
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Towards Efficient and Scalable Implementation
of Differentially Private Deep Learning

Anonymous Authors1

Abstract
Differentially private stochastic gradient descent
(DP-SGD) is the standard algorithm for training
machine learning models under differential pri-
vacy (DP). The most common DP-SGD privacy
accountants rely on Poisson subsampling to en-
sure the theoretical DP guarantees. Implement-
ing computationally efficient DP-SGD with Pois-
son subsampling is not trivial, which leads to
many implementations that ignore this require-
ment. We quantify the computational cost of
training deep learning models under differential
privacy by benchmarking efficient methods with
the correct Poisson subsampling requirement. We
find that using the naive implementation DP-SGD
with Opacus in PyTorch has a throughput between
2.6 and 8 times lower than that of SGD. How-
ever, efficient gradient clipping implementations
like Ghost Clipping can roughly halve this cost.
We propose alternative computationally efficient
ways of implementing DP-SGD with JAX that
use Poisson subsampling and performs compara-
bly with efficient clipping optimizations based on
PyTorch. We highlight important implementation
considerations with JAX. Finally, we study the
scaling behavior using up to 80 GPUs and find
that DP-SGD scales better than SGD.

1. Introduction
Machine learning (ML) models’ training data can be vulner-
able to extraction (Balle et al., 2022; Carlini et al., 2021).
Differential Privacy (DP) (Dwork et al., 2006) is the gold
standard for formalizing the privacy leakage of training data
in ML and mitigating the risk of privacy attacks on the train-
ing data. DP is deployed in many applications that involve
sensitive data (Abowd, 2018; Cormode et al., 2018).

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

naive DP
(JAX)

Opacus
(PyTorch)

Masked
DP-SGD

(JAX)

GhostClipping
(PyTorch)

non-DP
(PyTorch)

0.25

0.3

0.4

0.5

0.6
0.7
0.8

1.0

1.2

T
hr

ou
gh

pu
tr

el
at

iv
e

to
no

n-
D

P

Figure 1. Relative throughput (FP32) to the respective non private
baseline (higher is better) on NVIDIA A100. For each optimization
method and each model size, we divide its throughput with the
non-private counterpart. Throughput is the number of processed
instances per second. In this benchmark we distinguish between
precision modes. They are available on both frameworks and
significantly improve the throughput for the different DP-SGD
implementations.

The established algorithm for integrating DP into the train-
ing pipeline of deep learning models is DP stochastic gradi-
ent descent (DP-SGD) (Rajkumar & Agarwal, 2012; Song
et al., 2013; Abadi et al., 2016), which is the DP adaptation
of SGD (see also Alg. 1). DP-SGD has two major drawbacks
in comparison to SGD: higher computational cost and loss
in utility. DP-SGD requires more memory and is compu-
tationally more expensive due to the per-example clipping.
The utility in comparison to non-DP training drops, but
this can be mitigated to some extent by using larger batch
sizes (Räisä et al., 2024) and training longer (Ponomareva
et al., 2023) which further increase the computational cost.

Standard DP privacy accountants assume so-called Poisson
subsampling, where each example is selected independently
at each iteration with a fixed probability. This implies that
different minibatches will be of different sizes, making ef-
ficient implementation more difficult. As a result, many
existing implementations forego proper implementation of
Poisson subsampling. Recent research (Lebeda et al., 2024;
Chua et al., 2024a;b; Annamalai et al., 2024) shows that
such implementations may have significantly weaker privacy
guarantees than claimed under the Poisson subsampling as-
sumption.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Towards Efficient and Scalable Implementation of Differentially Private Deep Learning

List of contributions In this work we conduct an extensive
empirical study on the computational efficiency of DP-SGD
using Poisson sub-sampling, focusing on fine-tuning a wide
range of large image classification models. Our findings can
be applied to any other large models trained or fine-tuned
with DP-SGD. Our main contributions are as follows:

1. We re-implement all DP-SGD methods with Poisson
subsampling that is fully DP and share the source code.

2. We propose a JAX implementation relying on proper
Poisson sampling that is in comparison to a naive JAX
implementation not prone to re-compilation and outper-
forms its throughput by two times (See Sec. 3).

3. We find that non-optimized training with DP-SGD costs
per-epoch between 2.6 and 3.2 times more than non-
private training for ViT and 4 to 8 times for ResNets (See
Sec. 5). We identify the reasons that lead to the higher
computational cost of DP-SGD using profiling.

4. We benchmark different strategies that can drastically
reduce this cost: (i) More efficient gradient clipping
implementations of DP-SGD (See Fig. 1 and Sec. 6.1).
(ii) Lower Precision with TF32 (See Sec. 6.2).

5. We scale up the training to 80 GPUs and find that DP-
SGD scales better than non-private training (See Sec. 8).

2. Background
This section will explain the main DP-SGD algorithm and
optimizations to alleviate its computational cost.

2.1. DP-SGD Algorithm

Alg. 1 is the original DP-SGD algorithm, with virtual batch-
ing, as proposed by Abadi et al. (2016).

Virtual Batching distinguishes between logical and physi-
cal batches. Logical batches are divided into multiple phys-
ical batches to enable optimizer steps with many samples
without running out of memory. For instance, we typically
sample logical batch sizes of L = 25000 while the memory
fits < 300 samples at a time. Implementing DP-SGD with
virtual batching Alg. 1 does not modify the privacy account-
ing. The amount of noise added is the same and does not
affect the model utility (Ponomareva et al., 2023).

Poisson subsampling Interestingly, Bu et al. (2022) and Bu
et al. (2023) never mention Poisson subsampling in their
works of Mix Ghost clipping and Book Keeping. Further-
more, Bu et al. (2022) claims a speed-up of ×1.7 against
other algorithms with a fixed batch size, which would af-
fect the privacy accounting method. The same happens in
practice for JAX implementations (De et al., 2022), where
sampling is done by shuffling the dataset and using each
sample once per epoch. While this makes efficient imple-
mentation easier, it does not use the correct Poisson subsam-
pling assumed by privacy accounting methods. Therefore,

Algorithm 1 Virtual Batching DP-SGD

Input: Training data points {x1, . . . , xN}, loss function
L(θ) = 1

N

∑
i L(θ, xi)

Parameters: learning rate ηt, noise scale σ, gradient
norm bound C, number of steps T , approximate logical
batch size L, physical batch size p.
for t ∈ [T] do
B ← {xj1 , . . . , xjm} sample with rate L/N .
P ← {B1, . . . , Bk} split B into physical batches of
size p.
θacc ← 0
for s ∈ [P] do

For each i ∈ s compute gt(xi)← ∇θtL(θt, xi)

gt(xi)← gt/max
(
1,

∥gt(xi)∥2

C

)
{Clip gradient}

θacc ← θacc +
∑

i gt(xi) {Accumulate gradient}
end for
g̃t ← 1

|L| (θacc +N (0, σ2C2I)) {Add noise}
θt+1 ← θt − ηtg̃t {Step}

end for
Return Learned parameters θT and the privacy cost from
a privacy accountant.

the implementation might have significantly weaker privacy
properties than claimed (Lebeda et al., 2024; Chua et al.,
2024a;b; Annamalai et al., 2024). All our experiments are
based on Poisson subsampling which is compliant with the
commonly used privacy accounting.

2.2. DP-SGD Gradient Clipping Optimizations

We benchmark five types of clipping methods. Table 1
shows which clipping optimizations we are benchmarking
against the library or framework that implements it.

Ghost clipping computes the loss gradient norm after the
backpropagation step and then reweights the loss to update
the clipped gradients. Its main contribution is memory sav-
ings at the cost of adding another backward pass (Li et al.,
2022).

Mixed Ghost clipping (Bu et al., 2022) is a method that
builds on-top of Ghost clipping. It implements the ghost
clipping technique for convolutional layers. Its main con-
tribution is that the algorithm will decide when to clip the
gradients using per-example or ghost. This difference mat-
ters because the ghost clipping is less efficient when the
layer’s input dimensions are too high-dimensional. E.g.,
for ResNets, each clipping method will be applied for half
of the layers. The first layers will be clipped using the the
per-example and then ghost clipping in the bottom layers.
As the model goes deeper, the feature size decreases, and the
number of channels increases, prioritizing ghost clipping
(Bu et al., 2022).

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Towards Efficient and Scalable Implementation of Differentially Private Deep Learning

Table 1. Benchmarked DP-SGD frameworks and libraries. Note that Opacus Ghost Clipping is in development.

PYTORCH JAX
CLIPPING MODE NATIVE OPACUS PRIVATEVISION (PV) FASTDP (BK) NATIVE OURS

(YOUSEFPOUR ET AL., 2021) (BU ET AL., 2022) (BU ET AL., 2023)

NON-PRIVATE
PER-EXAMPLE
GHOST CLIPPING (LI ET AL., 2022) ()
MIX GHOST (BU ET AL., 2022)
MIX OPT (BU ET AL., 2023)
MASKED DP-SGD (OURS, SEC. 3)

Book Keeping (Bu et al., 2023) uses all the previous tech-
niques but requires only one backpropagation pass without
explicitly calculating the per-example gradients. It avoids
the second pass that ghost clipping does by reusing the in-
termediate results of the output gradients to calculate the
sum of the clipped gradients and the clipping factor. Book
Keeping can also be implemented together with the Mix
Optimization, which does the same evaluation as the mix
ghost clipping, but also determines whether doing a second
backward pass is more efficient.

3. Avoiding Re-compilation in JAX
Using JAX for DP-SGD introduces complexities, partic-
ularly around Poisson subsampling which is crucial for
privacy accounting. Implementing Poisson subsampling
results in variable logical batch sizes that lead to variability
in the size of the last physical batch which require JIT to
recompile, leading to graph retracing which is costly and
contributes to execution run variability (Chua et al., 2024a).

Masked DP-SGD We propose an algorithm, called masked
DP-SGD, that overcomes the issue of recompilation at the
cost of computing slightly more gradients than the naive
implementation while at the same time using proper Poisson
subsampling and therefore ensuring the correct privacy bud-
get. We execute the following sub-steps at every iteration
and highlight the differences to the naive implementation
(steps 2 and 4) (See also Alg. A1):

1. We sample a logical size using Poisson sampling.
2. We round up the number of samples for which we com-

pute per-sample gradients so that it is divisible by the
physical batch size without remainder.

3. We compute the per-sample gradients.
4. We mask out gradients so that the per-sample gradients

used for the update are the actual Poisson subsampled
ones, ensuring compliance with the Poisson subsampling
accounting.

Extra computational cost In step 2, we round the logical
batch size up to the closest larger integer divisible by the
physical batch size to avoid recompiling. Hence, for any
sampled logical batch size X , the difference between X

and the upscaled batch size will be in {0, . . . , p− 1} for a
physical batch size p. Denoting the excess batch size with
∆p(X) and the upscaled batch size with X+, we can write

E[X+] = E[X +∆p(X)]. (1)

Now, we can form a simple upper bound for the expected
relative increase of batch size given that E[X] = L as

E[X+]/E[X] ≤ 1 + (p− 1)/L. (2)

When working large number of samples and non-negligible
sampling probabilities, the excess cost due to upscaling the
batch size will be modest for feasible physical batch sizes.
For example, in our experiments the expected batch size
of the Poisson subsampling was L = 25 000, whereas the
physical batch sizes extended up to p = 64. The expected
relative increase in computed gradients would be 0.252%.

A recent work by Chua et al. (2024b) proposed an alterna-
tive implementation for JAX compilable implementation of
Poisson subsampled DP-SGD. In their approach the logical
batch sizes are sampled from a truncated Binomial distribu-
tion. In App. D we show that for our settings the number of
additionally computed gradients is signficantly smaller with
our method.

4. Experiment Overview
PyTorch implementations We benchmark a native Py-
Torch (Ansel et al., 2024) implementation with PyTorch-
based libraries Opacus (Yousefpour et al., 2021) (details on
gradsampling in App. A.3), PrivateVision (PV) (Bu et al.,
2022), and FastDP (BK) (Bu et al., 2023), see Table 1. At
submission time ghost clipping in Opacus was still undergo-
ing changes and was unstable in our experiments.

JAX implementations We benchmark two JAX implemen-
tations. Our method Masked DP-SGD and a native JAX
(Bradbury et al., 2018) implementation that clips the per-
sample gradients with Optax (DeepMind et al., 2020) with-
out utilizing any further optimization. This naive implemen-
tation in JAX is prone to recompilation due to changing
tensor sizes caused by the Poisson subsampling.

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Towards Efficient and Scalable Implementation of Differentially Private Deep Learning

Implementation of Poisson sampling Opacus sam-
ples the logical batches using Poisson sampling and
then divides them into physical batches using their
BatchMemoryManager class. The other PyTorch im-
plementations considered in our experiments do not support
virtual batching out-of-the-box. To make a fair comparison
between all methods, we implemented Poisson subsampling
in the same way as Opacus for all frameworks and adapted
the BatchMemoryManager to support them. Thus, all
experiments are seeded to ensure the same logical batch
sizes.

Metrics We compare the throughput, defined as how many
samples can be processed per second during training, and
the maximum physical batch size that can fit in memory.

Dataset We benchmark with the CIFAR100 (Krizhevsky &
Hinton, 2009) resized to 224x224.

Models We train two families of models: Vision
Transformer (ViT) (Dosovitskiy et al., 2021) and
ResNet (Kolesnikov et al., 2020) (See Table 2). Both are
pre-trained on ImageNet-21k (Russakovsky et al., 2015).

Table 2. Number of parameters (millions) for used models.

Vision Transformer (ViT) ResNet
Type # Params Type # Params

Tiny 5.7 M 50×1 23.7 M
Small 22.1 M 101×1 42.7 M
Base 86.6 M 50×3 211.8 M

Large 304.3 M 101×3 382.4 M
Huge 630.8 M 152×4 929.2 M

Parameterization While parameter-efficient fine-tuning of
some parts of the model has been shown to be effective
under DP (Yu et al., 2022; Tobaben et al., 2023), our work
focuses on the computational efficiency of DP-SGD and
thus we consider the worst-case scenario of fine-tuning all
parameters of the model. Furthermore, any training from
scratch requires training all parameters.

Hyperparameters We train for four optimization steps with
a sampling rate of 0.5 (expected batch size of 25000), which
allows us to quickly test the experiments with a realistic
high batch size (Ponomareva et al., 2023; Räisä et al., 2024).
We do not focus on finding the best possible utility, which
requires training for many more epochs (See Table A2 for
the accuracy after training for four steps).

Environment specifications We use two GPU architectures:
NVIDIA V100 (32 GB VRAM) and A100 (40 GB VRAM)
with identical Python environments. Each node contains
four GPUs. We use 16 CPU workers for data loading. In the
distributed case of more than one GPU, only one worked
per device is used.

Source code We provide the code for reproducing the ex-

periments in the supplementary material and will publish
the code in an open repository after acceptance of the paper.

5. What is the Computational Cost of DP in
Deep Learning

We quantify the computational cost of deploying DP training
by comparing the throughputs and maximum physical batch
sizes between the non-private training with PyTorch and
private training with Opacus, the most widely used DP-SGD
implementation. Additionally, we identify the reasons for
the higher computational cost of DP-SGD through profiling.

5.1. Throughput and Maximum Batch Size Comparison

We compare relative throughput (Fig. 2) and the maximum
physical batch size (Fig. 3) between DP-SGD (Opacus) and
non-private training with PyTorch. The main metric of inter-
est is the throughput as it quantifies the training speed, but
the maximum physical batch size becomes important when
training models that are too large to fit even one example at
a time. For both metrics, DP-SGD becomes more expensive
with larger models, but the detailed trends differ.

Vision Transformer The throughput difference between
Opacus and the non-private baseline with PyTorch (see
Fig. 2(a)) grows steadily as a function of model size, which
is interesting considering how big the relative difference in
the maximum physical batch size (Fig. 3(a)) is: the through-
put ranges from a relative difference of×2.6 for the smallest
model to ×3.17 for the largest model while the maximum
physical batch size has a relative difference of around ×4
for the smallest model and ×11 for the largest model.

ResNets As depicted in Fig. 2(b), we observe a more ir-
regular throughput and relative slowdown for the ResNets
models size as their size grows. The contrast in Fig. 2 be-
tween ViT and ResNet models is due to the architecture and
types of layers. The parameter space grows as the width
factor (see Table 2) for the ResNets, so the ×3 makes the
neural network wider by a factor of three. Based on our re-
sults, the width of the layers affects throughput much more
than the depth of the network. ResNet models with the same
width and different depths exhibit comparable throughput,
but increasing the width will make the model in the private
setting much slower and reduce the maximum batch size
significantly.

How much does finding the maximum physical batch
size matter? In Fig. A.3 in the Appendix, we display the rel-
ative throughput as a percentage by dividing the throughput
at a particular physical batch size by the maximum achiev-
able throughput. We see that as the physical batch size
increases, the throughput will grow as expected, but there is
no significant further improvement at some point. Practition-
ers may estimate the optimal batch size based on available

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Towards Efficient and Scalable Implementation of Differentially Private Deep Learning

tiny small base large huge

Model

2

4

6

8

R
el

at
iv

e
Sl

ow
do

w
n

2.60 2.67 2.78 2.96 3.17

(a) Vision Transformer Models

R50x1 R101x1 R50x3 R101x3 R152x4

Model

2

4

6

8

R
el

at
iv

e
Sl

ow
do

w
n

4.07 4.22

6.73 6.24
7.96

(b) ResNet Models

Figure 2. Relative slowdown in mean throughputs between Opacus per-example clipping and the non-private baseline (A100 GPU). The
relative slowdown is calculated as the ratio of private-throughput to non-private-throughput. A lower value indicates a better performance,
closer to 1 indicates that Opacus is as fast as non-private training. This highlights the computational cost associated with private training.

tiny small base large huge

Model

0

500

1000

Ph
ys

ic
al

B
at

ch
Si

ze

1130

555

268
93 35

276
111 35 10 3

non-DP (PyTorch)
Opacus (PyTorch)

(a) Vision Transformer Models

R50x1 R101x1 R50x3 R101x3 R152x4

Model

0

500

1000

Ph
ys

ic
al

B
at

ch
Si

ze

510
333

150
56 24

178 135
23 15 4

non-DP (PyTorch)
Opacus (PyTorch)

(b) ResNet Models

Figure 3. Maximum achievable physical batch size by the different model sizes on A100 GPU (40 GB) before they reach Out Of Memory
(OOM) Error. The model sizes grow from left to right (Refer to Table 2 for number of parameters).

Table 3. Average processing time in milliseconds for each section
of the algorithm. We are comparing the non-private and Opacus
clipping on A100, with the same physical batch size. We profile
the time using NVIDIA Nsight Systems. All the measurements
include the synchronization time, which is needed for the profiling,
but adds additional time that is not part of the normal execution.

SECTION NON-DP
(PYTORCH)

OPACUS
(PYTORCH)

FORWARD 81.14 101.53
BACKWARD 163.85 681.48
CLIP & ACCUMULATE 0 26.76
OPTIMIZER STEP 38.17 99.65

memory and performance trade-offs. Using the maximum
physical batch size is not crucial, but a large enough value
is sufficient. Typically, the throughput of smaller batches is
limited by data loading speeds, but computation becomes
the limiting factor as batch size increases.

5.2. Reasons for the Increase in Computational Cost

Giving a detailed breakdown of low-level operations associ-
ated with DP is challenging. However, using GPU profiling
tool NVIDIA Nsight System, we can identify three aspects
which constitute the majority of DP overheads. Firstly,

due to its larger memory footprint, DP-SGD is limited to
consume smaller physical batches than its non-private coun-
terpart. This results in a larger amount of smaller low-level
kernel calls, which leads to slightly lower utilization of
the GPU. Even the kernel launch overheads can become
a notable factor for a slowdown at very small batch sizes.
Secondly, the computation of per-example gradients intro-
duces significant overhead in the backward pass as it cannot
be parallelized as in batched gradient computation. This
is the most prominent cause of the total overhead. Finally,
an additional DP-optimizer step that clips and accumulates
the per example gradients, which is not present in the non-
DP algorithm, must be taken after each physical batch (see
Table 3).

6. Decreasing the Computational Cost
This section analyzes the different strategies for training
with DP-SGD more efficiently. We evaluate both algorith-
mic and hardware optimizations and their combinations.

6.1. Efficient Gradient Clipping Algorithms

First, we evaluate the more efficient gradient clipping im-
plementations that have been described in Sec. 2.2 using the
Vision Transformer base model. We chose it as our bench-

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Towards Efficient and Scalable Implementation of Differentially Private Deep Learning

non-DP
(PyTorch)

PV
ghost

PV
ghost mixed

BK
ghost

BK
MixOpt

BK
MixGhost

Opacus
(PyTorch)

Clipping Mode

0

50

100

150

T
hr

ou
gh

pu
t

(s
am

pl
es

/s
) 112

62 62 69 68 68

37

149

80 80
92 92 92

54

V100
A100

Figure 4. Throughput using the maximum batch size for each clip-
ping algorithm. It compares the executions for both V100 and
A100, for the ViT Base model.

mark model because the middle model size is large enough
to evaluate the advantages of the optimized gradient clipping
algorithms but does not require excessive amount of time to
train. The non-Opacus implementations do not support the
ResNet due to their custom weight standardization layer.

Throughput Comparison Fig. 4 displays the throughput for
each clipping algorithm for each tested GPU. Moving from
a V100 to an A100 GPU increased the throughput by ×1.3
times on average over all clipping methods. The one that
benefited the most is the per-example clipping by Opacus
with a ×1.46 improvement in throughput. This is because
of Opacus-specific optimizations. Their implementation is
optimized to vectorize the virtual batches and get the most
out of the processing unit to compensate for the per-example
clipping. We base our virtual batching module on Opacus,
which may have further contributed to the advantage seen
for Opacus. The other implementations showed benefits
similar to those of non-private training. For both GPUs, the
clipping optimizations consistently maintained their relative
throughput difference to their non private baseline. Private
Vision gets closer to the non-private baseline physical batch
size, but Book Keeping is closer to its throughput with a
smaller physical batch size (see Fig. 6).

Without sacrificing utility (see Table A2), these optimiza-
tions offer an alternative to the original per-example clip-
ping algorithm. Although Book Keeping has a slightly better
throughput, the margin is narrow, making Private Vision and
FastDP viable options as ghost clipping implementations.
The difference between the two algorithms is the second
backward pass over the neural network. The Book Keeping
trick avoids this second backward pass, resulting in higher
throughput at a small memory cost.

Mixed ghost clipping does not yield any improvement be-
cause it determines whether to apply ghost or per-example
clipping, based on the size of the inputs and the parameter
space. For large dimensions, ghost clipping will be more
expensive (Bu et al., 2022). In ViT models, the dimensions
change less than in a convolutional network. Therefore,
despite continually evaluating which method to apply, it

Table 4. Maximum physical batch size reachable for each clipping
method and GPU using for the ViT base model.

CLIPPING MODE V100 A100
(32GB) (40GB)

NON PRIVATE BASELINE 216 268
PER-EXAMPLE (OPACUS) 28 35
GHOST (PRIVATE VISION) 203 257
MIX GHOST (PRIVATE VISION) 203 257
BK GHOST (FASTDP) 189 209
BK MIX GHOST (FASTDP) 189 209
BK MIX OPT (FASTDP) 189 209

consistently defaults to ghost clipping. Conversely, mix
optimization applied to a ResNet model should outperform
ghost clipping since it is optimized for convolutional layers.
This could not be tested on ResNet models due to incom-
patibilities with Private Vision and FastDP, preventing an
assessment of mixed optimization methods.

Maximum physical batch size Table 4 compares the max-
imum physical batch size for both available GPUs. The
maximum physical batch size is larger for the optimizations
of DP-SGD than for Opacus because they do not require per-
example gradients. Consequently, these optimizations en-
able training much larger models without exhausting mem-
ory. The maximum physical batch size using the Private
Vision library is the closest to the non-private baseline. Gen-
erally, the methods are consistent within implementations,
with Private Vision and FastDP achieving the same maxi-
mum physical batch size regardless of the clipping mode.
As expected, the A100 consistently attains higher maximum
physical batch sizes than the V100 due to its larger VRAM.

6.2. Lower Precision

We consider using lower precision to speed up computation.
We evaluate the use of TensorFloat-32 (TF32) for training.
TF32 has 10 bits for precision, with eight range bits, giving
it the same range but less precision than 32-bit single preci-
sion floats (FP32) (Kharya, 2020). Using lower precision
can have benefits exactly where DP training struggles: it
requires less memory, uses fewer bits to represent the data,
and its operations are optimized for GPU, making them
much faster (NVIDIA, 2023). It is special math mode intro-
duced for the A100 GPU and unavailable for the V100, so
we compared training on the A100 with and without TF32.

Experimental results In Fig. 5, we display the relative dif-
ference between mean throughput using TF32 and FP32.
For non-private training, throughput increases with model
size. For private training throughput increases for the
smaller models, but it goes down again as the model size
grows after the base size. Models that are too small do not
gain much from TF32, and the larger ones have too small

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Towards Efficient and Scalable Implementation of Differentially Private Deep Learning

tiny small base large huge

Model Size

1

2

3

4

R
el

at
iv

e
di

ff
er

en
ce

th
ro

ug
hp

ut
non-DP (PyTorch)
Opacus (PyTorch)

Figure 5. Relative difference in mean throughput between TF32
and FP32 Training for ViT Models.

maximum physical batch size to benefit (See detailed discus-
sion of this in App. C). Regarding the memory advantages
by TF32, we could not see an improvement. The maximum
physical batch size is unaffected by the precision.

Concerns regarding TF32 under DP There are two con-
cerns with using lower precision in DP deep learning: its
effects on utility and privacy. Lower precision may affect
utility, as it is less precise. We did not find a significant
decay in the accuracy of the models compared to the models
with FP32; it differs by decimal points at the ×10−6 preci-
sion (See Table A2). Regarding privacy, all floating point
implementations provide imperfect implementations of real-
valued mechanisms, that might introduce additional privacy
vulnerabilities (Mironov, 2012). Lower precision may ex-
acerbate this issue. Discrete mechanisms (e.g. Canonne
et al., 2020; Agarwal et al., 2021) avoid these theoretical
challenges, but are often less convenient and may reduce
utility, especially in low precision settings. The efficiency
of different discrete mechanisms in TF32 is an interesting
topic of further research.

7. Comparison of JAX Implementations
We compare the performance of a naive non-private JAX,
a naive JAX, and our proposed masked DP-SGD method
with all other DP-SGD frameworks (all based on PyTorch).
The utility is the same as in PyTorch (See Table A2). To
provide a fair comparison, we implemented non-private and
native DP JAX training using the same virtual batching as
PyTorch. Note that JAX defaults to TF32 when available
and FP32 needs to be explicitly forced.

Throughput comparison (FP32) In Fig. 6 (left), we com-
pare the throughput using FP32. The naive DP-SGD JAX is
the slowest implementation due to the JAX recompilation.
Our proposed method masked DP-SGD outperforms Opacus
and nearly matches the performance of PV Ghost Clipping
despite not utilizing any optimizations regarding clipping.
The masked DP-SGD exhibits higher throughput compared
to other JAX implementations. This is primarily because
the entire logical batch is accommodated in CPU memory,
allowing it to be split into static sizes. Consequently, the

compilation time is elevated for the first logical batch; how-
ever, subsequent iterations benefit from increased speed as
recompilation is unnecessary. In Fig. 6 (middle) we com-
pare the throughput using TF32 and for this precision the
results indicate that masked DP-SGD performs comparably
to Opacus in terms of throughput. However, our method
performs better on regimes with fewer samples (Fig. A.2)
and allows for a larger physical batch size (Fig. 6 right).

Compilation The compilation time must be taken into ac-
count, given that the DP-SGD implementations in PyTorch
do not compile. We measure it as the duration to process the
first batch, since the execution times for each batch show
that the first batch takes much more time than the others,
including the compilation time (see Fig. A.4). The compila-
tion time increases with batch size. For the private model,
the compiled function is more complex than the non-private
counterpart. It includes expanding the dimensions and clip-
ping the gradients, while the non-private directly computes
the gradient of the whole mini-batch.

Although compiling PyTorch is possible, we did not ob-
serve any significant speed improvements. Compiling the
non-private model yielded minimal speed-up, but ultimately
even lower when accounting for the compilation. PyTorch
also recompiles after a batch size change, but reverts to pre-
defined CUDA optimized operations. In the private setting,
the compilation does not recognize Opacus hooks and con-
tinues the execution without compiling them (See Fig. A.5).
Leveraging the same kernels to support the private hooks
and avoid the compilation would require massive engineer-
ing work of writing special kernels for each specific private
case. On the other hand, JAX will compile the JIT functions
in XLA, but it does not fall back to the kernels, making it
more generalizable (Subramani et al., 2021).

8. Distributed Training
We will look at another angle to train deep learning with
DP faster: increasing the computational resources enough
to decrease the training time. This is relevant when training
cost or resource constraints are less important than the time
to train a new model.

We utilize V100 GPUs on HPC nodes that have 4 GPUs
per node. The other experimental setting is identical to the
one in Sec. 5. Results for utilizing up to 24 A100 GPUs
can be found in Fig. A.7 in the Appendix. We focus on
comparing the scaling behavior between the non-private
baseline that uses PyTorch and the DP-SGD implementation
using Opacus. Both frameworks provide mature tooling for
distributed training.

Fig. 7 shows the throughput increase as a function of num-
ber of GPUs. The throughput does not grow linearly and
changes from the ideal linear scaling after using more than

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Towards Efficient and Scalable Implementation of Differentially Private Deep Learning

naive DP
(JAX)

Opacus
(PyTorch)

Masked
DP-SGD

(JAX)

GhostClip
(PV)

GhostClip
(BK)

0

20

40

60

80

T
hr

ou
gh

pu
t

(s
am

pl
es

/s
)

Throughput (FP32)

naive DP
(JAX)

Opacus
(PyTorch)

Masked
DP-SGD

(JAX)

GhostClip
(PV)

GhostClip
(BK)

0

50

100

150

200

250

Throughput (TF32)

naive DP
(JAX)

Opacus
(PyTorch)

Masked
DP-SGD

(JAX)

GhostClip
(PV)

GhostClip
(BK)

0

50

100

150

200

250

Ph
ys

ic
al

B
at

ch
Si

ze

Max Physical Batch Size

Figure 6. Throughput comparison across precision modes, for the ViT Base model, trained on A100 GPU. Using a lower precision should
increase memory capacity and speed-up the sample processing. The results confirm that throughput is enhanced with lower precision.
However, the physical batch size remained constant across precision modes.

Table 5. A summary of the lessons learnt. The relative throughput/max physical batch size is in comparison to PyTorch non-DP (higher is
better) on A100. For each optimization method and each model size, we divide it with the non-private counterpart.

Method Relative to non-DP (PyTorch FP32) Supports Compilation SectionThroughput (↑) Max Physical Batch Size (↑) all layers Initial Re-
Opacus 0.31-0.39 0.08-0.24 - - Sec. 5
Efficient Gradient Clipping 0.49-0.54 0.88-0.95 - - Sec. 6.1
Native JAX 0.39-0.59 0.23-0.43 Sec. 7
Masked DP-SGD (ours) 0.51-0.69 0.11-0.23 Sec. 7
Masked DP-SGD + TF32 0.79-1.33 0.11-0.23 Sec. 7
Low Precision (Opacus+TF32) 0.54-0.84 0.08-0.24 - - Sec. 6.2

12 4 8 16 32 64 80

GPU

0

2000

4000

6000

8000

T
hr

ou
gh

pu
t

(s
am

pl
es

/s
)

non-private (observed)
Opacus (observed)
non-private (linear scaling)
Opacus (linear scaling)

Figure 7. Comparison between the throughput by scaling the num-
ber of GPUs for the non-private and Opacus training with the ViT
base model on V100 GPUs. The dashed line is the ideal growth.

one node (i.e. more than 4 GPUs). While the communi-
cation inside the node is fast, the communication between
nodes will always be slower. The bottleneck is the network
bandwidth, and it prevents the throughput from scaling lin-
early. Notably, it affects the non-private training baseline
much more, while the private scales close to optimal up to 32
GPUs. For the 80 GPUs, the private training achieves 69.2%
of the ideal linear speed-up, and the non-private training
only achieves 53.3%. Private training scales better because
it is slower and only sometimes saturates the network with
updates. If we use Amdalh’s law to compare the parallelism
percentage for each case, we can see that in the private case,
we achieve a 99.5% parallelism compared to a 98.9% in the
non-private case (See Fig. A.8).

9. Conclusion
We summarize the lessons learnt in Table 5. While DP-SGD
is significantly more costly than non-private training, we
identified feasible speed-ups that are often easy to apply
but have some drawbacks. These are: (i) More efficient
implementations of DP-SGD which additionally decrease
the memory footprint (allowing for training larger mod-
els). However, these implementations are not as mature as
Opacus and do not support all neural network layers (yet).
(ii) JAX lacks a comprehensive DP-SGD implementation
like PyTorch and exhibits greater variability in execution
times. Although JAX processes samples faster than Py-
Torch, it loses the advantage through frequent re-compila-
tions when utilizing proper Poisson sampling. We present an
efficient DP-SGD implementation with JAX called Masked
DP-SGD. It leverages JAX advantages in compilation and
efficient sample processing, while adhering to Poisson sub-
sampling requirements for correct privacy accounting. By
avoiding frequent recompilation, we mitigate execution time
variability and enhances efficient performance. (iii) Lower
Precision using TF32 which increases throughput but the
implications on the theoretical guarantees of DP-SGD need
to be explored in future work. Finally, we found that dis-
tributed computing using DP-SGD scales better than non-
private training and allows for fast training of models.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Towards Efficient and Scalable Implementation of Differentially Private Deep Learning

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abadi, M., Chu, A., Goodfellow, I. J., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learn-
ing with differential privacy. In Weippl, E. R., Katzen-
beisser, S., Kruegel, C., Myers, A. C., and Halevi, S.
(eds.), Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, Vi-
enna, Austria, October 24-28, 2016, pp. 308–318. ACM,
2016. doi: 10.1145/2976749.2978318. URL https:
//doi.org/10.1145/2976749.2978318.

Abowd, J. M. The U.S. Census Bureau adopts differen-
tial privacy. In Guo, Y. and Farooq, F. (eds.), Proceed-
ings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, KDD
2018, London, UK, August 19-23, 2018, pp. 2867. ACM,
2018. doi: 10.1145/3219819.3226070. URL https:
//doi.org/10.1145/3219819.3226070.

Agarwal, N., Kairouz, P., and Liu, Z. The skellam mecha-
nism for differentially private federated learning. In Ran-
zato, M., Beygelzimer, A., Dauphin, Y. N., Liang, P., and
Vaughan, J. W. (eds.), Advances in Neural Information
Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, De-
cember 6-14, 2021, virtual, pp. 5052–5064, 2021. URL
https://proceedings.neurips.cc/paper
/2021/hash/285baacbdf8fda1de94b19282
acd23e2-Abstract.html.

Annamalai, M. S. M. S., Balle, B., Cristofaro, E. D., and
Hayes, J. To shuffle or not to shuffle: Auditing DP-
SGD with shuffling. CoRR, abs/2411.10614, 2024. doi:
10.48550/ARXIV.2411.10614. URL https://doi.
org/10.48550/arXiv.2411.10614.

Ansel, J., Yang, E. Z., He, H., Gimelshein, N., Jain, A.,
Voznesensky, M., Bao, B., Bell, P., Berard, D., Burovski,
E., Chauhan, G., Chourdia, A., Constable, W., Desmai-
son, A., DeVito, Z., Ellison, E., Feng, W., Gong, J.,
Gschwind, M., Hirsh, B., Huang, S., Kalambarkar, K.,
Kirsch, L., Lazos, M., Lezcano, M., Liang, Y., Liang,
J., Lu, Y., Luk, C. K., Maher, B., Pan, Y., Puhrsch, C.,
Reso, M., Saroufim, M., Siraichi, M. Y., Suk, H., Zhang,
S., Suo, M., Tillet, P., Zhao, X., Wang, E., Zhou, K.,
Zou, R., Wang, X., Mathews, A., Wen, W., Chanan, G.,
Wu, P., and Chintala, S. PyTorch 2: Faster machine

learning through dynamic Python bytecode transforma-
tion and graph compilation. In Gupta, R., Abu-Ghazaleh,
N. B., Musuvathi, M., and Tsafrir, D. (eds.), Proceedings
of the 29th ACM International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, Volume 2, ASPLOS 2024, La Jolla, CA,
USA, 27 April 2024- 1 May 2024, pp. 929–947. ACM,
2024. doi: 10.1145/3620665.3640366. URL https:
//doi.org/10.1145/3620665.3640366.

Balle, B., Cherubin, G., and Hayes, J. Reconstructing train-
ing data with informed adversaries. In 43rd IEEE Sympo-
sium on Security and Privacy, SP 2022, San Francisco,
CA, USA, May 22-26, 2022, pp. 1138–1156. IEEE, 2022.
doi: 10.1109/SP46214.2022.9833677. URL https://
doi.org/10.1109/SP46214.2022.9833677.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs. http:
//github.com/google/jax, 2018.

Bu, Z., Mao, J., and Xu, S. Scalable and efficient train-
ing of large convolutional neural networks with dif-
ferential privacy. In Koyejo, S., Mohamed, S., Agar-
wal, A., Belgrave, D., Cho, K., and Oh, A. (eds.), Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022, 2022. URL http:
//papers.nips.cc/paper_files/paper/2
022/hash/fa5617c176e76fee83f3f9947fd
f9f3f-Abstract-Conference.html.

Bu, Z., Wang, Y., Zha, S., and Karypis, G. Differentially pri-
vate optimization on large model at small cost. In Krause,
A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S.,
and Scarlett, J. (eds.), International Conference on Ma-
chine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pp. 3192–3218. PMLR, 2023. URL
https://proceedings.mlr.press/v202/b
u23a.html.

Canonne, C. L., Kamath, G., and Steinke, T. The discrete
gaussian for differential privacy. In Larochelle, H., Ran-
zato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020. URL https://proceedings.neurip
s.cc/paper/2020/hash/b53b3a3d6ab90ce
0268229151c9bde11-Abstract.html.

Carlini, N., Tramèr, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T. B., Song, D.,

9

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/3219819.3226070
https://doi.org/10.1145/3219819.3226070
https://proceedings.neurips.cc/paper/2021/hash/285baacbdf8fda1de94b19282acd23e2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/285baacbdf8fda1de94b19282acd23e2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/285baacbdf8fda1de94b19282acd23e2-Abstract.html
https://doi.org/10.48550/arXiv.2411.10614
https://doi.org/10.48550/arXiv.2411.10614
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1109/SP46214.2022.9833677
https://doi.org/10.1109/SP46214.2022.9833677
http://github.com/google/jax
http://github.com/google/jax
http://papers.nips.cc/paper_files/paper/2022/hash/fa5617c176e76fee83f3f9947fdf9f3f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/fa5617c176e76fee83f3f9947fdf9f3f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/fa5617c176e76fee83f3f9947fdf9f3f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/fa5617c176e76fee83f3f9947fdf9f3f-Abstract-Conference.html
https://proceedings.mlr.press/v202/bu23a.html
https://proceedings.mlr.press/v202/bu23a.html
https://proceedings.neurips.cc/paper/2020/hash/b53b3a3d6ab90ce0268229151c9bde11-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b53b3a3d6ab90ce0268229151c9bde11-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b53b3a3d6ab90ce0268229151c9bde11-Abstract.html

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Towards Efficient and Scalable Implementation of Differentially Private Deep Learning

Erlingsson, Ú., Oprea, A., and Raffel, C. Extracting train-
ing data from large language models. In Bailey, M. and
Greenstadt, R. (eds.), 30th USENIX Security Symposium,
USENIX Security 2021, August 11-13, 2021, pp. 2633–
2650. USENIX Association, 2021. URL https://ww
w.usenix.org/conference/usenixsecuri
ty21/presentation/carlini-extracting.

Chua, L., Ghazi, B., Kamath, P., Kumar, R., Manurangsi,
P., Sinha, A., and Zhang, C. How private are DP-SGD
implementations? In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024. OpenReview.net, 2024a. URL https:
//openreview.net/forum?id=xWI0MKwJSS.

Chua, L., Ghazi, B., Kamath, P., Kumar, R., Manurangsi, P.,
Sinha, A., and Zhang, C. Scalable DP-SGD: Shuffling
vs. poisson subsampling. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024b. URL https://openreview.net/forum
?id=6gMnj9oc6d.

Cormode, G., Jha, S., Kulkarni, T., Li, N., Srivastava, D.,
and Wang, T. Privacy at scale: Local differential privacy
in practice. In Das, G., Jermaine, C. M., and Bernstein,
P. A. (eds.), Proceedings of the 2018 International Con-
ference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018, pp. 1655–
1658. ACM, 2018. doi: 10.1145/3183713.3197390. URL
https://doi.org/10.1145/3183713.3197
390.

De, S., Berrada, L., Hayes, J., Smith, S. L., and Balle, B.
Unlocking high-accuracy differentially private image clas-
sification through scale. ArXiv preprint, abs/2204.13650,
2022. URL https://arxiv.org/abs/2204.1
3650.

DeepMind, Babuschkin, I., Baumli, K., Bell, A., Bhupati-
raju, S., Bruce, J., Buchlovsky, P., Budden, D., Cai, T.,
Clark, A., Danihelka, I., Dedieu, A., Fantacci, C., God-
win, J., Jones, C., Hemsley, R., Hennigan, T., Hessel, M.,
Hou, S., Kapturowski, S., Keck, T., Kemaev, I., King,
M., Kunesch, M., Martens, L., Merzic, H., Mikulik, V.,
Norman, T., Papamakarios, G., Quan, J., Ring, R., Ruiz,
F., Sanchez, A., Sartran, L., Schneider, R., Sezener, E.,
Spencer, S., Srinivasan, S., Stanojević, M., Stokowiec,
W., Wang, L., Zhou, G., and Viola, F. The DeepMind
JAX Ecosystem. http://github.com/google-d
eepmind, 2020.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
An image is worth 16x16 words: Transformers for image
recognition at scale. In 9th International Conference

on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=Yicb
FdNTTy.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. D. Cal-
ibrating noise to sensitivity in private data analysis. In
Halevi, S. and Rabin, T. (eds.), Theory of Cryptography,
Third Theory of Cryptography Conference, TCC 2006,
New York, NY, USA, March 4-7, 2006, Proceedings, vol-
ume 3876 of Lecture Notes in Computer Science, pp. 265–
284. Springer, 2006. doi: 10.1007/11681878 14. URL
https://doi.org/10.1007/11681878_14.

Kharya, P. TensorFloat-32 in the A100 GPU Accelerates AI
Training, HPC up to 20x. https://blogs.nvidia
.com/blog/tensorfloat-32-precision-f
ormat/, 2020.

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung,
J., Gelly, S., and Houlsby, N. Big transfer (BiT): Gen-
eral visual representation learning. In Computer Vision –
ECCV 2020: 16th European Conference, Glasgow, UK,
August 23-28, 2020, Proceedings, Part V, pp. 491–507,
Berlin, Heidelberg, 2020. Springer-Verlag. ISBN 978-
3-030-58557-0. doi: 10.1007/978-3-030-58558-7 29.
URL https://doi.org/10.1007/978-3-030
-58558-7_29.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. Technical Report 0, University
of Toronto, Toronto, Ontario, 2009. URL https://ww
w.cs.toronto.edu/˜kriz/learning-featu
res-2009-TR.pdf.

Lebeda, C. J., Regehr, M., Kamath, G., and Steinke, T.
Avoiding pitfalls for privacy accounting of subsampled
mechanisms under composition. CoRR, abs/2405.20769,
2024. doi: 10.48550/ARXIV.2405.20769. URL https:
//doi.org/10.48550/arXiv.2405.20769.

Li, X., Tramèr, F., Liang, P., and Hashimoto, T. Large lan-
guage models can be strong differentially private learn-
ers. In The Tenth International Conference on Learn-
ing Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022. URL https:
//openreview.net/forum?id=bVuP3ltATMz.

Mironov, I. On significance of the least significant bits for
differential privacy. In Yu, T., Danezis, G., and Gligor,
V. D. (eds.), Proceedings of the 2012 ACM Conference
on Computer and Communications Security, CCS ’12,
pp. 650–661, New York, NY, USA, 2012. Association
for Computing Machinery. ISBN 9781450316514. doi:
10.1145/2382196.2382264. URL https://doi.or
g/10.1145/2382196.2382264.

10

https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://openreview.net/forum?id=xWI0MKwJSS
https://openreview.net/forum?id=xWI0MKwJSS
https://openreview.net/forum?id=6gMnj9oc6d
https://openreview.net/forum?id=6gMnj9oc6d
https://doi.org/10.1145/3183713.3197390
https://doi.org/10.1145/3183713.3197390
https://arxiv.org/abs/2204.13650
https://arxiv.org/abs/2204.13650
http://github.com/google-deepmind
http://github.com/google-deepmind
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1007/11681878_14
https://blogs.nvidia.com/blog/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/tensorfloat-32-precision-format/
https://doi.org/10.1007/978-3-030-58558-7_29
https://doi.org/10.1007/978-3-030-58558-7_29
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.48550/arXiv.2405.20769
https://doi.org/10.48550/arXiv.2405.20769
https://openreview.net/forum?id=bVuP3ltATMz
https://openreview.net/forum?id=bVuP3ltATMz
https://doi.org/10.1145/2382196.2382264
https://doi.org/10.1145/2382196.2382264

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Towards Efficient and Scalable Implementation of Differentially Private Deep Learning

NVIDIA. Train with mixed precision. https://docs
.nvidia.com/deeplearning/performance
/mixed-precision-training/index.html,
2023.

Ponomareva, N., Vassilvitskii, S., Xu, Z., McMahan, B.,
Kurakin, A., and Zhang, C. How to dp-fy ML: A practical
tutorial to machine learning with differential privacy. In
Singh, A. K., Sun, Y., Akoglu, L., Gunopulos, D., Yan,
X., Kumar, R., Ozcan, F., and Ye, J. (eds.), Proceedings
of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD 2023, Long Beach,
CA, USA, August 6-10, 2023, pp. 5823–5824. ACM, 2023.
doi: 10.1145/3580305.3599561. URL https://doi.
org/10.1145/3580305.3599561.

Räisä, O., Jälkö, J., and Honkela, A. Subsampling is not
magic: Why large batch sizes work for differentially pri-
vate stochastic optimisation. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna,
Austria, July 21-27, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=gTBj
kJvadC.

Rajkumar, A. and Agarwal, S. A differentially private
stochastic gradient descent algorithm for multiparty clas-
sification. In Lawrence, N. D. and Girolami, M. A. (eds.),
Proceedings of the Fifteenth International Conference on
Artificial Intelligence and Statistics, AISTATS 2012, La
Palma, Canary Islands, Spain, April 21-23, 2012, vol-
ume 22 of JMLR Proceedings, pp. 933–941. JMLR.org,
2012. URL http://proceedings.mlr.press/
v22/rajkumar12.html.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y.

Song, S., Chaudhuri, K., and Sarwate, A. D. Stochas-
tic gradient descent with differentially private updates.
In IEEE Global Conference on Signal and Informa-
tion Processing, GlobalSIP 2013, Austin, TX, USA, De-
cember 3-5, 2013, pp. 245–248. IEEE, 2013. doi:
10.1109/GlobalSIP.2013.6736861. URL https://do
i.org/10.1109/GlobalSIP.2013.6736861.

Stosic, D. and Micikevicius, P. Accelerating AI training
with NVIDIA TF32 tensor cores. https://develo
per.nvidia.com/blog/accelerating-ai-t
raining-with-tf32-tensor-cores/, 2021.

Subramani, P., Vadivelu, N., and Kamath, G. Enabling
fast differentially private SGD via just-in-time compi-
lation and vectorization. In Ranzato, M., Beygelzimer,

A., Dauphin, Y. N., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, vir-
tual, pp. 26409–26421, 2021. URL https://procee
dings.neurips.cc/paper/2021/hash/ddf
9029977a61241841edeae15e9b53f-Abstrac
t.html.

Tobaben, M., Shysheya, A., Bronskill, J., Paverd, A.,
Tople, S., Béguelin, S. Z., Turner, R. E., and Honkela,
A. On the efficacy of differentially private few-shot
image classification. Transactions on Machine Learn-
ing Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=hFsr59Imzm.

Yousefpour, A., Shilov, I., Sablayrolles, A., Testuggine, D.,
Prasad, K., Malek, M., Nguyen, J., Ghosh, S., Bharadwaj,
A., Zhao, J., Cormode, G., and Mironov, I. Opacus: User-
friendly differential privacy library in PyTorch. ArXiv
preprint, abs/2109.12298, 2021. URL https://arxi
v.org/abs/2109.12298.

Yu, D., Naik, S., Backurs, A., Gopi, S., Inan, H. A., Kamath,
G., Kulkarni, J., Lee, Y. T., Manoel, A., Wutschitz, L.,
Yekhanin, S., and Zhang, H. Differentially private fine-
tuning of language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022.
URL https://openreview.net/forum?id=
Q42f0dfjECO.

11

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://doi.org/10.1145/3580305.3599561
https://doi.org/10.1145/3580305.3599561
https://openreview.net/forum?id=gTBjkJvadC
https://openreview.net/forum?id=gTBjkJvadC
http://proceedings.mlr.press/v22/rajkumar12.html
http://proceedings.mlr.press/v22/rajkumar12.html
https://doi.org/10.1109/GlobalSIP.2013.6736861
https://doi.org/10.1109/GlobalSIP.2013.6736861
https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/
https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/
https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/
https://proceedings.neurips.cc/paper/2021/hash/ddf9029977a61241841edeae15e9b53f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ddf9029977a61241841edeae15e9b53f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ddf9029977a61241841edeae15e9b53f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ddf9029977a61241841edeae15e9b53f-Abstract.html
https://openreview.net/forum?id=hFsr59Imzm
https://openreview.net/forum?id=hFsr59Imzm
https://arxiv.org/abs/2109.12298
https://arxiv.org/abs/2109.12298
https://openreview.net/forum?id=Q42f0dfjECO
https://openreview.net/forum?id=Q42f0dfjECO

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Towards Efficient and Scalable Implementation of Differentially Private Deep Learning

A. Training Details
A.1. Models

• Vision Transformer (ViT) (Dosovitskiy et al., 2021). Taken from https://huggingface.co/timm/vit_ba
se_patch16_224.orig_in21k

• Big Transfer ResNet (Kolesnikov et al., 2020). Taken from https://github.com/google-research/big_
transfer

A.2. Hyperparameters

We use the hyperparameters obtained on request from Tobaben et al. (2023). The hyperparameters for both models are in
Table A1. Even though model utility is not the main objective in this work, in the non-private case, the learning rate is
suboptimal. By changing it to 0.00027 we see an accuracy improvement, therefore the one we are using.

Table A1. Hyperparameters used for each model architecture.

MODEL TRAINABLE PARAMETERS EPSILON DELTA LEARNING RATE MAX GRAD NORM

VIT ALL 8 2.04e−5 0.00031 4.63
RESNET ALL 8 2.04e−5 0.00098 6.53

A.3. Grad sample modes in Opacus

Opacus supports multiple different gradient sampling methods as indicated in the documentation1. In our original experiments
we used the grad sample mode hooks that is the default. This will use custom opacus modules when they are defined for
that layer and functorch as a fallback. Based on the feedback by a reviewer we tried out different methods listed in the
documentation for both ResNet and ViT models:

• functorch: We forced opacus to use functorch but did not observe any significant speed differences to using hooks.
This is in line with the opacus documentation which writes that the speed is 0− 50% slower than hooks.

• ExpandedWeigths: We tried this approach but ran into runtime errors. Interestingly, when looking through the
issues others have reported issues23 but it seems to be more a PyTorch problem and has not been addressed for years.
According to the documentation ExpandedWeights is still in beta status.

• GhostClipping: Note that this method only works for ViT as described in Sec. 6.1. At first we did not manage to
decrease the loss with this implementation due to the implementation in opacus being unstable. After some fixes, the
correct accuracy is achieved but we noticed that the speed-ups are not significant, and even lower than flat clipping.
Therefore, we decided to not include them, as it is still in development. When ready, we expect a similar speed-up to
the observed in our experiments in Sec. 6.1 as the underlying algorithm is the same.

A.4. Poisson Subsampling JAX Algorithm

We present our DP-SGD implementation in JAX that uses the correct Poisson subsampling and therefore we can account for
its privacy. The main problem with implementing DP-SGD with JAX is the batches of variable size. In order to address this
issue, we compute always full physical batches and mask out gradients so that the total number of used gradients is equal
the sampled logical batch sizes. This means that we always compute a little more gradients that required due to sampling.
This prevents the recompiling.

Variability in experiments One difference between the two frameworks is the variability in the experiments. PyTorch
runs are remarkably consistent, maintaining low variance, and yielding the same throughput result for a fixed seed. In

1https://github.com/pytorch/opacus/tree/61ae0ea4fb37a835e93040b5de19e8dfcd465a07/opacus
/grad_sample

2https://github.com/pytorch/opacus/issues/464
3https://github.com/pytorch/opacus/issues/584

12

https://huggingface.co/timm/vit_base_patch16_224.orig_in21k
https://huggingface.co/timm/vit_base_patch16_224.orig_in21k
https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer
https://github.com/pytorch/opacus/tree/61ae0ea4fb37a835e93040b5de19e8dfcd465a07/opacus/grad_sample
https://github.com/pytorch/opacus/tree/61ae0ea4fb37a835e93040b5de19e8dfcd465a07/opacus/grad_sample
https://github.com/pytorch/opacus/issues/464
https://github.com/pytorch/opacus/issues/584

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Towards Efficient and Scalable Implementation of Differentially Private Deep Learning

Algorithm A1 Virtual Batching DP-SGD JAX

Input: Training data points {x1, . . . , xN}, loss function L(θ) = 1
N

∑
i L(θ, xi)

Parameters: Parameters: learning rate ηt, noise scale σ, gradient norm bound C, number of steps T , expected logical
batch size L, physical batch size p.
Start
for t ∈ [T] do
tl ∼ Binomial

(
N, L

N

)
{Sample the true batch size}

Find minimum k ∈ N such that p · k ≥ tl {Check how many full physical batches are required}
m← k · p
B ← {xj1 , . . . , xjm}
P ← {B1, . . . , Bk} {Divide the maximum logical batch B into physical batches of size p}.
M ← {10, 11, . . . , 1tl−1, 0, 0, . . . , 0m−tl+1} {Create masks so that

∑m
i Mi = tl}

θacc ← 0
for s ∈ [P] do

for i ∈ s do
gt(xi)← ∇θtL(θt, xi) {Compute gradient}
gt(xi)←Mi+(s−1)∗p · gt/max(1, ∥gt(xi)∥2

C) {Clip gradient and mask}
end for
θacc ← θacc +

∑
i gt(xi) {Accumulate gradient}

end for
g̃t ← 1

|L| (θacc +N (0, σ2C2I)) {Add noise}
θt+1 ← θt − ηtg̃t {Step}

end for
Return Learned parameters θT and the privacy cost from a privacy accountant.

contrast, JAX naive executions, meaning that there is recompilation, are more variable than those of PyTorch, likely due
to its sensitivity to HPC environment fluctuations and accelerator stochasticity, as noted in Fig. A.4. Additionally, JAX’s
asynchronous dispatch method complicates time benchmarking by issuing a promise rather than immediate results, thereby
concealing Python overheads. For our Masked DP-SGD method, by fixing the batch sizes and avoiding recompilation, we
achieve consistent execution times.

B. Additional Results
This section provides additional figures that supplement the findings in the main text.

Opacus
(PyTorch)

GhostClipping
(PyTorch)

Masked
DP-SGD

(JAX)

naive DP
(JAX)

non-DP
(PyTorch)

0.25
0.3
0.4
0.5
0.6
0.8
1.0
1.2
1.4
1.6

2
2.5

3
3.5
4.5

T
hr

ou
gh

pu
tr

el
at

iv
e

to
no

n-
D

P

TF32
FP32

Figure A.1. Relative throughput to the respective FP32 non private baseline (higher is better) on NVIDIA A100. For each optimization
method and each model size, we divide its throughput with the non-private counterpart. In this figure we showcase for each optimization,
both precision modes, relative to the FP32 baseline.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Towards Efficient and Scalable Implementation of Differentially Private Deep Learning

1 2 4 8 16 32 64 128 256

Physical Batch Size

25

50

75

100

125

150

T
hr

ou
gh

pu
t(

sa
m

pl
es

/s
) non-private

Opacus
ghost/PV
ghost/BK
masked-DP-SGD/jax
naive-DP-SGD/jax

(a) FP32 Precision

1 2 4 8 16 32 64 128 256

Physical Batch Size

25

50

75

100

125

150

T
hr

ou
gh

pu
t(

sa
m

pl
es

/s
)

Opacus/tf32
non-private
masked-DP-SGD/jax/tf32

(b) TF32 Precision

Figure A.2. Comparison of the throughput as a function of the physical batch size between the JAX and PyTorch clipping algorithms on
A100 GPU. The analysis excludes the Mix algorithms, due to their equivalent performance in ViTs.

1 2 4 8 16 32 64 128 256

Physical Batch Size

20

40

60

80

100

%
of

M
ax

im
um

T
hr

ou
gh

tp
ut

non-private
Opacus

Figure A.3. The relative difference with the throughput at the maximum batch size for the ViT base model on A100.

Table A2. Mean accuracy for CIFAR-100 test set for each clipping mode for the ViT models on A100 after training for two epochs. All
use the ViT hyperparameters from Table A1. While this work does not focus on the model’s utility, having their results still allows us to
compare them. The use of TF32 as a lower precision mode does not affect the model’s utility.

CLIPPING MODE TEST ACCURACY

OPACUS 0.8223
OPACUS/TF32 0.8225
JAX NAIVE 0.8146
MASKED DP-SGD 0.8224
PV-GHOST 0.822
BK-GHOST 0.822

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Towards Efficient and Scalable Implementation of Differentially Private Deep Learning

1 2 4 8 16 32 64 128 256

Physical Batch Size

16

18

20

22

24

26

28

30

32

C
om

pi
la

tio
n

tim
e

(s
)

non-private/jax
private/jax

Figure A.4. Compilation time in seconds as a function of the physical batch size for JAX naive experiments for the ViT Base model on
A100. The estimator is the median and the error bars are the 95% confidence interval using bootstrapping.

non-private Opacus

Mode

0

50

100

150

T
hr

ou
gh

pu
t(

sa
m

pl
es

/s
)

w compilation time
wout compilation time
no compilation

Figure A.5. Torch compilation experiments on A100, using the maximum physical batch size for each mode and ViT Base. PyTorch 2
enables compiling the model to (potentially) gain further speed-ups. We tried PyTorch 2 compilation to make a fair comparison with the
JAX compilation but did not observe any benefits from it. We found that when trying to compile PyTorch, it first tries to compile but
then falls back to NVIDIA kernels and optimizations. In the end, it does not compile, and the throughput is the same. If we take into
account the first iteration (w compilation time), it is worse because of the time PyTorch spends trying to compile before falling back to
NVIDIA kernels and optimizations. Disregarding the time where PyTorch tries to compile (wout compilation time), leads to nearly the
same throughput as the version that does not attempt using PyTorch 2 compiling in the first place.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Towards Efficient and Scalable Implementation of Differentially Private Deep Learning

1 2 4 8 16 32 64 128 256 512

Physical Batch

0

100

200

300

400

500

T
hr

ou
gh

pu
t(

sa
m

pl
es

/s
)

non-private
Opacus
non-private tf32
Opacus tf32

(a)

1 2 4

GPU

0

250

500

750

1000

1250

1500

1750

T
hr

ou
gh

pu
t(

sa
m

pl
es

/s
)

non-private tf32
non-private
Opacus tf32
Opacus

(b)

Figure A.6. Combining distributed training with the use of lower precision TF32 for the ViT base model on A100. (a) Throughput for one
GPU; (b) Throughput for multiple GPUs.

1 2 4 8 16 24

GPU

0

500

1000

1500

2000

2500

3000

3500

T
hr

ou
gh

pu
t(

sa
m

pl
es

/s
)

non-private
Opacus

Figure A.7. Comparison between the throughput by scaling the number of GPUs with more nodes for the non-private and Opacus training
with the ViT base model on A100 GPUs. The dashed line is the ideal growth if it were linear.

1 2 4 8 16 32 64 80

GPUs

100

101

Sp
ee

du
p

non-private
Opacus
Amdahl’s Law 100
Amdahl’s Law 99.5
Amdahl’s Law 98.9
Amdahl’s Law 95

Figure A.8. Comparison between the throughput in our experiments and the theoretical Amdahl’s Law. Both axis are in log scale. In the
distributed setting, private training achieves a 99.5 % of parallel processing, with a 50 times speed up than single processing.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Towards Efficient and Scalable Implementation of Differentially Private Deep Learning

C. Further discussion of TF32 speedups
The speedup observed in Fig. 5 peaks at the ”base” model. We believe that the reasons are the following: Speed-ups resulting
from TF32 can significantly vary on per case basis as “all storage in memory and other operations remain completely in
FP32, only convolutions and matrix-multiplications convert their inputs to TF32 right before multiplication.” (Stosic &
Micikevicius, 2021). Until now, TF32 precision benchmarks have been limited to non-DP applications which was one of
the reasons we wanted to discuss our observations in DP context. It appears the effectiveness of TF32 arithmetic peaks at
“base” configuration. This due to a mix of reasons which are difficult to quantify exactly. Firstly, it is likely that matrix
multiplication kernel dominance peaks at this configuration i.e. we have the most parameters whilst the batch size dimension
also remains sufficiently large. With large and huge model variants the parameter count still increases but at the cost having
very small batch dimension of 10 and 3, respectively. Secondly, we observe similar trend in Fig. 2(a) where the discrepancy
between dp and non-dp grows as model size gets bigger. This suggests that the dominance of DP operations also grows with
the model size. None of the DP-operations are cast as matrix-multiplications and hence won’t benefit from TF32.

D. Extra computational cost of the masked dp-sgd

For the masked dp-sgd, we first sample the minibatch using Poisson subsampling and to allow JAX compilation, we
round this number to the closest larger integer divisable by the physical batch size. Hence, for any sampled batch size X ,
the difference between X and the upscaled batch size will be in {0, . . . p − 1} for a physical batch size p. Denoting the
excess batch size with ∆p(X) and the upscaled batch size with X+, we can write

E[X+] = E[X +∆p(X)]. (A1)

Now, we can form a simple upper bound for the expected value of the upscaled batch size as

E[X+] ≤ E[X] + (p− 1). (A2)

When working large number of samples and non-negligible sampling probabilities, the excess cost due to upscaling the
batch size will be modest for feasible physical batch sizes. For example, in our experiments the expected batch size of the
Poisson subsampling was 25 000, whereas the physical batch sizes extended up to 64.

A recent work by (Chua et al., 2024b) proposed an alternative implementation for JAX compilable implementation of
Poisson subsampled DP-SGD. In their approach the batch sizes are sampled from a truncated Binomial distribution. This
affects the privacy guarantees of the models, and therefore they need to compensate the truncated sampling by increasing the
noise std. for DP-SGD. They suggest an approach for computing the truncation bound B as

Ψ(n, b,B) · T · (1 + eϵ) ≤ τδ (A3)

where Ψ(n, b,B) denotes the survival function (1 − cdf) of Binom(n, b/n) at B and T are the number of steps. The
parameter τ effectively scales the size of the tails and is used to calibrate the noise std by selecting σ such that the hockey-
stick divergence between the Poisson subsampled Gaussian mechanisms is bound by (1− τ)δ. (Chua et al., 2024b) choose
τ = 10−5, which keeps the noise std. increase very small.

In the implementation of (Chua et al., 2024b), the gradients are computed for B randomly selected samples, after which
the final samples are chosen according to the batch size sampled from the truncated Binomial. Hence the computational
excess over regular Poisson subsampling becomes B − b. For example, in our setting where ϵ = 8, δ = 10−5, n = 50 000,
b/n = 1/2 and T = 4, the B − b = 858, which is significantly larger than the p− 1 excess of our method for obtainable
physical batch sizes (p ≤ 64).

17

