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Abstract

Chain-of-thought prompting has emerged as a
powerful technique for enabling large language
models (LLMs) to solve complex reasoning tasks.
However, these reasoning chains can be verbose,
raising concerns about efficiency. In this work,
we conduct the first systematic study of the re-
lationship between reasoning length and model
performance across a diverse range of compres-
sion instructions. We discover a universal tradeoff
between reasoning length and accuracy that per-
sists across even very distinct reasoning chains.
We demonstrate that this tradeoff emerges from
a sharp threshold behavior at the question level:
each task has an intrinsic ‘token complexity’ —a
minimal number of tokens required for success-
ful problem-solving. We use token complexity to
compute upper bounds on the optimal accuracy-
compression tradeoff. Our analysis reveals that
prompt-based compression strategies operate far
from these theoretical limits, suggesting signifi-
cant room for improvement and providing bench-
marks to help researchers evaluate progress in
reasoning efficiency.

1. Introduction

Recent advancements in large language models
(LLMs)—including ol and DeepSeek RI1—alongside
broader Al agent development, have showcased impressive
reasoning capabilities, hinting at a future where complex
problem-solving and decision-making can be automated.
However, this rapid progress also introduces a significant
challenge: the computational cost of reasoning is projected
to increase substantially as these models are deployed
in real-world applications. This growing inference cost
highlights the necessity for efficient reasoning strategies,
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motivating our research into reducing the computa-
tional burden of LLM inference while maintaining high
performance.

A pivotal technique for enhancing LLM reasoning has been
chain-of-thought (CoT) prompting, which encourages mod-
els to generate intermediate reasoning steps before arriving
at a final answer (Wei et al., 2022; Kojima et al., 2022).
While effective, these reasoning chains often involve lengthy
intermediate computations, increasing inference costs when
deployed at scale (Yu et al., 2024). Prior work has ob-
served that asking the LLM to ‘be concise’ or ‘use at most
100 words’ can reduce response length while incurring a
range of degradation to accuracy (Jin et al., 2024; Renze
& Guven, 2024; Han et al., 2024). It remains unclear how
best to compress the chain-of-thought content for effective
problem-solving. There has not been yet a comprehensive
exploration of the effectiveness of different compression
strategies.

The main contribution of our work is to provide the first
systematic study of the trade-off between reasoning length
and performance across different prompt-based compression
strategies, including prior strategies such as ‘be concise’
as well as alternative approaches such as ‘only use bullet
points’ or ‘use at most 50 Chinese characters’. In total,
we evaluate 31 prompts for six LLMs on three standard
reasoning datasets. Remarkably, although these prompting
strategies produce different chains of thought, their trade-
offs between response length and accuracy lie on a universal
trade-off curve. In other words, all prompts are equally
”good” as extremes on this curve. What primarily affects
accuracy is the length of the chain of thought, far more than
changes in its composition.

Our second contribution is a novel empirical observation:
the performance of reasoning tasks exhibits a sharp thresh-
old dependence on reasoning length at the question level. By
evaluating multiple prompts for each question, we demon-
strate that most questions have a well-defined ‘token com-
plexity’—a minimum number of tokens required to success-
fully solve the question—which holds across diverse prompt-
ing strategies. We estimate token complexities across vari-
ous benchmarks and find that: (i) Token complexity alone
can predict the performance of CoT prompting strategies
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Table 1: The Chain-of-Thought prompts we consider. The right column gives an example of the chain-of-thought of Claude
3.5 Sonnet on a sample problem in MMLU-Pro Math. We indicate the range of k that we consider.

PROMPT ID PROMPT SAMPLE OUTPUT UNDER CLAUDE 3.5 SONNET
NoCoT ONLY GIVE THE FINAL ANSWER. Answer: (G)

DEFAULTCOT THINK STEP-BY-STEP. Let me solve this step by step: 1) Z18 (...)
BECONCISE BE CONCISE. Let’s solve this step by step: 1) Z18 (...)
BULLETPOINTS ONLY USE BULLET POINTS. - Z18 is the group of integers modulo (...)
ONLYNUMBERS ONLY USE NUMBERS OR EQUATIONS. —Z18— = 18. Answer: (G)

NOSPACES DO NOT USE ANY SPACES OR LINE BREAKS. TheorderofagroupZnisthesame (...)
NOPROPERGRAMMAR DO NOT USE PROPER GRAMMAR. lemme help u with this z18 is group

ABBREVIATEWORDS
WORDLIMIT(K)
CHARLIMIT(K)
TOKENLIMIT(K)
STEPLIMIT(K)
CHINESECOT
CHINESECOT(K)

USE AT MOST k STEPS. (k € [1,5])
RESPOND IN CHINESE

ABBREVIATE WORDS AS MUCH AS POSSIBLE.
USE AT MOST k WORDS. (k € [1,100])

USE AT MOST k LETTERS. (k € [1,500])

USE AT MOST k TOKENS. (k € [1,500])

USE AT MOST k CHINESE CHARACTERS.

Slvng frrdr fZ18: Z18 = grp fntgrs (...)
Order of Z18 is eighteen. Answer: (G)
The order of a group is the number of (...)
The order of Z18 is 18, as it contains (...)
Step 1: The order of a group Zn is (...)
A IRAEZSX AR (...)

#2718, ANSWER: (G).

with 94% accuracy. (ii) It serves as a robust measure of
reasoning task difficulty, enabling us to investigate whether
LLMs reason adaptively—using shorter chains-of-thought
for easier questions.

These results raise the question of whether the trade-off
curve between response-length and accuracy induced by
these prompting strategies are close or far from optimal.
Viewing these strategies as a form of ‘lossy compression’,
we take inspiration from rate-distortion theory to character-
ize an upper bound on the optimal accuracy-compression
trade-off. In doing so, we find that prompt-based strategies
are far from this upper bound, especially on harder datasets.

1.1. Related Work

Recent research has begun to gain traction in exploring the
trade-off between response length and accuracy in LLMs.
Studies such as (Renze & Guven, 2024; Jin et al., 2024,
Nayab et al., 2024; Han et al., 2024) have employed specific
prompting strategies to constrain response length and assess
the associated impact on accuracy and performance. Ad-
ditionally, several works have highlighted the redundancy
inherent in CoT prompting (Chiang & Lee, 2024; Wu et al.,
2025) and emphasized the benefits of concise reasoning.
Other approaches have focused on fine-tuning strategies to
adapt LLMs for generating more succinct reasoning (Kang
et al., 2024; Yu et al., 2024).

Our work advances this growing body of literature by mak-
ing three key contributions: (1) we conducted a systematic
evaluation of a rich set of prompts designed to reduce the
length of CoT reasoning while maintaining accuracy. (2)
We find that accurate answers are only achieved when the
output length exceeds a certain threshold, which is intrinsic
to the problem and independent of the CoT format. We
formalize this concept as the foken complexity of a problem.

(3) We derive theoretical limits on the length-accuracy trade-
off, providing a framework for researchers to benchmark
new methodologies aimed at compressing chain-of-thought
reasoning effectively.

2. Experiments

Our evaluation encompasses the following LLMs: GPT-
40 (Hurst et al., 2024), GPT-40-mini (Hurst et al., 2024),
Claude 3.5 Sonnet (Anthropic, 2024), Claude 3.5 Haiku (An-
thropic, 2024), and Llama 3.3 70B Instruct (Dubey et al.,
2024). We evaluate these models on three standard math
reasoning datasets: MATH-500 (Lightman et al., 2023), a
random 500 problem subset of GSM8SK (GSM8K, (Cobbe
et al., 2021)), and a random 500 problem subset of MMLU-
Pro Math problems (MMLU-Pro Math, (Wang et al., 2024)).

For each LLM and dataset, we test 31 prompts designed to
induce shorter response lengths, detailed in Table 1. These
prompts include ones considered in prior literature: ‘be con-
cise’ (Renze & Guven, 2024), ‘use k words or less’ (Jin
et al., 2024; Nayab et al., 2024), ‘use k tokens or less’ (Han
et al., 2024), but include additional curated ones to assess
the impact of alternative compression strategies. For each
prompt, we assess performance with two metrics: (1) ac-
curacy, the fraction of questions solved correctly, and (2)
average token length, the average number of output tokens
produced by the LLM in their response across questions in
the dataset.

2.1. Universal Trade-off between Reasoning Length and
Accuracy

By considering multiple diverse prompts, we are able to
induce chains-of-thought along a spectrum of response
lengths and reasoning performance, with NoCoT (no chain-
of-thought) using the fewest tokens with the lowest accuracy
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Figure 1: For each of the 31 CoT prompts we consider (see legend above), we report average token length vs accuracy
for GPT-40 and Claude 3.5 Sonnet on MMLU-Pro Math and GPT-40-mini on GSMS8K tasks. Despite differences in the
chain-of-thought, many of them live on a universal tradeoff curve. Using our framework, we compute upper bounds on
optimal accuracy under a given average token budget (see Section 4). See Appendix G for more models and benchmarks.

and DefaultCoT (i.e. standard chain-of-though-prompting
‘think step-by-step’) using the most tokens and generally
having the highest benchmark performance.

We observe that there is potential to achieve significant
length reduction (e.g., up to 60%) compared to DefaultCoT
without sacrificing much accuracy. For example, BeCon-
cise (Renze & Guven, 2024) indeed consistently reduces
token length without significantly hurting performance. The
observation that the token length of DefaultCoT can be sub-
stantially improved upon without much degradation to ac-
curacy motivates a natural question: which prompts exhibit
the best tradeoff between response length and accuracy?

To study this question, we plot the average token-length and
accuracy of all 31 prompts in Figure 1 for the MMLU-Pro
Math benchmark (results for other benchmarks are in Ap-
pendix G). Remarkably, we see that almost all the prompts
we consider lie on a universal trade-off curve between re-
sponse length and accuracy. This suggests that regardless of

whether the chain-of-thought is formatted in bullet points,
without spaces, using only numbers, or even in Chinese, ul-
timately it is the length of the chain-of-thought that matters
most. This result also holds for the Wordlimit(k), Char-
limit(k), TokenLimit(k), StepLimit(k), and ChineseCoT (k)
prompts, which ask the LLM to limit the response to be at
most k words, letters, tokens, reasoning steps, or Chinese
characters.

This universal trade-off curve suggests that the length of
the chain-of-thought is the predominant factor that influ-
ences reasoning performance. We caveat this observation
acknowledging that this universal trade-off should only hold
for reasonably informative chains-of-thought, i.e. we would
expect that pure white-space would perform worse. We
also see that adherence to the universal trade-off curve is
better for more capable models (i.e. GPT-40 and Claude-
3.5-Sonnet) on easier benchmarks (i.e. GSM8K). For less
capable models such as LLaMA 3.3 70B on harder datasets
(e.g. MATH-500), there are more prompts which are below
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claude-3-5-sonnet-20241022: Performance on Question 225 across Different Prompts
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Figure 2: Illustration of the token complexity hypothe-

sis. (Top) Performance of Claude 3.5 Sonnet on a sample
question in MATH-500 exhibits a threshold behavior. The
red dotted line indicates the estimated token complexity 7,
from the results. (Bottom) Actual benchmark accuracy on
MATH-500 vs predicted accuracy from the token complex-
ity hypothesis. Token complexity is highly predictive of
actual accuracy (see Table 2).

the trade-off curve.

3. The Token Complexity Hypothesis

At the question level, we can observe that reasoning perfor-
mance exhibits a sharp threshold-like behavior: across all
prompts, the LLM correctly solves the question if and only
if the response length is above a certain threshold. We refer
to this threshold as the token complexity of the problem.

To illustrate, the left panel of Figure 2 displays the perfor-
mance of all 31 prompts for Claude 3.5 Sonnet on a sample
question in the MATH-500 dataset. Despite the diversity
of prompting strategies we consider, we see that response
length is highly predictive of correctness: with the exception
of 2 prompts, all the prompts which use more than ~ 53 out-
put tokens correctly solve the problem, while the prompts

that use fewer tokens get the question wrong.

To formalize this behavior, we first introduce some notation.
Given a dataset of ¢ = 1, ..., n questions (n = 500 for the
benchmarks we consider), let P, denote a chain-of-thought
prompt and let X; ;. denote a chain-of-thought produced
by an LLM = for question ¢ when prompted by P,. We
let ¢(X; ) € N be the length of X j in tokens. We let
aT (X, ) = 1if w gets the answer correct under X; and

0 if not. We now turn to formally outlining the ‘token
complexity hypothesis’.

Assumption 3.1. (Token complexity hypothesis) For ques-
tion ¢ and LLM 7, there exists a threshold 7" € N, denoted
as the token complexity, such that for any prompt Py, the
LLM gets the answer correct iff the token length ¢(X; 1) is
above 7":

af (Xix) = L{t(Xi5) > 77}

We proceed to test this hypothesis quantitatively across
LLMs 7 and benchmarks. First, we measure to what degree
success or failure on a task can be classified based purely
on the token-length of the chain-of-thought, i.e. whether the
behavior in the left panel of Figure 2 holds broadly. To do so,
we use our dataset of £ = 1, ..., K = 31 chain-of-thought
prompts for each question. For a threshold ¢ € N, we define
T (t) to be the classification accuracy under a threshold
classifier under ¢, which measures how predictable reason-
ing success is based on whether the token count exceeds
threshold ¢

K
1) = = ST (Xp) = HH(Xex) = 1))
k=1

Our estimator 7 of token complexity is the optimal
threshold-based classifier, and we let ¢; be the maximum
classification accuracy achieved by 7,".

P =

AT = argm,?XC?(t(Xi,k)% M

o= max cf (H(Xik)),

1 n
— *
Cr = — g cl
T n i=1 "

We let 77 = oo if setting the threshold to ¢ = oo re-
sults in better classification accuracy, e.g. if none of the
chains-of-thoughts correctly solve the problem in which
case a7 (X; ) = O for all k. For each dataset and model,
we report the average classification accuracy ¢, under the
estimated 77 in Table 3. Overall, the average classifica-
tion accuracy is very high, above 90% for most models
and benchmarks, verifying that (1) token-length is highly
predictive for performance at the question-level and (2)
question-level performance exhibits a threshold relationship
with token-length. We also see that the threshold classifier
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Table 2: Evidence of token complexity hypothesis across LLMs and reasoning benchmarks. The high classification accuracy
of ¢, ~ 90% and the small discrepancy Err, = 6% illustrate that the token complexity hypothesis has strong predictive
power for the reasoning performance of LLMs at both the question and benchmark levels.

MMLU-Pro Math GSM8K MATH-500

Model _ _ _

Cr Err, Cr Err, Crn Err,
GPT-40 92.1% 5.0% 97.0% 1.6% 89.9% 6.0%
GPT-40 Mini 91.3% 5.2% 94.1% 51% 91.4% 5.7%
Claude 3.5 Sonnet  92.6% 3.4% 974% 14% 92.1% 4.5%
Claude 3.5 Haiku  90.1% 5.1% 948% 41% 902% 6.3%
Llama 3.3 70B 90.6% 5.1% 96.2% 27% 89.8% 6.1%

achieves higher average classification accuracy for (1) more
capable models (i.e. GPT-40 and Claude 3.5 Sonnet) and
(2) easier benchmarks (i.e. GSM8K), which mirrors the
finding in Section 2.1 concerning adherence to the universal
trade-off curve.

Our second empirical validation is to compare the accuracy
of the LLM across prompts and benchmarks with the perfor-
mance predicted under the token complexity hypothesis. We
let Acc, (Px) denote the accuracy of LLM 7 under prompt
P, while KC\CTr(Pk) denotes the accuracy predicted under
our estimated token-complexities:

1 n
Accr(Py) = — Zi:l al (Xik), 2)

n
— 1 n
Acc,(Py) = - Zi:l 1{#(
In Table 2, for each LLM and dataset we report Err,, the
average relative discrepancy between actual accuracy and
predicted accuracy:

Xz,k) 2 727"}

K2

Z |ACC7T Pk) K-\CCTr(]DkH
T =K 2= Accr(Py)

We observe that the token threshold classifier is able to pre-
dict overall benchmark performance within 6% error, and
the error is even smaller for larger models on easier bench-
marks. This illustrates that the token-complexity hypothe-
sis provides an accurate model for reasoning performance,
which can be seen visually in the right panel of Figure 2
for Claude 3.5 Sonnet on the MATH-500 dataset and helps
characterize the strong dependence of token-length on accu-
racy. We explore the implications of this hypothesis in the
next section.

4. Theoretical Limits of the
Length-Performance Tradeoff

Not only does token-complexity provide an interpretable
and accurate model of reasoning task performance, it gives
insight into how to improve efficiency. We develop a frame-
work to empirically compute bounds on compression perfor-
mance, inspired by rate-distortion theory. First, we define

tr(P)= 13" | t(X;) to be the average token-length un-
der CoT prompt P and LLM 7. We define o*(T') to be
the optimal performance for an average token budget of T'
tokens, and T («) is the minimum average token length to
achieve an accuracy of «:

az(T)

s

3
“

= In}zjxx{Acc,r(P) (. (P) < T}
T (a) = m;n{f,r(P) :Acer (P) > o}

These quantities involve intractable optimizations over CoT
prompts P. Yet, under the token complexity hypothesis,
these optimization problems are greatly simplified, involv-
ing only optimization over token-lengths. In fact, the opti-
mization problem is a special case of a knapsack problem,
and thus gives rise to a closed-form solution. First, define
the empirical CDF of the true token complexities F, (t) =
122 11{Tw<t} let B ( :121111{7ﬂ<t}
and let 7 = & >0 | 77 1{7' < oo} denote the average
token complexity among questions that have finite token
complexity.

Theorem 4.1. Suppose Assumption 3.1 and suppose that
for any token counts {t;}I'_, there exists a prompt P such
that t(X;) = t;. Then,

1 n
oan(T) == Ui <tr} 8)
1 n
Ti@)=—> . 77 < g} ©6)
and tp = o if

where tp = sup{t € R : E,(t) < T}
T > 7™ and q, = sup{t € R : F,(t)
quantile of the empirical distribution.

< a} is the a-

Intuitively, under Assumption 3.1 the optimal strategy is to
only use the minimal number of tokens required to solve the
problem, 77". Under a limited token budget, it is optimal to
sort questions by token complexity and solve the questions
with shortest token complexity until the budget is filled.
Note that this structure is due to the fact that each question is
weighted identically, if certain questions had a higher weight
than others (e.g. harder questions are more valuable) then
the optimal strategy need not have a closed form solution.
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Table 3: Comparison of token counts on the Math-500 dataset under DefaultCoT and BeConcise along with T)F(A*),
which is a lower bound on the average token length required to achieve max accuracy. While existing prompt strategies do
meaningfully reduce token-length, the lower bound 77* ( A*) illustrates that one can achieve drastically more compression
while preserving accuracy.

DefaultCoT BeConcise A BeConcise Upper Bound of

Dataset Model Token Count Token Count T (A7) Token Reduction Token Reduction
Math-500 GPT-40 635 505 172 1.26x 3.69x
GPT-40-mini 611 528 164 1.16x 3.72x
Claude-3.5-Sonnet 373 283 105 1.32x 3.56x
Claude-3.5-Haiku 373 287 143 1.30x 2.61x
Llama-3.3-70B 549 475 93 1.16x 5.88x

We note that it is unlikely that any feasible prompting tech-
nique will achieve the upper bound «(T") or the lower
bound T*(«), as doing so requires (1) knowing the token
complexities, (2) inducing a chain-of-thought that exactly
matches the token complexity, (3) prioritizing easier ques-
tions over harder ones.

Nevertheless o (T") provides a computable upper bound on
maximum accuracy for a particular token budget, which we
plot in Figure 1 under the label ‘oracle upper bound’, using
estimated token complexities 7;7. Across all the LLMs and
benchmarks we consider, we find that this is indeed serves
as an upper bound on the performance of the prompting
strategies we consider across response lengths, especially
for more difficult datasets such as MATH-500 and MMLU-
Pro Math. Yet, for GSMS8K in Appendix G, we see that this
gap with the upper bound o (T) is much smaller, illustrat-
ing that while % (T") may be challenging to achieve it still
gives a reasonable upper bound on performance.

Finally, we circle back to the observation made in Sec-
tion 2.1 that one can substantially reduce the length of the
chain-of-thought (with prompts like BeConcise or No-
ProperGrammar) while maintaining a similar accuracy
to DefaultCoT. This leads to a natural question: what is
the lower bound on the number of tokens needed in order
to achieve the best possible accuracy? Under the token-
complexity hypothesis, we obtain a simple closed-form ex-
pression for this lower bound.

Corollary 4.2. Suppose Assumption 1 holds. Let A* =
LS L 1{7] < oo} be the maximum possible accuracy
achieved by the LLM on the dataset. The number of tokens
required to achieve accuracy o = A* under the optimal
token allocation:

> T {r] < oo} )
=1

Corollary 4.2 gives the number of tokens required for ‘loss-
less compression’, i.e. achieving the best possible accuracy.
Remarkably, this lower bound is only the mean of the token-
complexities, which can be much smaller than the average
token-length of existing prompting strategies. In Table 3,

we consider the MMLU-Pro Math dataset across several
LLMs, and we compare the lower bound 77* (A*) with the
token counts of DefaultCoT and BeConcise. Across all the
LLMs, while BeConcise reduces the token counts by 1.2-
1.4x, the token reduction achieved by the optimal compres-
sion scheme is 3.5-5.8x. Along with the results in Figure 1,
this illustrates that while the upper bound may not be exactly
attainable, there may be significant room for improvement
especially for easier datasets.

Finally, we note that token complexity may be of broader in-
terest as a measure of reasoning capabilities, even for bench-
marks which are ‘saturated’. For instance, both Claude 3.5
Sonnet and Claude 3.5 Haiku achieve a similar accuracy on
GMS8K (97% vs 95% under DefaultCoT). Yet the average
token complexity 7, is 42.4 for Haiku and 17.9 for Sonnet,
showing that even if the accuracy is similar, Sonnet can
achieve it with much fewer tokens.

5. Towards the Theoretical Limit

The token complexity hypothesis not only provides limits on
the efficiency of an optimal chain-of-thought compression
scheme, it highlights the importance of adaptive compres-
sion — using shorter chains-of-thought for easier questions —
for approaching these limits. This provides theoretical mo-
tivation for methods developed in recent works (e.g. (Han
et al., 2024; Kang et al., 2024)) designed to calibrate the
length of the chain-of-thought to problem difficulty. In
this section, we illustrate how our empirical framework can
help evaluate and contextualize recent advances in adaptive
reasoning.

As a proof of concept, we consider two prompting strate-
gies designed to adjust reasoning effort to problem diffi-
culty. (Han et al., 2024) propose a two-step procedure
called TALE-EP, which first (1) prompts the LLM to guess
the minimum tokens required to solve the question and
then (2) prompts the LLM to think step-by-step using the
guessed number of tokens. Using our experimental results,
we can compare whether adaptively adjusting the reasoning
effort improves upon the accuracy-length tradeoff. The left
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Figure 3: Does adaptive compression improve the accuracy-
length tradeoff? (Top) Average token length vs Accuracy
for GPT-40 on MMLU-Pro-Math under different prompt
routing strategies. TALE-EP (Han et al., 2024) (light green),
which first has the LLM guess the number of tokens to
use, is slightly below the Pareto curve achieved by simpler
prompting strategies. Only verifier-based routing (in blue) is
able to achieve a better tradeoff, closer to the upper bound.

panel of Figure 3 plots accuracy and average token-length
of TALE-EP for GPT-40 on MMLU-Pro Math compared
to several prompts from our experiments. Surprisingly, we
observe that TALE-EP is slightly below the trade-off curve
from our simple prompting strategies. More specifically, it
produces a slightly worse accuracy than NoProperGram-
mar, even though it uses more tokens on average. This is
consistent across other benchmarks (see Appendix H).

We find that that the token counts produced by NoProp-
erGrammar have a surprisingly high correlation with the
true token complexity, which is equivalent to the correlation
for the token counts of TALE-EP (Spearman p = 0.51 for
TALE-EP and p = 0.54 for NoProperGrammar, see Ap-
pendix B for other prompts). Thus, this shows that LLMs
natively adjust response length to the difficulty of the prob-
lem, even without explicitly being prompted to do so. And
moreover, this capability is equivalent to more sophisti-
cated prompting strategies, demonstrating that the simple
prompting strategies we test are surprisingly strong base-
lines and that LLMs may struggle to estimate token com-
plexity accurately. Nonetheless, methods based on fine-
tuning (e.g. (Kang et al., 2024) or TALE-PT in (Han et al.,
2024)) may be able to outperform these simple prompting
strategies, which we leave to future research.

This result suggests that it may be challenging to achieve
a better accuracy-length tradeoff. Nonetheless, if one has
access to a perfect verifier (Brown et al., 2024; Setlur et al.,

2024), we can substantially improve the tradeoff. Verifier
Routing first (1) prompts the LLM to without chain-of-
thought (NoCoT) to obtain an initial solution and (2) if
the solution is incorrect it uses a longer chain-of-thought
prompt (e.g. DefaultCoT) to produce a better answer. The
blue dots in the left panel Figure 3 show performance of
Verifier Routing with a selection of four longer prompts.
This routing strategy achieves a significantly better trade-off
between reasoning length and performance, and approaches
the theoretical upper bound. Altogether, this shows that the
upper bound o (T) can be approached through adaptive
compression, although this requires a very accurate signal
of problem difficulty and motivates further research.

6. Conclusion

Our study presents a systematic investigation into the trade-
off between reasoning length and performance in large lan-
guage models (LLMs), across different prompts. We demon-
strate that this trade-off follows a universal Pareto curve,
suggesting that reasoning length, rather than specific com-
pression strategies, primarily determines accuracy. Intro-
ducing the concept of token complexity, we find that LLM
performance at the question-level exhibits a sharp threshold
behavior. Our analysis, inspired by rate-distortion theory,
reveals that existing prompt-based compression strategies
operate far from the optimal accuracy-length frontier, high-
lighting substantial room for improvement. Our work en-
ables researchers to contextualize the performance of new
methodologies for improving chain-of-thought compression
and assess adaptivity of LLM reasoning.

Impact Statement

Our paper advances the understanding of the tradeoffs be-
tween reasoning efficiency and accuracy in large language
models. By introducing the concept of token complexity
and providing theoretical and empirical tools to assess rea-
soning compression, this work helps researchers benchmark
improvements in reasoning efficiency. While we do not
foresee immediate ethical risks, improving the efficiency
of LLM reasoning could have downstream societal impacts
such as enabling broader access to high-performance lan-
guage models in resource-constrained settings.
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A. Limitations

While our study provides novel insights into the relationship between reasoning length and LLM performance, there are
several limitations. First, our study is limited to mathematical reasoning tasks, and it remains to be seen whether similar
accuracy-length tradeoffs and token complexity thresholds apply to other domains such as commonsense reasoning, code
generation, or open-ended text generation. The theoretical upper bound on accuracy-length tradeoff is rarely achieved due to
the practical challenges in estimating token complexities and generating precisely compressed responses. Computing token
complexity is computationally expensive, requiring multiple generations per question, making it impractical for large-scale
applications. Our approach also assumes that token complexity is well-defined and consistent across different models and
tasks, which may not hold for all LLMs or highly complex benchmarks. Furthermore, our experiments were limited to a
fixed set of 31 prompts, and exploring a broader range of compression strategies, including model fine-tuning or iterative
refinement, could potentially expand the compression frontier. Finally, our analysis is most relevant for strong models on
moderately difficult benchmarks; weaker models or extremely challenging tasks may exhibit different behavior.

B. Correlation with Token Complexity

The following is a table describing the Spearman correlation between token-lengths with token-complexity across different
prompts for GPT-40 on MMLU-Pro Math. While the ordering of which prompts have the highest correlation changes across
different models and benchmarks, we observe widely that the correlation ranges between O - 0.6.

Prompt ID Spearman p
CharLimit(50) 0.57
NoSpaces 0.56
OnlyNumbers 0.55
CharLimit(100) 0.55
NoProperGrammar 0.54
TokenLimit(10) 0.38
WordLimit(15) 0.37
WordLimit(5) 0.29
WordLimit(10) 0.28
NoCoT 0.08

Table 4: GPT-40 on MMLU-Pro Math: Spearman correlation of token-lengths with token-complexity across different
prompts.

In Figure 4, we consider the average token lengths of GPT-40 on MMLU-Pro Math. We split the problems into two categories:
problems that the LLM successfully solves without chain-of-thought (NoCot), and the problems NoCot unsuccessfully
solves. Intuitively, the first class of problems are ‘easy’, since they do not require any chain-of-thought, and the rest are
harder. Across all the prompts we consider, we observe that the average token-length among ‘easy’ problems is universally
smaller than among ‘harder’ problems. Surprisingly, this is even true for the WordLimit/TokenLimit/CharLimit/etc. prompts,
which are supposed to limit the LLM’s response to a fixed length. Nevertheless, despite the evidence of adaptive response
lengths, this also shows that there is a lot of room for improvement: even though the LLM can solve the problem without
any chain-of-thought, the model still proceeds to generate long chains-of-thought.

C. Accuracy and Average Token Length

Below are tables which describe the accuracy and average token length for several prompts across models and benchmarks.

D. Proof of Theorem 1

Under Assumption 3.1, we have that the accuracy can be represented as

n

Acc,(P) = %Z {r >t} (3)

i=1
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Model Prompt Accuracy | Token Length
NoCoT 41.8 9
DefaultCoT 80.8 585
BeConcise 80.4 415
BulletPoints 75.0 185
GPT-40 OnlyNumbers 79.4 221
NoSpaces 78.8 248
NoProperGrammar | 78.8 189
AbbreviateWords 74.2 275
NoCoT 324 6
DefaultCoT 75.0 506
BeConcise 74.8 418
- BulletPoints 63.0 128
GPT-40 Mini OnlyNumbers 68.8 189
NoSpaces 66.2 219
NoProperGrammar | 61.0 119
AbbreviateWords 56.6 259
NoCoT 482 7
DefaultCoT 80.8 324
BeConcise 78.2 227
BulletPoints 75.8 167
Claude 3.5 Sonnet OnlyNumbers 76.6 130
NoSpaces 76.8 187
NoProperGrammar | 76.8 172
AbbreviateWords 77.2 220
NoCoT 30.2 19
DefaultCoT 68.8 296
BeConcise 68.4 237
. BulletPoints 61.8 155
Claude 3.5 Haiku OnlyNumbers 63.2 147
NoSpaces 62.6 193
NoProperGrammar | 63.2 169
AbbreviateWords 62.6 243
NoCoT 42.6 20
DefaultCoT 744 551
BeConcise 76.6 442
BulletPoints 70.0 193
LLaMA.370B | (5 1 Numbers 63.4 304
NoSpaces 67.2 330
NoProperGrammar | 68.4 217
AbbreviateWords 70.2 327

Table 5: Accuracy-length tradeoff on MMLU-Pro Math
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Model Prompt Accuracy | Token Length
NoCoT 70.0 30
DefaultCoT 92.8 266
BeConcise 96.6 190
BulletPoints 96.6 104
GPT-40 OnlyNumbers 97.4 76
NoSpaces 96.4 93
NoProperGrammar | 95.8 71
AbbreviateWords 95.0 97
NoCoT 28.0 6
DefaultCoT 94.6 292
BeConcise 94.2 216
- BulletPoints 92.2 97
GPT-40 Mini OnlyNumbers 92.0 77
NoSpaces 86.6 62
NoProperGrammar | 91.0 76
AbbreviateWords 72.8 121
NoCoT 67.8 7
DefaultCoT 97.0 200
BeConcise 97.4 136
BulletPoints 97.0 100
Claude 3.5 Sonnet OnlyNumbers 96.0 66
NoSpaces 97.0 111
NoProperGrammar | 97.8 111
AbbreviateWords 95.0 119
NoCoT 30.6 8
DefaultCoT 95.2 211
BeConcise 94.4 169
. BulletPoints 92.8 114
Claude 3.5 Haiku OnlyNumbers 93.0 87
NoSpaces 92.4 116
NoProperGrammar | 91.8 120
AbbreviateWords 90.8 137
NoCoT 88.6 98
DefaultCoT 96.2 194
BeConcise 95.8 147
BulletPoints 96.2 80
LLaMA.370B | (5 1 Numbers 89.6 81
NoSpaces 92.2 102
NoProperGrammar | 95.4 91
AbbreviateWords 94.0 136

Table 6: Accuracy-length tradeoff on GSMSK

11
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Model Prompt Accuracy | Token Length
NoCoT 55.6 116
DefaultCoT 72.8 634
BeConcise 71.6 505
BulletPoints 70.6 302
GPT-40 OnlyNumbers 68.4 272
NoSpaces 71.2 368
NoProperGrammar | 68.8 286
AbbreviateWords 72.0 416
NoCoT 25.6 9
DefaultCoT 70.4 610
BeConcise 72.0 528
- BulletPoints 68.8 266
GPT-40 Mini OnlyNumbers 66.2 306
NoSpaces 67.6 390
NoProperGrammar | 66.8 254
AbbreviateWords 62.0 367
NoCoT 39.0 9
DefaultCoT 74.8 373
BeConcise 73.0 282
BulletPoints 70.0 203
Claude 3.5 Sonnet OnlyNumbers 63.8 172
NoSpaces 70.4 240
NoProperGrammar | 69.6 225
AbbreviateWords 71.8 263
NoCoT 25.8 19
DefaultCoT 66.0 373
BeConcise 64.0 286
. BulletPoints 60.0 243
Claude 3.5 Halku | ;' Numbers 59.0 193
NoSpaces 56.4 257
NoProperGrammar | 61.4 253
AbbreviateWords 59.4 294
NoCoT 33.8 50
DefaultCoT 55.4 549
BeConcise 67.0 475
BulletPoints 63.6 238
LLaMA.370B | (5 1 Numbers 57.0 362
NoSpaces 572 439
NoProperGrammar | 61.2 294
AbbreviateWords 63.8 383

Table 7: Accuracy-length tradeoff on MATH-500

12
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MMLU-Pro Math: gpt-40-2024-11-20

600 I B Problems NoCot Does Not Solve
Problems NoCot Solves
400 I
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g
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Prompt

Figure 4: Do LLM’s tailor response length to problem difficulty? Average token length produced by GPT-40 on MMLU-Pro
Math across prompts in Table 1, split by problems which can be solved without chain-of-thought and problems which

NoCoT does not successfully solve. Response lengths are consistently higher for the problems NoCoT unsuccessfully
solves.

where we suppress dependence on 7 for now. The optimization problem then becomes

1n
(T) = — H{r >t 9
ar(T) mtaxn;{T_ } ©
1TL
- t; <T 10
s n;_ (10)

Note that the optimal strategy is either to set t; = 7; or 0. Thus, this is equivalent to a Knapsack problem,

1 n

(T) = ax — i 11
O(Tr( ) ziIél{O}fl}’l’L ;sz ( )
= zn: <T (12)
S.t. — Til; S
n =1

where x; are indicators whether the LLM tries to solve the problem or not. This is a special case where there are unit
rewards (since all problems are weighted equally). The optimal strategy in this case is a greedy policy, sorting the
questions in increasing order of token complexity 71y < ... < 7(,) and only solving as many as can fit within budget.
tr =sup{t € R: E,(t) < T} is the highest value of 7 that the LLM puts into the knapsack after ordering them greedily,

so thus o (T') is the total number of questions with token complexity less than 7. The proof for 7 («) proceeds similarly,
as the optimal strategy is identical.

E. Example Prompt

We use the following template for our prompts:

Answer the following question. PROMPT Question: QUESTION The last line of your response should be of the following
format: ’Answer: ANSWER’ (without quotes) where ANSWER is your final answer.

F. Tradeoff curves for more models and benchmarks

In this section, we present results for the performance of different models and benchmarks (GSM8K and MATH-500). We
see broadly that performance across all prompts lies on the same trade-off curve.

13
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GSMS8K: Claude 3.5 Sonnet
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Figure 5: Tradeoff Curves for GSM8K
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G. Actual accuracy vs Predicted Accuracy from Token Complexity
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16



How Well do LLLMs Compress Their Own Chain-of-Thought?

Actual accuracy

Actual accuracy

e
©

©
N

o
o

©
U

°
~

©
w

o
o

©
8

o©
~

©
w

©
[N

MATH-500: claude-3-5-sonnet-20241022

] ---- y=x //'
A 2
A&
9%
o6t
1
0.4 05 0.6 0.7 0.8

Predicted accuracy from token complexity

MATH-500: meta-llama-Llama-3.3-70B-Instruct-Turbo

e y=x -
b"o
f"’Q‘v'
P *
49,
270
/’e/’
Y6~
[e]
0.3 0.4 0.5 0.6 0.7

Predicted accuracy from token complexity

MATH-500: gpt-40-2024-11-20

08o{ V=X
0.75 e
> L
@ o o *
@© -7 3
50.70 \£ g‘
— 0.65 % 5% >
E Ca.-0g
< 0.60+
>
0.55 <>
0.501 , : : : :
055 060 065 0.70 075 0.80
Predicted accuracy from token complexity
MATH-500: claude-3-5-haiku-20241022
0.7{ ~" y=x
06 o
g 00 V
305 R@;f
© & o
T o
S 0.4 ® ¢
g
< e
0.3 <>
024 -
0.2 0.3 0.4 0.5 0.6 0.7

Predicted accuracy from token complexity

MATH-500: gpt-40-mini-2024-07-18

0.84 - y—x

e o o o
N ul o ~

Actual accuracy

o

w
\

\,

0.2 1

03 04

0.5

06 07 08

Predicted accuracy from token complexity

Figure 8: Actual vs Predicted Accuracy for MATH-500

H. Routing Performance on other benchmarks
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Figure 9: Performance of prompt routing on MATH-500 and GSM8K
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