SGD algorithm and
optimizations to alleviate its computational cost.

2.1. DP-SGD Algorithm

Alg. 1 is the original DP-SGD algorithm, with virtual batch-
ing, as proposed by Abadi et al. (2016).

Virtual Batching distinguishes between logical and physi-
cal batches. Logical batches are divided into multiple phys-
ical batches to enable optimizer steps with many samples
without running out of memory. For instance, we typically
sample logical batch sizes of L = 25000 while the memory
fits < 300 samples at a time. Implementing DP-SGD with
virtual batching Alg. 1 does not modify the privacy account-
ing. The amount of noise added is the same and does not
affect the model utility (Ponomareva et al., 2023).

Poisson subsampling Interestingly, Bu et al. (2022) and Bu
et al. (2023) never mention Poisson subsampling in their
works of Mix Ghost clipping and Book Keeping. Further-
more, Bu et al. (2022) claims a speed-up of ×1.7 against
other algorithms with a fixed batch size, which would af-
fect the privacy accounting method. The same happens in
practice for JAX implementations (De et al., 2022), where
sampling is done by shuffling the dataset and using each
sample once per epoch. While this makes efficient imple-
mentation easier, it does not use the correct Poisson subsam-
pling assumed by privacy accounting methods. Therefore,

Algorithm 1 Virtual Batching DP-SGD

Input: Training data points {x1, . . . , xN}, loss function
L(θ) = 1

N

∑
i L(θ, xi)

Parameters: learning rate ηt, noise scale σ, gradient
norm bound C, number of steps T , approximate logical
batch size L, physical batch size p.
for t ∈ [T ] do
B ← {xj1 , . . . , xjm} sample with rate L/N .
P ← {B1, . . . , Bk} split B into physical batches of
size p.
θacc ← 0
for s ∈ [P ] do

For each i ∈ s compute gt(xi)← ∇θtL(θt, xi)

gt(xi)← gt/max
(
1,

∥gt(xi)∥2

C

)
{Clip gradient}

θacc ← θacc +
∑

i gt(xi) {Accumulate gradient}
end for
g̃t ← 1

|L| (θacc +N (0, σ2C2I)) {Add noise}
θt+1 ← θt − ηtg̃t {Step}

end for
Return Learned parameters θT and the privacy cost from
a privacy accountant.

the implementation might have significantly weaker privacy
properties than claimed (Lebeda et al., 2024; Chua et al.,
2024a;b; Annamalai et al., 2024). All our experiments are
based on Poisson subsampling which is compliant with the
commonly used privacy accounting.

2.2. DP-SGD Gradient Clipping Optimizations

We benchmark five types of clipping methods. Table 1
shows which clipping optimizations we are benchmarking
against the library or framework that implements it.

Ghost clipping computes the loss gradient norm after the
backpropagation step and then reweights the loss to update
the clipped gradients. Its main contribution is memory sav-
ings at the cost of adding another backward pass (Li et al.,
2022).

Mixed Ghost clipping (Bu et al., 2022) is a method that
builds on-top of Ghost clipping. It implements the ghost
clipping technique for convolutional layers. Its main con-
tribution is that the algorithm will decide when to clip the
gradients using per-example or ghost. This difference mat-
ters because the ghost clipping is less efficient when the
layer’s input dimensions are too high-dimensional. E.g.,
for ResNets, each clipping method will be applied for half
of the layers. The first layers will be clipped using the the
per-example and then ghost clipping in the bottom layers.
As the model goes deeper, the feature size decreases, and the
number of channels increases, prioritizing ghost clipping
(Bu et al., 2022).
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Table 1. Benchmarked DP-SGD frameworks and libraries. Note that Opacus Ghost Clipping is in development.

PYTORCH JAX
CLIPPING MODE NATIVE OPACUS PRIVATEVISION (PV) FASTDP (BK) NATIVE OURS

(YOUSEFPOUR ET AL., 2021) (BU ET AL., 2022) (BU ET AL., 2023)

NON-PRIVATE
PER-EXAMPLE
GHOST CLIPPING (LI ET AL., 2022) ( )
MIX GHOST (BU ET AL., 2022)
MIX OPT (BU ET AL., 2023)
MASKED DP-SGD (OURS, SEC. 3)

Book Keeping (Bu et al., 2023) uses all the previous tech-
niques but requires only one backpropagation pass without
explicitly calculating the per-example gradients. It avoids
the second pass that ghost clipping does by reusing the in-
termediate results of the output gradients to calculate the
sum of the clipped gradients and the clipping factor. Book
Keeping can also be implemented together with the Mix
Optimization, which does the same evaluation as the mix
ghost clipping, but also determines whether doing a second
backward pass is more efficient.

3. Avoiding Re-compilation in JAX
Using JAX for DP-SGD introduces complexities, partic-
ularly around Poisson subsampling which is crucial for
privacy accounting. Implementing Poisson subsampling
results in variable logical batch sizes that lead to variability
in the size of the last physical batch which require JIT to
recompile, leading to graph retracing which is costly and
contributes to execution run variability (Chua et al., 2024a).

Masked DP-SGD We propose an algorithm, called masked
DP-SGD, that overcomes the issue of recompilation at the
cost of computing slightly more gradients than the naive
implementation while at the same time using proper Poisson
subsampling and therefore ensuring the correct privacy bud-
get. We execute the following sub-steps at every iteration
and highlight the differences to the naive implementation
(steps 2 and 4) (See also Alg. A1):

1. We sample a logical size using Poisson sampling.
2. We round up the number of samples for which we com-

pute per-sample gradients so that it is divisible by the
physical batch size without remainder.

3. We compute the per-sample gradients.
4. We mask out gradients so that the per-sample gradients

used for the update are the actual Poisson subsampled
ones, ensuring compliance with the Poisson subsampling
accounting.

Extra computational cost In step 2, we round the logical
batch size up to the closest larger integer divisible by the
physical batch size to avoid recompiling. Hence, for any
sampled logical batch size X , the difference between X

and the upscaled batch size will be in {0, . . . , p− 1} for a
physical batch size p. Denoting the excess batch size with
∆p(X) and the upscaled batch size with X+, we can write

E[X+] = E[X +∆p(X)]. (1)

Now, we can form a simple upper bound for the expected
relative increase of batch size given that E[X] = L as

E[X+]/E[X] ≤ 1 + (p− 1)/L. (2)

When working large number of samples and non-negligible
sampling probabilities, the excess cost due to upscaling the
batch size will be modest for feasible physical batch sizes.
For example, in our experiments the expected batch size
of the Poisson subsampling was L = 25 000, whereas the
physical batch sizes extended up to p = 64. The expected
relative increase in computed gradients would be 0.252%.

A recent work by Chua et al. (2024b) proposed an alterna-
tive implementation for JAX compilable implementation of
Poisson subsampled DP-SGD. In their approach the logical
batch sizes are sampled from a truncated Binomial distribu-
tion. In App. D we show that for our settings the number of
additionally computed gradients is signficantly smaller with
our method.

4. Experiment Overview
PyTorch implementations We benchmark a native Py-
Torch (Ansel et al., 2024) implementation with PyTorch-
based libraries Opacus (Yousefpour et al., 2021) (details on
gradsampling in App. A.3), PrivateVision (PV) (Bu et al.,
2022), and FastDP (BK) (Bu et al., 2023), see Table 1. At
submission time ghost clipping in Opacus was still undergo-
ing changes and was unstable in our experiments.

JAX implementations We benchmark two JAX implemen-
tations. Our method Masked DP-SGD and a native JAX
(Bradbury et al., 2018) implementation that clips the per-
sample gradients with Optax (DeepMind et al., 2020) with-
out utilizing any further optimization. This naive implemen-
tation in JAX is prone to recompilation due to changing
tensor sizes caused by the Poisson subsampling.
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Implementation of Poisson sampling Opacus sam-
ples the logical batches using Poisson sampling and
then divides them into physical batches using their
BatchMemoryManager class. The other PyTorch im-
plementations considered in our experiments do not support
virtual batching out-of-the-box. To make a fair comparison
between all methods, we implemented Poisson subsampling
in the same way as Opacus for all frameworks and adapted
the BatchMemoryManager to support them. Thus, all
experiments are seeded to ensure the same logical batch
sizes.

Metrics We compare the throughput, defined as how many
samples can be processed per second during training, and
the maximum physical batch size that can fit in memory.

Dataset We benchmark with the CIFAR100 (Krizhevsky &
Hinton, 2009) resized to 224x224.

Models We train two families of models: Vision
Transformer (ViT) (Dosovitskiy et al., 2021) and
ResNet (Kolesnikov et al., 2020) (See Table 2). Both are
pre-trained on ImageNet-21k (Russakovsky et al., 2015).

Table 2. Number of parameters (millions) for used models.

Vision Transformer (ViT) ResNet
Type # Params Type # Params

Tiny 5.7 M 50×1 23.7 M
Small 22.1 M 101×1 42.7 M
Base 86.6 M 50×3 211.8 M

Large 304.3 M 101×3 382.4 M
Huge 630.8 M 152×4 929.2 M

Parameterization While parameter-efficient fine-tuning of
some parts of the model has been shown to be effective
under DP (Yu et al., 2022; Tobaben et al., 2023), our work
focuses on the computational efficiency of DP-SGD and
thus we consider the worst-case scenario of fine-tuning all
parameters of the model. Furthermore, any training from
scratch requires training all parameters.

Hyperparameters We train for four optimization steps with
a sampling rate of 0.5 (expected batch size of 25000), which
allows us to quickly test the experiments with a realistic
high batch size (Ponomareva et al., 2023; Räisä et al., 2024).
We do not focus on finding the best possible utility, which
requires training for many more epochs (See Table A2 for
the accuracy after training for four steps).

Environment specifications We use two GPU architectures:
NVIDIA V100 (32 GB VRAM) and A100 (40 GB VRAM)
with identical Python environments. Each node contains
four GPUs. We use 16 CPU workers for data loading. In the
distributed case of more than one GPU, only one worked
per device is used.

Source code We provide the code for reproducing the ex-

periments in the supplementary material and will publish
the code in an open repository after acceptance of the paper.

5. What is the Computational Cost of DP in
Deep Learning

We quantify the computational cost of deploying DP training
by comparing the throughputs and maximum physical batch
sizes between the non-private training with PyTorch and
private training with Opacus, the most widely used DP-SGD
implementation. Additionally, we identify the reasons for
the higher computational cost of DP-SGD through profiling.

5.1. Throughput and Maximum Batch Size Comparison

We compare relative throughput (Fig. 2) and the maximum
physical batch size (Fig. 3) between DP-SGD (Opacus) and
non-private training with PyTorch. The main metric of inter-
est is the throughput as it quantifies the training speed, but
the maximum physical batch size becomes important when
training models that are too large to fit even one example at
a time. For both metrics, DP-SGD becomes more expensive
with larger models, but the detailed trends differ.

Vision Transformer The throughput difference between
Opacus and the non-private baseline with PyTorch (see
Fig. 2(a)) grows steadily as a function of model size, which
is interesting considering how big the relative difference in
the maximum physical batch size (Fig. 3(a)) is: the through-
put ranges from a relative difference of×2.6 for the smallest
model to ×3.17 for the largest model while the maximum
physical batch size has a relative difference of around ×4
for the smallest model and ×11 for the largest model.

ResNets As depicted in Fig. 2(b), we observe a more ir-
regular throughput and relative slowdown for the ResNets
models size as their size grows. The contrast in Fig. 2 be-
tween ViT and ResNet models is due to the architecture and
types of layers. The parameter space grows as the width
factor (see Table 2) for the ResNets, so the ×3 makes the
neural network wider by a factor of three. Based on our re-
sults, the width of the layers affects throughput much more
than the depth of the network. ResNet models with the same
width and different depths exhibit comparable throughput,
but increasing the width will make the model in the private
setting much slower and reduce the maximum batch size
significantly.

How much does finding the maximum physical batch
size matter? In Fig. A.3 in the Appendix, we display the rel-
ative throughput as a percentage by dividing the throughput
at a particular physical batch size by the maximum achiev-
able throughput. We see that as the physical batch size
increases, the throughput will grow as expected, but there is
no significant further improvement at some point. Practition-
ers may estimate the optimal batch size based on available
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Figure 2. Relative slowdown in mean throughputs between Opacus per-example clipping and the non-private baseline (A100 GPU). The
relative slowdown is calculated as the ratio of private-throughput to non-private-throughput. A lower value indicates a better performance,
closer to 1 indicates that Opacus is as fast as non-private training. This highlights the computational cost associated with private training.
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Figure 3. Maximum achievable physical batch size by the different model sizes on A100 GPU (40 GB) before they reach Out Of Memory
(OOM) Error. The model sizes grow from left to right (Refer to Table 2 for number of parameters).

Table 3. Average processing time in milliseconds for each section
of the algorithm. We are comparing the non-private and Opacus
clipping on A100, with the same physical batch size. We profile
the time using NVIDIA Nsight Systems. All the measurements
include the synchronization time, which is needed for the profiling,
but adds additional time that is not part of the normal execution.

SECTION NON-DP
(PYTORCH)

OPACUS
(PYTORCH)

FORWARD 81.14 101.53
BACKWARD 163.85 681.48
CLIP & ACCUMULATE 0 26.76
OPTIMIZER STEP 38.17 99.65

memory and performance trade-offs. Using the maximum
physical batch size is not crucial, but a large enough value
is sufficient. Typically, the throughput of smaller batches is
limited by data loading speeds, but computation becomes
the limiting factor as batch size increases.

5.2. Reasons for the Increase in Computational Cost

Giving a detailed breakdown of low-level operations associ-
ated with DP is challenging. However, using GPU profiling
tool NVIDIA Nsight System, we can identify three aspects
which constitute the majority of DP overheads. Firstly,

due to its larger memory footprint, DP-SGD is limited to
consume smaller physical batches than its non-private coun-
terpart. This results in a larger amount of smaller low-level
kernel calls, which leads to slightly lower utilization of
the GPU. Even the kernel launch overheads can become
a notable factor for a slowdown at very small batch sizes.
Secondly, the computation of per-example gradients intro-
duces significant overhead in the backward pass as it cannot
be parallelized as in batched gradient computation. This
is the most prominent cause of the total overhead. Finally,
an additional DP-optimizer step that clips and accumulates
the per example gradients, which is not present in the non-
DP algorithm, must be taken after each physical batch (see
Table 3).

6. Decreasing the Computational Cost
This section analyzes the different strategies for training
with DP-SGD more efficiently. We evaluate both algorith-
mic and hardware optimizations and their combinations.

6.1. Efficient Gradient Clipping Algorithms

First, we evaluate the more efficient gradient clipping im-
plementations that have been described in Sec. 2.2 using the
Vision Transformer base model. We chose it as our bench-
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Figure 4. Throughput using the maximum batch size for each clip-
ping algorithm. It compares the executions for both V100 and
A100, for the ViT Base model.

mark model because the middle model size is large enough
to evaluate the advantages of the optimized gradient clipping
algorithms but does not require excessive amount of time to
train. The non-Opacus implementations do not support the
ResNet due to their custom weight standardization layer.

Throughput Comparison Fig. 4 displays the throughput for
each clipping algorithm for each tested GPU. Moving from
a V100 to an A100 GPU increased the throughput by ×1.3
times on average over all clipping methods. The one that
benefited the most is the per-example clipping by Opacus
with a ×1.46 improvement in throughput. This is because
of Opacus-specific optimizations. Their implementation is
optimized to vectorize the virtual batches and get the most
out of the processing unit to compensate for the per-example
clipping. We base our virtual batching module on Opacus,
which may have further contributed to the advantage seen
for Opacus. The other implementations showed benefits
similar to those of non-private training. For both GPUs, the
clipping optimizations consistently maintained their relative
throughput difference to their non private baseline. Private
Vision gets closer to the non-private baseline physical batch
size, but Book Keeping is closer to its throughput with a
smaller physical batch size (see Fig. 6).

Without sacrificing utility (see Table A2), these optimiza-
tions offer an alternative to the original per-example clip-
ping algorithm. Although Book Keeping has a slightly better
throughput, the margin is narrow, making Private Vision and
FastDP viable options as ghost clipping implementations.
The difference between the two algorithms is the second
backward pass over the neural network. The Book Keeping
trick avoids this second backward pass, resulting in higher
throughput at a small memory cost.

Mixed ghost clipping does not yield any improvement be-
cause it determines whether to apply ghost or per-example
clipping, based on the size of the inputs and the parameter
space. For large dimensions, ghost clipping will be more
expensive (Bu et al., 2022). In ViT models, the dimensions
change less than in a convolutional network. Therefore,
despite continually evaluating which method to apply, it

Table 4. Maximum physical batch size reachable for each clipping
method and GPU using for the ViT base model.

CLIPPING MODE V100 A100
(32GB) (40GB)

NON PRIVATE BASELINE 216 268
PER-EXAMPLE (OPACUS) 28 35
GHOST (PRIVATE VISION) 203 257
MIX GHOST (PRIVATE VISION) 203 257
BK GHOST (FASTDP) 189 209
BK MIX GHOST (FASTDP) 189 209
BK MIX OPT (FASTDP) 189 209

consistently defaults to ghost clipping. Conversely, mix
optimization applied to a ResNet model should outperform
ghost clipping since it is optimized for convolutional layers.
This could not be tested on ResNet models due to incom-
patibilities with Private Vision and FastDP, preventing an
assessment of mixed optimization methods.

Maximum physical batch size Table 4 compares the max-
imum physical batch size for both available GPUs. The
maximum physical batch size is larger for the optimizations
of DP-SGD than for Opacus because they do not require per-
example gradients. Consequently, these optimizations en-
able training much larger models without exhausting mem-
ory. The maximum physical batch size using the Private
Vision library is the closest to the non-private baseline. Gen-
erally, the methods are consistent within implementations,
with Private Vision and FastDP achieving the same maxi-
mum physical batch size regardless of the clipping mode.
As expected, the A100 consistently attains higher maximum
physical batch sizes than the V100 due to its larger VRAM.

6.2. Lower Precision

We consider using lower precision to speed up computation.
We evaluate the use of TensorFloat-32 (TF32) for training.
TF32 has 10 bits for precision, with eight range bits, giving
it the same range but less precision than 32-bit single preci-
sion floats (FP32) (Kharya, 2020). Using lower precision
can have benefits exactly where DP training struggles: it
requires less memory, uses fewer bits to represent the data,
and its operations are optimized for GPU, making them
much faster (NVIDIA, 2023). It is special math mode intro-
duced for the A100 GPU and unavailable for the V100, so
we compared training on the A100 with and without TF32.

Experimental results In Fig. 5, we display the relative dif-
ference between mean throughput using TF32 and FP32.
For non-private training, throughput increases with model
size. For private training throughput increases for the
smaller models, but it goes down again as the model size
grows after the base size. Models that are too small do not
gain much from TF32, and the larger ones have too small
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Figure 5. Relative difference in mean throughput between TF32
and FP32 Training for ViT Models.

maximum physical batch size to benefit (See detailed discus-
sion of this in App. C). Regarding the memory advantages
by TF32, we could not see an improvement. The maximum
physical batch size is unaffected by the precision.

Concerns regarding TF32 under DP There are two con-
cerns with using lower precision in DP deep learning: its
effects on utility and privacy. Lower precision may affect
utility, as it is less precise. We did not find a significant
decay in the accuracy of the models compared to the models
with FP32; it differs by decimal points at the ×10−6 preci-
sion (See Table A2). Regarding privacy, all floating point
implementations provide imperfect implementations of real-
valued mechanisms, that might introduce additional privacy
vulnerabilities (Mironov, 2012). Lower precision may ex-
acerbate this issue. Discrete mechanisms (e.g. Canonne
et al., 2020; Agarwal et al., 2021) avoid these theoretical
challenges, but are often less convenient and may reduce
utility, especially in low precision settings. The efficiency
of different discrete mechanisms in TF32 is an interesting
topic of further research.

7. Comparison of JAX Implementations
We compare the performance of a naive non-private JAX,
a naive JAX, and our proposed masked DP-SGD method
with all other DP-SGD frameworks (all based on PyTorch).
The utility is the same as in PyTorch (See Table A2). To
provide a fair comparison, we implemented non-private and
native DP JAX training using the same virtual batching as
PyTorch. Note that JAX defaults to TF32 when available
and FP32 needs to be explicitly forced.

Throughput comparison (FP32) In Fig. 6 (left), we com-
pare the throughput using FP32. The naive DP-SGD JAX is
the slowest implementation due to the JAX recompilation.
Our proposed method masked DP-SGD outperforms Opacus
and nearly matches the performance of PV Ghost Clipping
despite not utilizing any optimizations regarding clipping.
The masked DP-SGD exhibits higher throughput compared
to other JAX implementations. This is primarily because
the entire logical batch is accommodated in CPU memory,
allowing it to be split into static sizes. Consequently, the

compilation time is elevated for the first logical batch; how-
ever, subsequent iterations benefit from increased speed as
recompilation is unnecessary. In Fig. 6 (middle) we com-
pare the throughput using TF32 and for this precision the
results indicate that masked DP-SGD performs comparably
to Opacus in terms of throughput. However, our method
performs better on regimes with fewer samples (Fig. A.2)
and allows for a larger physical batch size (Fig. 6 right).

Compilation The compilation time must be taken into ac-
count, given that the DP-SGD implementations in PyTorch
do not compile. We measure it as the duration to process the
first batch, since the execution times for each batch show
that the first batch takes much more time than the others,
including the compilation time (see Fig. A.4). The compila-
tion time increases with batch size. For the private model,
the compiled function is more complex than the non-private
counterpart. It includes expanding the dimensions and clip-
ping the gradients, while the non-private directly computes
the gradient of the whole mini-batch.

Although compiling PyTorch is possible, we did not ob-
serve any significant speed improvements. Compiling the
non-private model yielded minimal speed-up, but ultimately
even lower when accounting for the compilation. PyTorch
also recompiles after a batch size change, but reverts to pre-
defined CUDA optimized operations. In the private setting,
the compilation does not recognize Opacus hooks and con-
tinues the execution without compiling them (See Fig. A.5).
Leveraging the same kernels to support the private hooks
and avoid the compilation would require massive engineer-
ing work of writing special kernels for each specific private
case. On the other hand, JAX will compile the JIT functions
in XLA, but it does not fall back to the kernels, making it
more generalizable (Subramani et al., 2021).

8. Distributed Training
We will look at another angle to train deep learning with
DP faster: increasing the computational resources enough
to decrease the training time. This is relevant when training
cost or resource constraints are less important than the time
to train a new model.

We utilize V100 GPUs on HPC nodes that have 4 GPUs
per node. The other experimental setting is identical to the
one in Sec. 5. Results for utilizing up to 24 A100 GPUs
can be found in Fig. A.7 in the Appendix. We focus on
comparing the scaling behavior between the non-private
baseline that uses PyTorch and the DP-SGD implementation
using Opacus. Both frameworks provide mature tooling for
distributed training.

Fig. 7 shows the throughput increase as a function of num-
ber of GPUs. The throughput does not grow linearly and
changes from the ideal linear scaling after using more than
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Figure 6. Throughput comparison across precision modes, for the ViT Base model, trained on A100 GPU. Using a lower precision should
increase memory capacity and speed-up the sample processing. The results confirm that throughput is enhanced with lower precision.
However, the physical batch size remained constant across precision modes.

Table 5. A summary of the lessons learnt. The relative throughput/max physical batch size is in comparison to PyTorch non-DP (higher is
better) on A100. For each optimization method and each model size, we divide it with the non-private counterpart.

Method Relative to non-DP (PyTorch FP32) Supports Compilation SectionThroughput (↑) Max Physical Batch Size (↑) all layers Initial Re-
Opacus 0.31-0.39 0.08-0.24 - - Sec. 5
Efficient Gradient Clipping 0.49-0.54 0.88-0.95 - - Sec. 6.1
Native JAX 0.39-0.59 0.23-0.43 Sec. 7
Masked DP-SGD (ours) 0.51-0.69 0.11-0.23 Sec. 7
Masked DP-SGD + TF32 0.79-1.33 0.11-0.23 Sec. 7
Low Precision (Opacus+TF32) 0.54-0.84 0.08-0.24 - - Sec. 6.2
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Figure 7. Comparison between the throughput by scaling the num-
ber of GPUs for the non-private and Opacus training with the ViT
base model on V100 GPUs. The dashed line is the ideal growth.

one node (i.e. more than 4 GPUs). While the communi-
cation inside the node is fast, the communication between
nodes will always be slower. The bottleneck is the network
bandwidth, and it prevents the throughput from scaling lin-
early. Notably, it affects the non-private training baseline
much more, while the private scales close to optimal up to 32
GPUs. For the 80 GPUs, the private training achieves 69.2%
of the ideal linear speed-up, and the non-private training
only achieves 53.3%. Private training scales better because
it is slower and only sometimes saturates the network with
updates. If we use Amdalh’s law to compare the parallelism
percentage for each case, we can see that in the private case,
we achieve a 99.5% parallelism compared to a 98.9% in the
non-private case (See Fig. A.8).

9. Conclusion
We summarize the lessons learnt in Table 5. While DP-SGD
is significantly more costly than non-private training, we
identified feasible speed-ups that are often easy to apply
but have some drawbacks. These are: (i) More efficient
implementations of DP-SGD which additionally decrease
the memory footprint (allowing for training larger mod-
els). However, these implementations are not as mature as
Opacus and do not support all neural network layers (yet).
(ii) JAX lacks a comprehensive DP-SGD implementation
like PyTorch and exhibits greater variability in execution
times. Although JAX processes samples faster than Py-
Torch, it loses the advantage through frequent re-compila-
tions when utilizing proper Poisson sampling. We present an
efficient DP-SGD implementation with JAX called Masked
DP-SGD. It leverages JAX advantages in compilation and
efficient sample processing, while adhering to Poisson sub-
sampling requirements for correct privacy accounting. By
avoiding frequent recompilation, we mitigate execution time
variability and enhances efficient performance. (iii) Lower
Precision using TF32 which increases throughput but the
implications on the theoretical guarantees of DP-SGD need
to be explored in future work. Finally, we found that dis-
tributed computing using DP-SGD scales better than non-
private training and allows for fast training of models.
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Räisä, O., Jälkö, J., and Honkela, A. Subsampling is not
magic: Why large batch sizes work for differentially pri-
vate stochastic optimisation. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna,
Austria, July 21-27, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=gTBj
kJvadC.

Rajkumar, A. and Agarwal, S. A differentially private
stochastic gradient descent algorithm for multiparty clas-
sification. In Lawrence, N. D. and Girolami, M. A. (eds.),
Proceedings of the Fifteenth International Conference on
Artificial Intelligence and Statistics, AISTATS 2012, La
Palma, Canary Islands, Spain, April 21-23, 2012, vol-
ume 22 of JMLR Proceedings, pp. 933–941. JMLR.org,
2012. URL http://proceedings.mlr.press/
v22/rajkumar12.html.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y.

Song, S., Chaudhuri, K., and Sarwate, A. D. Stochas-
tic gradient descent with differentially private updates.
In IEEE Global Conference on Signal and Informa-
tion Processing, GlobalSIP 2013, Austin, TX, USA, De-
cember 3-5, 2013, pp. 245–248. IEEE, 2013. doi:
10.1109/GlobalSIP.2013.6736861. URL https://do
i.org/10.1109/GlobalSIP.2013.6736861.

Stosic, D. and Micikevicius, P. Accelerating AI training
with NVIDIA TF32 tensor cores. https://develo
per.nvidia.com/blog/accelerating-ai-t
raining-with-tf32-tensor-cores/, 2021.

Subramani, P., Vadivelu, N., and Kamath, G. Enabling
fast differentially private SGD via just-in-time compi-
lation and vectorization. In Ranzato, M., Beygelzimer,

A., Dauphin, Y. N., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, vir-
tual, pp. 26409–26421, 2021. URL https://procee
dings.neurips.cc/paper/2021/hash/ddf
9029977a61241841edeae15e9b53f-Abstrac
t.html.

Tobaben, M., Shysheya, A., Bronskill, J., Paverd, A.,
Tople, S., Béguelin, S. Z., Turner, R. E., and Honkela,
A. On the efficacy of differentially private few-shot
image classification. Transactions on Machine Learn-
ing Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=hFsr59Imzm.

Yousefpour, A., Shilov, I., Sablayrolles, A., Testuggine, D.,
Prasad, K., Malek, M., Nguyen, J., Ghosh, S., Bharadwaj,
A., Zhao, J., Cormode, G., and Mironov, I. Opacus: User-
friendly differential privacy library in PyTorch. ArXiv
preprint, abs/2109.12298, 2021. URL https://arxi
v.org/abs/2109.12298.

Yu, D., Naik, S., Backurs, A., Gopi, S., Inan, H. A., Kamath,
G., Kulkarni, J., Lee, Y. T., Manoel, A., Wutschitz, L.,
Yekhanin, S., and Zhang, H. Differentially private fine-
tuning of language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022.
URL https://openreview.net/forum?id=
Q42f0dfjECO.

11

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://doi.org/10.1145/3580305.3599561
https://doi.org/10.1145/3580305.3599561
https://openreview.net/forum?id=gTBjkJvadC
https://openreview.net/forum?id=gTBjkJvadC
http://proceedings.mlr.press/v22/rajkumar12.html
http://proceedings.mlr.press/v22/rajkumar12.html
https://doi.org/10.1109/GlobalSIP.2013.6736861
https://doi.org/10.1109/GlobalSIP.2013.6736861
https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/
https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/
https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/
https://proceedings.neurips.cc/paper/2021/hash/ddf9029977a61241841edeae15e9b53f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ddf9029977a61241841edeae15e9b53f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ddf9029977a61241841edeae15e9b53f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ddf9029977a61241841edeae15e9b53f-Abstract.html
https://openreview.net/forum?id=hFsr59Imzm
https://openreview.net/forum?id=hFsr59Imzm
https://arxiv.org/abs/2109.12298
https://arxiv.org/abs/2109.12298
https://openreview.net/forum?id=Q42f0dfjECO
https://openreview.net/forum?id=Q42f0dfjECO


605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Towards Efficient and Scalable Implementation of Differentially Private Deep Learning

A. Training Details
A.1. Models

• Vision Transformer (ViT) (Dosovitskiy et al., 2021). Taken from https://huggingface.co/timm/vit_ba
se_patch16_224.orig_in21k

• Big Transfer ResNet (Kolesnikov et al., 2020). Taken from https://github.com/google-research/big_
transfer

A.2. Hyperparameters

We use the hyperparameters obtained on request from Tobaben et al. (2023). The hyperparameters for both models are in
Table A1. Even though model utility is not the main objective in this work, in the non-private case, the learning rate is
suboptimal. By changing it to 0.00027 we see an accuracy improvement, therefore the one we are using.

Table A1. Hyperparameters used for each model architecture.

MODEL TRAINABLE PARAMETERS EPSILON DELTA LEARNING RATE MAX GRAD NORM

VIT ALL 8 2.04e−5 0.00031 4.63
RESNET ALL 8 2.04e−5 0.00098 6.53

A.3. Grad sample modes in Opacus

Opacus supports multiple different gradient sampling methods as indicated in the documentation1. In our original experiments
we used the grad sample mode hooks that is the default. This will use custom opacus modules when they are defined for
that layer and functorch as a fallback. Based on the feedback by a reviewer we tried out different methods listed in the
documentation for both ResNet and ViT models:

• functorch: We forced opacus to use functorch but did not observe any significant speed differences to using hooks.
This is in line with the opacus documentation which writes that the speed is 0− 50% slower than hooks.

• ExpandedWeigths: We tried this approach but ran into runtime errors. Interestingly, when looking through the
issues others have reported issues23 but it seems to be more a PyTorch problem and has not been addressed for years.
According to the documentation ExpandedWeights is still in beta status.

• GhostClipping: Note that this method only works for ViT as described in Sec. 6.1. At first we did not manage to
decrease the loss with this implementation due to the implementation in opacus being unstable. After some fixes, the
correct accuracy is achieved but we noticed that the speed-ups are not significant, and even lower than flat clipping.
Therefore, we decided to not include them, as it is still in development. When ready, we expect a similar speed-up to
the observed in our experiments in Sec. 6.1 as the underlying algorithm is the same.

A.4. Poisson Subsampling JAX Algorithm

We present our DP-SGD implementation in JAX that uses the correct Poisson subsampling and therefore we can account for
its privacy. The main problem with implementing DP-SGD with JAX is the batches of variable size. In order to address this
issue, we compute always full physical batches and mask out gradients so that the total number of used gradients is equal
the sampled logical batch sizes. This means that we always compute a little more gradients that required due to sampling.
This prevents the recompiling.

Variability in experiments One difference between the two frameworks is the variability in the experiments. PyTorch
runs are remarkably consistent, maintaining low variance, and yielding the same throughput result for a fixed seed. In

1https://github.com/pytorch/opacus/tree/61ae0ea4fb37a835e93040b5de19e8dfcd465a07/opacus
/grad_sample

2https://github.com/pytorch/opacus/issues/464
3https://github.com/pytorch/opacus/issues/584
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Algorithm A1 Virtual Batching DP-SGD JAX

Input: Training data points {x1, . . . , xN}, loss function L(θ) = 1
N

∑
i L(θ, xi)

Parameters: Parameters: learning rate ηt, noise scale σ, gradient norm bound C, number of steps T , expected logical
batch size L, physical batch size p.
Start
for t ∈ [T ] do
tl ∼ Binomial

(
N, L

N

)
{Sample the true batch size}

Find minimum k ∈ N such that p · k ≥ tl {Check how many full physical batches are required}
m← k · p
B ← {xj1 , . . . , xjm}
P ← {B1, . . . , Bk} {Divide the maximum logical batch B into physical batches of size p}.
M ← {10, 11, . . . , 1tl−1, 0, 0, . . . , 0m−tl+1} {Create masks so that

∑m
i Mi = tl}

θacc ← 0
for s ∈ [P ] do

for i ∈ s do
gt(xi)← ∇θtL(θt, xi) {Compute gradient}
gt(xi)←Mi+(s−1)∗p · gt/max(1, ∥gt(xi)∥2

C ) {Clip gradient and mask}
end for
θacc ← θacc +

∑
i gt(xi) {Accumulate gradient}

end for
g̃t ← 1

|L| (θacc +N (0, σ2C2I)) {Add noise}
θt+1 ← θt − ηtg̃t {Step}

end for
Return Learned parameters θT and the privacy cost from a privacy accountant.

contrast, JAX naive executions, meaning that there is recompilation, are more variable than those of PyTorch, likely due
to its sensitivity to HPC environment fluctuations and accelerator stochasticity, as noted in Fig. A.4. Additionally, JAX’s
asynchronous dispatch method complicates time benchmarking by issuing a promise rather than immediate results, thereby
concealing Python overheads. For our Masked DP-SGD method, by fixing the batch sizes and avoiding recompilation, we
achieve consistent execution times.

B. Additional Results
This section provides additional figures that supplement the findings in the main text.

Opacus
(PyTorch)

GhostClipping
(PyTorch)

Masked
DP-SGD

(JAX)

naive DP
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Figure A.1. Relative throughput to the respective FP32 non private baseline (higher is better) on NVIDIA A100. For each optimization
method and each model size, we divide its throughput with the non-private counterpart. In this figure we showcase for each optimization,
both precision modes, relative to the FP32 baseline.
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Figure A.2. Comparison of the throughput as a function of the physical batch size between the JAX and PyTorch clipping algorithms on
A100 GPU. The analysis excludes the Mix algorithms, due to their equivalent performance in ViTs.

1 2 4 8 16 32 64 128 256

Physical Batch Size

20

40

60

80

100

%
of

M
ax

im
um

T
hr

ou
gh

tp
ut

non-private
Opacus

Figure A.3. The relative difference with the throughput at the maximum batch size for the ViT base model on A100.

Table A2. Mean accuracy for CIFAR-100 test set for each clipping mode for the ViT models on A100 after training for two epochs. All
use the ViT hyperparameters from Table A1. While this work does not focus on the model’s utility, having their results still allows us to
compare them. The use of TF32 as a lower precision mode does not affect the model’s utility.

CLIPPING MODE TEST ACCURACY

OPACUS 0.8223
OPACUS/TF32 0.8225
JAX NAIVE 0.8146
MASKED DP-SGD 0.8224
PV-GHOST 0.822
BK-GHOST 0.822
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Figure A.4. Compilation time in seconds as a function of the physical batch size for JAX naive experiments for the ViT Base model on
A100. The estimator is the median and the error bars are the 95% confidence interval using bootstrapping.
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Figure A.5. Torch compilation experiments on A100, using the maximum physical batch size for each mode and ViT Base. PyTorch 2
enables compiling the model to (potentially) gain further speed-ups. We tried PyTorch 2 compilation to make a fair comparison with the
JAX compilation but did not observe any benefits from it. We found that when trying to compile PyTorch, it first tries to compile but
then falls back to NVIDIA kernels and optimizations. In the end, it does not compile, and the throughput is the same. If we take into
account the first iteration (w compilation time), it is worse because of the time PyTorch spends trying to compile before falling back to
NVIDIA kernels and optimizations. Disregarding the time where PyTorch tries to compile (wout compilation time), leads to nearly the
same throughput as the version that does not attempt using PyTorch 2 compiling in the first place.
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Figure A.6. Combining distributed training with the use of lower precision TF32 for the ViT base model on A100. (a) Throughput for one
GPU; (b) Throughput for multiple GPUs.
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Figure A.7. Comparison between the throughput by scaling the number of GPUs with more nodes for the non-private and Opacus training
with the ViT base model on A100 GPUs. The dashed line is the ideal growth if it were linear.
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Figure A.8. Comparison between the throughput in our experiments and the theoretical Amdahl’s Law. Both axis are in log scale. In the
distributed setting, private training achieves a 99.5 % of parallel processing, with a 50 times speed up than single processing.
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C. Further discussion of TF32 speedups
The speedup observed in Fig. 5 peaks at the ”base” model. We believe that the reasons are the following: Speed-ups resulting
from TF32 can significantly vary on per case basis as “all storage in memory and other operations remain completely in
FP32, only convolutions and matrix-multiplications convert their inputs to TF32 right before multiplication.” (Stosic &
Micikevicius, 2021). Until now, TF32 precision benchmarks have been limited to non-DP applications which was one of
the reasons we wanted to discuss our observations in DP context. It appears the effectiveness of TF32 arithmetic peaks at
“base” configuration. This due to a mix of reasons which are difficult to quantify exactly. Firstly, it is likely that matrix
multiplication kernel dominance peaks at this configuration i.e. we have the most parameters whilst the batch size dimension
also remains sufficiently large. With large and huge model variants the parameter count still increases but at the cost having
very small batch dimension of 10 and 3, respectively. Secondly, we observe similar trend in Fig. 2(a) where the discrepancy
between dp and non-dp grows as model size gets bigger. This suggests that the dominance of DP operations also grows with
the model size. None of the DP-operations are cast as matrix-multiplications and hence won’t benefit from TF32.

D. Extra computational cost of the masked dp-sgd

For the masked dp-sgd, we first sample the minibatch using Poisson subsampling and to allow JAX compilation, we
round this number to the closest larger integer divisable by the physical batch size. Hence, for any sampled batch size X ,
the difference between X and the upscaled batch size will be in {0, . . . p − 1} for a physical batch size p. Denoting the
excess batch size with ∆p(X) and the upscaled batch size with X+, we can write

E[X+] = E[X +∆p(X)]. (A1)

Now, we can form a simple upper bound for the expected value of the upscaled batch size as

E[X+] ≤ E[X] + (p− 1). (A2)

When working large number of samples and non-negligible sampling probabilities, the excess cost due to upscaling the
batch size will be modest for feasible physical batch sizes. For example, in our experiments the expected batch size of the
Poisson subsampling was 25 000, whereas the physical batch sizes extended up to 64.

A recent work by (Chua et al., 2024b) proposed an alternative implementation for JAX compilable implementation of
Poisson subsampled DP-SGD. In their approach the batch sizes are sampled from a truncated Binomial distribution. This
affects the privacy guarantees of the models, and therefore they need to compensate the truncated sampling by increasing the
noise std. for DP-SGD. They suggest an approach for computing the truncation bound B as

Ψ(n, b,B) · T · (1 + eϵ) ≤ τδ (A3)

where Ψ(n, b,B) denotes the survival function (1 − cdf) of Binom(n, b/n) at B and T are the number of steps. The
parameter τ effectively scales the size of the tails and is used to calibrate the noise std by selecting σ such that the hockey-
stick divergence between the Poisson subsampled Gaussian mechanisms is bound by (1− τ)δ. (Chua et al., 2024b) choose
τ = 10−5, which keeps the noise std. increase very small.

In the implementation of (Chua et al., 2024b), the gradients are computed for B randomly selected samples, after which
the final samples are chosen according to the batch size sampled from the truncated Binomial. Hence the computational
excess over regular Poisson subsampling becomes B − b. For example, in our setting where ϵ = 8, δ = 10−5, n = 50 000,
b/n = 1/2 and T = 4, the B − b = 858, which is significantly larger than the p− 1 excess of our method for obtainable
physical batch sizes (p ≤ 64).
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