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ABSTRACT

Parameter Efficient FineTuning (PEFT) methods have recently gained extreme
popularity thanks to the vast availability of large-scale models, allowing to quickly
adapt pretrained models to downstream tasks with minimal computational costs.
However, current additive finetuning methods such as LoRA show low robustness
to prolonged training and hyperparameter choices, not allowing for optimal out-
of-the-box usage. On the other hand, multiplicative and bounded approaches such
as ETHER, even if providing higher robustness, only allow for extremely low-
rank adaptations and are limited to a fixed-strength transformation, hindering the
expressive power of the adaptation. In this work, we propose the DeLoRA finetun-
ing method that first normalizes and then scales the learnable low-rank matrices,
thus effectively bounding the transformation strength, which leads to increased
hyperparameter robustness at no cost in performance. We show that this proposed
approach effectively and consistently improves over popular PEFT methods by
evaluating our method on two finetuning tasks, subject-driven image generation
and LLM instruction tuning. Code will be released upon acceptance.

1 INTRODUCTION

The rapid advancement of deep learning has led to the development of large-scale pretrained mod-
els in various domains, especially in computer vision and natural language processing (Touvron
et al., 2023a;b; Radford et al., 2021; Rombach et al., 2022). However, the enormous size of these
models, reaching billions of parameters, presents significant challenges when adapting them to spe-
cific downstream tasks, particularly in terms of computational cost and efficiency. To address these
challenges, Parameter Efficient FineTuning (PEFT) methods have emerged. PEFT methods are char-
acterized by introducing a small set of learnable parameters compared to full finetuning. Notable
examples include adapters (Houlsby et al., 2019) and prompt tuning (Lester et al., 2021). In this
work, we focus on improving LoRA (Hu et al., 2022), which is a simple and effective finetuning
method. Despite its success, LoRA exhibits high sensitivity to hyperparameter choices (Biderman
et al., 2024) and exhibits performance degradation during extended finetuning. While robust finetun-
ing approaches such as ETHER and ETHER+ (Bini et al., 2024) address some of these limitations,
they are constrained to extremely low-rank adaptations and fixed-strength transformations.

Therefore, we propose DeLoRA, an enhanced version of LoRA that introduces a boundary on the
weight updates through normalization. DeLoRA decouples the learning of the LoRA matrices into
directional and scale components, enabling greater adaptability to various settings while maintaining
the ability for personalization and merging at inference time. We motivate DeLoRA from two differ-
ent perspectives, as a derivative of LoRA by introducing additional normalization, and as a derivative
of ETHER by introducing the possibility of high-rank updates. We ablate the design choices accord-
ingly and show that we improve over both LoRA and ETHER. Furthermore, we validate the benefits
of DeLoRA by evaluating it on different tasks in image-generation and LLM adaptation.

In summary, we make the following contributions in this work: (1) We thoroughly review the formu-
lations of LoRA and ETHER and hence derive a novel PEFT method, DeLoRA; (2) We demonstrate
that DeLORA is more robust than LoRA in terms of hyperparameter choices and for extended fine-
tuning regimes; (3) We extensively ablate the formulation of DeLoRA by deriving it from both LoRA
on the one hand, and from ETHER on the other hand; (4) We evaluate DeLoRA on both vision and
language benchmarks, matching or surpassing the performance of competing PEFT methods.
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Figure 1: (Left) Visualization of the original LoRA (Hu et al., 2022). (Right) Visualization of our
proposed DeLoRA. In addition to the low-rank matrices B,A, we introduce a normalization Ξ and
a scaling factor λ, which effectively decouple the angular learning from the transformation strength.

2 DECOUPLED LOW-RANK ADAPTATION (DELORA)

Our Decoupled Low-rank Adaptation approach, by introducing learnable boundaries on the weight
updates, effectively combines the strengths of LoRA and ETHER methods, allowing for high ex-
pressivity and finetuning robustness. In the following sections, we will (i) present an overview of
the PEFT methods LoRA and ETHER, focusing on their respective limitations (Section 2.1) and (ii)
describe how we derive our proposed DeLoRA method from both perspectives (Section 2.2)

2.1 PRELIMINARIES: LORA & ETHER, AND THEIR LIMITATIONS

Here, we provide a detailed review of LoRA (Hu et al., 2022) and ETHER (Bini et al., 2024), with
a particular focus on their limitations.

Low-rank Adaptation (LoRA). Hu et al. (2022) proposed Low-rank Adaptation (LoRA), which
parametrizes the update of pretrained weights W ∈ Rd×f during finetuning as(

W +
α

r
BA

)⊺
x+ b (1)

where A ∈ Rr×d and B ∈ Rf×r are the learnable matrices, α is a scaling factor, and r is the rank
of the final BA matrix. When r ≪ min(d, f), LoRA reduces the required finetuning parameters
significantly compared to full finetuning. In addition, BA can be merged into W during inference
to avoid additional latency.

However, LoRA is known to be highly sensitive to hyperparameter choices (Biderman et al., 2024),
and it is easily affected by over-training (Qiu et al., 2023), thus requiring careful tuning and ex-
perimentation to achieve an optimal balance between a sufficiently high learning rate and avoiding
catastrophic overwriting of the pretrained weights, also known as catastrophic forgetting. In our pro-
posed DeLoRA, we remove this behavior by introducing a boundary on the weight updates. Thus,
DeLoRA achieves good performance for a wide range of learning rates.

Finetuning with Hyperplane Reflections (ETHER). Following efficiency and robustness argu-
ments, Bini et al. (2024) propose to employ bounded transformations for finetuning, namely ETHER
and ETHER+. ETHER (left side in Eq. (2)) and ETHER+ (right side) introduce multiplicative trans-
formations H or H+ respectively, which act on the pretrained weights as follows:

(HW )⊺x+ b ,
(
H+WH̃+

)⊺
x+ b. (2)

Here, H = I − 2uu⊺, H+ = I − uu⊺ + vv⊺, H̃+ = I − ũũ⊺ + ṽṽ⊺ (where u, v, ũ, ṽ are unit
vectors) are bounded in terms of their distance to the identity transformation, as per

∥H − I∥F = 2 ,
∥∥H+ − I

∥∥
F
≤ 2, (3)

where the subscript F denotes the Frobenius norm. This upper bound on the transformation distance
prevents weight changes that cause catastrophic forgetting, as shown by Bini et al. (2024).
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However, enforcing a constant boundary on the transformation distance can limit the finetuning
performance, as the boundary may be too strict to adapt the layer or pretrained model at hand to the
respective task. Furthermore, by rewriting the formulations in Eq. (2) in a residual form, we can
show that the weight updates are intrinsically limited to be low-rank (see Appendix A), which limits
the finetuning capacity of ETHER. With DeLoRA, by introducing a normalization and a scaling
factor to LoRA matrices, we allow for controlling both boundary and rank, which effectively leads
to better performance.

2.2 DELORA

While both LoRA and ETHER demonstrate valuable properties, namely parameter efficiency and
robustness, they also exhibit notable limitations. Our proposed PEFT method, DeLoRA, addresses
these shortcomings by synthesizing the strengths of both approaches. In this regard, DeLoRA can
be thought of as an extension of LoRA that incorporates ETHER’s robustness properties or, al-
ternatively, as an enhancement of ETHER that adopts LoRA’s more expressive paradigm. In the
following, we will present both derivation and finally summarize in a concise way our proposed
DeLoRA formulation.

Deriving DeLoRA from LoRA. In order to achieve robustness to learning rates, we first observe
that in LoRA’s Eq. (1) the strength of the weight updates ∆W is proportional to ∆BA, which in
turn is proportional to the learning rate. This means that the update strength at each training step
is directly controlled by the learning rate, which can lead to catastrophic forgetting in high learning
rate regimes. In order to mitigate this behavior, we decompose the BA matrix into the sum of its
rank-1 components, i.e.

BA =

r∑
i=1

bia
⊺
i (4)

■ Controllable Boundary. Similarly to ETHER, we normalize each rank-1 entry, making the Frobe-
nius norm of each single rank-1 component a constant. This normalization can be written as

r∑
i=1

bia
⊺
i

∥bi∥∥ai∥
= BΞA (5)

where Ξ is a diagonal matrix with entries Ξi,i = 1
∥bi∥∥ai∥ for i = 1, . . . , r, Ξi,j = 0 for i, j =

1, . . . , r, i ̸= j. The final update distance with respect to the pretrained weights thus is bounded as

∥BΞA∥ =
∥∥∥ r∑

i=1

bia
⊺
i

∥∥∥ ≤
r∑

i=1

∥bia⊺i ∥ = r. (6)

Most importantly, the boundary is independent of the used learning rate. To control the boundary
and remove its rank dependency we scale BΞA by a factor λ

r , so that the boundary becomes λ, as in∥∥∥λ
r
BΞA

∥∥∥ ≤ λ. (7)

Now, the boundary can be chosen arbitrarily to fit the pretrained network or task at hand. To allow
for layer-aware boundaries without the need to manually choose them, we introduce a different
learnable λ to each layer. Then, finetuning adapts the value of each λ accordingly. Hence, we
effectively decouple the angular learning (the normalized BΞA matrices) from the transformation
strength, as measured by the boundary λ. Furthermore, introducing a single additional learnable
parameter λ to each finetuned matrix creates only negligible overhead in terms of overall trainable
parameters and training speed.

■ Weights-norm Scaling. Previous works suggest that when finetuning image generative models,
multiplicative finetuning methods show stronger performance (Qiu et al., 2023; Liu et al., 2024b)
than additive finetuning methods like LoRA. This might be due to the fact that in multiplicative
methods, weight updates ∆W are proportional to the pretrained weights W , which makes each
update layer-aware. To mimic this approach in our additive proposed method DeLoRA, we introduce
a scaling factor equal to the pretrained weights norm. This can be formally stated as

∆W =
λ∥W∥

r
BΞA. (8)

3
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This term allows to adapt different layers in a more layer-aware manner. This is especially relevant
when adapting a diverse set of layers, which is the case for our image generative models tasks. Our
ablation studies demonstrate these performance improvements empirically (see Section 3.2).

■ Initialization. To initialize the finetuning process from the pretrained model, since following
LoRA’s zero initialization would cause instabilities because of the introduced normalization term,
we take inspiration from (Bini et al., 2024) and subtract a copy of the kaiming-randomly initialized
B and A matrices. With respect to (Bini et al., 2024), we simply freeze these additional parameters
and merge them to the pretrained weights, as in

W = W̄ −
(
λ∥W∥

r
BΞA

)
0

(9)

where W̄ is the original pretrained matrix, and (λ∥W∥
r BΞA)0 is the update matrix at time 0.

Deriving DeLoRA from ETHER So far, we showed how to derive DeLORA from LoRA. Al-
ternatively, it is possible to derive DeLoRA by introducing properties of LoRA to ETHER. We
find this to be insightful to understand the impact of each individual component from a theoretical
perspective. In addition, we quantitatively ablate all innovations of DeLoRA in Section 3.2.

■ Controllable Boundary. One of the main limitations of ETHER is its fixed boundary (see Sec-
tion 2.1), which is always constant thus cannot be adapted to the pretrained model at hand. We
address this limitation by introducing a scaling parameter λ to ETHER as in

H = I − λuu⊺ , H+ = I − λ

2
uu⊺ +

λ

2
vv⊺. (10)

Then, the boundaries on the distances of H and H+ to the identity matrix become ∥H − I∥F = λ,
and ∥H+ − I∥F ≤ λ. In Section 3.2, we show that this modification, i.e. introducing a controllable
bound, leads to the largest increase in performance.

■ Increasing the rank. In Appendix A, we show that ETHER and ETHER+ are restricted to rank-1
and rank-4 weight updates respectively. In order to arbitrarily control the rank, we extend the H+

parameter of ETHER+ to Ĥ , which allows for an arbitrary number of weight reflection operations:

Ĥ = I −
r/2∑
i=1

uiu
⊺
i +

r/2∑
i=1

viv
⊺
i . (11)

We can rewrite Ĥ by gathering the u and v unit vectors into two rank- r2 matrices, as in

Ĥ = I − UΣU⊺ + VΘV ⊺, (12)

where Σ and Θ are diagonal normalization matrices with entries Σi,i =
1

∥ui∥2 , Θi,i =
1

∥vi∥2 , The
entries on the diagonals of Σ and Θ are constructed to normalize u and v to unit vectors. Thus, the
distance from the identity matrix becomes

∥Ĥ − I∥ =
∥∥∥ r/2∑

i=1

uiu
⊺
i −

r/2∑
i=1

viv
⊺
i

∥∥∥ ≤
r/2∑
i=1

∥uiu
⊺
i ∥+

r/2∑
i=1

∥viv⊺i ∥ = r. (13)

As above, we can control the boundary on the distance by introducing a scaling factor λ as in

Ĥ = I − λ

r
UΣU⊺ +

λ

r
VΘV ⊺ (14)

■ U ,V Relaxation. Finally, we relax UΣU⊺, VΘV ⊺ and replace them with distinguished trainable
matrices BΞA and DΦC respectively, which leads to Ĥ = I − λ

r (BΞA−DΦC)W . We highlight
how such a formulation resembles a multiplicative analogous of our proposed DeLoRA method, and
we also introduce this version in our ablation study. We ablate all alternatives in Section 3.2. There,
we find that DeLoRA, combined with weights-norm scaled updates, as in multiplicative finetuning,
achieves overall stronger performance.

4
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DeLoRA formulation. Summarizing, our proposed DeLoRA finetuning method consists in learn-
ing a normalized low-rank matrix BΞA and a scale λ, updating the pretrained weights as in(

W +
λ∥W̄∥

r
BΞA

)⊺

x+ b (15)

This formulation constrains by construction the learnable finetuning updates with a λ∥W̄∥-sized
boundary, where W̄ is the norm of the pretrained weights, effectively decoupling the transformation
strength from the angular learning. In more detail, the key components are:

• Normalization: Ξ is a r-dimensional diagonal matrix that normalizes LoRA’s inner low-
dimensional bottleneck (Eq. (5)), bounding the Frobenius norm of BΞA to r (Eq. (6)).

• Scaling Factors: (i) 1/r is used to remove the rank dependency on the boundary dimensionality,
(ii) ∥W̄∥ to make the weight updates proportional to the pretrained weights, and (iii) λ to control
the adaptation strength and allow for a layer-specific boundary adaptation (Eq. (7))

• Initialization: Pretrained initialization follows by merging to the pretrained weights a frozen
copy of the initialized finetuning adaptation matrices (Eq. (9)).

DoRA vs DeLoRA discussion. DoRA (Liu et al., 2024a), similarly to our work, addresses the
finetuning process by trying to decouple the learning of magnitudes and angles, by using a formu-
lation that leads to weight updates W ′ = m W+∆W

∥W+∆W∥ . We can summarize the key differences of
DoRA with respect to our proposal into two: (i) the normalization and scaling operations happen
on the fully finetuned weights, and (ii) these operations happen on the column space of the weight
matrices, which draw a significant difference to our proposal. We argue that DeLoRA finetuning (i)
by introducing the normalization and scaling operations directly on the weight updates ∆W , it more
directly tackles the goal of not diverging from the pretrained model, and (ii) by normalizing the inner
low-dimensional space (rather than the column space), it actually results in an implicit Frobenius-
distance boundary, which acts as a mathematical guarantee for non-divergence. These eventually
lead to (i) peculiar training dynamics (as shown in Fig. 3, whereas DoRA and LoRA show similar
behavior), and (ii) better decoupling, supported by the strong robustness results in Fig. 2. In this
regard, we notice that even if DeLoRA, by having a learnable boundary, in principle also has an
unbounded Frobenius distance, in practice divergence does not happen, as shown in Fig. 2. This
demonstrates that during finetuning, DeLoRA’s learnable boundary is able to effectively adjust and
avoid divergence from the pretrained weights, behavior that does not happen with DoRA.

3 EXPERIMENTS

In this section, we evaluate our proposed DeLoRA method for image generation and natural lan-
guage understanding, and instruction tuning tasks. We begin by providing a detailed description of
these tasks and their relevance. To justify our design choices, we present a comprehensive abla-
tion study that highlights the key innovations of DeLoRA. Finally, we demonstrate that DeLoRA
not only matches or exceeds the performance of LoRA and other state-of-the-art methods but also
exhibits superior robustness. This enhanced stability is particularly evident in two aspects: reduced
sensitivity to learning rate selection and improved performance retention during extended finetuning
periods.

3.1 TASKS

Semantic Map to Image We finetune Stable Diffusion models (Rombach et al., 2022) to generate
a realistically-looking image based on a given segmentation map. The image should follow the
spatial structure laid out in the segmentation map as closely as possible. Examples of segmentation
maps and generated images are in Fig. 7 (right side). As control signal, we use the pretrained
encoder from ControlNet (Zhang et al., 2023a). For training and evaluation, we take semantic maps
and images from the ADE20K dataset (Zhou et al., 2019). After training, we generate images for
2000 segmentation masks from the ADE20K validation set and report the mean Intersection-over-
Union (mIoU) and accuracy of semantic maps as predicted by UperNet-101 (Xiao et al., 2018). Note
that we only use the Semantic Map to Image task to ablate our method design decisions.
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Subject-driven Image Generation. Following (Qiu et al., 2023; Ruiz et al., 2023), we evaluate
the efficacy of our proposed methods in the DreamBooth setting, i.e. adapting Stable Diffusion to
recontextualize a subject shown in a set of images based on a given prompt. The data is taken from
(Ruiz et al., 2023) and consists of 30 subjects and 25 prompts each. The task is to adapt Stable
Diffusion to generate images showing the given subject in the context specified by the prompts.
An example is in Fig. 7 (left side). For each combination of image and prompt, after finetuning,
we generate four images and measure the subject-fidelity by DINO (Caron et al., 2021) and CLIP
(Radford et al., 2021), as proposed by (Ruiz et al., 2023). Here, the score represents the similarity
of generated and given images, measuring the faithfulness of generating images of the given subject
to the provided real images. Among the two metrics, the DINO score is more significant since it is
more sensitive to subject-unique features (Ruiz et al., 2023).

Natural Language Understanding We test how DeLoRA performs in adapting Language Mod-
els for Natural Language Understanding on the GLUE benchmark Wang et al. (2018) finetuning
a pretrained RoBERTa-base model Liu et al. (2020). GLUE tasks have been extensively used to
measure natural language understanding performance, comprising inference tasks (MNLI, QNLI,
RTE), sentiment classification (SST-2), and correct identification of English grammatical structures
(CoLA). CoLA results refer to Matthews correlation coefficient, MNLI to matched accuracy, and
STS-B to average correlation, while all other tasks are evaluated on accuracy.

Instruction Tuning. We evaluate how effectively DeLoRA can adapt LLMs to follow user-given
instructions. For this experiment, we finetune LLaMA-2-7B (Touvron et al., 2023b) on the Alpaca
dataset (Taori et al., 2023). Following Bini et al. 2024, we finetune on the full dataset for one epoch
and evaluate the zero-shot performance of instruction-tuned models on four different tasks, namely
(1) Massive Multitask Language Understanding (MMLU) (Hendrycks et al., 2021), which features
57 tasks in different categories such as STEM, Humanities, and Social Sciences; (2) AI2 Reasoning
Challenge (ARC) (Clark et al., 2018), which contains over 7000 grade-school science questions; (3)
TruthfulQA (Lin et al., 2022), which contains 817 questions representing common misconceptions
in 38 categories like health, law, finance and politics. TruthfulQA additionally features two separate
sub-tasks, namely single-true and multi-true. In single-true, only one of the provided answers is
correct, and the model has to select the unique correct answer. In multi-true, several of the provided
answers may be correct, and the model has to assign a high probability to correct answers and a low
probability to incorrect answers. We report scores for both tasks separately.

3.2 ABLATION OF DELORA DESIGN CHOICES

In this section,, we ablate the different design decisions that equip DeLoRA with an advantage with
respect to LoRA and ETHER. From the LoRA derivation (top to bottom in Tables 1,2), we show
how adding normalization with a controllable boundary and weight scaling to pretrained matrices
yields performance improvements. From the ETHER derivation (bottom to top in Tables 1,2), we
show how the introduction of a controllable scale, a higher-rank formulation, the learnable matrices
relaxation, and the additive finetuning tranformation, lead to incrementally improved performance.

Results for subject-driven image generation are in Table 1. For this ablation we use a small-scale
version of the setting proposed by (Ruiz et al., 2023), finetuning 3 subjects over 25 prompts each.
Among all modifications, we notice how the introduction of a controllable boundary in ETHER+
(one-sided) has the highest impact, raising the DINO score from 0.624 to 0.678 and the CLIP score
from 0.746 to 0.810. This shows how the lack of strength is the hindering factor for ETHER+(one-
sided), as already noted by (Bini et al., 2024). Starting from LoRA, we notice how the weight-
scaling has the largest impact on performance, raising the DINO score from 0.682 to 0.701 and the
CLIP score from 0.809 to 0.825. Additionally, we note that DeLoRA’s performance without the
weight-norm scaling falls short compared to its multiplicative counterpart.

For the Semantic Map to Image ablation study, we run a small-scale grid search by finetuning Stable
Diffusion for 10 epochs on ADE20K in bfloat16 precision. Results are reported in Table Table 2.
We note how DeLoRA achieves best controllability among different variations. In addition, we also
note the increase in Accuracy when increasing the rank of ETHER+, hinting that it could have been
a limiting factor.
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Method ∆W formulation DINO CLIP-I

LoRA [rank-r] BA 0.674 0.785
↓ + normalize w/ controllable boundary λ

rBΞA 0.682 0.809
· + normalize w/ controllable boundary + weight-scaling
· + controllable boundary + high rank + relaxed + additive FT (DeLoRA) ∥W∥λ

r BΞA 0.701 0.825

↑ + controllable scale + high rank + relaxed λ
r (BΞA−DΦC)W 0.696 0.833

| + controllable boundary + high rank λ
r (UΣU⊺ − VΘV ⊺)W 0.685 0.840

| + controllable boundary λ(uu⊺ − vv⊺)W 0.678 0.810
ETHER+ (one-side) [rank-2, boundary equal to 2] (uu⊺ − vv⊺)W 0.624 0.746

Table 1: Ablation of DeLoRA innovations on the Subject-driven Image Generation task. We show
how different components affect performance from both LoRA and ETHER derivation.

Method ∆W Formulation mIoU ↑ Acc. ↑ FID ↓
LoRA [rank-r] BA 25.13 64.95 31.35
↓ + normalize w/ controllable boundary λ

rBΞA 25.66 65.82 31.01
· + normalize w/ controllable boundary + weight-scaling
· + controllable boundary + high rank + relaxed + additive FT (DeLoRA) ∥W∥λ

r BΞA 26.10 65.08 30.71

↑ + controllable boundary + high rank + relaxed λ
r (BΞA−DΦC)W 25.55 65.16 29.89

| + controllable boundary λ(uu⊺ − vv⊺)W 24.56 62.70 31.28
ETHER+ (one-side) [rank-2, boundary equal to 2] (uu⊺ − vv⊺)W 23.46 62.26 31.18

Table 2: Ablation of DeLoRA innovations on the Semantic Map to Image task. We show how
different components from both LoRA and ETHER derivations incrementally improve performance.

3.3 BENCHMARK RESULTS

Subject-Driven Image Generation Results are in Table 3. For full benchmark performance com-
parisons, we report low-rank results from Bini et al. (2024), while we run and compare LoRA,
DoRA, and DeLoRA methods with same rank. For each method, we run a grid search to find best
hyperparameters on the same 3 subjects used for the ablations, then we evaluate the best methods
on the full 30 subjects benchmark, evaluating each method on the same 3 different seeds. Best and
average results are reported in Table 3. We notice that LoRA, DoRA, and DeLoRA, all achieve com-
parable average performance in terms of DINO and CLIP-Image, and they all surpass lower-rank
baselines. Therefore, DeLoRA effectively brings ETHER+ robustness properties while achieving
superior performance.

Natural Language Understanding Results are in Table 4. For proper evaluation on the GLUE
validation set, we follow Wu et al. (2024a;b) and split the validation set into two subsets (determined
by pre-defined seeds), and use the first subset to tune hyperparameters, and the second subset to
evaluate method performance. For fair comparisons we use same seeds as Wu et al. (2024a;b).
In addition, in order to compare with LoRA’s implementation, we simply apply DeLoRA to Q,V

Method #param DINO CLIP-I

Real Images 0.703 0.864

DreamBooth (Ruiz et al., 2023) 859.5M 0.644 0.793
OFTn=4 (Qiu et al., 2023) 11.6M 0.652 0.794
ETHER+ (Bini et al., 2024) 0.4M 0.666 0.800
LoRAr=4 (Hu et al., 2022) 0.8M 0.660 0.796
LoRAr=16 (Hu et al., 2022) 3.2M 0.686 0.818
DoRAr=16 (Liu et al., 2024a) 3.2M 0.687 0.819
DeLoRAr=16 (ours) 3.2M 0.686 0.820

LoRA†
r=16 (Hu et al., 2022) 3.2M 0.688 0.818

DoRA†
r=16 (Liu et al., 2024a) 3.2M 0.689 0.819

DeLoRA†
r=16 (ours) 3.2M 0.693 0.820

Table 3: Results for evaluating DeLoRA in subject-driven image generation. † indicates experi-
ments with tuned hyperparameters.
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Method #param MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg

Full Finet. 125M 87.3 94.4 87.9 62.4 92.5 91.7 78.3 90.6 85.6

BitFit (Zaken et al. (2022)) 0.1M 84.7 94.0 88.1 54.0 91.0 87.3 69.8 89.5 82.3
IA3 (Liu et al. (2022)) 0.06M 85.4 93.4 86.4 57.8 91.1 88.5 73.5 88.5 83.1
LoReFT (Wu et al. (2024b)) 0.02M 83.1 93.4 89.2 60.4 91.2 87.4 79.0 90.0 84.2
RED (Wu et al. (2024a)) 0.02M 83.9 93.9 89.2 61.0 90.7 87.2 78.0 90.4 84.3
LoRA (Hu et al. (2022)) 0.3M 86.6 93.9 88.7 59.7 92.6 90.4 75.3 90.3 84.7
AdapterFFN (Pfeiffer et al. (2021)) 0.3M 87.1 93.0 88.8 58.5 92.0 90.2 77.7 90.4 84.7
Adapter (Houlsby et al. (2019)) 0.4M 87.0 93.3 88.4 60.9 92.5 90.5 76.5 90.5 85.0
DeLoRA (ours) 0.3M 86.9 93.7 88.6 64.7 92.6 90.2 77.3 90.6 85.6

Table 4: Comparisons of different methods finetuning RoBERTa-base on GLUE benchmark. Re-
sults of all baselines are taken from Wu et al. (2024a) and Wu et al. (2024b).

Method #param MMLU ARC Tru-1 Tru-2 Avg

LLaMA-2-7B - 41.81 42.92 25.21 38.95 37.22

ETHERn=32 (Bini et al. (2024)) 0.26M 44.57 45.14 27.91 41.83 39.86
ETHER+n=32 (Bini et al. (2024)) 1.04M 44.87 46.50 29.38 43.51 41.07
LoRAr=8 (Hu et al. (2022)) 4.19M 43.61 46.16 28.76 42.21 40.19
DoRAr=8 (Liu et al. (2024a)) 4.19M 43.24 47.18 29.01 43.47 40.73
DeLoRAr=8 (ours) 4.19M 44.21 47.70 29.62 44.14 41.42

Table 5: Results for Instruction Tuning on MMLU, ARC, and TruthfulQA benchmarks. Values
represent accuracy scores achieved by different finetuning methods. Best scores are highlighted in
bold, and second-best scores are underlined.

attention layers with rank 8, which is likely sub-optimal with respect to applying lower-rank modules
to a larger set of layers Hu et al. (2022). We notice how DeLoRA achieves better performance
on CoLA, QNLI and STS-B, and an overall significantly better average score with respect to all
baselines, demonstrating its efficacy in adapting language models for NLU tasks.

Instruction Tuning Results are in Table 5. There, we can see that DeLoRA achieves the best
result on three out of four tasks and surpasses all other methods in average scores. In particular, De-
LoRA also achieves better results than DoRA, which already compares favorably with LoRA. This
confirms the effectiveness of our improvements compared to LoRA and also DoRA, although DoRA
is motivated by similar considerations to DeLoRA. However, on the MMLU task DeLoRA, while
still achieving better finetuning performance than LoRA or DoRA, does not surpass the performance
of ETHER and ETHER+. However, we note that MMLU overall is the hardest task to finetune, as
even the best method, ETHER+, only achieves a 3 point advantage over the pretrained LLaMA-2-
7B model. Possible improvements are larger on all other tasks. Therefore, we hypothesize that on
MMLU, the increased robustness of ETHER has the advantage over the increased flexibility of other
methods since, in no case, can large improvements be achieved.

3.4 INSIGHTS

In this section we analyze (i) the robustness properties, and (ii) the training dynamics, with a focus on
prolonged training setting, of DeLoRA with respect to other finetuning methods. Then, we analyze
(iii) how weights’ norm differ on a pretrained model, to better understand the weights-norm scaling
effect in DeLoRA.

Robustness Analysis. We conducted a comprehensive learning rate robustness analysis in the
setting of the Subject-driven Generation task of Section 3. Evaluation is done reporting DINO scores
(Fig.2, Left) and Euclidean distance between finetuned and pretrained weights of a projection layer
in an attention module (Fig.2, Right) across multiple methods, using a range of learning rates derived
from each method’s base learning rate. Our analysis shows that DeLoRA is able to achieve the same
robustness of ETHER+, while improving performance, while both LoRA and DoRA performance
degrade at 4× the base learning rate. We also notice how LoRA updates’ distance grows at higher
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DeLoRA (lr=6e-3) DoRA (lr=6e-4) LoRA (lr=6e-4) ETHER+ (lr=6e-3)

Figure 2: Learning rate robustness plots in Subject-driven generation task in terms of DINO scores
(Left) and Euclidean distance between a finetuned vs pretrained projection layer weights (Right).
Learning rates used for robustness evaluation were derived by multiplying the base learning rate in
a range of factors.

Figure 3: (Left) Euclidean Distance of finetuned weights to pretrained weights as a function of the
number of training steps. (Right) Qualitative examples show that LoRA exhibits significant artifacts
earlier in the process compared to DeLoRA, which maintains better image quality.

learning rates, while interestingly DoRA, after 8×, does not diverge further, likely thanks to its
magnitude control. However this does not lead to better performance in these regimes.

Finetuning Regime. We further study the behavior of weight updates, by measuring the Euclidean
distance of a finetuned weight matrix (i.e. after merging) to the pretrained weight matrix during
finetuning. This gives us a measure of how much and how fast the finetuned weight matrix diverts
from the pretrained weights. In Fig. 3, we show this analysis for the out-projection matrix in one
of StableDiffusion’s Unet self-attention layers. We find that LoRA- and DoRA-trained weights
continuously depart from the pretrained weights over the course of training, passing through an
optimal regime but eventually overshooting and ending in a diverging regime. In contrast, DeLoRA-
trained weights move away from the pretrained weights very quickly during the first stage of training,
but are then bounded by DeLoRA’s intrinsic boundary. This boundary effectively allows for the
usage of high learning rates without the risk of divergence.

Weights Norms Analysis. In Fig. 4, we show the mean of column norms for weight matrices in
different attention blocks of the Unet in Stable Diffusion v1.5. By doing so, we highlight the effect
of weight-scaling as introduced in Section 2. We find that different modules, as well as different
positions in the Unet, show systematic differences w.r.t. weight norms. This points at differences
within the pretrained model which finetuning methods should account for. Our proposed scaling
is one possibility to accomplish this. Exploring more sophisticated methods to include layer-wise
differences is an interesting direction for future research.

Figure 4: Average column norms of parameters in the attention modules of Stable Diffusion’s Unet
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4 RELATED WORK

Parameter efficient finetuning (PEFT) is an active field of research, encompassing methods such as
adapters (Houlsby et al., 2019), prompt- and prefix-tuning variations (Lester et al., 2021; Li & Liang,
2021; Liu et al., 2023), and more specialized methods such as BitFit (Zaken et al., 2022), FourierFT
(Gao et al., 2024), and LayerNorm Tuning (Zhao et al., 2024). In this paper, we propose an improved
PEFT method based on low-rank adapters (LoRA) first described by (Hu et al., 2022). Therefore, we
focus our review of previous work on LoRA variants and refer to recent surveys (Han et al., 2024;
Xin et al., 2024) regarding PEFT methods in general. LoRA is a popular finetuning approach for
large models, featuring advantages such as low-memory footprint and no additional inference cost
(Hu et al., 2022). Compared to full-finetuning, LoRA is also less prone to catastrophic forgetting
(Biderman et al., 2024).

However, beyond falling behind in performance on downstream tasks compared to full finetuning
(Biderman et al., 2024), previous work has identified and attempted to address different limitations
of the original LoRA method. Lialin et al. (2023); Zi et al. (2023); Xia et al. (2024); Ren et al.
(2024) propose methods to overcome the low-rank limitation without sacrificing memory efficiency.
Similarly, VeRA (Kopiczko et al., 2024) keeps the original LoRA setup but reduces trainable pa-
rameters further by only scaling the randomly initialized matrices, which are shared across layers.
To account for differences between layers, (Zhang et al., 2023b; Ding et al., 2023; Zhang et al.,
2024; Liu et al., 2024c) describe methods to dynamically adapt the rank of different LoRA adapters.
Instead of changing the rank, in this work, we propose to dynamically change the scaling of LoRA
matrices for different layers, highlighting the need for layer-adaptive methods. PiSSA (Meng et al.,
2024) and MiLoRA (Wang et al., 2024) show how improved initialization of LoRA can lead to
better performance and faster convergence. Zhu et al. (2024) and Hayou et al. (2024) show that
LoRA matrices behave differently in terms of optimal initialization and learning rate. Our work is
complementary to these findings, as we also argue for different treatments of LoRAs, but regarding
different layers within a model, not within the same adapter. DoRA (Liu et al., 2024a), like our
work, proposes to stabilize LoRA training by normalizing and scaling the weights, however they
normalize the full updated weight matrix W +∆W on the column space, controlling each singular
column of the finetuned matrices, whereas we normalize the inner r-dimensional space of each ∆W
update matrix.

5 CONCLUSIONS

In this work, we propose a novel parameter efficient finetuning method, DeLoRA, which combines
the strength of LoRA and ETHER to address their respective individual limitations. We demonstrate
that using DeLoRA for finetuning yields improved results compared to LoRA, DoRA, and ETHER
on two tasks in image-generation and LLM adaptation. Beyond showing the strong performance
of DeLoRA, we provide detailed insights into its derivation, motivating our method both from the
perspective of LoRA and ETHER. Furthermore, we ablate the contribution of individual innovations
and find that bounding the update strength is key to improved performance. Finally, we also analyze
the hyperparameter robustness of DeLoRA and find that it yields strong results for a wide range
of learning rates as well as training steps. These insights provide valuable perspectives on how to
improve existing PEFT methods and overcome their limitations.

REPRODUCIBILITY STATEMENT

To facilitate deployment and further research on DeLoRA, we will release our code upon acceptance.
The code also includes the implementation of all benchmarks in this study, as well as ablation studies
and hyperparameter choices.
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A ETHER AND ETHER+ LOW-RANK LIMITATION

In ETHER and ETHER+, even if the transformation matrices are full-rank, the weight updates to the
pretrained model are intrinsically limited to be low-rank. To show this, we can rewrite the applied
transformations in a residual form. For ETHER the matrix multiplication can be written as:

HW = W − 2uu⊺W

where the right-hand side, by multiplying the pretrained with a rank-1 transformation, restricts the
weight updates to be rank-1.

While for ETHER+:

H+WH̃+

= (W − uu⊺W + vv⊺W )H̃+

= W − uu⊺W + vv⊺W − (W − uu⊺W + vv⊺W )ũũ⊺ + (W − uu⊺W + vv⊺W )ṽṽ⊺

where the rank-1 residual matrices on the right-hand side will bring the updates to be rank-4.

As a side note, we think that the higher rank of ETHER+ updates further explains the better per-
formance of ETHER+ with respect to ETHER. However, one downside of ETHER and ETHER+
finetuning is the inability to easily control the rank of these updates, differently from LoRA.

B EXPERIMENTAL DETAILS

In this section we report further details about our experiments, along with standard deviation results.

Subject-Driven Generation. We used the first 3 subjects (10% of the data) to select best hyper-
parameter for each method among LoRA, DoRA and DeLoRA with rank 16. Then, we used best
hyperparameters to evaluate each method on all 30 subjects, for 3 different seeds. Results with
standard deviations are reported in Table 6.

Method DINO CLIP-I

LoRAr=16 (Hu et al., 2022) 0.686±.0012 0.818±.0017

DoRAr=16 (Liu et al., 2024a) 0.687±.0015 0.819±.0015

DeLoRAr=16 (ours) 0.686±.0056 0.820±.0027

Table 6: Results for evaluating DeLoRA in subject-driven image generation. Best scores are high-
lighted in bold, and second-best scores are underlined.

GLUE. Following Wu et al. (2024b), for each benchmark task, we split the publicly available val-
idation set in two subsets. We then use one subset to tune the hyperparameters on seed 42. Best
hyperparameters are then used to evaluate test performance for seeds 42, 43, 44, 45, 46. We high-
light that with respect to Wu et al. (2024b), we don’t discard any underperforming seed.

Experiments with standard deviation details are in 7.

#param MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg

Full Finet. 125M 87.3±.34 94.4±.96 87.9±.91 62.4±3.29 92.5±.22 91.7±.19 78.3±3.20 90.6±.59 85.6

BitFit 0.1M 84.7±.08 94.0±.87 88.1±1.57 54.0±3.07 91.0±.05 87.3±.02 69.8±1.51 89.5±.35 82.3
IA3 0.06M 85.4±− 93.4±− 86.4±− 57.8±− 91.1±− 88.5±− 73.5±− 88.5±− 83.1
LoReFT 0.02M 83.1±.26 93.4±.64 89.2±2.62 60.4±2.60 91.2±.25 87.4±.23 79.0±2.76 90.0±.29 84.2
RED 0.02M 83.9±.14 93.9±.31 89.2±.98 61.0±2.96 90.7±.35 87.2±.17 78.0±2.06 90.4±.32 84.3
LoRA 0.3M 86.6±.23 93.9±.49 88.7±.76 59.7±4.36 92.6±.10 90.4±.08 75.3±2.79 90.3±.54 84.7
AdapterFFN 0.3M 87.1±.10 93.0±.05 88.8±1.38 58.5±1.69 92.0±.28 90.2±.07 77.7±1.93 90.4±.31 84.7
Adapter 0.4M 87.0±.28 93.3±.40 88.4±1.54 60.9±3.09 92.5±.02 90.5±.08 76.5±2.26 90.5±.35 85.0
DeLoRA(ours) 0.3M 86.9±.21 93.7±.79 88.6±1.49 64.7±2.33 92.6±.53 90.2±.17 77.3±1.96 90.6±.38 85.6

Table 7: GLUE benchmark. Comparisons of different methods finetuning RoBERTa-base. Results
of all baselines are taken from Wu et al. (2024a) and Wu et al. (2024b).
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C FIXING THE MAGNITUDE TERM IN DORA

In the following section we provide preliminaries experiments testing if fixing the magnitude in
DoRA could lead to similar robustness properties as DeLoRA.

Performance. We first evaluate if fixing the magnitude term could be detrimental in terms of
performance. Following the setting of our small-scale ablation in Section 3.2, we run a small scale
experiment comparing DoRA variations, along with DeLoRA.

Method DINO CLIP-I

DoRAr=16(fixed magnitude) 0.681 0.822
DoRAr=16 0.683 0.820
DeLoRAr=16 0.701 0.825

Table 8: Subject-driven Image Generation small-scale ablation

We notice how DoRA results without updating the magnitude term seem to lead to only slightly
underperforming results with respect to standard DoRA.

Robustness. We then run the same robustness analysis as reported in Fig. 2. We see how fixing
the magnitude term does not lead to a behavior similar to DeLoRA, but rather still follows DoRA
behavior.

Plots in Fig. 5 show that simply fixing the magnitude term does not alter DoRA robustness proper-
ties (Fig. 5, Left), while actually in higher learning rate regimes seems to lead to further divergence
(Fig. 5 Right), not allowing the magnitude to counterbalance the divergent trend. This behavior sug-
gests that keeping column norms constant might not be restrictive enough. In this regard, DeLoRA
inner normalization in terms of Frobenius distance seems to be a more promising strategy to avoid
model divergence.

DoRA (lr=6e-4) DoRA-fixed-magnitude (lr=6e-4)

Figure 5: Robustness analysis between DoRA with and without magnitude updates, with respect to
learning rate changes from the optimal learning rate.
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D ROBUSTNESS ABLATION ON DELORA’S BOUNDARY AND ANGLES

We additionally conducted an ablation on DeLoRA’s setting, where we run the same robustness anal-
ysis of Section 3.4 by varying the learning rate of the scaling term λ (affecting the boundary), and
the weights BA (angular component). We notice how all methods lead to convergence, additionally
demonstrating DeLoRA’s robustness properties.

DeLoRA lr sweep on λ (lr=1e-3) DeLoRA lr sweep on BA (lr=6e-4) on both

Figure 6: Learning rate robustness plots for DeLoRA in Subject-driven generation task in terms of
DINO scores (Left) and Euclidean distance finetuned vs pretrained weights of a projection layer
(Right). Ablation testing impact of increasing learning rate for boundary (λ) or angular weights
(BA).

E QUALITATIVE EXAMPLES

We report in E qualitative examples generated by our propopsed DeLORA finetuning Stable Diffu-
sion for the tasks of Subject-driven Generation and Semantic Map to Image. While in E we report
qualitative examples of prolonged genearation with DeLoRA, LoRA and DoRA methods.

"an empty 
building" "a flooded river" "a stone wall" "an office" 

"A vase [V] in the snow"

[V]

Figure 7: Examples generated by DeLoRA-finetuned Stable Diffusion for personalized generation
on a small set of subject-specific images (left), and for semantic map to image on ADE20K (right).
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Figure 8: Prolonged finetuning generated examples generated by DeLoRA, LoRA, and DoRA meth-
ods, up to time step 2600.
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