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ABSTRACT

Recently, latent action learning, pioneered by Latent Action Policies (LAPO),
have shown remarkable pre-training efficiency on observation-only data, offering
potential for leveraging vast amounts of video available on the web for embod-
ied AI. However, prior work has focused on distractor-free data, where changes
between observations are primarily explained by ground-truth actions. Unfortu-
nately, real-world videos contain action-correlated distractors that may hinder la-
tent action learning. Using Distracting Control Suite (DCS) we empirically inves-
tigate the effect of distractors on latent action learning and demonstrate that LAPO
struggle in such scenario. We propose LAOM, a simple LAPO modification that
improves the quality of latent actions by 8x, as measured by linear probing. Im-
portantly, we show that providing supervision with ground-truth actions, as few as
2.5% of the full dataset, during latent action learning improves downstream per-
formance by 4.2x on average. Our findings suggest that integrating supervision
during Latent Action Models (LAM) training is critical in the presence of distrac-
tors, challenging the conventional pipeline of first learning LAM and only then
decoding from latent to ground-truth actions.

1 INTRODUCTION

Recently, a new wave of approaches based on latent action learning has emerged (Edwards et al.,
2019), demonstrating superior pre-training efficiency on datasets without action labels in large-scale
robotics (Ye et al., 2024; Chen et al., 2024; Cui et al., 2024; Bruce et al., 2024) and reinforcement
learning (Schmidt & Jiang, 2023). Latent Action Models (LAM) infer latent actions between suc-
cessive observations, effectively compressing observed changes. Under certain conditions, latent
actions can even rediscover the ground truth action space (Schmidt & Jiang, 2023; Bruce et al.,
2024). After training, LAM can be utilized for imitation learning on latent actions to obtain use-
ful behavioral priors. For example, LAPA (Ye et al., 2024) showed that latent action learning can
be used to pre-train large model on only human manipulation videos, and despite the huge cross-
embodiment gap, still outperform OpenVLA (Kim et al., 2024b), which was pre-trained on expert
in-domain data with available action labels.

Despite the initial success and the promise of unlocking vast amounts of video available on the
web (Schmidt & Jiang, 2023; Ye et al., 2024), there is a critical shortcoming of previous work – it
uses distractor-free data, where all changes between observations are mainly and most efficiently
explained by ground truth actions only, such as robot manipulation on a static background (Khaz-
atsky et al., 2024). Unfortunately, this is not true for real-world web-scale data, as it contains a lot
of action-correlated noise (Misra et al., 2024), e.g. people moving in the background. Such noise
may better explain video dynamics and thus lead to latent actions unrelated to real actions. The
phenomenon of overfitting to task-irrelevant information is not new and has been studied in model-
based (Wang et al., 2024) and representation learning (Lamb et al., 2022; Zhang et al., 2020; Zhou
et al., 2023). However, the effect of distractors on latent action learning, which we aim to address in
this work, has not been similarly investigated.
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Figure 1: Simplified architecture visualization of LAPO, and LAOM - our proposed modification.
LAPO consists of IDM and FMD, both with separate encoders, uses latent action quantization and
predict next observation in image space via the decoder in FDM. LAOM incorporates multi-step
IDM, removes quantization and does not reconstruct images, relying on latent temporal consistency
loss. Images are encoded by shared encoder, while IDM and FDM operate in compact latent space.
When small number of ground-truth action labels is available, we use them for supervision, linearly
predicting from latent actions. For detailed description see Section 4.

In this work we empirically investigate the effect of action-correlated distractors on latent action
learning using Distracting Control Suite (Stone et al., 2021). We demonstrate that naive latent
action learning based on quantization and reconstruction objectives, such as LAPO (Schmidt &
Jiang, 2023), struggle in the precense of distractors (see Section 4). We propose LAOM, a simple
LAPO modification that improve the quality of latent actions by 8x, as measured by linear probing,
and double the downstream performance (see Figure 7). However, even after this, the resulting
performance is only slightly better than simple Behavioral Cloning on available ground-truth actions.
Thus, as our core contribution, we show that providing supervision with a small number, as little
as 2.5% of the complete dataset, of action labels during LAOM training improves the downstream
performance by 4.3x on average (see Section 5), outperforming all baselines (see Figure 7). Our
findings suggest that the pipeline used in most current work (Ye et al., 2024; Cui et al., 2024; Chen
et al., 2024) to first learn LAM and only then decode to ground-truth actions is suboptimal when
distractors are present, as with supervision better result can be achieved using the same budget of
actions labels. In addition, we show that latent action learning with supervision generalizes better in
contrast to approaches based on inverse dynamics models (Baker et al., 2022; Zhang et al., 2022a;
Zheng et al., 2023) but does not learn control-endogenous minimal state (Lamb et al., 2022).

2 PRELIMINARIES

Learning from observations. Most methods in reinforcement learning require access to the dataset
D := {τn}Nn=1 of N trajectories, where each τn := {(oni , ani , rni )}τi=1 contains observations, actions
and rewards. Similarly, imitation learning requires access to trajectories τn := {(oni , ani )}τi=1 that
contain actions. Unfortunately, most expert demonstrations in the real world, such as YouTube
videos of some human activity (Aytar et al., 2018; Baker et al., 2022; Zhang et al., 2022a; Ghosh
et al., 2023), do not include rewards or action labels. Thus, researchers are actively exploring how
to most effectively use the data τn := {(oni )}τi=1 without action labels to accelerate the learning of
embodied agents at scale (Torabi et al., 2019). Still, we can often assume that a very small number
of action labels are available. For example, previous work has explored ratios of up to 10% (Zheng
et al., 2023), whereas in our work we allow a maximum of ∼ 2.5% of labeled transitions.

Latent action learning. Latent action learning approaches (Edwards et al., 2019; Schmidt & Jiang,
2023; Chen et al., 2024; Cui et al., 2024; Ye et al., 2024) aim to infer latent actions zt such that they
are maximally informative about each observed transition (ot, ot+1) while being minimal. After the
latent action model (LAM) is pre-trained, we can train policies to imitate latent actions on full data
to obtain useful behavioral priors. Finally, small decoder heads can be learned from latent to real
actions of domain of interest.

We base our work on LAPO (Schmidt & Jiang, 2023), which is used in recent work (Chen et al.,
2024; Cui et al., 2024; Ye et al., 2024). LAPO uses two models in combination to infer latent actions.
First is inverse dynamics model (IDM), which is given two consecutive observations predicts latent
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action zt ∼ pIDM(·|ot, ot+1). Second is forward dynamics model (FDM), which observes current
observation and latent action, and predicts the next observation ôt+1 ∼ pFDM(·|ot, zt). Both models
are trained jointly to minimize the next observation prediction loss ∥ôt+1 − ot+1∥2. We illustrate
the model architecture in Figure 1.

Given the information bottleneck on latent actions, e.g. quantization via the VQ-VAE (Van Den Oord
et al., 2017), IDM cannot simply copy the next observation into the FDM as is, so it will be forced
to compress and encode the difference between observations to be most predictive of the next ob-
servation. Without the distractors, through simplicity bias (Shah et al., 2020), the latent actions will
recover the ground truth actions as they are most predictive of the dynamics. However, due to the
presence of distractors, it may be not true for real-world data. In this work, we empirically examine
how well current LAM can recover true actions in such circumstances.

Control-endogenous minimal state. Lamb et al. (2022) defines control-endogenous minimal state
as a representation that contains all the information necessary to control the agent, while completely
discarding all irrelevant information. Lamb et al. (2022); Levine et al. (2024), theoretically and
practically show that to learn such minimal state multi-step IDM should be used, i.e. IDM that
predicts action at from states st and st+k, where k ∈ {1, 2, 3, . . . ,K}. However, as showed by
Misra et al. (2024), in the presence of exogenous noise, i.e. non-iid noise that is temporally action-
correlated, the sample complexity of learning control-endogenous minimal state from video data can
be exponentially worse than from action-labeled data. They hypothesized that this is true for latent
action learning as well but did not provide any analysis regarding the quality of latent actions, which
we tried to empirically address in this work.

3 EXPERIMENTAL SETUP

Environments and datasets. To decouple the effects of latent action quality and exploration on
performance, we work in an offline setting. For our purposes, it is essential that the Behavior
Cloning (BC) agent should recover most of the expert performance when trained on the full dataset
with ground-truth actions revealed, otherwise it would be difficult to understand the effect of latent
action quality on pre-training.

cheetah-run walker-run hopper-hop humanoid-walk

Figure 2: We visualize the environ-
ments from Distracting Control Suite
used in our work. Top row: without
any distractors, identical to the original
DeepMind Control Suite. Bottom row:
with distractors, which consists of dy-
namic background videos, agent color
change and camera shaking.

As currently existing benchmarks with distractors (Stone
et al., 2021; Ortiz et al., 2024) are not yet solved, we col-
lect new datasets with custom difficulty, based on Dis-
tracting Control Suite (DCS) (Stone et al., 2021). DCS
uses dynamic background videos, camera shaking and
agent color change as distractors (see Figure 2 for visual-
ization). The complexity is determined by the number of
videos as well as the scale for the magnitude of the cam-
era and the color change. We empirically found that using
60 videos and a scale of 0.1 is the hardest setting when BC
can still recover expert performance. We collect datasets
with five thousand trajectories for four tasks: cheetah-run,
walker-run, hopper-hop and humanoid-walk, listed in the
order of increasing difficulty. See Appendix B for addi-
tional details.

Evaluation. To access the quality of the latent actions, we
use two methods. First, we follow the approach of Zhang
et al. (2022b) and use linear probing (Alain, 2016), which is a common technique used to evaluate
the quality of learned representations by training a simple linear classifier or regressor on top the
representations. Since we include ground truth actions in our datasets for debugging purposes, we
train linear probes to predict them from latent actions simultaneously with the main method, e.g.
LAPO (Schmidt & Jiang, 2023). We do not pass the gradient through the latent actions, so this does
not affect the training. Second, following the most commonly used three-stage pipeline (Schmidt
& Jiang, 2023; Chen et al., 2024; Ye et al., 2024), we first pre-train LAM, then train BC model to
predict latent actions on the full dataset, and finally, we reveal a small number of labeled trajectories
to train a small two-layer MLP decoder from latent to real actions. Using this decoder, we then
evaluate the resulting agent in the environment for 25 episodes. To access scaling properties with
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different budgets of real actions, similar to Schmidt & Jiang (2023), we repeat this process for a
variable number of labeled trajectories, from 2 to 128. All experiments are averaged over three
random seeds.

Baselines. We use BC on true actions as our main baseline, since the main goal of latent action
learning is to pre-train useful behavioral policies (Edwards et al., 2019; Schmidt & Jiang, 2023),
which can be achieved by recovering true actions as accurately as possible. We use it in two ways.
First, we try to get the best performance for each full dataset with true actions to use the final
return for normalization. With such normalization, we can quantify how much performance we
have recovered compared to if we had access to a fully action-labeled dataset. Second, we train BC
from scratch on the same number of labels available to LAM, to evaluate the benefit of pre-training
on large unlabeled data. Our last baseline is IDM, as it remains one of the most successful and
simplest approaches to learn from action-free data at scale (Baker et al., 2022; Zhang et al., 2022a;
Zheng et al., 2023). For additional details, see Appendix D.

We do not consider other possible types of unsupervised pre-training, as it was already extensively
explored by other researchers (Tomar et al., 2021; Zhang et al., 2022b; Kim et al., 2024a), even
with distractors (Misra et al., 2024; Ortiz et al., 2024). Our aim is not to compare latent action
learning with existing approaches, but to investigate whether it works at all in the presence of action-
correlated distractors.

On hyperparameters tuning. We tune the hyperparameters based on online performance for BC,
on MSE to real actions on the full dataset for IDM, and on final linear probe MSE to real actions
for latent action learning. In more practical tasks, we usually do not have this luxury, but since we
are interested in estimating the upper bound performance of each method in a controlled setting, we
believe that it is appropriate. For exact hyperparameters see Appendix F.

4 LATENT ACTION LEARNING STRUGGLE IN THE PRESENCE OF
DISTRACTORS
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Figure 3: Quality of latent actions
learned by LAPO. We show that quanti-
zation of latent actions significantly re-
duces the quality of actions, even on
data without distractors, where LAPO
should work without problems. Remov-
ing the quantization recovers the latent
action quality, but additional modifica-
tions are needed to improve LAPO per-
formance with distractors. Results are
averaged across all four environments,
each with three random seeds.

To access the effect of distractors on latent action learn-
ing we start by carefully reproducing and adapting LAPO
(Schmidt & Jiang, 2023) for our domain. We use similar
architecture (see Figure 1) with ResNet (He et al., 2016)
as observation encoders, borrowed from the open-source
official LAPO implementation. Similar to Schmidt &
Jiang (2023) we resize observations to 64 height and
width, stacking 3 consecutive frames.

Quantization hinders latent action learning. To vali-
date our implementation, we first measured performance
on distractor-free datasets, which should not cause any
difficulty. Contrary to previous research (Schmidt &
Jiang, 2023; Chen et al., 2024; Ye et al., 2024; Bruce
et al., 2024), we found that commonly used latent action
quantization during training significantly hindered the re-
sulting latent action quality. We initially hypothesized
that the problem might be with the VQ-VAE used for
quantizing. In conversation with Schmidt & Jiang (2023)
we confirmed that VQ-VAE is indeed susceptible to code-
book collapse and requires extensive tuning. We tried the
more modern FSQ (Mentzer et al., 2023), which has al-
ready been used successfully in RL (Scannell et al., 2024)
and does not suffer from codebook collapse. Unfortunately, even after tuning, we were unable to
improve the results significantly, so we simply removed it. To our surprise, this resulted in a large
positive improvement (see Figure 3), but only for datasets without distractors, while with distractors
the action quality remained at almost the same level.

One explanation for the result on Figure 3 may be that we are working with continuous actions,
unlike the Schmidt & Jiang (2023) which used discrete actions. However, we believe that there are
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more general reasons. The main motivation for quantizing latent actions was to prevent shortcut
learning, i.e. IDM copying ot+1 to FDM as is, and to incentivize IDM to learn simpler latents that
capture only action-related changes. We observed no evidence for shortcut learning, suggesting that
it is unlikely to occur with high-dimensional observations, similar to the unlikelihood of collapse
in Siamese networks (Chen & He, 2021). More importantly, in the presence of action-correlated
distractors, the information bottleneck may have the opposite effect, incentivising the IDM to encode
noise into latent actions. This noise can explain the dynamics more easily, so without guidance,
the IDM has no way of distinguishing it from real actions. Therefore, we advise against the use of
quantization for LAM training on real-world data.

0 5 10 15 20 25
Median action probe mse

LAPO with distractors

+ multi-step IDM

+ larger latent action dim

+ FDM in latent space

+ augmentations

LAPO without distractors

+ same modifications
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Figure 4: The individual effect of each
proposed change in LAOM, our mod-
ification of LAPO, which overall im-
proves latent action quality in the pres-
ence of distractors by a factor of 8. We
describe the proposed changes in detail
in Section 4 and visualize the final ar-
chitecture in Figure 1. Results are aver-
aged across all four environments, each
with three random seeds.

Latent action quality can be significantly improved.
As Figure 3 shows, naive LAPO may not be able to learn
good latent actions in the presence of distractors and fur-
ther improvements are needed. Thus, we propose simple
modifications to the LAPO architecture, which in combi-
nation improve latent action quality by 8x, almost clos-
ing the gap with distractor-free setting (see Figure 4).
Interestingly, on distractor-free data improvements are
marginal, further demonstrating the importance of the
proposed changes to specifically help latent action learn-
ing in the presence of distractors. We visualize the result-
ing architecture, which we called Latent Action Observa-
tion Model (LAOM) in Figure 1 and describe changes in
detail next:

Multi-step IDM. Inspired by research on control-
endogenous minimal state discovery (Lamb et al., 2022;
Levine et al., 2024) via multi-step IDM, we slightly mod-
ify our IDM objective to estimate latent action zt from
ot and ot+k, where k ∈ {1, 2, 3, . . . ,K}, instead of just
consecutive observations. During training, we sampled
k uniformly for each sample and found that K := 10
worked best. Multi-step IDM helps to learn representa-
tion which encodes control-endogenous information with
respect to current latent actions, which in turn helps learn better latent actions. This simple change
alone doubled the latent action quality.

Increasing latent actions capacity. So far we have used latent actions with 128 dimensions, as in
the original LAPO. However, for reasons similar to quantization removal, we significantly increased
it to 8192, as it allows better next-observation prediction. Since IDM cannot distinguish control-
related features from noise, the best we can hope for in general is to learn the full dynamics of the
environment as accurately as possible. In such a case, latent actions will by definition contain true
actions and we will be able to extract them via the probe. This change gives an additional 2.5x
improvement.

Removing observation reconstruction. The need to fully reconstruct the next observation forces
latent actions to encapsulate changes in each pixel, which is not always related to true actions, e.g.
video in the background. Thus, we use the latent temporal consistency loss (Schwarzer et al., 2020;
Hansen et al., 2022; Zhao et al., 2023) to predict next observation in compact latent space without
reconstruction. IDM and FMD now operate on latent representation and consist of MLPs instead of
ResNets (see Figure 1). This brings additional benefits, as with such architecture we can get rid of
expensive decoder, reducing model size and increasing training speed. For target next observation
we use simple stop-grad as in Chen & He (2021) or EMA encoder (Schwarzer et al., 2020). These
change alone slightly increases probe MSE due to the instabilities. We fix them with the next change.

Adding augmentations. Augmentations are commonly used in conjunction with self-supervised
objectives to stabilize training and avoid collapse (Schwarzer et al., 2020; Hansen et al., 2022; Zhao
et al., 2023). Similarly, we found that augmentations help with stability and improve performance to
even smaller probe MSE. We use the subset of augmentations from Almuzairee et al. (2024), which
consists of random shifts, rotations and changes of perspective. We apply then only during latent
actions training and do not use in later stages.
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The large gap in downstream performance remains. As Figure 5 shows, our improve-
ments partially transfer to downstream performance, as LAOM outperforms vanilla LAPO
on all label budgets, improving performance by up to 2x. LAOM also outperforms LAPO
on data without distractors, but not significantly. However, there remains a large gap
in final performance with and without distractors. We should emphasize that this gap
is not due to the fact that setting with distractors is more difficult for BC, for example.
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Figure 5: Performance evaluation of the
LAPO and the proposed LAOM with
and without distractors. As can be seen,
large gap in performance remains in
the presence of distractors. Results are
averaged across all four environments,
each with three random seeds.

We normalize performance by the return achieved by BC
trained on each full dataset with ground-truth actions.
Thus, the difference in performance is relative to BC and
is explained by a difference in the quality of the latent
actions.

Unfortunately, linear probing has a major limitation - it
can only tell us whether real actions are contained in la-
tent actions or not. For example, by increasing the dimen-
sionality of latent actions in LAOM, we have improved
the quality according to the probe, but sacrificed their
minimality, i.e. they additionally describe full dynamics,
that is mostly unrelated to real actions. This can be detri-
mental as, during the BC stage, not only do we waste ca-
pacity predicting actions with higher dimensionality, but
we also risk learning spurious correlations. This is proba-
bly the main reason for the poor performance, but it is the
best we can do, otherwise latent actions will not contain
true actions at all.

5 LATENT ACTION LEARNING REQUIRES SUPERVISION IN THE PRESENCE
OF DISTRACTORS
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Figure 6: We show that in the presence
of distractors, LAPO struggles to learn
latent actions useful for pre-training.
We propose LAOM, a simple modifi-
cation that doubles the performance but
still underperforms. Thus, we propose
to reuse available ground-truth action
labels to supervise latent action learn-
ing, which significantly improves the
performance.

In previous sections, we proposed LAOM, an improved
version of LAPO which almost doubled the downstream
performance in the presence of distractors for all budgets
of true action labels considered. However, overall per-
formance remained quite low. Similar to unlikelihood of
recovering the control-endogenous minimal state in the
presence of distractors (Misra et al., 2024), our results
suggest that without any supervision latent action learn-
ing may not be able to learn actions useful for efficient
pre-training. What if we can provide supervision? Even
the smallest number of true actions may ground latent ac-
tion learning to focus on control-related features. We ex-
plore this in the following experiments.

Supervision significantly increases downstream per-
formance. Despite the fact that existing approaches
(Schmidt & Jiang, 2023; Ye et al., 2024; Chen et al.,
2024) pre-train LAM without true actions, in practice we
still need to have some number of labels to learn the ac-
tion decoder as last stage. We reuse these labels to pro-
vide supervision by linearly predicting them from latent
actions during LAOM training (see Figure 1 for the final architecture). We plot the resulting down-
stream performance for each environment in Figure 7 and summarize in Figure 6. As can be seen,
LAOM+supervision outperforms all baselines and scales better with a larger budget of real actions.
It achieves an average normalized score of 0.44, i.e. it recovers almost half the performance of BC
with access to the full dataset of true actions, while using only 2.5% of them. Importantly, all meth-
ods have access to exactly the same number of action labels, differing only in how they use them.
We provide results for distractor-free data in Appendix E.
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Figure 7: Performance evaluation of latent action learning approaches and baselines across different
budgets of ground-truth action labels. As can be seen, LAPO struggles in the presence of distractors,
being outperformed by simpler baselines. LAOM, our modification of LAPO, performs better, but
not significantly. However, when we reuse the same labels used for decoding from latent to true
actions to provide supervision during LAOM training (see Section 5), we significantly improve
downstream performance, outperforming baselines in all environments. Importantly, all methods
were pre-trained on the same unlabeled datasets and had access to exactly the same action labels,
differing only in their use. Results are averaged over three random seeds. For a detailed description
of the evaluation pipeline, see Section 3.
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Figure 8: (a) We show that latent action learning with supervision generalizes better than IDM to
novel distractors for all considered budgets of ground-truth action labels available for pre-training.
(b)-(c) Supervision with a small number of ground-truth actions during latent action learning allows
for smaller action dimensionality without major performance degradation. Without supervision, the
quality of latent actions, as well as performance, quickly degrades.

Latent action learning with supervision generalizes better that IDM. Learning to predict true
actions with IDM with a small number of labels and then relabeling larger datasets has recently been
a quite successful approach (Baker et al., 2022; Zheng et al., 2023). Unfortunately, IDM is greatly
limited in its generalization capabilites as dataset with labels may not contain some distractors or
cover all actions. LAOM+supervision on other hand pre-trains on full combined dataset and can
adapt better to larger variety of distractors and actions. We confirm this intuition in Figure 8a
measuring action prediction accuracy on evaluation dataset with never seen distractor background
videos. IDM indeed generalizes worse than LAOM+supervision.

Supervision enables compact latent actions without large performance degradation. As we
mentioned earlier very high dimensional latent actions are not optimal, as they may not be mini-
mal, i.e. contain control-unrelated information and require larger BC models to imitate accurately.
Similarly, LAPA (Ye et al., 2024) also reported that more compact latent action space increases
pre-training efficiency. Unfortunately, the effectiveness of LAPO and even LAOM degrades dra-
matically when the dimensionality of latent actions is reduced. In Figure 8b and Figure 8c we show
that supervision can partially mitigate this effect. LAOM+supervision loses only 16% of perfor-
mance when reducing latent actions dimensionality from 8192 to 64, compared to 63% loss for
LAOM. We used 128 labeled trajectories for this experiment.

Supervision improves cross-embodied pre-training. So far we have used homogeneous datasets,
which contain data from only one environment. However, in practice our hope is to pre-train LAM
on large and diverse dataset from different embodiments, including humans (McCarthy et al., 2024;
Ye et al., 2024). To access performance in such a scenario, we assemble cross-embodied datasets
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Figure 9: Evaluation of latent action learning ap-
proaches in cross-embodied pre-training in the
presence of distractors, e.g. pre-training LAM
on datasets from three environments and fune-
tuning on action labeled data from the remaining
one. While supervision improves performance, it
is comparable to that of simple BC trained from
scratch on available ground-truth actions. Re-
sults are averaged across all four environments,
each with three random seeds.

True LAOM LAOM+supervision IDM

Figure 10: In contrast to IDM, latent action learn-
ing encode a lot of control-unrelated information,
such as background videos, into the observation
representations. This finding suggest that using
latent action learning exclusively as a way to pre-
train visual representations is not viable in the
presence of distractors. We visualize the repre-
sentations by training a separate decoder to re-
construct original observations.

in a leave-one-out fashion, e.g. for the cheetah-run, we sample 1666 trajectories (to get ∼ 5k) from
other environments and combine them into a single dataset. We pre-train LAM and BC on them as
usual and use the labeled data from the excluded environment for action decoding or supervision
during LAOM training. As Figure 9 shows supervision during LAM pre-training yields a large
performance improvement. However, the final performance is no better than training BC only on
the provided labels from scratch. This is slightly concerning and further emphasizes the limitations
of LAM methods in the presence of distractors.

In contrast to IDM, latent action learning does not learn minimal state. DynaMo (Cui et al.,
2024) used latent action learning only as an objective to pre-train visual representations, not to ob-
tain useful latent actions. To access the viability of such approach, we additionally train decoders
to reconstruct original observations from the representations learned by LAM and IDM. What in-
formation does LAM encodes into its representations? As Figure 10 shows decoders were able to
reconstruct original observations quite well, indicating that both LAOM and LAOM+supervision en-
code a lot of control-unrelated information, including distractors. In contrast, multi-step IDM truly
learns control-endogenous minimal state as predicted by Lamb et al. (2022); Islam et al. (2022);
Levine et al. (2024), fully ignoring control-unrelated information, such as background videos or
agent color. This result appears to provide compelling evidence that using LAM exclusively as a
way to obtain visual representations is not a viable approach in the presence of distractors.

6 RELATED WORK

Action relabeling with inverse dynamics models. Simplest approach to utilize unlabeled data it to
pretrain IDM on small number of action labels to further re-label a much large dataset (Torabi et al.,
2018). Baker et al. (2022) showed that this approach can work on a scale, achieving great success
in Minecraft (Kanervisto et al., 2022). Zhang et al. (2022a) used similar pipeline, unlocking hours
of in-the-wild driving videos for pretraining. Schmeckpeper et al. (2020) used unlabeled human
manipulation videos within online RL loop, which supplied labels to IDM for re-labeling. Zheng
et al. (2023) conducted large scale analysis of IDM re-labeling in offline RL setup, showing that
only 10% of suboptimal trajectories with labels is enough to match performance on fully labeled
dataset.

In contrast to previous work (Schmeckpeper et al., 2020; Baker et al., 2022; Zheng et al., 2023), we
show that while IDM is a strong baseline in setups without distractors (see Figure 12 in Appendix E),
it generalizes poorly when distractors are present. Our results show that when a small number of
action labels are available, it is much better to combine IDM and latent action learning to achieve
much stronger performance and generalization (see Figure 7), suggesting that for web-scale data
(Baker et al., 2022; Zhang et al., 2022a) our approach may be better than simple IDM re-labeling.
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Latent action learning. To our knowledge, Edwards et al. (2019) was the first to propose the
task of recovering latent actions and imitating latent policies from observation, with limited success
on simple problems. However, the original objective had scalability issues (Struckmeier & Kyrki,
2023). LAPO (Schmidt & Jiang, 2023) greatly simplified the approach, removed scalability barriers,
and for the first time achieved high success on the hard, procedurally generated ProcGen benchmark
(Cobbe et al., 2020). Latent action learning was further scaled by Bruce et al. (2024); Cui et al.
(2024); Ye et al. (2024); Chen et al. (2024) to larger models, data, and harder, more diverse robotics
domains.

In contrast to our work, all the mentioned approaches (Schmidt & Jiang, 2023; Ye et al., 2024;
Cui et al., 2024; Chen et al., 2024) use data without distractors, where all changes in dynamics are
mainly explained by ground truth actions only. As we show in our work (see Section 4), naive
latent action learning does not work in the presence of distractors. The most closely related to us
is the work of Cui et al. (2024), which also removes latent action quantization, the reconstruction
objective in favor of latent temporal consistency (Schwarzer et al., 2020; Zhao et al., 2023), and
provides ablation with ground-truth actions supervision during LAM training. However, they train
LAM only as a way to pre-train visual representations and do not provide any analysis regarding the
effect of their proposed changes on the quality of the resulting latent actions. This also explains why
they report that supervision with true actions gives no improvement, while we show that it gives
significant gains (see Figure 6). Moreover, visually reconstructing representations, we show that
latent action learning methods do not produce control-endogenous state (see Figure 10), and thus
are probably not suitable as a method of visual representation learning in the presence of distractors.

7 LIMITATIONS

There are several notable limitations to our work. First, although we used the Distracting Control
Suite (Stone et al., 2021), which allows us to precisely control the difficulty of distractors in a con-
venient way and clearly access generalization to new distractors, the overall distribution and noise
patterns may be quite different compared to real-world videos on the web. Thus, our conclusions
may not be fully applicable, e.g. it is possible that supervision is not as important for relevant to
embodied AI data, or vice versa, it may turn out to be much more necessary for good results than
we have used. Nevertheless, we believe that the overall conclusion about the need for some form
of supervision is quite general. Second, the need for supervision for latent action learning is a
serious limitation, as compared to our setup, which is more reminiscent of Minecraft (Kanervisto
et al., 2022) or Nethack (Hambro et al., 2022), where both labeled and unlabeled data are available,
we have no chance to get real labels for already existing videos on the web or to fully cover their
diversity with hand-crafted labels. Therefore, further research is needed to find out whether pre-
training LAM on web data combined with supervision on robot data will achieve a similar effect,
although our preliminary experiment on cross-embodied pre-training is pessimistic. It is quite pos-
sible that supervision can come in other forms than ground-truth actions, as we simply need a way
to ground latent actions on control-related features of the observations. For example, for egocentric
videos (Grauman et al., 2022) we can use hand tracking as a proxy action to supervise latent action
learning. Finally, similar to offline RL (Levine et al., 2020), the problem of hyperparameter tuning
remains, since without action labels there is currently no way to access the quality of latent actions.

8 CONCLUSION

In this work, we empirically investigated the effect of action-correlated distractors on latent action
learning. We showed that LAPO struggles to learn latent actions useful for pre-training. Although
we proposed LAOM, a simple modification of LAPO, which doubled performance, it did not fully
close the gap with the distractor-free setting. Crucially, we found that even minimal supervision
- reusing as little as 2.5% of the dataset’s ground-truth action labels during latent action learning
significantly improved downstream performance, challenging the conventional pipeline of first pre-
training LAM and only then decoding from latent to real actions. We believe that our work uncovers
important limitations of latent action learning that need to be addressed in order to effectively scale
to the vast amount of video data available on the web.
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A ADDITIONAL RELATED WORK

Learning with distractors. Distractors in various forms are commonly used in many sub-fields of
reinforcement learning, such as: visual model-based learning, model-free learning, and representa-
tion learning.

In model-based learning, researchers explore ways to efficiently train world models that do not
waste their capacity to model task-irrelevant details, either via decomposing world models to predict
relevant and irrelevant parts separately (Fu et al., 2021; Wang et al., 2022; Wan et al., 2023; Wang
et al., 2024) or by avoiding reconstructing observations (Okada & Taniguchi, 2021; Deng et al.,
2022; Zhu et al., 2023; Liu et al., 2023b; Burchi & Timofte, 2024). In our work, we have a similar
need to not model action irrelevant details, as this will result in latent actions that describe changes in
exogenous noise, not changes cased by ground truth actions. Thus, we use the commonly occurring
latent temporal consistency loss (Schwarzer et al., 2020; Hansen et al., 2022; Zhao et al., 2023).

In model-free learning, researchers explore various techniques to improve generalization to new
distractors and domain shifts (Hansen & Wang, 2021; Hansen et al., 2021; Bertoin et al., 2022;
Huang et al., 2022b; Batra & Sukhatme, 2024; Almuzairee et al., 2024), which often revolves around
the use of augmentations (Ma et al., 2022). In our work we also use augmentations, specifically a
subset of ones proposed by Almuzairee et al. (2024), to stabilize LAM training with latent temporal
consistency loss (Schwarzer et al., 2020).

In representation learning, researchers search for ways to obtain minimal representations that contain
only task- (Yamada et al., 2022), reward- (Zhou et al., 2023) or control-related information (Zhang
et al., 2020; Lamb et al., 2022; Liu et al., 2023a; Ni et al., 2024; Levine et al., 2024), as this can
greatly increase sample efficiency and generalization (Kim et al., 2024a). In our work, inspired by
Lamb et al. (2022), we incorporate the multi-step IDM into LAM and show that it can help learn
better latent actions in the presence of exogenous noise. Moreover, when small number of ground
truth actions is available for pre-training (see Figure 6), our model on them conceptually reduces to
one proposed by Levine et al. (2024), for which it has been theoretically shown that it can recover
control-endogenous minimal state. This may explain why incorporating labels during LAM pre-
training, rather than during final fine-tuning, brings so much benefit, since discovering true actions
is trivial given a minimal state. We however, found a contradicting evidence, as Figure 10 shows
that our proposed methods do not learn minimal state in practice.

Overall, although we were inspired by existing approaches, they have not previously been used
to improve latent action learning, especially in combination, which, as we show (see Figure 4) is
essential for good performance in the presence of distractors.

B DATA COLLECTION

We used environments from the Distracting Control Suite (DCS), wrapped with Shimmy wrap-
pers for compatibility with the Gymnasium API. For cheetah-run, walker-run and hopper-hop we
used PPO (Schulman et al., 2017), adapted from the CleanRL (Huang et al., 2022a) library. For
humanoid-walk, we used SAC (Haarnoja et al., 2018) from the stable-baselines3 (Raffin et al., 2021)
library, as PPO from CleanRL was not able to solve it at the expert level. We used default hyper-
parameters and trained on 1M transitions in each environment, except for humanoid-walk, where
we trained on 100k transitions. Importantly, for speed, all experts were trained with proprioceptive
states and no distractors, we later rendered proprioceptive states to 64px images with or without
distractors during data collection. For each environment, we collected 5k trajectories, with an ad-
ditional 50 trajectories for evaluation with novel distractor videos (from the evaluation set in the
DCS). As each trajectory consists of 1000 steps, the datasets contain 5M transitions. We include
ground truth actions and states for debugging purposes. The datasets will be released together with
the main code repository.

C IMPLEMENTATION DETAILS

All experiments were run on H100 GPUs, in single-gpu mode and PyTorch bf16 precision with
AMP. For the visual encoder, we used ResNets from the open-source LAPO (Schmidt & Jiang,
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Table 1: Datasets statistics.

Dataset Average Return Size (GB)

cheetah-run 837.70 57.7
walker-run 739.79 57.8
hopper-hop 306.63 57.6
humanoid-walk 617.22 58.9

2023) codebase, which also borrowed from baselines originally provided as part of the ProcGen
2020 competition. For the action decoder, we used a two-layer MLP with 256 hidden dimensions
and ReLU activations.

In contrast to the commonly used cosine similarity, we used MSE for temporal consistency loss. We
also found that projection heads degraded performance, so we did not use them. We use slightly
non-standard MLP for latent IDM and FDM: we compose it from multiple MLP blocks inspired by
Transformer architecture (Vaswani, 2017) and condition on latent action and observation represen-
tation on all layers instead of just the first. We have found that this greatly improves prediction,
especially for latent actions. We also use ReLU6 activations instead of GELU, as it naturally bounds
the activations, which helps with stability during training, similar to target networks in RL (Bhatt
et al., 2019). Without supervision, we use the EMA target encoder. With supervision, we find that a
simple stop-grad is sufficient to prevent any signs of collapse, a finding also reported by Schwarzer
et al. (2020).

For all experiments we use cosine learning late schedule with warmup. We will publicly release the
code, all configs and all Weights&Biases logs after the review. For hyperparameters see Appendix F.

Table 2: Methods training time summed from all stages (including online evaluation) for each
method.

Method Training Time

LAPO ∼ 7h 38m
LAOM ∼ 6h 43m
LAOM+supervision ∼ 7h 6m
BC ∼ 1h 10m
IDM ∼ 5h 30m

D EVALUATION DETAILS

We outline the evaluation procedures used in our experiments for each method. First, we review
the general setup. For each environment, we have a large dataset without action labels, with and
without distractors. To decode the learned latent actions to ground truth for evaluation, we allow a
small amount of action labeled data, in line with previous work (Schmidt & Jiang, 2023; Ye et al.,
2024). We sample it once from the existing dataset, revealing true actions, to ensure that all methods
are on equal conditions. We use identical backbones where possible, and try our best to make all
methods equal in the number of trainable weights. For hyperparameters, see Appendix F. We report
the scores achieved by BC trained on datasets with all actions revealed in Table 4. We use these for
normalization in all our experiments.

BC. We trained BC from scratch to predict ground-truth actions on available labels, i.e. on 2 or 128
trajectories.

IDM. We used two-staged pipeline. First, we trained IDM to predict actions on available labels, i.e.
on 2 trajectories. Then, we trained BC on full unlabeled dataset, providing labels via pre-trained
IDM. We report BC final return.
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LAPO and LAOM. We used three-stage pipline. First, we pre-train latent actions on full unlabeled
datasets. Then, we trained BC, providing latent action labels via pre-trained LAM. Finally, we
trained action decoder on small amount of labels, while freezing the rest of the policy weights.

LAOM+supervision. Almost like LAOM, with the difference being that we exactly aligned stages
in terms of action labels used. While in LAOM we can pre-train it once and then re-use for later
stages regardless of the number of action labels, in LAOM+supervision we trained separate LAM for
each budget of labels. Thus, for LAOM+supervision trained with supervision from 32 trajectories
of labels, on final stage the decoder was trained only on the same 32 trajectories. We repeat this
process for all cases, from 2 to 128 trajectories.

Table 3: Evaluation returns of BC trained on full datasets with ground-truth actions revealed. We
use them for normalization.

Dataset With distractors Without distractors

cheetah-run 823 840
walker-run 749 735
hopper-hop 253 300
humanoid-walk 428 601

Table 4: Total parameters for each method according to the hyperparameters used in appendix F.

Dataset Total Parameters

LAPO 211847849
LAOM 192307136
LAOM+supervision 192479189
BC (on all stages) 107541504
IDM 192258965
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Figure 11: Main results without distractors, analogously to our main result in Figure 7. As can
be seen, supervision help even without distractors, although all methods work good in this setting.
Notably, IDM is a strong baseline.
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Figure 12: Figure summarizing the results from Figure 11, analogously to our main result in Fig-
ure 6. As can be seen, supervision help even without distractors, although all methods work good in
this setting.
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Figure 13: Mixed-embodied pre-training experiment results for each environment. For details see
Figure 13.
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F HYPERPARAMETERS

Table 5: LAPO hyperparameters. We use the same hyperparameters for all experiments and explic-
itly mention any exceptions. Names are exactly follow the configuration files used in code.

Stage Parameter Value

Latent actions learning

grad norm None
batch size 512
num epochs 10
frame stack 3
encoder deep False
weight decay None
encoder scale 6
learning rate 0.0001
warmup epochs 3
future obs offset 10
latent action dim 8192
encoder num res blocks 2

Latent behavior cloning

dropout 0.0
use aug False
batch size 512
num epochs 10
frame stack 3
encoder deep False
weight decay None
encoder scale 32
learning rate 0.0001
warmup epochs 0
encoder num res blocks 2

Latent actions decoding

use aug False
batch size 512
hidden dim 256
weight decay None
eval episodes 25
learning rate 0.0003
total updates 2500
warmup epochs 0.0
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Table 6: LAOM hyperparameters. We use the same hyperparameters for all experiments and explic-
itly mention any exceptions. Names are exactly follow the configuration files used in code.

Stage Parameter Value

Latent actions learning

use aug True
grad norm None
batch size 512
num epochs 10
target tau 0.001
frame stack 3
act head dim 1024
encoder deep False
obs head dim 1024
weight decay None
encoder scale 6
learning rate 0.0001
warmup epochs 3
encoder dropout 0.0
act head dropout 0.0
encoder norm out False
obs head dropout 0.0
future obs offset 10
latent action dim 8192
target update every 1
encoder num res blocks 2

Latent behavior cloning

dropout 0.0
use aug False
batch size 512
num epochs 10
frame stack 3
encoder deep False
weight decay None
encoder scale 32
learning rate 0.0001
warmup epochs 0.0
encoder num res blocks 2

Latent actions decoding

use aug False
batch size 512
hidden dim 256
weight decay None
eval episodes 25
learning rate 0.0003
total updates 2500
warmup epochs 0
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Table 7: LAOM+supervision hyperparameters. We use the same hyperparameters for all experi-
ments and explicitly mention any exceptions. Names are exactly follow the configuration files used
in code.

Stage Parameter Value

Latent actions learning

use aug True
grad norm None
batch size 512
num epochs 10
target tau 0.001
frame stack 3
act head dim 1024
encoder deep False
obs head dim 1024
weight decay 0.0
encoder scale 6
learning rate 0.0001
warmup epochs 3
encoder dropout 0.0
act head dropout 0.0
encoder norm out False
obs head dropout 0.0
future obs offset 10
labeled loss coef 0.01 (0.001, cheetah-run)
latent action dim 8192
labeled batch size 128
target update every 1
encoder num res blocks 2

Latent behavior cloning

dropout 0.0
use aug False
batch size 512
num epochs 10
frame stack 3
encoder deep False
weight decay None
encoder scale 32
learning rate 0.0001
warmup epochs 0
encoder num res blocks 2

Latent actions decoding

use aug False
batch size 512
hidden dim 256
weight decay 0
eval episodes 25
learning rate 0.0003
total updates 2500
warmup epochs 0
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Table 8: IDM hyperparameters. We use the same hyperparameters for all experiments and explicitly
mention any exceptions. Names are exactly follow the configuration files used in code.

Stage Parameter Value

IDM learning

use aug False
grad norm None
batch size 512
frame stack 3
act head dim 1024
encoder deep False
weight decay None
encoder scale 12
learning rate 0.0001
total updates 10000
warmup epochs 3
encoder dropout 0.0
act head dropout 0.0
future obs offset 1
encoder num res blocks 2

Behavior cloning on IDM actions

dropout 0.0
use aug False
batch size 512
num epochs 10
frame stack 3
encoder deep False
weight decay None
encoder scale 32
eval episodes 25
learning rate 0.0001
warmup epochs 0
encoder num res blocks 2

Table 9: BC as baseline hyperparameters. We use the same hyperparameters for all experiments and
explicitly mention any exceptions. Names are exactly follow the configuration files used in code.

Parameter Value
dropout 0.0
use aug false
batch size 512
frame stack 3
encoder deep false
weight decay 0
encoder scale 32
eval episodes 25
learning rate 0.0001
total updates 10000
warmup epochs 0
cooldown ratio 0
encoder num res blocks 2
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Table 10: BC for normalization hyperparameters. We use the same hyperparameters for all experi-
ments and explicitly mention any exceptions. Names are exactly follow the configuration files used
in code.

Parameter Value
dropout 0.0
use aug false
batch size 512
frame stack 3
encoder deep false
weight decay 0
encoder scale 32
eval episodes 25
learning rate 0.0001
num epochs 10
warmup epochs 0
cooldown ratio 0
encoder num res blocks 2
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