
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNIFYING LONG AND SHORT SPATIO-TEMPORAL
FORECASTING WITH SPECTRAL GRAPH NEURAL NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Multivariate Time Series (MTS) forecasting plays a vital role in various practical
applications. Current research in this area is categorized into Spatial-Temporal
Forecasting (STF) and Long-term Time Series Forecasting (LTSF). While these
tasks share similarities, the methods and benchmarks used differ significantly.
Spatio-Temporal Graph Neural Networks (STGNNs) excel at modeling interre-
lationships in STF tasks but face difficulties with long sequence inputs due to
inefficient training. In contrast, LTSF models handle long sequences well but
struggle with capturing complex variable interrelationships. This paper proposes
the Spectral Spatio-Temporal Graph Neural Network (S2GNN) to address these
challenges, unifying short- and long-sequence spatio-temporal forecasting within
a single framework. S2GNN leverages a decoupled GNN along with an MLP ar-
chitecture to ensure efficiency. Specifically, it employs spectral GNNs for global
feature extraction on an adaptive graph structure and uses MLP to process mul-
tiple feature embeddings, enabling it to handle varying sequence lengths. Ad-
ditionally, we introduce scale-adaptive node embeddings and cross-correlation
embeddings for better differentiation between similar temporal patterns. Exten-
sive experiments on eight public datasets, including both STF and LTSF datasets,
demonstrate that S2GNN consistently outperforms state-of-the-art models across
diverse prediction tasks. Code is available at https://anonymous.4open.
science/r/S2GNN-B21D.

1 INTRODUCTION

Current Multivariate Time Series (MTS) prediction methods can be broadly categorized into Spatio-
Temporal Forecasting (STF) and Long-term Time Series Forecasting (LTSF) (Shao et al., 2023).
STF focuses on capturing both spatial and temporal dependencies, with Spatio-Temporal Graph
Neural Networks (STGNNs) being a prominent approach (Jiang et al., 2023). These models are
commonly evaluated on spatio-temporal datasets, such as those from the PEMS (Chen et al., 2001)
traffic series. In contrast, LTSF emphasizes learning patterns like seasonality or trends over longer
input sequences and utilizes long-sequence datasets that cover a wide range of scenarios to ensure
robust model generalization (Qiu et al., 2024; Zhou et al., 2021).

The key distinction between these two research areas lies in their ability to process input sequences.
STF models are typically designed for short-term inputs and may struggle with longer sequences,
partly due to the high training costs associated with some models (Han et al., 2024). On the other
hand, LTSF models are better suited for handling longer input sequences but often face challenges in
capturing spatio-temporal relationships and tend to incur high computational complexity, especially
when using transformer-based architectures (Huang et al., 2023). Figure 1 shows the performance of
several STF models on short-term and long-term inputs. As the figure indicates, the FLOPs of most
models increase significantly with input length, making long-term training nearly impossible. Thus,
there is a clear need for an STGNN model capable of handling both short and long input sequences
efficiently.

As a crucial part of STGNN models, most existing approaches rely on GCN-based methods (Kipf
& Welling, 2016). However, current research in GNNs mainly follows two directions: spatial-based

1

https://anonymous.4open.science/r/S2GNN-B21D
https://anonymous.4open.science/r/S2GNN-B21D

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

and spectral-based approaches (Guo & Wei, 2023). Spatial GNNs capture node representations
through message passing and aggregation among neighboring nodes, often acting as low-pass fil-
ters (Wu et al., 2019a). In contrast, spectral-based GNNs perform convolutions in the spectral
domain of the graph Laplacian, offering more flexibility in handling different frequency compo-
nents (He et al., 2021). In dynamic or evolving graphs, spectral GNNs may be less robust due
to their reliance on the graph Laplacian, which is sensitive to changes in the graph structure. As
a result, spatial GNNs are often employed in existing work to learn spatial relationships between
variables (Zheng et al., 2024), though we explore whether this assumption holds universally in this
paper.

13.0 14.0 15.0 16.0 17.0
MAE(PEMS08)

22.0

24.0

26.0

28.0

RM
SE

14.0 15.0 16.0 17.0
MAE(PEMS03)

24.0

25.0

26.0

27.0

28.0

15.0 17.5 20.0 22.5 25.0
MAE(SD)

25.0

30.0

35.0

40.0

S2GNN-12-12
STID-12-12

D2STGNN-12-12
STAEformer-12-12

MTGNN-12-12
StemGNN-12-12

S2GNN-96-12
STID-96-12

D2STGNN-96-12
STAEformer-96-12

Figure 1: Comparison of existing models on short-term STF and long-term STF results. From left
to right, the number of nodes increases across three datasets. The size of the circles represents the
FLOPs required to train for one epoch. Existing models struggle to balance prediction accuracy and
training efficiency when handling long-term STF tasks.

To address the limitation of static graph structures in capturing dynamic changes in nodes, as well
as the use of spatiotemporal models in scenarios without graph structures, adaptive graph structures
are widely used in STGNNs and are typically assumed to change continuously throughout training,
making spectral GNNs seem impractical for dynamic environments due to their sensitivity to graph
structure changes. This raises an interesting question: how much do adaptive graph structures, often
constructed using randomly initialized node embedding vectors, actually change during training?
Figure 2 illustrates the training process of two existing models that use adaptive graph structures.
Evidence across various datasets shows that, contrary to common belief, both the connectivity and
numerical variations of the adaptive graphs stabilize gradually in training. This observation chal-
lenges the assumption that spectral GNNs are too sensitive and motivates the use of spectral GNNs
with learnable filters on adaptive graph structures. Additionally, from the perspective of perturba-
tion theory for eigenvectors, if the change in the corresponding eigenvalue is sufficiently small, the
eigenvector will not shift significantly (Spielman, 2019).

0 20 40 60 80 100
Epoch

0.00

0.25

0.50

0.75

1.00

Fie
dl

er
 V

al
ue

DGCRN_SD
MTGNN_PEMS03

MTGNN_SD
MTGNN_PEMS04

MTGNN_PEMS08
MTGNN_PEMS07

PEMS03 PEMS04 PEMS07 PEMS08 SD
Datasets

0.0

10.0

20.0

30.0

40.0

Pe
rc

en
ta

ge
(%

) 30 Epoch 40 Epoch 50 Epoch

Figure 2: Observations of adaptive graph structure in STF datasets. Left: The changes in the
connectivity of the graph structure tend to stabilize as the number of epochs increases. Right: The
difference in the percentage of Frobenius norm between the best epoch and the 30th, 40th, and 50th
epochs, respectively.

Meanwhile, for the sake of training efficiency, we adopt a simple yet effective model architecture for
the sequential modelling. We review the concept of sample indistinguishability, which first proposed
in (Deng et al., 2021). Although previous work has addressed the indistinguishability in the temporal
and spatial domains separately (Shao et al., 2022a), we believe that the current approaches still have
certain limitations. Firstly, existing methods for handling spatial distinguishability cannot adapt to
changes in the number of nodes. Learning node representations in a fixed d-dimensional feature
space becomes more challenging as the number of nodes increases. Secondly, embedding methods
using temporal information are influenced by the sequence’s periodicity, and incomplete temporal

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

data can reduce the model’s ability to distinguish patterns. Thus, an embedding method that directly
learns distinguishable features from the input sequence is needed.

To address the first issue, we use sparse initialization for node embeddings, leveraging the Restricted
Isometry Property (RIP) theory (Tropp, 2017) to link sparsity with the number of nodes, allowing the
embeddings to adapt to changes in node scale. For the second issue, we compute cross-correlation
between the input and feature sequences to learn features adaptively. This dynamic addition of
feature embedding vectors enhances the model’s ability to resolve sample indistinguishability.

Our contributions. In summary, our main contributions are as follows:

• We propose the Spectral Spatio-Temporal Graph Neural Network (S2GNN), which incorporates
learnable filters capable of adaptively capturing and processing both short- and long-sequence
features, enhancing the model’s expressiveness and versatility. The decoupled GNN along with
an MLP architecture ensures overall efficiency.

• We introduce a scale-adaptive node embedding method that leverages sparsity to accommodate
varying node scales and a cross-correlation embedding method that adaptively learns to distinguish
features from the input sequences.

• Experimental results reveal that both low-pass and high-pass information must be considered when
using learnable filters in conjunction with the adaptive graph. Meanwhile, our model balances
training efficiency and performance, achieving superior results on eight public datasets compared
to existing models.

0.0 0.5 1.0 1.5 2.0
PEMS04

0.0

0.2

0.4

0.6

0.8

1.0

h(
)

0.0 0.5 1.0 1.5 2.0
Weather

0.0 0.5 1.0 1.5 2.0
Electricity

0.0 0.5 1.0 1.5 2.0
Traffic

96-96(12) 96-192(24) 96-336(48) 96-720(96) Band-rejection

Figure 3: Visualization of learned graph filters. The results show that the filters of the adaptive graph
resemble a band-rejection filter across all public datasets, indicating the presence of both homophilic
and heterophilic relationships between nodes.

2 PRELIMINARIES

2.1 SPECTRAL GRAPH NEURAL NETWORK

Spectral GNNs work in the frequency (spectral) domain using graph Laplacian, which enables them
to apply various filters to the graph signal (node features) (Bruna et al., 2013). The graph filters
could be fixed (Kipf & Welling, 2016) (Klicpera et al., 2018) (Wu et al., 2019a) or approximated
with polynomials (Defferrard et al., 2016) (Chien et al., 2020) (He et al., 2021). Spectral graph
models naturally excel at learning heterophilic relationships. Since the homophilic/heterophilic re-
lationships in adaptive graphs are uncertain, spectral models are well-suited for use on adaptive
graphs if we can ignore their dynamic changes. Among existing spectral GNNs, ChebNetII (He
et al., 2022) can approximate an arbitrary spectral filter h(λ) with an optimal convergence rate, and
the learnable parameter γj allows the model to learn an arbitrary spectral filter via gradient descent.
Additionally, it offers strong interpretability. It is formulated as:

Y =
2

K + 1

K∑
k=0

K∑
j=0

γjTk(xj)Tk(L̂)fθ(X) (1)

where xj = cos((j + 1/2)π/(K + 1)) and the Chebyshev nodes of TK+1, fθ(X) denotes an MLP
on the node feature matrix X, and γj for j = 0, 1 · · · ,K are the learnable parameters.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 MULTIVARIATE TIME SERIES FORECASTING

Multivariate time series forecasting covers a wide range of methods. Solely from the perspective
of explicitly leveraging inter-variable relationships, models can be broadly categorized into GNN-
based models, cross-variable interaction models and cross-time interaction models. First, we provide
some definitions to facilitate a quicker understanding of the relevant concepts.

Time series. A time series X ∈ RN×T is a time oriented sequence of N -dimensional time points,
where T is the number of time points, and N is the number of variables. When N = 1, a time series
is called univariate. When N > 1, it is called multivariate.

Spatial-Temporal Forecasting (STF) primarily focuses on modeling the temporal and spatial pat-
terns of multivariate time series. Let G = (V, E) be a network as an undirected graph with V = |V|
nodes and E = |E| edges. It involves learning a model f that, given observations of historical look-
back observations X ∈ RV×P of P timesteps on a graph G, outputs predictions Y ∈ RV×F for the
future horizon of length F . The process is defined as:

[xt−P+1, · · · , xt−1, xt;G]
fθ−→ [xt+1, xt+2, · · · , xt+F]

where xt ∈ RV is a graph signal vector at time step t, θ is a collection of learnable parameters. In
this paper, the number of nodes is equal to the number of variables, i.e., N = V .

Long-term Time Series Forecasting (LTSF) primarily focus on modeling the long-term depen-
dencies of multivariate time series. The definition of LTSF is similar to STF, except that it does not
explicitly use a graph structure and typically involves a longer input data sequence.

With the development of GCN (Defferrard et al., 2016) (Kipf & Welling, 2016), models begin to
utilize GCNs to model spatial dependencies based on a pre-defined prior graph and further combine
them with sequential models (Yu et al., 2017) (Li et al., 2017) (Wu et al., 2019b). However, many
recent works argue that the pre-defined prior graph might be biased, incorrect, or even unavailable in
many cases. Thus, they propose to jointly learn the graph structure (i.e., adaptive graph) (Bai et al.,
2020) (Jin et al., 2022) (Shang et al., 2021) or use graph-free methods to do STF tasks (Shao et al.,
2022a) (Liu et al., 2023b) (Deng et al., 2021).

Cross-variable interaction models are also critical for time series forecasting. Recently, (Zhang
& Yan, 2023) and (Liu et al., 2023c) both adopted channel-wise Transformer-based frameworks,
and extensive experimental results have demonstrated the effectiveness of channel-wise attention for
time series forecasting.

Cross-time interaction models focus on extracting information along the time dimension, such as
patch-wise patterns (Nie et al., 2022), multi-scale information (Wang et al., 2024) (Shabani et al.,
2022), or frequency-domain features (Wu et al., 2021) (Piao et al., 2024).

3 METHODOLOGY

In this section, we first briefly review the concept of sample indistinguishability, and then we present
our proposed embedding methods. Next, we introduce the adaptive graph structure widely used in
the field of STF, as well as how graph filters are applied to this structure. Finally, we provide an
overall illustration of the S2GNN architecture and the prediction module, which consists of multiple
MLPs.

3.1 INDISTINGUISHABILITY OF TIMES SERIES SAMPLES

Simply speaking, sample indistinguishability occurs when dynamics from different factors overlap,
making input sequence features too similar to distinguish. (Deng et al., 2021) points out that this
issue hinders deep neural networks from capturing spatial and temporal differences, while (Shao
et al., 2022a) offers a simple framework to mitigate it. In this paper, we introduce a scale-adaptive
node embedding method to adapt the model to varying node numbers and a cross-correlation embed-
ding method to extract distinguishable features directly from the input sequence, addressing cases
where temporal information is unavailable or ineffective.

Scale-Adaptive Node Embeddings. (Yeh et al., 2024) shows that random projection can enhance a
model’s ability to capture spatial relationships within input sequences. In our work, we leverage this

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

𝐻௧௜௠௘

M
L
Ps

Distinguish Feature Embedding

Output SequenceInput Sequence Spectral GNN with Adaptive Graph

Adaptive Graph Learnable Graph Filter

𝐻௜௡௣௨௧

𝐻௡௢ௗ௘

𝐻௖௥௢௦௦

𝜆

ℎ(𝜆)

Short

Long

Short

Long

1

1

2

2 Feature Propagation

Figure 4: Overall architecture. We first extract distinguishable features from the input sequence
and then propagate these features on an adaptive graph while learning filters suited to the adaptive
graph. Finally, we use multi-layer MLPs for learning. The overall structure of S2GNN is simple yet
effective, allowing it to handle both short-term and long-term STF tasks.

approach along with sparse initialization to generate node embeddings. The benefit of this method
is that under the Restricted Isometry Property (RIP) (Tropp, 2017) theory, we can use sparsity to
link the number of nodes with the node embeddings. It allows the dimensionality of the node
embeddings used in training to remain within a smaller range (h << N), bypassing the increased
learning difficulty caused by a larger number of nodes. Assuming r ∈ (0, 1) represents sparsity, the
dimension h of the random projected matrix should satisfy:

h = c · r log(N/r). (2)

Where c is a constant, N represents the number of nodes. Therefore, our Scale-Adaptive Node
Embeddings is formulated as following:

Ŵnode = Linear1(Linear2(Wnode
T))T ,

Hnode = Ŵnode[Xnode],
(3)

where Wnode and Ŵnode ∈ RN×d and Linear2 refers to fixed random peojection operation. It is
noticed that our randomly initialized node embeddings Wnode are fixed and do not participate in
training process, which is different from existing methods. Xnode represents node ID in the input
sequence.

0 10 20
PEMS03

0

2

4

6

Co
nn

ec
tio

n
nu

m
be

r

×105

0 10 20
PEMS04

0

1

2

3

4 ×105

0 10 20
PEMS07

0.0

0.5

1.0

1.5

×106

0 10 20
PEMS08

0.0

0.5

1.0

1.5

2.0

2.5
×105

0 10 20
SD

0

2

4

6
×105

0 10 20
Weather

0.00

0.25

0.50

0.75

1.00

1.25
×105

0 10 20
Electricity

0.0

0.5

1.0

1.5

2.0 ×105

0 10 20
Traffic

0

1

2

3

4

5
×105

Figure 5: The connection number of each kernel in each dataset. The distribution demonstrates that
the cross-correlation embedding method effectively distinguishes the input sequences.

Cross-Correlation Embeddings. The key to alleviating sample indistinguishability is to map a
certain feature of the input sequence to an embedding vector using a meaningful value. This value
could be the node’s ID, the time of the day, or the day of the week. To avoid relying on external
information, we calculate the cross-correlation between the input sequence and a set of feature se-
quences. The input sequence is then connected to embedding vectors based on the magnitude of the
cross-correlation. The calculation process can be efficiently achieved using convolution operation,
as it inherently performs cross-correlation operation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Ct = Cross-Correlation(Xt−L+1:t, ki),

Hcross = Wcross[argmax(Ct)],
(4)

where ki refer to the kernel in convolution. The index corresponding to the maximum value from
multiple convolution operations is then selected as the index for the corresponding feature embed-
ding matrix.

A more complex convolutional neural network could be designed to learn distinguishable features
from the input sequence as long as it produces a value for indexing. However, for simplicity, we
use a convolution kernel with the same length as the input sequence so that we can directly validate
the cross-correlation embedding method and visualize the kernel to see the distinguishing features.
Figure 5 shows the number of times each feature sequence is selected in the test set. Multiple feature
sequences are chosen across different datasets, confirming the effectiveness of our method. Figure 6
shows the learned distinguishable features, where the color intensity of each sequence corresponds
to the number of connections. The diversity of these features is clearly visible.

0.5
0.0
0.5

0 500.5
0.0
0.5

0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50

Figure 6: A visualization of the convolutional kernels used in the cross-correlation embedding pro-
cess, where the color intensity represents their usage frequency (i.e., the number of times each kernel
is connected).

3.2 ADAPTIVE ADJACENT MATRIX IN TIME SERIES

The term ”adaptive graph structure” generally refers to any adjacency matrix derived from the node
embeddings. In existing works, it is common to initialize a set of node embeddings as source nodes
and another set of node embeddings as target nodes, followed by employing various computation
methods to obtain an adjacency matrix that can be adapted during training. In this paper, we adopt
the most straightforward approach: we directly represent each node’s embedding with a set of train-
able weights and compute the cosine similarity between node embeddings as the dynamic adjacency
matrix. The calculation of the adjacent matrix and its Laplacian matrix are as follows:

A = ReLU(CosineSimilarity(Ŵnode))

L = I−D−1/2AD−1/2

L̂ = 2L/λmax − I,

(5)

where λmax is the largest eigenvalue of L. Suppose we have the distinguishable features H, then
the propogation process on the adaptive graph is formulated as:

Z =
2

K + 1

K∑
k=0

K∑
j=0

γjTk(xj)Tk(L̂)H, (6)

where γj for j = 0, 1 · · · ,K are the learnable parameters. xj = cos((j + 1/2)π/(K + 1)) and the
Chebyshev nodes of TK+1, we set K = 10 as a default hyperparameter.

3.3 OVERALL STRUCTURE

In total, we have multiple feature embeddings concatenated altogether as distinguishing feature
embeddings. Moreover, we concatenate the propagated feature embeddings with the original ones.
This approach is as follows:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

H = Hinput || Hnode || Htime || Hcross

Z = SpectralGNN(H)

Ẑ = Concat(H,Linear(Z)) .

(7)

We use Ẑ obtained from above as the input for the prediction module. The overall structure of the
prediction module is a stack of MLPs, each with a residual connection. In the end, we obtained
the prediction results of another linear regression on the last layer. We use the mean absolute error
(MAE) as the loss function on spatialtemporal datasets and the mean squared error (MSE) on long-
sequence datasets:

Ẑl+1 = fθ(Ẑ
l) + Ẑl

Ŷ = Linear(Ẑlast).
(8)

4 EXPERIMENTS

In this section, our primary goal is to demonstrate the effectiveness and feasibility of S2GNN in han-
dling both long and short sequence inputs. We first introduce the basic experimental setup, followed
by presenting the results of S2GNN on real-world data. Afterward, we compare the computational
cost of training S2GNN and baseline models for one epoch across various datasets. Although dif-
ferent models require varying total epochs for training and have different memory demands, the
comparison of FLOPs still provides an intuitive reflection of the challenges faced during model
training. Finally, we visualized the prediction results of S2GNN and the baseline models on cer-
tain datasets. From these visualizations, we were able to identify some of the reasons why existing
models fail in specific scenarios.

4.1 EXPERIMENT SETTINGS

Datasets. We conducted experiments on eight real-world datasets, including five traffic flow datasets
commonly used in spatio-temporal forecasting tasks (PEMS03, PEMS04, PEMS07, PEMS08, and
SD) and three benchmark datasets typically employed for long-term time series forecasting tasks
(Electricity, Weather, and Traffic).

Baselines. We selected several existing spatiotemporal models and compared their performance on
both short-term and long-term inputs in Figure 1. Among these, D2STGNN (Shao et al., 2022b) re-
quire pre-defined graph structures, while StemGNN (Cao et al., 2020) and MTGNN (Wu et al., 2020)
employs an adaptive graph structure. Although STID (Shao et al., 2022a) and STAEformer (Liu
et al., 2023a) do not utilize graph structures, they have demonstrated effectiveness in short-term
STF tasks. Detailed results are in the appendix (Table 3).

For the LTSF tasks, we selected various types of models from the perspective of explicitly leverag-
ing inter-variable relationships as benchmark baselines. DLinear (Zeng et al., 2022) is one of the
simplest and most effective recent models. PatchTST (Nie et al., 2022) processes time series data
by segmenting it into patches, which is widely adopted nowadays. MTGNN (Wu et al., 2020) has
proven effective for both STF and LTSF. TimesNet (Wu et al., 2022) and iTransformer (Liu et al.,
2023c) focus on leveraging relationships between variables for forecasting. CrossGNN (Huang
et al., 2023) is a recently proposed spatial GNN model with linear complexity that balances both
efficiency and predictive performance in LTSF tasks.

Evaluation metrics. Following previous work, for STF tasks, we compared the MAE, RMSE, and
MAPE using the re-normalized prediction results, benchmarking against other models. For LTSF
tasks, we used the normalized prediction results and compared the models based on MAE and MSE.
To simplify the presentation of results across both STF and LTSF datasets, we omitted MAPE from
the main text since the other two metrics used are sufficient to support the conclusions of the paper.

Implementation details. Our experiments were conducted on a 16GB V100 and a 40GB NVIDIA
A100 GPU, averaging results over three random seeds. Due to the training efficiency of existing
models and our computational resource limits, we reproduced only a subset of them. Our repro-
duced results on long-sequence data were slightly worse than those in the CrossGNN paper, so we

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

used their reported results for comparison. Most of our computational resources focused on the
spatiotemporal datasets. For the spatiotemporal forecasting (STF) task, we used two settings: one
with an input length of P = 12 to predict the next F = 12 steps and another with P = 96 to predict
future outputs at F = {12, 24, 48, 96} steps. For LTSF, we used P = 96 to predict future results
at F = {96, 192, 336, 720}. We used AdamW as the optimizer with a learning rate of 0.005 and
trained each model for 100 epochs on each dataset, with a batch size of 64.

Table 1: Experimental results on long-term STF datasets and LTSF datasets.

Methods Ours iTransformer CrossGNN TimesNet PatchTST DLinear MTGNN

Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

PE
M

S0
3 12 14.32 24.29 15.60 26.70 17.46 27.56 17.26 27.68 17.11 27.20 20.83 33.99 14.64 23.91

24 16.08 27.49 18.03 30.47 22.34 35.41 19.66 31.65 21.21 34.09 29.50 49.12 66.62 101.44
48 18.90 32.95 22.36 37.80 30.55 47.48 24.24 40.40 28.12 45.63 46.00 74.96 61.21 95.70
96 21.24 36.96 26.41 44.12 41.98 62.41 30.18 50.73 36.50 58.39 69.01 103.58 82.78 114.90

PE
M

S0
4 12 18.16 29.74 20.31 32.43 23.84 37.31 21.48 33.80 26.08 40.80 27.06 42.75 18.79 30.55

24 19.21 31.28 22.63 35.84 30.26 46.93 23.57 36.52 33.47 52.27 37.10 58.58 73.56 113.67
48 20.68 33.47 26.03 40.93 42.15 63.62 26.93 41.65 47.73 73.46 56.16 87.05 52.26 89.81
96 21.47 34.63 30.35 47.58 55.69 80.88 31.54 48.45 63.75 96.75 82.47 120.03 90.49 128.65

PE
M

S0
7 12 19.10 32.21 21.55 35.38 25.97 40.64 25.15 41.57 28.49 44.20 30.97 48.50 20.81 33.83

24 20.76 34.87 24.71 40.50 33.76 51.55 28.30 40.09 37.03 57.61 44.42 69.55 22.41 36.90
48 22.96 38.36 29.05 47.53 46.59 68.79 32.19 53.10 52.19 81.34 69.99 105.61 62.66 105.80
96 23.70 40.50 34.19 54.78 60.42 85.12 37.41 62.42 65.03 102.00 105.04 143.06 109.37 151.35

PE
M

S0
8 12 13.70 22.88 15.15 24.73 18.62 29.52 19.08 30.82 20.60 32.29 21.60 34.37 14.93 23.89

24 14.87 24.88 17.00 27.96 23.94 37.43 21.87 34.66 26.87 42.14 30.39 48.35 67.91 104.51
48 16.17 26.87 19.99 32.94 32.55 49.32 27.13 42.44 37.75 58.65 48.37 74.35 47.88 82.05
96 17.36 28.88 23.35 38.27 44.14 64.15 30.01 47.99 50.58 79.10 75.35 106.21 84.43 118.62

SD

12 15.58 26.85 17.30 29.07 23.44 39.19 19.64 32.50 23.09 37.82 28.26 49.85 17.11 29.50
24 17.96 32.19 19.80 33.98 29.65 50.82 23.07 38.17 26.18 44.32 33.45 59.85 19.77 34.74
48 20.32 37.78 22.40 38.65 34.22 58.41 23.35 39.33 27.06 45.69 36.61 65.24 59.00 101.37
96 21.82 40.65 24.68 43.81 37.60 65.39 24.84 42.19 30.21 50.40 38.37 67.92 104.00 144.55

Metric MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

W
ea

th
er 96 0.198 0.154 0.211 0.175 0.218 0.159 0.220 0.172 0.230 0.171 0.255 0.196 0.329 0.230

192 0.243 0.200 0.253 0.210 0.266 0.211 0.261 0.219 0.271 0.219 0.296 0.237 0.322 0.263
336 0.304 0.277 0.295 0.268 0.310 0.267 0.306 0.280 0.321 0.277 0.335 0.283 0.396 0.354
720 0.363 0.366 0.351 0.343 0.362 0.352 0.359 0.365 0.367 0.365 0.381 0.345 0.371 0.409

E
le

ct
ri

ci
ty 96 0.226 0.135 0.237 0.147 0.275 0.173 0.272 0.168 0.268 0.159 0.276 0.194 0.318 0.217

192 0.244 0.154 0.255 0.166 0.288 0.195 0.289 0.184 0.278 0.177 0.280 0.193 0.352 0.238
336 0.264 0.172 0.277 0.187 0.300 0.206 0.300 0.198 0.296 0.195 0.296 0.206 0.348 0.260
720 0.305 0.215 0.299 0.214 0.335 0.231 0.320 0.220 0.317 0.215 0.329 0.242 0.369 0.290

Tr
af

fic

96 0.251 0.508 0.260 0.404 0.310 0.570 0.321 0.593 0.319 0.583 0.396 0.650 0.437 0.660
192 0.263 0.538 0.269 0.428 0.321 0.577 0.336 0.617 0.331 0.591 0.370 0.598 0.438 0.649
336 0.272 0.567 0.293 0.433 0.324 0.588 0.336 0.629 0.332 0.599 0.373 0.605 0.472 0.653
720 0.285 0.596 0.287 0.431 0.337 0.597 0.350 0.640 0.341 0.601 0.394 0.645 0.437 0.639

4.2 EXPERIMENT RESULTS

In Table 3, we demonstrate S2GNN’s capability in handling both long and short-sequence inputs for
spatiotemporal forecasting tasks. Our proposed model not only achieves state-of-the-art prediction
performance but also balances training efficiency. Furthermore, in Table 1, following the existing
comparison methods for spatiotemporal forecasting and long-sequence prediction tasks, we compare
the results of S2GNN with current models used for long-sequence prediction on both spatiotemporal
and long sequence datasets.

Moreover, Figure 3 illustrates the shape of the graph filter learned by S2GNN. It can be observed
that across all datasets (more results are in Figure 9), the graph filter exhibits a band-rejection filter
shape, which strongly indicates that the adaptive graph contains both homophily and heterophily.
This observation highlights that current methods using spatial GNNs limit the expressive capacity
of the temporal adaptive graph. More specifically, on spatiotemporal datasets, the learned graph
filter retains both low-frequency and high-frequency components while suppressing mid-frequency
components, suggesting a strong polarization between homogeneity and heterogeneity. Therefore,
we suspect that in typical spatiotemporal forecasting tasks, such as traffic flow prediction, ignoring
odd-hop neighbors could theoretically enhance the robustness of spatial-GNN models (Lei et al.,
2022). On multivariate datasets, however, the presence of mid-frequency components indicates that
the polarization in the adaptive graph structure is less pronounced.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.3 ABLATION STUDY

We performed ablation experiments on several datasets to assess the impact of distinguishable fea-
tures, It can be seen that improving a model’s capacity to manage sample indistinguishability can
boost its performance on STF. However, the scenario is more intricate with LTSF, possibly due to
variations in data properties or evaluation standards.. Additionally, we stopped the gradient updates
for the adaptive graph after training for 50 epochs. The results indicate that freezing the adaptive
graph had a limited impact on prediction accuracy, suggesting that after a certain number of epochs,
further structural changes in the adaptive graph no longer significantly influence the results. This
consequence also supports the motivation behind our research.

Table 2: Ablation study. T: Temporal embedding. S: Scale-Adaptive node embedding. C: Cross-
Correlaiton embedding. Stop-50: Stop the gradients of the adaptive graph after 50 epochs.

Methods PEMS07 PEMS08 PEMS03 Electricity Traffic

Metric MAE RMSE MAE RMSE MAE MSE MAE MSE MAE MSE

w/o T 27.20 44.31 19.37 30.93 21.80 34.75 0.236 0.144 0.267 0.535

w/o S 24.61 42.11 17.64 29.43 21.26 38.05 0.373 0.139 0.252 0.506

w/o C 25.12 41.83 17.55 29.07 21.66 37.64 0.224 0.133 0.250 0.510

stop-50 25.46 42.18 17.55 29.03 21.94 37.96 0.224 0.134 0.251 0.509

Ours 23.70 40.50 17.36 28.88 21.24 36.96 0.226 0.135 0.251 0.508

4.4 EFFICIENCY STUDY

We compared the number of parameters of existing models with the FLOPs required to train for one
epoch. As shown in Figure 1, we selected tasks with different datasets (varying in node scale) and
different prediction lengths for comparison. In the figure, the closer a model’s point is to the origin,
the more worthwhile its computational efficiency. The size of each point reflects the MAE between
the predicted results and the true values, where smaller points indicate better performance. It can
be observed that S2GNN maintains stable performance across tasks with varying input and output
lengths, effectively balancing prediction accuracy and training efficiency.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Parameters

0

20

40

60

80

100

FL
OP

s

S2GNNSTID

D2STGNN

STAEformer

MTGNN

StemGNN

6 4 2 0 2 4
log(Parameters)

1

0

1

2

3

4

5

lo
g(

FL
OP

s)

S2GNN

STID

MTGNN

StemGNN

CrossGNN

PatchTST

TimesNet

4 3 2 1 0 1 2
log(Parameters)

2

3

4

5

lo
g(

FL
OP

s)

S2GNN

STID
CrossGNN

PatchTST
TimesNet

Figure 7: Comparison of FLOPs and total amount of parameters. From left to right are the results
on the PEMS04 (12-12), PEMS08 (96-12), and PEMS07 (96-96) datasets. The size of the circles
represents the MAE, smaller circles indicate better performance. FLOPs: ×103

4.5 VISUALIZATION

In Figure 8, we show the results of S2GNN on both spatiotemporal and long-sequence datasets,
along with a comparison to three existing models on the same tasks. Due to image size constraints,
we selected one node’s results from each dataset for illustration. The horizontal axis represents the
true values, while the vertical axis shows the predicted values. Ideally, all points should align along
the diagonal line y = x, indicating perfect predictions.

On spatiotemporal data, MTGNN cannot filter high-frequency information because it relies solely
on spatial GNNs, resulting in predictions that are spread on both sides of the diagonal. This is-
sue becomes increasingly evident as the output length increases. CrossGNN, on the other hand,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

uses contrastive learning to handle homophilic and heterophilic information on the graph but still
struggles with longer sequence forecasting. It tends to underpredict the true values, suggesting diffi-
culty in handling distribution shifts over extended periods. Generally, S2GNN demonstrates a clear
advantage in capturing both homophilic and heterophilic relationships in adaptive graphs due to
learnable filters. It also maintains stable performance across long-sequence predictions compared
with iTransformer, effectively balancing accuracy and adaptability.

On long-sequence data, S2GNN performs slightly worse than spatiotemporal data, possibly be-
cause the implicit graph structure in long-sequence data is less pronounced. Additionally, numerical
effects introduced by normalization may also impact its performance. Despite this, S2GNN still
shows smaller fluctuations compared to the other three models, with data points more tightly clus-
tered around the diagonal. This stability becomes even more pronounced as the prediction length
increases.

0 50 100 150 200 250
Target

0

50

100

150

200

250

Pr
ed

ict
io

n

CrossGNN
MTGNN
iTransformer
S2GNN

0 50 100 150 200 250
Target

Pr
ed

ict
io

n

CrossGNN
MTGNN
iTransformer
S2GNN

0 50 100 150 200 250
Target

Pr
ed

ict
io

n

CrossGNN
MTGNN
iTransformer
S2GNN

0 50 100 150 200 250
Target

Pr
ed

ict
io

n

CrossGNN
MTGNN
iTransformer
S2GNN

(a) Examples of PEMS04 dataset. We use the 200th node for the sake of simplicity. From left to right, the
results depict predictions for 12, 24, 48, and 96 time steps based on an input sequence of 96.

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Target

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Pr
ed

ict
io

n

CrossGNN
PatchTST
iTransformer
S2GNN

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Target

Pr
ed

ict
io

n

CrossGNN
PatchTST
iTransformer
S2GNN

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Target

CrossGNN
PatchTST
iTransformer
S2GNN

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Target

Pr
ed

ict
io

n

CrossGNN
PatchTST
iTransformer
S2GNN

(b) Examples of Elctricity dataset. We use the 60th node for the sake of simplicity. From left to right, the results
depict predictions for 96, 192, 336, and 720 time steps based on an input sequence of 96.

Figure 8: Comparison between the prediction results and the target values. Each data point repre-
sents the average of the predicted results and the true values over the given sequence.

5 CONCLUSION

In this paper, our research is motivated by the inefficiency of existing Spatio-Temporal Graph Neu-
ral Networks (STGNNs), which also struggle to handle long-sequence inputs. Through observing
the training process of adaptive graphs in existing models, we found that their graph structures tend
to stabilize after a few epochs. Based on this, we propose the Spectral Spatio-Temporal Graph
Neural Network (S2GNN) to unify short-term and long-term STF while maintaining training effi-
ciency. The decoupled GNN along with an MLP architecture ensures overall efficiency. Specifically,
S2GNN incorporates learnable filters that adaptively capture both short-term and long-term features,
improving the model’s expressiveness. To keep the model simple yet effective, we enhance its abil-
ity to handle indistinguishable samples by introducing a Scale-Adaptive node embedding method
and a Cross-Correlation embedding method. These methods allow the node embeddings to adjust to
varying numbers of nodes and learn distinguishable features directly from input sequences. Experi-
ments on eight public datasets show that our model effectively addresses spatio-temporal prediction
for both short and long sequences across different scenarios. It also suggests the importance of
modeling both homophilic and heterophilic relationships in MTS forecasting.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional recurrent
network for traffic forecasting. Advances in neural information processing systems, 33:17804–
17815, 2020.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang, Yunhai Tong, Bix-
iong Xu, Jing Bai, Jie Tong, et al. Spectral temporal graph neural network for multivariate time-
series forecasting. Advances in neural information processing systems, 33:17766–17778, 2020.

Chao Chen, Karl Petty, Alexander Skabardonis, Pravin Varaiya, and Zhanfeng Jia. Freeway perfor-
mance measurement system: mining loop detector data. Transportation Research Record, 1748
(1):96–102, 2001.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv preprint arXiv:2006.07988, 2020.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Jinliang Deng, Xiusi Chen, Renhe Jiang, Xuan Song, and Ivor W Tsang. St-norm: Spatial and
temporal normalization for multi-variate time series forecasting. In Proceedings of the 27th ACM
SIGKDD conference on knowledge discovery & data mining, pp. 269–278, 2021.

Yuhe Guo and Zhewei Wei. Clenshaw graph neural networks. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 614–625, 2023.

Jindong Han, Weijia Zhang, Hao Liu, Tao Tao, Naiqiang Tan, and Hui Xiong. Bigst: Linear com-
plexity spatio-temporal graph neural network for traffic forecasting on large-scale road networks.
Proceedings of the VLDB Endowment, 17(5):1081–1090, 2024.

Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral filters via
bernstein approximation. Advances in Neural Information Processing Systems, 34:14239–14251,
2021.

Mingguo He, Zhewei Wei, and Ji-Rong Wen. Convolutional neural networks on graphs with cheby-
shev approximation, revisited. Advances in neural information processing systems, 35:7264–
7276, 2022.

Qihe Huang, Lei Shen, Ruixin Zhang, Shouhong Ding, Binwu Wang, Zhengyang Zhou, and Yang
Wang. Crossgnn: Confronting noisy multivariate time series via cross interaction refinement.
Advances in Neural Information Processing Systems, 36:46885–46902, 2023.

Jiawei Jiang, Chengkai Han, Wenjun Jiang, Wayne Xin Zhao, and Jingyuan Wang. Libcity: A uni-
fied library towards efficient and comprehensive urban spatial-temporal prediction. arXiv preprint
arXiv:2304.14343, 2023.

Ming Jin, Yu Zheng, Yuan-Fang Li, Siheng Chen, Bin Yang, and Shirui Pan. Multivariate time
series forecasting with dynamic graph neural odes. IEEE Transactions on Knowledge and Data
Engineering, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Com-
bining neural networks with personalized pagerank for classification on graphs. In International
conference on learning representations, 2018.

Runlin Lei, Zhen Wang, Yaliang Li, Bolin Ding, and Zhewei Wei. Evennet: Ignoring odd-hop neigh-
bors improves robustness of graph neural networks. Advances in Neural Information Processing
Systems, 35:4694–4706, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926, 2017.

Hangchen Liu, Zheng Dong, Renhe Jiang, Jiewen Deng, Jinliang Deng, Quanjun Chen, and Xuan
Song. Spatio-temporal adaptive embedding makes vanilla transformer sota for traffic forecast-
ing. In Proceedings of the 32nd ACM international conference on information and knowledge
management, pp. 4125–4129, 2023a.

Xu Liu, Yuxuan Liang, Chao Huang, Hengchang Hu, Yushi Cao, Bryan Hooi, and Roger Zim-
mermann. Do we really need graph neural networks for traffic forecasting? arXiv preprint
arXiv:2301.12603, 2023b.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023c.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Xihao Piao, Zheng Chen, Taichi Murayama, Yasuko Matsubara, and Yasushi Sakurai. Fredformer:
Frequency debiased transformer for time series forecasting. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2400–2410, 2024.

Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoy-
ing Zhou, Christian S Jensen, Zhenli Sheng, et al. Tfb: Towards comprehensive and fair bench-
marking of time series forecasting methods. arXiv preprint arXiv:2403.20150, 2024.

Amin Shabani, Amir Abdi, Lili Meng, and Tristan Sylvain. Scaleformer: Iterative multi-scale refin-
ing transformers for time series forecasting. arXiv preprint arXiv:2206.04038, 2022.

Chao Shang, Jie Chen, and Jinbo Bi. Discrete graph structure learning for forecasting multiple time
series. arXiv preprint arXiv:2101.06861, 2021.

Zezhi Shao, Zhao Zhang, Fei Wang, Wei Wei, and Yongjun Xu. Spatial-temporal identity: A simple
yet effective baseline for multivariate time series forecasting. In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management, pp. 4454–4458, 2022a.

Zezhi Shao, Zhao Zhang, Wei Wei, Fei Wang, Yongjun Xu, Xin Cao, and Christian S Jensen. De-
coupled dynamic spatial-temporal graph neural network for traffic forecasting. arXiv preprint
arXiv:2206.09112, 2022b.

Zezhi Shao, Fei Wang, Yongjun Xu, Wei Wei, Chengqing Yu, Zhao Zhang, Di Yao, Guangyin Jin,
Xin Cao, Gao Cong, et al. Exploring progress in multivariate time series forecasting: Compre-
hensive benchmarking and heterogeneity analysis. arXiv preprint arXiv:2310.06119, 2023.

Daniel Spielman. Spectral and algebraic graph theory. Yale lecture notes, draft of December, 4:47,
2019.

Joel A Tropp. A mathematical introduction to compressive sensing book review. Bull. Am. Math.
Soc, 54(1):151–165, 2017.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Yunzhong Qiu, Haoran Zhang, Jianmin Wang,
and Mingsheng Long. Timexer: Empowering transformers for time series forecasting with ex-
ogenous variables. arXiv preprint arXiv:2402.19072, 2024.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019a.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in neural information
processing systems, 34:22419–22430, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Tem-
poral 2d-variation modeling for general time series analysis. arXiv preprint arXiv:2210.02186,
2022.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep
spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121, 2019b.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Con-
necting the dots: Multivariate time series forecasting with graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
753–763, 2020.

Chin-Chia Michael Yeh, Yujie Fan, Xin Dai, Uday Singh Saini, Vivian Lai, Prince Osei Aboagye,
Junpeng Wang, Huiyuan Chen, Yan Zheng, Zhongfang Zhuang, et al. Rpmixer: Shaking up time
series forecasting with random projections for large spatial-temporal data. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2024.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? arXiv preprint arXiv:2205.13504, 2022.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The eleventh international conference on learning
representations, 2023.

Yanping Zheng, Lu Yi, and Zhewei Wei. A survey of dynamic graph neural networks. arXiv preprint
arXiv:2404.18211, 2024.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

A APPENDIX

0.0 0.5 1.0 1.5 2.0
PEMS03

0.0

0.2

0.4

0.6

0.8

h(
)

0.0 0.5 1.0 1.5 2.0
PEMS07

0.0 0.5 1.0 1.5 2.0
PEMS08

0.0 0.5 1.0 1.5 2.0
SD

96-12 96-24 96-48 96-96 Band-rejection

Figure 9: Visualization of learned graph filters. The results show that the filters of the adaptive graph
resemble a band-rejection filter across public datasets, indicating the presence of both homophilic
and heterophilic relationships between nodes.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 3: Comparison of existing models on short-term STF and long-term STF results. Existing
models struggle to balance prediction accuracy and training efficiency when handling long-term
STF tasks. FLOPs: ×103.

Methods Ours STID D2STGNN STAEformer MTGNN StemGNN

Metric 12-12 96-12 12-12 96-12 12-12 96-12 12-12 96-12 12-12 96-12 12-12 96-12

PE
M

S0
3 MAE 14.42 14.32 15.51 15.10 14.80 NA 14.86 NA 14.85 14.64 16.51 57.83

RMSE 24.92 24.29 27.33 26.56 25.82 NA 25.57 NA 25.23 23.91 27.72 83.53
MAPE 14.89% 15.29% 16.02% 16.51% 15.15% NA 15.02% NA 14.55% 15.20% 16.92% 176.31%

FLOPs 4.79 4.82 1.14 1.22 141 NA 184.30 NA 4.86 52.75 12.39 759.50

PE
M

S0
4 MAE 18.05 18.16 18.22 18.31 18.31 NA 18.18 NA 19.13 18.79 24.02 72.65

RMSE 30.60 29.74 30.33 29.76 29.82 NA 30.24 NA 31.03 30.55 37.04 104.81
MAPE 11.92% 12.51% 11.99% 12.53% 12.29% NA 12.29% NA 13.22% 13.02% 17.63% 54.88%

FLOPs 2.66 2.67 0.64 0.68 69.04 NA 99.30 832.70 2.71 29.36 6.86 422.40

PE
M

S0
7 MAE 19.03 19.10 19.31 19.44 19.55 NA 19.22 NA 21.01 20.81 22.72 75.73

RMSE 32.34 32.21 32.95 32.46 32.83 NA 32.54 NA 34.14 33.83 36.99 106.81
MAPE 8.00% 8.08% 8.05% 8.28% 8.23% NA 8.03% NA 8.92% 9.05% 9.57% 82.70%

FLOPs 13.33 13.41 3.03 3.25 884.00 NA 660.60 NA 12.90 140.00 35.69 2032.00

PE
M

S0
8 MAE 13.72 13.70 14.12 14.11 14.20 NA 13.60 NA 15.25 14.93 16.37 69.20

RMSE 23.30 22.88 23.88 23.27 23.65 NA 23.45 NA 24.22 23.89 26.13 92.56
MAPE 8.98% 9.10% 9.21% 9.30% 9.26% NA 8.94% NA 10.66% 10.21% 10.71% 104.44%

FLOPs 1.54 1.55 0.37 0.40 25.83 442.40 52.25 440.90 1.57 17.02 3.93 245.30

SD

MAE 17.53 15.58 17.86 16.74 17.72 NA 18.96 NA 18.61 17.11 23.52 74.25
RMSE 31.29 26.85 31.42 29.07 29.91 NA 34.89 NA 31.57 29.50 38.05 108.82
MAPE 11.31% 10.11% 11.84% 11.36% 11.89% NA 12.26% NA 12.81% 11.84% 15.98% 74.55%

FLOPs 13.16 13.25 3.05 3.28 717.40 NA 610.20 NA 12.99 141.20 34.92 2043.00

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0

1

0 50

0

1

0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50

(a) Learned feature sequences on PEMS07

0.5
0.0
0.5

0 500.5
0.0
0.5

0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50

(b) Learned feature sequences on PEMS04

0.5
0.0
0.5

0 50

0.5
0.0
0.5

0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50

(c) Learned feature sequences on PEMS08

0.5
0.0
0.5

0 500.5
0.0
0.5

0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50

(d) Learned feature sequences on SD

0.5
0.0
0.5

0 50
0.5
0.0
0.5

0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50

(e) Learned feature sequences on Weather

0.5
0.0
0.5

0 50
0.5
0.0
0.5

0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50

(f) Learned feature sequences on Electricity

0.5
0.0

0 50
0.5
0.0

0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50

(g) Learned feature sequences on Traffic

Figure 10: More visualizations of the convolutional kernels used in the cross-correlation embedding
process, where the color intensity represents their usage frequency (i.e., the number of times each
kernel is connected).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500 600
Target

0

100

200

300

400

500

600

Pr
ed

ict
io

n

CrossGNN
MTGNN
iTransformer
S2GNN

0 100 200 300 400 500 600
Target

Pr
ed

ict
io

n

CrossGNN
MTGNN
iTransformer
S2GNN

0 100 200 300 400 500 600
Target

Pr
ed

ict
io

n

CrossGNN
MTGNN
iTransformer
S2GNN

0 100 200 300 400 500 600
Target

Pr
ed

ict
io

n

CrossGNN
MTGNN
iTransformer
S2GNN

(a) More Eexamples of PEMS04 dataset. We use the 201st node for the sake of simplicity. From left to right,
the results depict predictions for 12, 24, 48, and 96 time steps based on an input sequence of 96.

0 50 100 150 200 250 300 350
Target

0

50

100

150

200

250

300

350

Pr
ed

ict
io

n

CrossGNN
MTGNN
iTransformer
S2GNN

0 50 100 150 200 250 300 350
Target

Pr
ed

ict
io

n

CrossGNN
MTGNN
iTransformer
S2GNN

0 50 100 150 200 250 300 350
Target

Pr
ed

ict
io

n

CrossGNN
MTGNN
iTransformer
S2GNN

0 50 100 150 200 250 300 350
Target

Pr
ed

ict
io

n

CrossGNN
MTGNN
iTransformer
S2GNN

(b) More Eexamples of PEMS04 dataset. We use the 150th node for the sake of simplicity. From left to right,
the results depict predictions for 12, 24, 48, and 96 time steps based on an input sequence of 96.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Target

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Pr
ed

ict
io

n

CrossGNN
PatchTST
iTransformer
S2GNN

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Target

Pr
ed

ict
io

n

CrossGNN
PatchTST
iTransformer
S2GNN

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Target

CrossGNN
PatchTST
iTransformer
S2GNN

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Target

Pr
ed

ict
io

n

CrossGNN
PatchTST
iTransformer
S2GNN

(c) More examples of Elctricity dataset. We use the 50th node for the sake of simplicity. From left to right, the
results depict predictions for 96, 192, 336, and 720 time steps based on an input sequence of 96.

1.0 0.5 0.0 0.5 1.0 1.5
Target

1.0

0.5

0.0

0.5

1.0

1.5

Pr
ed

ict
io

n

CrossGNN
PatchTST
iTransformer
S2GNN

1.0 0.5 0.0 0.5 1.0 1.5
Target

Pr
ed

ict
io

n

CrossGNN
PatchTST
iTransformer
S2GNN

1.0 0.5 0.0 0.5 1.0 1.5
Target

CrossGNN
PatchTST
iTransformer
S2GNN

1.0 0.5 0.0 0.5 1.0 1.5
Target

Pr
ed

ict
io

n

CrossGNN
PatchTST
iTransformer
S2GNN

(d) More examples of Elctricity dataset. We use the 150th node for the sake of simplicity. From left to right,
the results depict predictions for 96, 192, 336, and 720 time steps based on an input sequence of 96.

Figure 11: More comparison between the prediction results and the target values. Each data point
represents the average of the predicted results and the true values over the given sequence.

16

	Introduction
	Preliminaries
	Spectral Graph Neural Network
	Multivariate Time Series Forecasting

	Methodology
	Indistinguishability of Times Series Samples
	Adaptive Adjacent Matrix in Time Series
	Overall Structure

	Experiments
	Experiment Settings
	Experiment Results
	Ablation Study
	Efficiency Study
	Visualization

	Conclusion
	Appendix

