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ABSTRACT

Multivariate Time Series (MTS) forecasting plays a vital role in various practical
applications. Current research in this area is categorized into Spatial-Temporal
Forecasting (STF) and Long-term Time Series Forecasting (LTSF). While these
tasks share similarities, the methods and benchmarks used differ significantly.
Spatio-Temporal Graph Neural Networks (STGNNs) excel at modeling interre-
lationships in STF tasks but face difficulties with long sequence inputs due to
inefficient training. In contrast, LTSF models handle long sequences well but
struggle with capturing complex variable interrelationships. This paper proposes
the Spectral Spatio-Temporal Graph Neural Network (S2GNN) to address these
challenges, unifying short- and long-sequence spatio-temporal forecasting within
a single framework. S2GNN leverages a decoupled GNN along with an MLP ar-
chitecture to ensure efficiency. Specifically, it employs spectral GNNs for global
feature extraction on an adaptive graph structure and uses MLP to process mul-
tiple feature embeddings, enabling it to handle varying sequence lengths. Ad-
ditionally, we introduce scale-adaptive node embeddings and cross-correlation
embeddings for better differentiation between similar temporal patterns. Exten-
sive experiments on eight public datasets, including both STF and LTSF datasets,
demonstrate that S2GNN consistently outperforms state-of-the-art models across
diverse prediction tasks. Code is available at https://anonymous.4open.
science/r/S2GNN-B21D.

1 INTRODUCTION

Current Multivariate Time Series (MTS) prediction methods can be broadly categorized into Spatio-
Temporal Forecasting (STF) and Long-term Time Series Forecasting (LTSF) (Shao et al., 2023).
STF focuses on capturing both spatial and temporal dependencies, with Spatio-Temporal Graph
Neural Networks (STGNNs) being a prominent approach (Jiang et al., 2023). These models are
commonly evaluated on spatio-temporal datasets, such as those from the PEMS (Chen et al., 2001)
traffic series. In contrast, LTSF emphasizes learning patterns like seasonality or trends over longer
input sequences and utilizes long-sequence datasets that cover a wide range of scenarios to ensure
robust model generalization (Qiu et al., 2024; Zhou et al., 2021).

The key distinction between these two research areas lies in their ability to process input sequences.
STF models are typically designed for short-term inputs and may struggle with longer sequences,
partly due to the high training costs associated with some models (Han et al., 2024). On the other
hand, LTSF models are better suited for handling longer input sequences but often face challenges in
capturing spatio-temporal relationships and tend to incur high computational complexity, especially
when using transformer-based architectures (Huang et al., 2023). Figure 1 shows the performance of
several STF models on short-term and long-term inputs. As the figure indicates, the FLOPs of most
models increase significantly with input length, making long-term training nearly impossible. Thus,
there is a clear need for an STGNN model capable of handling both short and long input sequences
efficiently.

As a crucial part of STGNN models, most existing approaches rely on GCN-based methods (Kipf
& Welling, 2016). However, current research in GNNs mainly follows two directions: spatial-based
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and spectral-based approaches (Guo & Wei, 2023). Spatial GNNs capture node representations
through message passing and aggregation among neighboring nodes, often acting as low-pass fil-
ters (Wu et al., 2019a). In contrast, spectral-based GNNs perform convolutions in the spectral
domain of the graph Laplacian, offering more flexibility in handling different frequency compo-
nents (He et al., 2021). In dynamic or evolving graphs, spectral GNNs may be less robust due
to their reliance on the graph Laplacian, which is sensitive to changes in the graph structure. As
a result, spatial GNNs are often employed in existing work to learn spatial relationships between
variables (Zheng et al., 2024), though we explore whether this assumption holds universally in this
paper.
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Figure 1: Comparison of existing models on short-term STF and long-term STF results. From left
to right, the number of nodes increases across three datasets. The size of the circles represents the
FLOPs required to train for one epoch. Existing models struggle to balance prediction accuracy and
training efficiency when handling long-term STF tasks.

To address the limitation of static graph structures in capturing dynamic changes in nodes, as well
as the use of spatiotemporal models in scenarios without graph structures, adaptive graph structures
are widely used in STGNNs and are typically assumed to change continuously throughout training,
making spectral GNNs seem impractical for dynamic environments due to their sensitivity to graph
structure changes. This raises an interesting question: how much do adaptive graph structures, often
constructed using randomly initialized node embedding vectors, actually change during training?
Figure 2 illustrates the training process of two existing models that use adaptive graph structures.
Evidence across various datasets shows that, contrary to common belief, both the connectivity and
numerical variations of the adaptive graphs stabilize gradually in training. This observation chal-
lenges the assumption that spectral GNNs are too sensitive and motivates the use of spectral GNNs
with learnable filters on adaptive graph structures. Additionally, from the perspective of perturba-
tion theory for eigenvectors, if the change in the corresponding eigenvalue is sufficiently small, the
eigenvector will not shift significantly (Spielman, 2019).
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Figure 2: Observations of adaptive graph structure in STF datasets. Left: The changes in the
connectivity of the graph structure tend to stabilize as the number of epochs increases. Right: The
difference in the percentage of Frobenius norm between the best epoch and the 30th, 40th, and 50th
epochs, respectively.

Meanwhile, for the sake of training efficiency, we adopt a simple yet effective model architecture for
the sequential modelling. We review the concept of sample indistinguishability, which first proposed
in (Deng et al., 2021). Although previous work has addressed the indistinguishability in the temporal
and spatial domains separately (Shao et al., 2022a), we believe that the current approaches still have
certain limitations. Firstly, existing methods for handling spatial distinguishability cannot adapt to
changes in the number of nodes. Learning node representations in a fixed d-dimensional feature
space becomes more challenging as the number of nodes increases. Secondly, embedding methods
using temporal information are influenced by the sequence’s periodicity, and incomplete temporal
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data can reduce the model’s ability to distinguish patterns. Thus, an embedding method that directly
learns distinguishable features from the input sequence is needed.

To address the first issue, we use sparse initialization for node embeddings, leveraging the Restricted
Isometry Property (RIP) theory (Tropp, 2017) to link sparsity with the number of nodes, allowing the
embeddings to adapt to changes in node scale. For the second issue, we compute cross-correlation
between the input and feature sequences to learn features adaptively. This dynamic addition of
feature embedding vectors enhances the model’s ability to resolve sample indistinguishability.

Our contributions. In summary, our main contributions are as follows:

• We propose the Spectral Spatio-Temporal Graph Neural Network (S2GNN), which incorporates
learnable filters capable of adaptively capturing and processing both short- and long-sequence
features, enhancing the model’s expressiveness and versatility. The decoupled GNN along with
an MLP architecture ensures overall efficiency.

• We introduce a scale-adaptive node embedding method that leverages sparsity to accommodate
varying node scales and a cross-correlation embedding method that adaptively learns to distinguish
features from the input sequences.

• Experimental results reveal that both low-pass and high-pass information must be considered when
using learnable filters in conjunction with the adaptive graph. Meanwhile, our model balances
training efficiency and performance, achieving superior results on eight public datasets compared
to existing models.
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Figure 3: Visualization of learned graph filters. The results show that the filters of the adaptive graph
resemble a band-rejection filter across all public datasets, indicating the presence of both homophilic
and heterophilic relationships between nodes.

2 PRELIMINARIES

2.1 SPECTRAL GRAPH NEURAL NETWORK

Spectral GNNs work in the frequency (spectral) domain using graph Laplacian, which enables them
to apply various filters to the graph signal (node features) (Bruna et al., 2013). The graph filters
could be fixed (Kipf & Welling, 2016) (Klicpera et al., 2018) (Wu et al., 2019a) or approximated
with polynomials (Defferrard et al., 2016) (Chien et al., 2020) (He et al., 2021). Spectral graph
models naturally excel at learning heterophilic relationships. Since the homophilic/heterophilic re-
lationships in adaptive graphs are uncertain, spectral models are well-suited for use on adaptive
graphs if we can ignore their dynamic changes. Among existing spectral GNNs, ChebNetII (He
et al., 2022) can approximate an arbitrary spectral filter h(λ) with an optimal convergence rate, and
the learnable parameter γj allows the model to learn an arbitrary spectral filter via gradient descent.
Additionally, it offers strong interpretability. It is formulated as:

Y =
2

K + 1

K∑
k=0

K∑
j=0

γjTk(xj)Tk(L̂)fθ(X) (1)

where xj = cos((j + 1/2)π/(K + 1)) and the Chebyshev nodes of TK+1, fθ(X) denotes an MLP
on the node feature matrix X, and γj for j = 0, 1 · · · ,K are the learnable parameters.
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2.2 MULTIVARIATE TIME SERIES FORECASTING

Multivariate time series forecasting covers a wide range of methods. Solely from the perspective
of explicitly leveraging inter-variable relationships, models can be broadly categorized into GNN-
based models, cross-variable interaction models and cross-time interaction models. First, we provide
some definitions to facilitate a quicker understanding of the relevant concepts.

Time series. A time series X ∈ RN×T is a time oriented sequence of N -dimensional time points,
where T is the number of time points, and N is the number of variables. When N = 1, a time series
is called univariate. When N > 1, it is called multivariate.

Spatial-Temporal Forecasting (STF) primarily focuses on modeling the temporal and spatial pat-
terns of multivariate time series. Let G = (V, E) be a network as an undirected graph with V = |V|
nodes and E = |E| edges. It involves learning a model f that, given observations of historical look-
back observations X ∈ RV×P of P timesteps on a graph G, outputs predictions Y ∈ RV×F for the
future horizon of length F . The process is defined as:

[xt−P+1, · · · , xt−1, xt;G]
fθ−→ [xt+1, xt+2, · · · , xt+F ]

where xt ∈ RV is a graph signal vector at time step t, θ is a collection of learnable parameters. In
this paper, the number of nodes is equal to the number of variables, i.e., N = V .

Long-term Time Series Forecasting (LTSF) primarily focus on modeling the long-term depen-
dencies of multivariate time series. The definition of LTSF is similar to STF, except that it does not
explicitly use a graph structure and typically involves a longer input data sequence.

With the development of GCN (Defferrard et al., 2016) (Kipf & Welling, 2016), models begin to
utilize GCNs to model spatial dependencies based on a pre-defined prior graph and further combine
them with sequential models (Yu et al., 2017) (Li et al., 2017) (Wu et al., 2019b). However, many
recent works argue that the pre-defined prior graph might be biased, incorrect, or even unavailable in
many cases. Thus, they propose to jointly learn the graph structure (i.e., adaptive graph) (Bai et al.,
2020) (Jin et al., 2022) (Shang et al., 2021) or use graph-free methods to do STF tasks (Shao et al.,
2022a) (Liu et al., 2023b) (Deng et al., 2021).

Cross-variable interaction models are also critical for time series forecasting. Recently, (Zhang
& Yan, 2023) and (Liu et al., 2023c) both adopted channel-wise Transformer-based frameworks,
and extensive experimental results have demonstrated the effectiveness of channel-wise attention for
time series forecasting.

Cross-time interaction models focus on extracting information along the time dimension, such as
patch-wise patterns (Nie et al., 2022), multi-scale information (Wang et al., 2024) (Shabani et al.,
2022), or frequency-domain features (Wu et al., 2021) (Piao et al., 2024).

3 METHODOLOGY

In this section, we first briefly review the concept of sample indistinguishability, and then we present
our proposed embedding methods. Next, we introduce the adaptive graph structure widely used in
the field of STF, as well as how graph filters are applied to this structure. Finally, we provide an
overall illustration of the S2GNN architecture and the prediction module, which consists of multiple
MLPs.

3.1 INDISTINGUISHABILITY OF TIMES SERIES SAMPLES

Simply speaking, sample indistinguishability occurs when dynamics from different factors overlap,
making input sequence features too similar to distinguish. (Deng et al., 2021) points out that this
issue hinders deep neural networks from capturing spatial and temporal differences, while (Shao
et al., 2022a) offers a simple framework to mitigate it. In this paper, we introduce a scale-adaptive
node embedding method to adapt the model to varying node numbers and a cross-correlation embed-
ding method to extract distinguishable features directly from the input sequence, addressing cases
where temporal information is unavailable or ineffective.

Scale-Adaptive Node Embeddings. (Yeh et al., 2024) shows that random projection can enhance a
model’s ability to capture spatial relationships within input sequences. In our work, we leverage this
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Figure 4: Overall architecture. We first extract distinguishable features from the input sequence
and then propagate these features on an adaptive graph while learning filters suited to the adaptive
graph. Finally, we use multi-layer MLPs for learning. The overall structure of S2GNN is simple yet
effective, allowing it to handle both short-term and long-term STF tasks.

approach along with sparse initialization to generate node embeddings. The benefit of this method
is that under the Restricted Isometry Property (RIP) (Tropp, 2017) theory, we can use sparsity to
link the number of nodes with the node embeddings. It allows the dimensionality of the node
embeddings used in training to remain within a smaller range (h << N), bypassing the increased
learning difficulty caused by a larger number of nodes. Assuming r ∈ (0, 1) represents sparsity, the
dimension h of the random projected matrix should satisfy:

h = c · r log(N/r). (2)

Where c is a constant, N represents the number of nodes. Therefore, our Scale-Adaptive Node
Embeddings is formulated as following:

Ŵnode = Linear1(Linear2(Wnode
T ))T ,

Hnode = Ŵnode[Xnode],
(3)

where Wnode and Ŵnode ∈ RN×d and Linear2 refers to fixed random peojection operation. It is
noticed that our randomly initialized node embeddings Wnode are fixed and do not participate in
training process, which is different from existing methods. Xnode represents node ID in the input
sequence.
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Figure 5: The connection number of each kernel in each dataset. The distribution demonstrates that
the cross-correlation embedding method effectively distinguishes the input sequences.

Cross-Correlation Embeddings. The key to alleviating sample indistinguishability is to map a
certain feature of the input sequence to an embedding vector using a meaningful value. This value
could be the node’s ID, the time of the day, or the day of the week. To avoid relying on external
information, we calculate the cross-correlation between the input sequence and a set of feature se-
quences. The input sequence is then connected to embedding vectors based on the magnitude of the
cross-correlation. The calculation process can be efficiently achieved using convolution operation,
as it inherently performs cross-correlation operation.
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Ct = Cross-Correlation(Xt−L+1:t, ki),

Hcross = Wcross[argmax(Ct)],
(4)

where ki refer to the kernel in convolution. The index corresponding to the maximum value from
multiple convolution operations is then selected as the index for the corresponding feature embed-
ding matrix.

A more complex convolutional neural network could be designed to learn distinguishable features
from the input sequence as long as it produces a value for indexing. However, for simplicity, we
use a convolution kernel with the same length as the input sequence so that we can directly validate
the cross-correlation embedding method and visualize the kernel to see the distinguishing features.
Figure 5 shows the number of times each feature sequence is selected in the test set. Multiple feature
sequences are chosen across different datasets, confirming the effectiveness of our method. Figure 6
shows the learned distinguishable features, where the color intensity of each sequence corresponds
to the number of connections. The diversity of these features is clearly visible.

0.5
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0 500.5
0.0
0.5

0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50

Figure 6: A visualization of the convolutional kernels used in the cross-correlation embedding pro-
cess, where the color intensity represents their usage frequency (i.e., the number of times each kernel
is connected).

3.2 ADAPTIVE ADJACENT MATRIX IN TIME SERIES

The term ”adaptive graph structure” generally refers to any adjacency matrix derived from the node
embeddings. In existing works, it is common to initialize a set of node embeddings as source nodes
and another set of node embeddings as target nodes, followed by employing various computation
methods to obtain an adjacency matrix that can be adapted during training. In this paper, we adopt
the most straightforward approach: we directly represent each node’s embedding with a set of train-
able weights and compute the cosine similarity between node embeddings as the dynamic adjacency
matrix. The calculation of the adjacent matrix and its Laplacian matrix are as follows:

A = ReLU(CosineSimilarity(Ŵnode))

L = I−D−1/2AD−1/2

L̂ = 2L/λmax − I,

(5)

where λmax is the largest eigenvalue of L. Suppose we have the distinguishable features H, then
the propogation process on the adaptive graph is formulated as:

Z =
2

K + 1

K∑
k=0

K∑
j=0

γjTk(xj)Tk(L̂)H, (6)

where γj for j = 0, 1 · · · ,K are the learnable parameters. xj = cos((j + 1/2)π/(K + 1)) and the
Chebyshev nodes of TK+1, we set K = 10 as a default hyperparameter.

3.3 OVERALL STRUCTURE

In total, we have multiple feature embeddings concatenated altogether as distinguishing feature
embeddings. Moreover, we concatenate the propagated feature embeddings with the original ones.
This approach is as follows:
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H = Hinput || Hnode || Htime || Hcross

Z = SpectralGNN(H)

Ẑ = Concat(H,Linear(Z)) .

(7)

We use Ẑ obtained from above as the input for the prediction module. The overall structure of the
prediction module is a stack of MLPs, each with a residual connection. In the end, we obtained
the prediction results of another linear regression on the last layer. We use the mean absolute error
(MAE) as the loss function on spatialtemporal datasets and the mean squared error (MSE) on long-
sequence datasets:

Ẑl+1 = fθ(Ẑ
l) + Ẑl

Ŷ = Linear(Ẑlast).
(8)

4 EXPERIMENTS

In this section, our primary goal is to demonstrate the effectiveness and feasibility of S2GNN in han-
dling both long and short sequence inputs. We first introduce the basic experimental setup, followed
by presenting the results of S2GNN on real-world data. Afterward, we compare the computational
cost of training S2GNN and baseline models for one epoch across various datasets. Although dif-
ferent models require varying total epochs for training and have different memory demands, the
comparison of FLOPs still provides an intuitive reflection of the challenges faced during model
training. Finally, we visualized the prediction results of S2GNN and the baseline models on cer-
tain datasets. From these visualizations, we were able to identify some of the reasons why existing
models fail in specific scenarios.

4.1 EXPERIMENT SETTINGS

Datasets. We conducted experiments on eight real-world datasets, including five traffic flow datasets
commonly used in spatio-temporal forecasting tasks (PEMS03, PEMS04, PEMS07, PEMS08, and
SD) and three benchmark datasets typically employed for long-term time series forecasting tasks
(Electricity, Weather, and Traffic).

Baselines. We selected several existing spatiotemporal models and compared their performance on
both short-term and long-term inputs in Figure 1. Among these, D2STGNN (Shao et al., 2022b) re-
quire pre-defined graph structures, while StemGNN (Cao et al., 2020) and MTGNN (Wu et al., 2020)
employs an adaptive graph structure. Although STID (Shao et al., 2022a) and STAEformer (Liu
et al., 2023a) do not utilize graph structures, they have demonstrated effectiveness in short-term
STF tasks. Detailed results are in the appendix (Table 3).

For the LTSF tasks, we selected various types of models from the perspective of explicitly leverag-
ing inter-variable relationships as benchmark baselines. DLinear (Zeng et al., 2022) is one of the
simplest and most effective recent models. PatchTST (Nie et al., 2022) processes time series data
by segmenting it into patches, which is widely adopted nowadays. MTGNN (Wu et al., 2020) has
proven effective for both STF and LTSF. TimesNet (Wu et al., 2022) and iTransformer (Liu et al.,
2023c) focus on leveraging relationships between variables for forecasting. CrossGNN (Huang
et al., 2023) is a recently proposed spatial GNN model with linear complexity that balances both
efficiency and predictive performance in LTSF tasks.

Evaluation metrics. Following previous work, for STF tasks, we compared the MAE, RMSE, and
MAPE using the re-normalized prediction results, benchmarking against other models. For LTSF
tasks, we used the normalized prediction results and compared the models based on MAE and MSE.
To simplify the presentation of results across both STF and LTSF datasets, we omitted MAPE from
the main text since the other two metrics used are sufficient to support the conclusions of the paper.

Implementation details. Our experiments were conducted on a 16GB V100 and a 40GB NVIDIA
A100 GPU, averaging results over three random seeds. Due to the training efficiency of existing
models and our computational resource limits, we reproduced only a subset of them. Our repro-
duced results on long-sequence data were slightly worse than those in the CrossGNN paper, so we

7
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used their reported results for comparison. Most of our computational resources focused on the
spatiotemporal datasets. For the spatiotemporal forecasting (STF) task, we used two settings: one
with an input length of P = 12 to predict the next F = 12 steps and another with P = 96 to predict
future outputs at F = {12, 24, 48, 96} steps. For LTSF, we used P = 96 to predict future results
at F = {96, 192, 336, 720}. We used AdamW as the optimizer with a learning rate of 0.005 and
trained each model for 100 epochs on each dataset, with a batch size of 64.

Table 1: Experimental results on long-term STF datasets and LTSF datasets.

Methods Ours iTransformer CrossGNN TimesNet PatchTST DLinear MTGNN

Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

PE
M

S0
3 12 14.32 24.29 15.60 26.70 17.46 27.56 17.26 27.68 17.11 27.20 20.83 33.99 14.64 23.91

24 16.08 27.49 18.03 30.47 22.34 35.41 19.66 31.65 21.21 34.09 29.50 49.12 66.62 101.44
48 18.90 32.95 22.36 37.80 30.55 47.48 24.24 40.40 28.12 45.63 46.00 74.96 61.21 95.70
96 21.24 36.96 26.41 44.12 41.98 62.41 30.18 50.73 36.50 58.39 69.01 103.58 82.78 114.90

PE
M

S0
4 12 18.16 29.74 20.31 32.43 23.84 37.31 21.48 33.80 26.08 40.80 27.06 42.75 18.79 30.55

24 19.21 31.28 22.63 35.84 30.26 46.93 23.57 36.52 33.47 52.27 37.10 58.58 73.56 113.67
48 20.68 33.47 26.03 40.93 42.15 63.62 26.93 41.65 47.73 73.46 56.16 87.05 52.26 89.81
96 21.47 34.63 30.35 47.58 55.69 80.88 31.54 48.45 63.75 96.75 82.47 120.03 90.49 128.65

PE
M

S0
7 12 19.10 32.21 21.55 35.38 25.97 40.64 25.15 41.57 28.49 44.20 30.97 48.50 20.81 33.83

24 20.76 34.87 24.71 40.50 33.76 51.55 28.30 40.09 37.03 57.61 44.42 69.55 22.41 36.90
48 22.96 38.36 29.05 47.53 46.59 68.79 32.19 53.10 52.19 81.34 69.99 105.61 62.66 105.80
96 23.70 40.50 34.19 54.78 60.42 85.12 37.41 62.42 65.03 102.00 105.04 143.06 109.37 151.35

PE
M

S0
8 12 13.70 22.88 15.15 24.73 18.62 29.52 19.08 30.82 20.60 32.29 21.60 34.37 14.93 23.89

24 14.87 24.88 17.00 27.96 23.94 37.43 21.87 34.66 26.87 42.14 30.39 48.35 67.91 104.51
48 16.17 26.87 19.99 32.94 32.55 49.32 27.13 42.44 37.75 58.65 48.37 74.35 47.88 82.05
96 17.36 28.88 23.35 38.27 44.14 64.15 30.01 47.99 50.58 79.10 75.35 106.21 84.43 118.62

SD

12 15.58 26.85 17.30 29.07 23.44 39.19 19.64 32.50 23.09 37.82 28.26 49.85 17.11 29.50
24 17.96 32.19 19.80 33.98 29.65 50.82 23.07 38.17 26.18 44.32 33.45 59.85 19.77 34.74
48 20.32 37.78 22.40 38.65 34.22 58.41 23.35 39.33 27.06 45.69 36.61 65.24 59.00 101.37
96 21.82 40.65 24.68 43.81 37.60 65.39 24.84 42.19 30.21 50.40 38.37 67.92 104.00 144.55

Metric MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

W
ea

th
er 96 0.198 0.154 0.211 0.175 0.218 0.159 0.220 0.172 0.230 0.171 0.255 0.196 0.329 0.230

192 0.243 0.200 0.253 0.210 0.266 0.211 0.261 0.219 0.271 0.219 0.296 0.237 0.322 0.263
336 0.304 0.277 0.295 0.268 0.310 0.267 0.306 0.280 0.321 0.277 0.335 0.283 0.396 0.354
720 0.363 0.366 0.351 0.343 0.362 0.352 0.359 0.365 0.367 0.365 0.381 0.345 0.371 0.409

E
le

ct
ri

ci
ty 96 0.226 0.135 0.237 0.147 0.275 0.173 0.272 0.168 0.268 0.159 0.276 0.194 0.318 0.217

192 0.244 0.154 0.255 0.166 0.288 0.195 0.289 0.184 0.278 0.177 0.280 0.193 0.352 0.238
336 0.264 0.172 0.277 0.187 0.300 0.206 0.300 0.198 0.296 0.195 0.296 0.206 0.348 0.260
720 0.305 0.215 0.299 0.214 0.335 0.231 0.320 0.220 0.317 0.215 0.329 0.242 0.369 0.290

Tr
af

fic

96 0.251 0.508 0.260 0.404 0.310 0.570 0.321 0.593 0.319 0.583 0.396 0.650 0.437 0.660
192 0.263 0.538 0.269 0.428 0.321 0.577 0.336 0.617 0.331 0.591 0.370 0.598 0.438 0.649
336 0.272 0.567 0.293 0.433 0.324 0.588 0.336 0.629 0.332 0.599 0.373 0.605 0.472 0.653
720 0.285 0.596 0.287 0.431 0.337 0.597 0.350 0.640 0.341 0.601 0.394 0.645 0.437 0.639

4.2 EXPERIMENT RESULTS

In Table 3, we demonstrate S2GNN’s capability in handling both long and short-sequence inputs for
spatiotemporal forecasting tasks. Our proposed model not only achieves state-of-the-art prediction
performance but also balances training efficiency. Furthermore, in Table 1, following the existing
comparison methods for spatiotemporal forecasting and long-sequence prediction tasks, we compare
the results of S2GNN with current models used for long-sequence prediction on both spatiotemporal
and long sequence datasets.

Moreover, Figure 3 illustrates the shape of the graph filter learned by S2GNN. It can be observed
that across all datasets (more results are in Figure 9), the graph filter exhibits a band-rejection filter
shape, which strongly indicates that the adaptive graph contains both homophily and heterophily.
This observation highlights that current methods using spatial GNNs limit the expressive capacity
of the temporal adaptive graph. More specifically, on spatiotemporal datasets, the learned graph
filter retains both low-frequency and high-frequency components while suppressing mid-frequency
components, suggesting a strong polarization between homogeneity and heterogeneity. Therefore,
we suspect that in typical spatiotemporal forecasting tasks, such as traffic flow prediction, ignoring
odd-hop neighbors could theoretically enhance the robustness of spatial-GNN models (Lei et al.,
2022). On multivariate datasets, however, the presence of mid-frequency components indicates that
the polarization in the adaptive graph structure is less pronounced.
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4.3 ABLATION STUDY

We performed ablation experiments on several datasets to assess the impact of distinguishable fea-
tures, It can be seen that improving a model’s capacity to manage sample indistinguishability can
boost its performance on STF. However, the scenario is more intricate with LTSF, possibly due to
variations in data properties or evaluation standards.. Additionally, we stopped the gradient updates
for the adaptive graph after training for 50 epochs. The results indicate that freezing the adaptive
graph had a limited impact on prediction accuracy, suggesting that after a certain number of epochs,
further structural changes in the adaptive graph no longer significantly influence the results. This
consequence also supports the motivation behind our research.

Table 2: Ablation study. T: Temporal embedding. S: Scale-Adaptive node embedding. C: Cross-
Correlaiton embedding. Stop-50: Stop the gradients of the adaptive graph after 50 epochs.

Methods PEMS07 PEMS08 PEMS03 Electricity Traffic

Metric MAE RMSE MAE RMSE MAE MSE MAE MSE MAE MSE

w/o T 27.20 44.31 19.37 30.93 21.80 34.75 0.236 0.144 0.267 0.535

w/o S 24.61 42.11 17.64 29.43 21.26 38.05 0.373 0.139 0.252 0.506

w/o C 25.12 41.83 17.55 29.07 21.66 37.64 0.224 0.133 0.250 0.510

stop-50 25.46 42.18 17.55 29.03 21.94 37.96 0.224 0.134 0.251 0.509

Ours 23.70 40.50 17.36 28.88 21.24 36.96 0.226 0.135 0.251 0.508

4.4 EFFICIENCY STUDY

We compared the number of parameters of existing models with the FLOPs required to train for one
epoch. As shown in Figure 1, we selected tasks with different datasets (varying in node scale) and
different prediction lengths for comparison. In the figure, the closer a model’s point is to the origin,
the more worthwhile its computational efficiency. The size of each point reflects the MAE between
the predicted results and the true values, where smaller points indicate better performance. It can
be observed that S2GNN maintains stable performance across tasks with varying input and output
lengths, effectively balancing prediction accuracy and training efficiency.
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Figure 7: Comparison of FLOPs and total amount of parameters. From left to right are the results
on the PEMS04 (12-12), PEMS08 (96-12), and PEMS07 (96-96) datasets. The size of the circles
represents the MAE, smaller circles indicate better performance. FLOPs: ×103

4.5 VISUALIZATION

In Figure 8, we show the results of S2GNN on both spatiotemporal and long-sequence datasets,
along with a comparison to three existing models on the same tasks. Due to image size constraints,
we selected one node’s results from each dataset for illustration. The horizontal axis represents the
true values, while the vertical axis shows the predicted values. Ideally, all points should align along
the diagonal line y = x, indicating perfect predictions.

On spatiotemporal data, MTGNN cannot filter high-frequency information because it relies solely
on spatial GNNs, resulting in predictions that are spread on both sides of the diagonal. This is-
sue becomes increasingly evident as the output length increases. CrossGNN, on the other hand,

9
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uses contrastive learning to handle homophilic and heterophilic information on the graph but still
struggles with longer sequence forecasting. It tends to underpredict the true values, suggesting diffi-
culty in handling distribution shifts over extended periods. Generally, S2GNN demonstrates a clear
advantage in capturing both homophilic and heterophilic relationships in adaptive graphs due to
learnable filters. It also maintains stable performance across long-sequence predictions compared
with iTransformer, effectively balancing accuracy and adaptability.

On long-sequence data, S2GNN performs slightly worse than spatiotemporal data, possibly be-
cause the implicit graph structure in long-sequence data is less pronounced. Additionally, numerical
effects introduced by normalization may also impact its performance. Despite this, S2GNN still
shows smaller fluctuations compared to the other three models, with data points more tightly clus-
tered around the diagonal. This stability becomes even more pronounced as the prediction length
increases.
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(a) Examples of PEMS04 dataset. We use the 200th node for the sake of simplicity. From left to right, the
results depict predictions for 12, 24, 48, and 96 time steps based on an input sequence of 96.
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(b) Examples of Elctricity dataset. We use the 60th node for the sake of simplicity. From left to right, the results
depict predictions for 96, 192, 336, and 720 time steps based on an input sequence of 96.

Figure 8: Comparison between the prediction results and the target values. Each data point repre-
sents the average of the predicted results and the true values over the given sequence.

5 CONCLUSION

In this paper, our research is motivated by the inefficiency of existing Spatio-Temporal Graph Neu-
ral Networks (STGNNs), which also struggle to handle long-sequence inputs. Through observing
the training process of adaptive graphs in existing models, we found that their graph structures tend
to stabilize after a few epochs. Based on this, we propose the Spectral Spatio-Temporal Graph
Neural Network (S2GNN) to unify short-term and long-term STF while maintaining training effi-
ciency. The decoupled GNN along with an MLP architecture ensures overall efficiency. Specifically,
S2GNN incorporates learnable filters that adaptively capture both short-term and long-term features,
improving the model’s expressiveness. To keep the model simple yet effective, we enhance its abil-
ity to handle indistinguishable samples by introducing a Scale-Adaptive node embedding method
and a Cross-Correlation embedding method. These methods allow the node embeddings to adjust to
varying numbers of nodes and learn distinguishable features directly from input sequences. Experi-
ments on eight public datasets show that our model effectively addresses spatio-temporal prediction
for both short and long sequences across different scenarios. It also suggests the importance of
modeling both homophilic and heterophilic relationships in MTS forecasting.
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bining neural networks with personalized pagerank for classification on graphs. In International
conference on learning representations, 2018.

Runlin Lei, Zhen Wang, Yaliang Li, Bolin Ding, and Zhewei Wei. Evennet: Ignoring odd-hop neigh-
bors improves robustness of graph neural networks. Advances in Neural Information Processing
Systems, 35:4694–4706, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926, 2017.

Hangchen Liu, Zheng Dong, Renhe Jiang, Jiewen Deng, Jinliang Deng, Quanjun Chen, and Xuan
Song. Spatio-temporal adaptive embedding makes vanilla transformer sota for traffic forecast-
ing. In Proceedings of the 32nd ACM international conference on information and knowledge
management, pp. 4125–4129, 2023a.

Xu Liu, Yuxuan Liang, Chao Huang, Hengchang Hu, Yushi Cao, Bryan Hooi, and Roger Zim-
mermann. Do we really need graph neural networks for traffic forecasting? arXiv preprint
arXiv:2301.12603, 2023b.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023c.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Xihao Piao, Zheng Chen, Taichi Murayama, Yasuko Matsubara, and Yasushi Sakurai. Fredformer:
Frequency debiased transformer for time series forecasting. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2400–2410, 2024.

Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoy-
ing Zhou, Christian S Jensen, Zhenli Sheng, et al. Tfb: Towards comprehensive and fair bench-
marking of time series forecasting methods. arXiv preprint arXiv:2403.20150, 2024.

Amin Shabani, Amir Abdi, Lili Meng, and Tristan Sylvain. Scaleformer: Iterative multi-scale refin-
ing transformers for time series forecasting. arXiv preprint arXiv:2206.04038, 2022.

Chao Shang, Jie Chen, and Jinbo Bi. Discrete graph structure learning for forecasting multiple time
series. arXiv preprint arXiv:2101.06861, 2021.

Zezhi Shao, Zhao Zhang, Fei Wang, Wei Wei, and Yongjun Xu. Spatial-temporal identity: A simple
yet effective baseline for multivariate time series forecasting. In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management, pp. 4454–4458, 2022a.

Zezhi Shao, Zhao Zhang, Wei Wei, Fei Wang, Yongjun Xu, Xin Cao, and Christian S Jensen. De-
coupled dynamic spatial-temporal graph neural network for traffic forecasting. arXiv preprint
arXiv:2206.09112, 2022b.

Zezhi Shao, Fei Wang, Yongjun Xu, Wei Wei, Chengqing Yu, Zhao Zhang, Di Yao, Guangyin Jin,
Xin Cao, Gao Cong, et al. Exploring progress in multivariate time series forecasting: Compre-
hensive benchmarking and heterogeneity analysis. arXiv preprint arXiv:2310.06119, 2023.

Daniel Spielman. Spectral and algebraic graph theory. Yale lecture notes, draft of December, 4:47,
2019.

Joel A Tropp. A mathematical introduction to compressive sensing book review. Bull. Am. Math.
Soc, 54(1):151–165, 2017.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Yunzhong Qiu, Haoran Zhang, Jianmin Wang,
and Mingsheng Long. Timexer: Empowering transformers for time series forecasting with ex-
ogenous variables. arXiv preprint arXiv:2402.19072, 2024.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019a.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in neural information
processing systems, 34:22419–22430, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Tem-
poral 2d-variation modeling for general time series analysis. arXiv preprint arXiv:2210.02186,
2022.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep
spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121, 2019b.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Con-
necting the dots: Multivariate time series forecasting with graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
753–763, 2020.

Chin-Chia Michael Yeh, Yujie Fan, Xin Dai, Uday Singh Saini, Vivian Lai, Prince Osei Aboagye,
Junpeng Wang, Huiyuan Chen, Yan Zheng, Zhongfang Zhuang, et al. Rpmixer: Shaking up time
series forecasting with random projections for large spatial-temporal data. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2024.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? arXiv preprint arXiv:2205.13504, 2022.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The eleventh international conference on learning
representations, 2023.

Yanping Zheng, Lu Yi, and Zhewei Wei. A survey of dynamic graph neural networks. arXiv preprint
arXiv:2404.18211, 2024.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

A APPENDIX
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Figure 9: Visualization of learned graph filters. The results show that the filters of the adaptive graph
resemble a band-rejection filter across public datasets, indicating the presence of both homophilic
and heterophilic relationships between nodes.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 3: Comparison of existing models on short-term STF and long-term STF results. Existing
models struggle to balance prediction accuracy and training efficiency when handling long-term
STF tasks. FLOPs: ×103.

Methods Ours STID D2STGNN STAEformer MTGNN StemGNN

Metric 12-12 96-12 12-12 96-12 12-12 96-12 12-12 96-12 12-12 96-12 12-12 96-12

PE
M

S0
3 MAE 14.42 14.32 15.51 15.10 14.80 NA 14.86 NA 14.85 14.64 16.51 57.83

RMSE 24.92 24.29 27.33 26.56 25.82 NA 25.57 NA 25.23 23.91 27.72 83.53
MAPE 14.89% 15.29% 16.02% 16.51% 15.15% NA 15.02% NA 14.55% 15.20% 16.92% 176.31%

FLOPs 4.79 4.82 1.14 1.22 141 NA 184.30 NA 4.86 52.75 12.39 759.50

PE
M

S0
4 MAE 18.05 18.16 18.22 18.31 18.31 NA 18.18 NA 19.13 18.79 24.02 72.65

RMSE 30.60 29.74 30.33 29.76 29.82 NA 30.24 NA 31.03 30.55 37.04 104.81
MAPE 11.92% 12.51% 11.99% 12.53% 12.29% NA 12.29% NA 13.22% 13.02% 17.63% 54.88%

FLOPs 2.66 2.67 0.64 0.68 69.04 NA 99.30 832.70 2.71 29.36 6.86 422.40

PE
M

S0
7 MAE 19.03 19.10 19.31 19.44 19.55 NA 19.22 NA 21.01 20.81 22.72 75.73

RMSE 32.34 32.21 32.95 32.46 32.83 NA 32.54 NA 34.14 33.83 36.99 106.81
MAPE 8.00% 8.08% 8.05% 8.28% 8.23% NA 8.03% NA 8.92% 9.05% 9.57% 82.70%

FLOPs 13.33 13.41 3.03 3.25 884.00 NA 660.60 NA 12.90 140.00 35.69 2032.00

PE
M

S0
8 MAE 13.72 13.70 14.12 14.11 14.20 NA 13.60 NA 15.25 14.93 16.37 69.20

RMSE 23.30 22.88 23.88 23.27 23.65 NA 23.45 NA 24.22 23.89 26.13 92.56
MAPE 8.98% 9.10% 9.21% 9.30% 9.26% NA 8.94% NA 10.66% 10.21% 10.71% 104.44%

FLOPs 1.54 1.55 0.37 0.40 25.83 442.40 52.25 440.90 1.57 17.02 3.93 245.30

SD

MAE 17.53 15.58 17.86 16.74 17.72 NA 18.96 NA 18.61 17.11 23.52 74.25
RMSE 31.29 26.85 31.42 29.07 29.91 NA 34.89 NA 31.57 29.50 38.05 108.82
MAPE 11.31% 10.11% 11.84% 11.36% 11.89% NA 12.26% NA 12.81% 11.84% 15.98% 74.55%

FLOPs 13.16 13.25 3.05 3.28 717.40 NA 610.20 NA 12.99 141.20 34.92 2043.00
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Figure 10: More visualizations of the convolutional kernels used in the cross-correlation embedding
process, where the color intensity represents their usage frequency (i.e., the number of times each
kernel is connected).
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(a) More Eexamples of PEMS04 dataset. We use the 201st node for the sake of simplicity. From left to right,
the results depict predictions for 12, 24, 48, and 96 time steps based on an input sequence of 96.
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(b) More Eexamples of PEMS04 dataset. We use the 150th node for the sake of simplicity. From left to right,
the results depict predictions for 12, 24, 48, and 96 time steps based on an input sequence of 96.
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(c) More examples of Elctricity dataset. We use the 50th node for the sake of simplicity. From left to right, the
results depict predictions for 96, 192, 336, and 720 time steps based on an input sequence of 96.

1.0 0.5 0.0 0.5 1.0 1.5
Target

1.0

0.5

0.0

0.5

1.0

1.5

Pr
ed

ict
io

n

CrossGNN
PatchTST
iTransformer
S2GNN

1.0 0.5 0.0 0.5 1.0 1.5
Target

Pr
ed

ict
io

n

CrossGNN
PatchTST
iTransformer
S2GNN

1.0 0.5 0.0 0.5 1.0 1.5
Target

CrossGNN
PatchTST
iTransformer
S2GNN

1.0 0.5 0.0 0.5 1.0 1.5
Target

Pr
ed

ict
io

n

CrossGNN
PatchTST
iTransformer
S2GNN

(d) More examples of Elctricity dataset. We use the 150th node for the sake of simplicity. From left to right,
the results depict predictions for 96, 192, 336, and 720 time steps based on an input sequence of 96.

Figure 11: More comparison between the prediction results and the target values. Each data point
represents the average of the predicted results and the true values over the given sequence.
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