
Improved Stein Variational Gradient Descent with
Importance Weights

Lukang Sun
KAUST

lukang.sun@kaust.edu.sa

Peter Richtárik
KAUST

peter.richtarik@kaust.edu.sa

Abstract

Stein Variational Gradient Descent (SVGD) is a popular sampling algorithm used in
various machine learning tasks. It is well known that SVGD arises from a discretiza-
tion of the kernelized gradient flow of the Kullback-Leibler divergence DKL (· | π),
where π is the target distribution. In this work, we propose to enhance SVGD via
the introduction of importance weights, which leads to a new method for which we
coin the name β-SVGD. In the continuous time and infinite particles regime, the
time for this flow to converge to the equilibrium distribution π, quantified by the
Stein Fisher information, depends on ρ0 and π very weakly. This is very different
from the kernelized gradient flow of Kullback-Leibler divergence, whose time
complexity depends on DKL (ρ0 | π). Under certain assumptions, we provide a
descent lemma for the population limit β-SVGD, which covers the descent lemma
for the population limit SVGD when β → 0. We also illustrate the advantages of
β-SVGD over SVGD by experiments.

1 Introduction

The main technical task of Bayesian inference is to estimate integration with respect to the posterior
distribution π(x) ∝ e−V (x), where V : Rd → R is a potential. In practice, this is often reduced to
sampling points from the distribution π. Typical methods that employ this strategy include algorithms
based on Markov Chain Monte Carlo (MCMC), such as Hamiltonian Monte Carlo Neal [2011], also
known as Hybrid Monte Carlo (HMC) Duane et al. [1987], Betancourt [2017], and algorithms based
on Langevin dynamics Durmus and Moulines [2017], Garbuno-Inigo et al. [2020], Li and Ying
[2019].

On the other hand, Stein Variational Gradient Descent (SVGD)—a different strategy suggested by Liu
and Wang [2016]—is based on an interacting particle system. In the population limit, the interacting
particle system can be seen as the kernelized negative gradient flow of the Kullback-Leibler divergence

DKL (ρ | π) :=
∫

log
(
ρ
π

)
(x) dρ(x); (1)

see Liu [2017], Duncan et al. [2019]. SVGD has already been widely used in a variety of machine
learning settings, including variational auto-encoders Pu et al. [2017], reinforcement learning Liu et al.
[2017], sequential decision making Zhang et al. [2018, 2019], generative adversarial networks Tao
et al. [2019] and federated learning Kassab and Simeone [2022]. However, current theoretical
understanding of SVGD is limited to its infinite particle version Liu [2017], Korba et al. [2020], Salim
et al. [2021], Sun et al. [2022], and the theory on finite particle SVGD Shi and Mackey [2022] is far
from satisfactory.

Since SVGD is built on a discretization of the kernelized negative gradient flow of (1), we can learn
about its sampling potential by studying this flow. In fact, a direct calculation reveals that

min
0≤s≤t

IStein (ρs | π) ≤ DKL(ρ0|π)
t , (2)

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

where IStein (ρs | π) is the norm of the kernelized Wasserstein gradient of the KL-divergence (see
Definition 2.2), which is typically used to quantify how close to π are the probability distributions
(ρs)

t
s=0 generated along this flow. In particular, if our goal is to guarantee min

0≤s≤t
IStein (ρs | π) ≤ ε,

result (2) says that we need to take
t ≥ DKL(ρ0|π)

ε .

Unfortunately, and this is the key motivation for our work, the quantity the initial KL divergence
DKL (ρ0 | π) can be very large. Indeed, it can be proportional to the underlying dimension, which
is highly problematic in high dimensional regimes. Salim et al. [2021] and Sun et al. [2022] have
recently derived an iteration complexity bound for the infinite particle SVGD method. However,
similarly to the time complexity of the continuous flow, their bound depends on DKL (ρ0 | π).

1.1 Summary of contributions

In this paper, we design a family of continuous time flows—which we call β-SVGD flow—by
combining importance weights with the kernelized gradient flow of the KL-divergence. Surpris-
ingly, we prove that the time for this flow to converge to the equilibrium distribution π, that is
min0≤s≤t IStein (ρs | π) ≤ ε with (ρs)

t
s=0 generated along β-SVGD flow, can be bounded by

− 1
εβ(β+1) when β ∈ (−1, 0). This indicates that the importance weights can potentially accelerate

SVGD. Actually, we design β-SVGD method based on a discretization of the β-SVGD flow and
provide a descent lemma for its population limit version. Some experiments verify our predictions.

We summarize our contributions in the following:

• A new family of flows. We construct a family of continuous time flows for which we
coin the name β-SVGD flows. These flows do not arise from a time re-parameterization of
the SVGD flow since their trajectories are different, nor can they be seen as the kernelized
gradient flows of the Rényi divergence.

• Convergence rates. When β → 0, this returns back to the kernelized gradient flow of the
KL-divergence (SVGD flow); when β ∈ (−1, 0), the convergence rate of β-SVGD flows is
significantly improved than that of the SVGD flow in the case DKL (ρ0 | π) is large. Under a
Stein Poincaré inequality, we derive an exponential convergence rate of 2-Rényi divergence
along 1-SVGD flow.

• Algorithm. We design β-SVGD algorithm based on a discretization of the β-SVGD flow
and we derive a descent lemmas for the population limit β-SVGD.

• Experiments. Finally, we do some experiments (due to page limit, some of the experiments
have been deferred to the appendix) to illustrate the advantages of β-SVGD with negative β.
The simulation results on β-SVGD corroborate our theory.

1.2 Related works

The SVGD sampling technique was first presented in the fundamental work of Liu and Wang [2016].
Since then, a number of SVGD variations have been put out. The following is a partial list: Newton
version SVGD Detommaso et al. [2018], stochastic SVGD Gorham et al. [2020], mirrored SVGD
Shi et al. [2021], random-batch method SVGD Li et al. [2020] and matrix kernel SVGD Wang et al.
[2019]. The theoretical knowledge of SVGD is still constrained to population limit SVGD. The first
work to demonstrate the convergence of SVGD in the population limit was by Liu [2017], Korba
et al. [2020] then derived a similar descent lemma for the population limit SVGD using a different
approach. However, their results relied on the path information and thus were not self-contained,
to provide a clean analysis, Salim et al. [2021] assumed a Talagrand’s T1 inequality of the target
distribution π and gave the first iteration complexity analysis in terms of dimension d. Following the
work of Salim et al. [2021], Sun et al. [2022] derived a descent lemma for the population limit SVGD
under a non-smooth potential V .

2 Preliminaries

The target distribution is of the form π(x) ∝ e−V (x). We will use 〈·, ·〉 and ‖·‖ to denote the inner
product and Euclidean norm on Rd separately. We will use ‖·‖op and ‖·‖F to denote the operator

2

norm and Frobenius norm of a square matrix. Let P2(Rd) denote the space of probability measures
with finite second moment, the Wasserstein 2-distance between ρ, µ ∈ P2(Rd) is defined by

W2 (ρ, µ) := inf
η∈Γ(ρ,µ)

»∫
‖x− y‖2 dη(x, y),

where Γ (ρ, µ) is the coupling of ρ and µ. T#ρ will be used to denote the push-forward distribution
of ρ under the map T : Rd → Rd.

2.1 Rényi divergence

Rényi divergence is a generalization of the Kullback-Leibler divergence.
Definition 2.1 (Rényi divergence). For two probability distributions ρ and µ on Rd and ρ� µ, the
Rényi divergence of positive order α is defined as

Dα(ρ | µ) := 1
α−1 log

(∫ Ä
ρ
µ

äα−1
(x) dρ(x)

)
, (3)

if α ∈ (0,∞) and α 6= 1, if α = 1,

DKL(ρ | µ) = Dα(ρ | µ) |α=1:=
∫

log
Ä
ρ
µ

ä
(x) dρ(x). (4)

If ρ is not absolutely continuous with respect to µ, we set Dα(ρ | µ) =∞.

Rényi divergence is non-negative, continuous and non-decreasing in terms of the parameter α;
specifically, we have DKL (ρ | µ) = limα→1 Dα(ρ | µ). More properties of Rényi divergence can be
found in a comprehensive article by Van Erven and Harremos [2014].

2.2 Background on SVGD

Stein Variational Gradient Descent (SVGD) is defined on a Reproducing Kernel Hilbert Space (RKHS)
H0 with a non-negative definite reproducing kernel k : Rd × Rd → R+. The key feature of this
space is its reproducing property:

f(x) = 〈f(·), k(x, ·)〉H0
, ∀f ∈ H0, (5)

where 〈·, ·〉H0
is the inner product defined onH0. LetH be the d-fold Cartesian product ofH0. That

is, f ∈ H if and only if there exist f1, · · · , fd ∈ H0 such that f = (f1, . . . , fd)
>. Naturally, the

inner product onH is given by

〈f, g〉H :=
d∑
i=1

〈fi, gi〉H0
, (6)

where f = (f1, . . . , fd)
> ∈ H and g = (g1, . . . , gd)

> ∈ H. For more details of RKHS, the readers
can refer to Berlinet and Thomas-Agnan [2011].

It is well known (see for example Ambrosio et al. [2005]) that∇ log
(
ρ
π

)
is the Wasserstein gradient

of DKL (· | π) at ρ ∈ P2(Rd). Liu and Wang [2016] proposed a kernelized Wasserstein gradient of
the KL-divergence, defined by

gρ(x) :=
∫
k(x, y)∇ log

(
ρ
π

)
(y) dρ(y) ∈ H. (7)

Integration by parts yields

gρ(x) = −
∫

[∇ log π(y)k(x, y) +∇yk(x, y)] dρ(y). (8)

Comparing the Wasserstein gradient ∇ log
(
ρ
π

)
with (8), we find that the latter can be easily approxi-

mated by

gρ(x) ≈ ĝρ̂ := − 1
N

N∑
i=1

[∇ log π(xi)k(x, xi) +∇xik(x, xi)] , (9)

with ρ̂ = 1
N

∑N
i=1 δxi and (xi)

N
i=1 sampled from ρ. With the above notations, the SVGD update rule

xi ← xi +
γ

N

N∑

j=1

[
∇ log π(xj)k(xi, xj) +∇xjk(xi, xj)

]
, (10)

3

where i = 1, . . . , N and γ is the step-size, can be presented in the compact form ρ̂← (I − γĝρ̂)# ρ̂.

When we talk about the infinite particle SVGD, or population limit SVGD, we mean ρ ←
(I − γgρ)# ρ. The metric used in the study of SVGD is the Stein Fisher information or the Ker-
nelized Stein Discrepancy (KSD).
Definition 2.2 (Stein Fisher Information). Let ρ ∈ P2(Rd). The Stein Fisher Information of ρ relative
to π is defined by

IStein(ρ | π) :=

∫∫
k(x, y)

〈
∇ log

(ρ
π

)
(x),∇ log

(ρ
π

)
(y)
〉
dρ(x) dρ(y). (11)

A sufficient condition under which limn→∞ IStein(ρn | π) implies ρn → π weakly can be found
in Gorham and Mackey [2017], which requires: i) the kernel k to be in the form k(x, y) =Ä
c2 + ‖x− y‖2

äθ
for some c > 0 and θ ∈ (−1, 0); ii) π ∝ e−V to be distant dissipative; roughly

speaking, this requires V to be convex outside a compact set, see Gorham and Mackey [2017] for
an accurate definition. In the study of the kernelized Wasserstein gradient (8) and its corresponding
continuity equation, Duncan et al. [2019] introduced the following kernelized log-Sobolev inequality
to prove the exponential convergence of DKL (ρt | π) along the direction (8):
Definition 2.3 (Stein log-Sobolev inequality). We say π satisfies the Stein log-Sobolev inequality
with constant λ > 0 if

DKL(ρ | π) ≤ 1
2λIStein(ρ | π). (12)

While this inequality can guarantee an exponential convergence rate of ρt to π, quantified by the
KL-divergence, the condition for π to satisfy the Stein log-Sobolev inequality is very restrictive. In
fact, little is known about when (12) holds.

3 Continuous time dynamics of the β-SVGD flow

In this section, we mainly focus on the continuous time dynamics of the β-SVGD flow. Due to page
limitation, we leave all of the proofs to Section 9.

3.1 β-SVGD flow

In this paper, a flow refers to some time-dependent vector field vt : Rd → Rd. This time-dependent
vector field will influence the mass distribution on Rd by the continuity equation

∂ρt
∂t + div (ρtvt) = 0, (13)

readers can refer to Ambrosio et al. [2005] for more details.
Definition 3.1 (β-SVGD flow). Given a weight parameter β ∈ R, the β-SVGD flow is given by

vβt (x) := −
Ä
π
ρt

äβ
(x)
∫
k(x, y)∇ log

(
ρt
π

)
(y) dρt(y). (14)

Note that when β = 0, this is the negative kernelized Wasserstein gradient (7).

Note that we can not treat β-SVGD flow as the kernelized Wasserstein gradient flow of the (β + 1)-
Rényi divergence. However, they are closely related, and we can derive the following theorem.
Theorem 3.2 (Main result). Along the β-SVGD flow (14), we have

min
t∈[0,T]

IStein (ρt | π) ≤ 1

T

∫ T

0

IStein(ρt | π)dt ≤





eβDβ+1(ρ0|π)

Tβ(β+1) β > 0
DKL(ρ0|π)

T β = 0

− 1
Tβ(β+1) β ∈ (−1, 0)

DKL(π|ρ0)
T β = −1

e(−β−1)D−β(π|ρ0)

|Tβ(β+1)| β < −1

. (15)

Proof. The proof relies on a straightforward calculation that involves considering the definitions of
Rényi divergence and Stein-Fisher Information. The detailed calculations and derivations will be
provided in the appendix.

4

Interestingly, the right hand side of (15) is kind of symmetric around β = − 1
2 and attains its minimum

4
T at β = − 1

2 , if ρ0 differs from π a lot. As illustrated by Example 3.3, we generally have the right
hand side of (15) depends on d at least linearly when β 6∈ (−1, 0).

It is somewhat unexpected to observe that the time complexity is independent of ρ0 and π, or to
be more precise, that it relies only very weakly on ρ0 and π when β ∈ (−1, 0). We wish to stress

that this is not achieved by time re-parameterization. When β ∈ (−1, 0), term
Ä
π
ρt

äβ
in β-SVGD

has an added advantage and can be seen as the acceleration and stabilization factor in front of the
kernelized Wasserstein gradient of KL-divergence. Specifically, the negative kernelized Wasserstein

gradient of KL-divergence v0
t (x) is the vector field that compels ρt to approach π, while

Ä
π
ρt

äβ
(x) is

big (roughly speaking this means x is close to the mass concentration region of ρt but away from the
one of π), this factor will enhance the vector field at point x and force the mass around x move faster

towards the mass concentration region of π; on the other hand, if
Ä
π
ρt

äβ
(x) is small (this means x is

already near to the mass concentration region of π), this factor will weaken the vector field and make
the mass surrounding x stable and remain within the mass concentration region of π. This is the
intuitive justification for why, when β ∈ (−1, 0), the time complexity for β-SVGD flow to diminish
the Stein Fisher information only depends on ρ0 and π very weakly.
Example 3.3. Let ρ0 = N (0, Id) and π = N

(
0, 1

2Id
)
, then it can be calculated that Dα (ρ0 | π) ≥

DKL (ρ0 | π) = d
2 log(e2) and Dα (π | ρ0) ≥ DKL (π | ρ0) = d

4 log(4
e), where α ≥ 1.

3.2 Exponential convergence of 1-SVGD flow under the Stein Poincaré inequality

In this section, we study the 1-SVGD flow
v1
t (x) := − π

ρt
(x)
∫
k(x, y)∇ log

(
ρt
π

)
(y) dρt(y), (16)

which can be seen as the negative kernelized Wasserstein gradient flow of DKL (π | ·), which is
π
ρ∇ log(ρπ). We will show that under the Stein Poincaré inequality, the 1-SVGD flow will decrese the
2-Rényi divergence exponentially fast.
Definition 3.4 (Stein Poincaré inequality). We say that π satisfies the Stein Poincaré inequality with
constant λ > 0 if ∫

|g|2 dπ ≤ 1
λ

∫∫
k(x, y) 〈∇g(x),∇g(y)〉 dπ(x) dπ(y), (17)

for any smooth g with
∫
g dπ = 0.

Just as Poincaré inequality is a linearized log-Sobolev inequality (see for example [Bakry et al.,
2014, Proposition 5.1.3]), Stein Poincaré inequality is also a linearized Stein log-Sobolev inequality,
see Section 8. Although Stein Poincaré inequality is weaker than Stein log-Sobolev inequality, the
condition for it to hold is quite restrictive, as in the case of Stein log-Sobolev inequality, see the
discussion in [Duncan et al., 2019, Section 6]. The following theorem is inspired by Cao et al. [2019],
in which they proved the exponential convergence of Rényi divergence along Langevin dynamic
under a strongly convex potential V .
Theorem 3.5. Suppose π satisfies the Stein Poincaré inequality with constant λ > 0. Then the flow
(16) satisfies

D2 (ρt | π) ≤ C ·D2 (ρ0 | π) · e−2λt, (18)

where C = eD2(ρ0|π)−1
D2(ρ0|π) .

Proof. We only provide a sketch here, for more detail, please refer to the appendix. The proof is
based on a direct calculation of d

dt D2 (ρt | π) , then combining Stein Poincaré inequality, we can
give an upper bound to d

dt D2 (ρt | π), finally by a differential inequality, we finish the proof.

Since Dα1
(ρ | π) ≤ Dα2

(ρ | π) for any 0 < α1 ≤ α2 < ∞, the exponential convergence of
α-Rényi divergence with α ∈ (0, 2) can be easily deduced from (18).
Corollary 3.6. Suppose π satisfies the Stein Poincaré inequality with constant λ > 0. Then the flow
(16) satisfies

Dα (ρt | π) ≤ C ·Dα (ρ0 | π) · e−2λt (19)

for all α ∈ (0, 2], where C = eD2(ρ0|π)−1
Dα(ρ0|π) .

5

4 The β-SVGD algorithm

The β-SVGD algorithm1 proposed here is a sampling method suggested by the discretization of the
β-SVGD flow (14). Our method reverts to the traditional SVGD algorithm when β = 0.

As in SVGD, the integral term in the β-SVGD flow (14) can be approximated by (9). However,

when β 6= 0, we have to estimate the extra importance weight term
Ä
π
ρt

äβ
. Due to the lack of the

normalization constant of π and the curse of dimension, we can hardly to use the kernel density
estimation Silverman [2018] to approximate π

ρt
accurately in high dimension. Here, we use a different

approach to approximate π
ρt

, known as the Stein importance weight Liu and Lee [2017]. As noted in
Liu and Lee [2017], the Stein importance weight will concentrate around the true value of π

ρt
and its

calculation does not rely on the normalization constant of π and can be scaled to high dimension.
Given N points (xi)

N
i=1 sampled from ρt, a non-negative definite reproducing kernel k (can be

different from the one in β-SVGD) and the score function∇ log(π) = −∇V , the Stein importance
weight ŵ ∈ Rd+ is the solution of the following constrained quadratic optimization problem:

arg min
w

{
1

2
w>Kπw, s.t.

N∑

i=1

wi = 1, wi ≥ 0

}
, (20)

where matrix Kπ := {kπ(xi, xj)}Ni,j=1 with entry

kπ(xi, xj) := k(x, y) 〈∇V (xi),∇V (xj)〉 −
〈
∇V (xi),∇xjk(xi, xj)

〉

− 〈∇V (xj),∇xik(xi, xj)〉+ tr
(
∇xi∇xjk(xi, xj)

)
.

(21)

Stein matrix Kπ can be efficiently constructed using simple matrix operation, since {∇V (xi)}Ni=1
have already been computed in the SVGD update (9). It can be proved that as N → +∞, Nŵ will
approximate

Ä
π
ρt

ä
, see [Liu and Lee, 2017, Theorem 2.5., Theorem 3.2.]. Problem (20) can be solved

efficiently by mirror descent with step-size r:

ωs+1
i =

ωsi e
−r

∑N
j=1 kπ(xi,xj)ω

s
j

∑n
l=1 ω

s
l e
−r

∑N
j=1 kπ(xl,xj)ωsj

, i = 1, 2, . . . , N. (22)

With matrix Kπ, the computation cost of mirror descent to find the optimum with ε-accuracy is
O(N

2

ε), which is independent of dimension d. In general, N cannot be too large because the cost of
one iteration of SVGD is O(N2d), which quadratically depends on N .
Remark 4.1. The kernel used to calculate the Stein importance weight does not have to be the same
one as used in the SVGD update. However, in this paper, we set them the same for simplicity.

Remark 4.2. In Algorithm 1, we replace
Ä
π
ρt

äβ
(xi) by (max (Nŵi, τ))

β , here τ is a small positive

number to separate Nŵi from 0. The benefits of (Nŵ)
β , just like the benefits of

Ä
π
ρt

äβ
as explained

in Section 3.1, are twofold: it accelerates points with small weights and stabilizes points with big
weights.

4.1 Descent property of the population limit β-SVGD

In this section, we study the convergence of the population limit β-SVGD, that is

xn+1 = xn − γ
ñÅ

π

ρn

ãβ
(xn) ∧M

ô∫
k(xn, y)∇ log

(ρn
π

)
(y)dρn(y), (23)

where
Ä
π
ρn

äβ
(xn) ∧M = limN→∞ (max (Nωi, τ))

β and M := 1
τβ

.

Specifically, we establish a descent lemma for it. The derivation of the descent lemma is based on the
following assumptions. The first two assumptions are typically used in the analysis of SVGD related
algorithms, seeLiu [2017].

1For simplicity, we will often just call it β-SVGD; not to be confused with the β-SVGD flow.

6

Algorithm 1 β-Stein Variational Gradient Descent (β-SVGD)
1: Input: A set of initial particles (x0i)

N
i=1, initial importance weight ωi = 1/N, iteration number n and

step-size γ for β-SVGD update, iteration number m and step-size r for mirror descent update.
2: for l = 0, 1, . . . , n do
3: Update ωi by mirror descent with iteration number m and step-size r.
4: Update particles with step-size γ and small gap τ :

xl+1
i ← xli + γ (max (Nωi, τ))

β ×
N∑
j=1

[
−k(xli, xlj)∇xljV (xlj) +∇xljk(x

l
i, x

l
j)
]
, i = 1, . . . , N

5: end for
6: Return: Particles (xn+1

i)Ni=1.

Assumption 4.3. The potential function V of the target distribution π ∝ e−V is L-smooth, that is,∥∥∇2V
∥∥
op
≤ L.

Assumption 4.4. Kernel k is continuously differentiable and there exists B > 0 such that

‖k(x, .)‖H0
≤ B and ‖∇xk(x, .)‖2H =

d∑
i=1

‖∂xik (x, .)‖2H0
≤ B2, ∀x ∈ Rd.

The next assumption depends on ρn and is used to control the extra term
Ä
π
ρn

äβ ∧M in (23).

Assumption 4.5. fn := log
Ä
π
ρn

ä
∈ C1(Rd) and there is some constant Cb ≥ 0, such that

log(‖∇fn(x)‖) ≤ |βfn(x)|
2 + Cb, ∀x ∈ Rd .

The above regularity assumption on fn is very weak; for example, it is satisfied by, but not limited to,
any C1 polynomial or any C1 function that is not far from a polynomial in the C1 norm.

Under the above assumptions, we have the following descent lemma.

Proposition 4.6 (Descent Lemma). Let β ∈ (−1, 0), suppose Assumption 4.3, 4.4 and 4.5 hold. For
any small δ, if 2δ ≤ IStein (ρn | π) <∞, we can choose M big enough depends on ρn, π, δ, and γ
satisfies 




0 < γ ≤ 1

6
(
−βM

3
2 eCb+M

)
BIStein(ρn|π)

1
2

0 < γ ≤ 2(β+1)(IStein(ρn|π)−δ)
B2IStein(ρn|π)

(
LM2+10(−βM

3
2 eCb+M)2

)

0 < γ ≤ β+1

B2
(
LM2+10(−βM

3
2 eCb+M)2

)

, (24)

then we have the descent property

eβDβ+1(ρn+1|π) − eβDβ+1(ρn|π) ≥ −β(β + 1)γ

Å
1

2
IStein (ρn | π)− δ

ã
. (25)

Proof. The full proof is in the appendix, here we only provide a sketch. We need first to upper bound
two terms: I := log(π)(x)− log(π)(φn(x)) and II := − log(|det Dφn|)(x), where map φn is
defined by Equation (23); with the bounds and Jensen inequality, we can give a lower bound to the
left hand side of Equation (25); in the last, we analyze the condition γ should satisfy.

The proof and the choice of M can be found in Section 9. Let β and δ approach 0, then we can
recover the descent lemma for the population limit SVGD Liu [2017]. Salim et al. [2021] and Sun
et al. [2022] analyzed the population limit SVGD under a Talagrand type inequality, however, in our
case, we do not have such kind inequality for the Rényi divergence. The theoretical analysis of the
finite particle SVGD and its variants is still widely open, for example, the existence and uniqueness of
the stationary distribution of the finite particle SVGD are not known yet, see Liu and Wang [2018].
Shi and Mackey [2022] analyzed the finite particle SVGD, however, their bound is pessimistic. To
find a reasonable analysis for the finite particle SVGD and β-SVGD is challenging and we leave this
question for the future study.

7

5 Experiments

In this section, we use some experiments to show the benefits of the importance weights in the update
of SVGD. The code can be found through https://github.com/Iwillnottellyou/BETA-SVGD.
git. For more experiments on Bayesian Neural Network and Bayesian Logistic Regression, please

refer to the appendix. In all the experiments, we choose k(x, y) = e−
‖x−y‖2

d , and due to the page
limitation, we will leave part of the experiments details to Section 11.

Gaussian Mixture: In this experiment, we use the obtained particles to estimate expectation Eπ [h]
with different test functions h(·). In Figure 1, we can see the clear improvement of β-SVGD over
SVGD, for more test results on Gaussian Mixture, see Section 11.

0 20 40 60 80 100 120 140 160

CPU Time

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

L
o
g
1
0

∑2
i=1 | 1N

∑N
i=1(x

k
j)i − Eπ [xi] |, N=1000

SVGD

-0.5-SVGD

-0.9-SVGD

0 20 40 60 80 100 120 140 160

CPU Time

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

L
o
g
1
0

∑2
i=1 | 1N

∑N
i=1(x

k
j)

2
i − Eπ [(xi)

2] |, N=1000

SVGD

-0.5-SVGD

-0.9-SVGD

Figure 1: Gaussian Mixture with dimension d = 2. The target distribution is π(x) = 2
5N ((2, 0), I2)+

1
5N ((4, 0), I2) + 2

5N ((3,−3), I2). Each sampled point xkj is of the form
(
(xkj)1, (x

k
j)2

)
, where k

denote the k-th iteration, j denote the j-th sampled point. For distribution π, we have Eπ [x1] =
2.8,Eπ [x2] = −1.2 and Eπ

[
(x1)2

]
= 9.4,Eπ

[
(x2)2

]
= 4.6. The initial N points are sampled

from N ((−2, 0), I2). The step-size γ for both algorithms equals 0.2. In β-SVGD, we choose the
small gap τ = 0.01 and we update the Stein importance weights every 20 iterations using 40 mirror
descent steps with step-size r = 0.3. Since the function computed in the second image is x2, it is not
surprising that there is an increase in the first few iterations.

6 Conclusion

In this paper, we study how the importance weights can influence the SVGD, our theoretical analysis
and the experiments reveal some previously unexplored facts. Specifically, we construct a family
of continuous time flows called β-SVGD flows on the space of probability distributions, when
β ∈ (−1, 0), its convergence rate is independent of the initial distribution and the target distribution.
Based on β-SVGD flow, we design a family of weighted SVGD called β-SVGD. β-SVGD has the
similar computation complexity as SVGD, and due to the Stein importance weight, it converges
faster and is more stable than SVGD in our experiments. β-SVGD generally performs better than
SVGD in the iteration of the algorithms, however, due to the extra calculation of the Stein importance
weights, its computation cost is higher than SVGD, so one related question is to combine more
advanced constrained quadratic optimization methods into β-SVGD to improve the efficiency of the
computation of the importance weights. Another related direction is to explore the influence of the
importance weights in the update of MCMC algorithms, like the Langevin type methods. We leave all
these related questions for the future study.

8

https://github.com/Iwillnottellyou/BETA-SVGD.git
https://github.com/Iwillnottellyou/BETA-SVGD.git

References
Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the

space of probability measures. Springer Science & Business Media, 2005.

Dominique Bakry, Ivan Gentil, Michel Ledoux, et al. Analysis and geometry of Markov diffusion
operators, volume 103. Springer, 2014.

Alain Berlinet and Christine Thomas-Agnan. Reproducing kernel Hilbert spaces in probability and
statistics. Springer Science & Business Media, 2011.

Michael Betancourt. A conceptual introduction to Hamiltonian Monte Carlo. arXiv preprint
arXiv:1701.02434, 2017.

Yu Cao, Jianfeng Lu, and Yulong Lu. Exponential decay of Rényi divergence under Fokker–Planck
equations. Journal of Statistical Physics, 176(5):1172–1184, 2019.

Gianluca Detommaso, Tiangang Cui, Youssef Marzouk, Alessio Spantini, and Robert Scheichl. A
Stein variational Newton method. Advances in Neural Information Processing Systems, 31, 2018.

Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid Monte Carlo.
Physics letters B, 195(2):216–222, 1987.

Andrew Duncan, Nikolas Nüsken, and Lukasz Szpruch. On the geometry of Stein variational gradient
descent. arXiv preprint arXiv:1912.00894, 2019.

Alain Durmus and Eric Moulines. Nonasymptotic convergence analysis for the unadjusted Langevin
algorithm. The Annals of Applied Probability, 27(3):1551–1587, 2017.

Alfredo Garbuno-Inigo, Franca Hoffmann, Wuchen Li, and Andrew M Stuart. Interacting Langevin
diffusions: gradient structure and ensemble Kalman sampler. SIAM Journal on Applied Dynamical
Systems, 19(1):412–441, 2020.

Jackson Gorham and Lester Mackey. Measuring sample quality with kernels. In International
Conference on Machine Learning, pages 1292–1301. PMLR, 2017.

Jackson Gorham, Anant Raj, and Lester Mackey. Stochastic Stein discrepancies. Advances in Neural
Information Processing Systems, 33:17931–17942, 2020.

Rahif Kassab and Osvaldo Simeone. Federated generalized Bayesian learning via distributed Stein
variational gradient descent. IEEE Transactions on Signal Processing, 2022.

Anna Korba, Adil Salim, Michael Arbel, Giulia Luise, and Arthur Gretton. A non-asymptotic analysis
for Stein variational gradient descent. Advances in Neural Information Processing Systems, 33:
4672–4682, 2020.

Lei Li, Yingzhou Li, Jian-Guo Liu, Zibu Liu, and Jianfeng Lu. A stochastic version of Stein
variational gradient descent for efficient sampling. Communications in Applied Mathematics and
Computational Science, 15(1):37–63, 2020.

Wuchen Li and Lexing Ying. Hessian transport gradient flows. Research in the Mathematical
Sciences, 6(4):1–20, 2019.

Qiang Liu. Stein variational gradient descent as gradient flow. Advances in Neural Information
Processing Systems, 30, 2017.

Qiang Liu and Jason Lee. Black-box importance sampling. In Artificial Intelligence and Statistics,
pages 952–961. PMLR, 2017.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian inference
algorithm. Advances in Neural Information Processing Systems, 29, 2016.

Qiang Liu and Dilin Wang. Stein variational gradient descent as moment matching. Advances in
Neural Information Processing Systems, 31, 2018.

9

Yang Liu, Prajit Ramachandran, Qiang Liu, and Jian Peng. Stein variational policy gradient. arXiv
preprint arXiv:1704.02399, 2017.

R. M Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, 2(11):2,
2011.

Yuchen Pu, Zhe Gan, Ricardo Henao, Chunyuan Li, Shaobo Han, and Lawrence Carin. VAE learning
via Stein variational gradient descent. Advances in Neural Information Processing Systems, 30,
2017.

Adil Salim, Lukang Sun, and Peter Richtárik. Complexity analysis of Stein variational gradient
descent under Talagrand’s inequality T1. arXiv preprint arXiv:2106.03076, 2021.

Jiaxin Shi and Lester Mackey. A finite-particle convergence rate for stein variational gradient descent.
arXiv preprint arXiv:2211.09721, 2022.

Jiaxin Shi, Chang Liu, and Lester Mackey. Sampling with mirrored Stein operators. arXiv preprint
arXiv:2106.12506, 2021.

Bernard W Silverman. Density estimation for statistics and data analysis. Routledge, 2018.

Lukang Sun, Avetik Karagulyan, and Peter Richtárik. Convergence of Stein variational gradient
descent under a weaker smoothness condition. arXiv preprint arXiv:2206.00508, 2022.

Chenyang Tao, Shuyang Dai, Liqun Chen, Ke Bai, Junya Chen, Chang Liu, Ruiyi Zhang, Georgiy
Bobashev, and Lawrence Carin. Variational annealing of GANs: A Langevin perspective. In
International Conference on Machine Learning, pages 6176–6185. PMLR, 2019.

Tim Van Erven and Peter Harremos. Rényi divergence and Kullback-Leibler divergence. IEEE
Transactions on Information Theory, 60(7):3797–3820, 2014.

Dilin Wang, Ziyang Tang, Chandrajit Bajaj, and Qiang Liu. Stein variational gradient descent with
matrix-valued kernels. Advances in Neural Information Processing Systems, 32, 2019.

Ruiyi Zhang, Chunyuan Li, Changyou Chen, and Lawrence Carin. Learning structural weight
uncertainty for sequential decision-making. In International Conference on Artificial Intelligence
and Statistics, pages 1137–1146. PMLR, 2018.

Ruiyi Zhang, Zheng Wen, Changyou Chen, and Lawrence Carin. Scalable Thompson sampling via
optimal transport. arXiv preprint arXiv:1902.07239, 2019.

10

Contents

1 Introduction 1

1.1 Summary of contributions . 2

1.2 Related works . 2

2 Preliminaries 2

2.1 Rényi divergence . 3

2.2 Background on SVGD . 3

3 Continuous time dynamics of the β-SVGD flow 4

3.1 β-SVGD flow . 4

3.2 Exponential convergence of 1-SVGD flow under the Stein Poincaré inequality . . . 5

4 The β-SVGD algorithm 6

4.1 Descent property of the population limit β-SVGD 6

5 Experiments 8

6 Conclusion 8

7 Calculus 12

8 Stein log-Sobolev inequality implies Stein Poincaré inequality 13

9 Missing Proofs 14

10 Experiments on Bayesian Neural Network and Bayesian Logistic Regression 21

11 More Experiments and Details 22

11.1 More Experiments on Gaussian Mixture . 22

11.2 More Experiments on Bayesian Logistic Regression 22

11.3 More Details on Bayesian Neural Network . 22

11

Appendix
7 Calculus

This section is devoted to provide rigorous verification for several claims in the main paper, these results are
already known to readers who are familiar with Rényi divergence. We first calculate the Wasserstein gradient
flow of Rényi divergence. Let ρt satisfies

∂ρt
∂t

+ div (ρtvt) = 0,

for some vector field vt on Rd, then when α ∈ (0, 1) ∪ (1,∞), we have

d

dt
Dα (ρt | π) =

d

dt

1

α− 1
log

Å∫ (ρt
π

)α−1

(x)dρt(x)

ã
=

1

α− 1

∫
d
dt

(
ρt
π

)α
(x)dπ(x)∫ (

ρt
π

)α−1
(x)dρt(x)

=
α

α− 1

∫ (
ρt
π

)α−1
(x) ∂ρt

∂t
(x)dx∫ (

ρt
π

)α−1
(x)dρt(x)

= − α

α− 1

∫ (
ρt
π

)α−1
(x) div (ρtvt) (x)dx∫ (

ρt
π

)α−1
(x)dρt(x)

=
α

α− 1

∫ ¨
∇
(
ρt
π

)α−1
(x), vt(x)

∂
dρt(x)∫ (

ρt
π

)α−1
(x)dρt(x)

= α

∫ ¨(
ρt
π

)α−1
(x)∇ log

(
ρt
π

)
(x), vt(x)

∂
dρt(x)∫ (

ρt
π

)α−1
(x)dρt(x)

=

Æ
α
(
ρt
π

)α−1∇ log(ρt
π
)∫ (

ρt
π

)α−1
dρt

, vt

∏
ρt

.

When α = 1, we have

d

dt
DKL (ρt | π) =

d

dt

∫
log
(ρt
π

)
(x)dρt(x)

=

∫
d

dt

{ρt
π
(x) log

(ρt
π

)
(x)
}
dπ(x)

=

∫ (
1 + log

(ρt
π

)
(x)
) ∂ρt
∂t

(x)dx

= −
∫ (

1 + log
(ρt
π

)
(x)
)
div (ρtvt) (x)dx

=

∫ 〈
∇ log

(ρt
π

)
(x), vt(x)

〉
dρt(x)

=
〈
∇ log

(ρt
π

)
, vt
〉
ρt

.

The Wasserstein gradient of the reverse KL-divergence:

d

dt
DKL (π | ρt) :=

d

dt

∫
log(

π

ρt
)(x)dπ(x)

= −
∫ ∂ρt

∂t

ρt
(x)dπ(x)

=

∫
div (ρtvt) (x)

π

ρt
(x)dx

=

∫ ≠
−∇ π

ρt
(x), vt(x)

∑
dρt(x)

=

≠
−∇ π

ρt
, vt

∑
ρt

,

12

so it is −∇ π
ρt

.

Next, we verify that Dα (ρ | π) ≥ 0. For α > 1, we have∫ (ρ
π

)α−1

(x)dρ(x) =

∫ (ρ
π

)α
(x)dπ(x) ≥

Å∫
ρ

π
(x)dπ(x)

ãα
= 1

by the convexity of function tα for t ≥ 0, so

Dα (ρ | π) = 1

α− 1
log

Å∫ (ρ
π

)α−1

(x)dρ(x)

ã
≥ 0.

When α = 1, by the convexity of function t log(t) for t ≥ 0, we also have

DKL (ρ | π) =
∫

log
(ρt
π

)
(x)dρ(x) =

∫
ρt
π
(x) log

(ρt
π

)
(x)dπ(x) ≥ 0.

When α ∈ (0, 1), function tα for t ≥ 0 is concave, so we first have∫ (ρ
π

)α−1

(x)dρ(x) =

∫ (ρ
π

)α
(x)dπ(x) ≤

Å∫
ρ

π
(x)dπ(x)

ãα
= 1,

finally

Dα (ρ | π) = 1

α− 1
log

Å∫ (ρ
π

)α−1

(x)dρ(x)

ã
≥ 0.

8 Stein log-Sobolev inequality implies Stein Poincaré inequality

In this section, we show that Stein Poincaré inequality is weaker than Stein log-Sobolev inequality.
Lemma 8.1 (Stein log-Sobolev implies Stein Poincaré). If π satisfies the Stein log-Sobolev inequality (12) with
constant λ > 0, then it also satisfies the Stein Poincaré inequality with the same constant λ.

Proof. Let g be bounded and
∫
gdπ = 0. Let ε be small enough such that 1 + εg ≥ 0, so ρ := π(1 + εg) is a

probability distribution and ρ� π. We need first calculate DKL(ρ | π).

DKL(ρ | π) =
∫

log(
(1 + εg)π

π
)(x)(1 + εg)(x)dπ(x)

=

∫
(1 + εg)(x) log(1 + εg)(x)dπ(x)

=

∫
(1 + εg)(x)

Å
εg(x)− 1

2
ε2|g|2(x)

ã
dπ(x) + o(ε2)

=
1

2
ε2
∫
|g|2(x)dπ(x) + o(ε2),

(26)

in the last step, we used
∫
gdπ = 0. Now we calculate the right hand side of 12,

IStein(ρ | π) =
∫∫

k(x, y)
〈
∇ log(

ρ

π
)(x),∇ log(

ρ

π
)(y)

〉
dρ(x)dρ(y)

=

∫∫
k(x, y)

〈
∇ ρ
π
(x),∇ ρ

π
(y)
〉
dπ(x)dπ(y)

=

∫∫
k(x, y) 〈∇(1 + εg)(x),∇(1 + εg)(y)〉 dπ(x)dπ(y)

= ε2
∫∫

k(x, y) 〈∇g(x),∇g(y)〉 dπ(x)dπ(y).

(27)

Since we have Equation (12), so

1

2
ε2
∫
|g|2(x)dπ(x) + o(ε2) ≤ 1

2λ
ε2
∫∫

k(x, y) 〈∇g(x),∇g(y)〉 dπ(x)dπ(y), (28)

divide both side by ε2 and let ε→ 0, we have Stein Poincaré inequality∫
|g|2dπ ≤ 1

λ

∫∫
k(x, y) 〈∇g(x),∇g(y)〉 dπ(x)dπ(y). (29)

For general unbounded function g with
∫
gdπ = 0, we can use bounded sequence to approximate it and will

also have Stein Poincaré inequality 17

13

9 Missing Proofs

proof of Theorem 3.2. We first discuss the cases when β > −1. A direct calculation yields

d

dt
Dβ+1 (ρt | π) =

〈
(β + 1)

(
ρt
π

)β ∇ log(ρt
π
)∫ (

ρt
π

)β
dρt

, vβt

〉

ρt

//refer to Section 7 for more calculation details

= − β + 1∫ (
ρt
π

)β
dρt

∫∫
k(x, y)

〈
∇ log(

ρt
π
)(x),∇ log(

ρt
π
)(y)

〉(ρt
π

)β Å π
ρt

ãβ
dρt(x)dρt(y)

= −(β + 1)

∫∫
k(x, y)

〈
∇ log(ρt

π
)(x),∇ log(ρt

π
)(y)

〉
dρt(x)dρt(y)∫ (

ρt
π

)β
dρt

≤ 0,

(30)
which is equivalent to

d

dt
eβDβ+1(ρt|π) = −β(β + 1)IStein (ρt | π) . (31)

Integrate the above equation for t from 0 to T , after rearrangement then we will have

min
t∈[0,T]

IStein (ρt | π) ≤
1

T

∫ T

0

IStein(ρt | π)dt

≤

∣∣∣eβDβ+1(ρ0|π) − eβDβ+1(ρT |π)
∣∣∣

T |β(β + 1)| .

By (30), we know Dβ+1 (ρt | π) decreases along β-SVGD flow for any β ∈ (−1,∞). For β > 0, we have
∣∣∣eβDβ+1(ρ0|π) − eβDβ+1(ρT |π)

∣∣∣
T |β(β + 1)| ≤ eβDβ+1(ρ0|π)

Tβ(β + 1)
.

For β = 0, we use L’Hopital rule and get

lim
β→0

∣∣∣eβDβ+1(ρ0|π) − eβDβ+1(ρT |π)
∣∣∣

T |β(β + 1)| =
DKL(ρ0 | π)−DKL(ρT | π)

T
≤ DKL(ρ0 | π)

T
.

For β ∈ (−1, 0), we have 0 ≤ eβDβ+1(ρ0|π) ≤ eβDβ+1(ρT |π) ≤ 1, so
∣∣∣eβDβ+1(ρ0|π) ≤ eβDβ+1(ρT |π)

∣∣∣ ≤ 1

and ∣∣∣eβDβ+1(ρ0|π) − eβDβ+1(ρT |π)
∣∣∣

T |β(β + 1)| ≤ − 1

Tβ(β + 1)
.

When β < −1, a similar calculation yields

d

dt

∫ (ρt
π

)β+1

(x)dπ(x) =
d

dt

∫ Å
π

ρt

ã−β
(x)dρt(x) = −β(β + 1)IStein (ρt | π) ≤ 0,

after a rearrangement, we have

min
t∈[0,T]

IStein (ρt | π) ≤
1

T

∫ T

0

IStein(ρt | π)dt ≤

∫ Ä
π
ρ0

ä−β
(x)dρ0(x)−

∫ Ä
π
ρT

ä−β
(x)dρT (x)

|Tβ(β + 1)|

≤

∫ Ä
π
ρ0

ä−β
(x)dρ0(x)

|Tβ(β + 1)|

=
e(−β−1)D−β(π|ρ0)

|Tβ(β + 1)| .

The case when β = −1 can be derived using L’Hopital rule. Combine all these cases, we finish the proof.

proof of Theorem 3.5. Denoting εt2 =
∫ (

ρt−π
π

)2
dπ, ft = ρt−π

εt
, then

∫
ftdx = 0,

∫ f2t
π
dx = 1, Ct :=∫ (

ρt
π

)2
dπ = 1 + εt

2. Thus

14

− d

dt
D2 (ρt | π) = 2

〈
∇ log

(ρt
π

)
, vt
〉
C−1
t (ρtπ)2π

=
2

1 + εt2

∫∫ 〈
∇ log

(ρt
π

)
(y),∇ log

(ρt
π

)
(x)
〉(ρt

π

)−1

(y)
(ρt
π

)2
(y)k(x, y)

(ρt
π

)
(x)dπ(x)π(y)

=
2

1 + εt2

∫∫
k(x, y)

〈
∇
(ρt
π

)
(x),∇

(ρt
π

)
(y)
〉
dπ(x)dπ(y)

=
2

1 + εt2

∫∫
k(x, y)

〈
∇
(ρt
π
− 1
)
(x),∇

(ρt
π
− 1
)
(y)
〉
dπ(x)dπ(y)

=
2εt

2

1 + εt2

∫∫
k(x, y)

≠
∇
Å
ft
π

ã
(x),∇

Å
ft
π

ã
(y)

∑
dπ(x)dπ(y).

By Stein Poincaré inequality, we have

−
∫∫

k(x, y)

≠
∇
Å
ft
π

ã
(x),∇

Å
ft
π

ã
(y)

∑
dπ(x)dπ(y) ≤ −λ

∫ ∣∣∣∣
ft
π

∣∣∣∣
2

(x)dπ(x),

so finally we have

dD2 (ρt | π)
dt

= − 2εt
2

1 + εt2

∫∫
k(x, y)

≠
∇
Å
ft
π

ã
(x),∇

Å
ft
π

ã
(y)

∑
dπ(x)dπ(y)

≤ − 2εt
2

1 + εt2
λ

∫ ∣∣∣∣
ft
π

∣∣∣∣
2

(x)dπ(x)

= − 2λεt
2

1 + εt2

= −2λe
D2(ρt|π) − 1

eD2(ρt|π)

= −2λ
Ä
1− e−D2(ρt|π)

ä
,

which is equivalent to
d

dt
log(eD2(ρt|π) − 1) ≤ −2λ.

So
D2 (ρt | π) ≤ log

Ä
1 +
Ä
eD2(ρ0|π) − 1

ä
e−2λt

ä
≤
Ä
eD2(ρ0|π) − 1

ä
e−2λt

=
eD2(ρ0|π) − 1

D2 (ρ0 | π)
D2 (ρ0 | π) e−2λt.

proof of Corollary 3.6. By (18), when α ∈ (0, 2) we have

Dα (ρt | π) ≤ D2 (ρt | π)

≤ eD2(ρ0|π) − 1

D2 (ρ0 | π)
D2 (ρ0 | π) e−2λt

=
eD2(ρ0|π) − 1

D2 (ρ0 | π)
D2 (ρ0 | π)
Dα (ρ0 | π)

Dα (ρ0 | π)e−2λt

=
eD2(ρ0|π) − 1

Dα (ρ0 | π)
Dα (ρ0 | π)e−2λt.

(32)

proof of Proposition 4.6. First, by monotone convergence theorem, we have

lim
M→+∞

∫∫ (ρn
π

)β
(x)

ñÅ
π

ρn

ãβ
(x) ∧M

ô
k(x, y)

〈
∇ log

(ρn
π

)
(x),∇ log

(ρn
π

)
(y)
〉
dρn(x)dρn(y) = IStein (ρn | π) ,

(33)

15

so we can choose M big enough, such that

∣∣∣∣∣

∫∫ (ρn
π

)β
(x)

ñÅ
π

ρn

ãβ
(x) ∧M

ô
k(x, y)

〈
∇ log

(ρn
π

)
(x),∇ log

(ρn
π

)
(y)
〉
dρn(x)dρn(y)− IStein (ρn | π)

∣∣∣∣∣ ≤ δ.

(34)
In the following, we will assume M satisfying the above condition.

Denote gn(x) :=
Ä
π
ρn

äβ
(x) ∧M

∫
k(x, y)∇ log

(
ρn
π

)
(y)dρn(y), φn(x) := x − γgn(x) and ρn+1 =

φn#ρn, then we have

eβDβ+1(ρn+1|π) − eβDβ+1(ρn|π) = eβDβ+1(ρn|φ−1
n #π) − eβDβ+1(ρn|π)

=

∫ Ç
ρn

φ−1
n #π

åβ
(x)dρn(x)−

∫ (ρn
π

)β
(x)dρn(x)

=

∫ (ρn
π

)β
(x)

(Ç
π(x)

φ−1
n #π(x)

åβ
− 1

)
dρn(x).

(35)

Term
Å

π(x)

φ−1
n #π(x)

ãβ
can be decomposed into two terms I and II in the following way,Ç

π(x)

φ−1
n #π(x)

åβ
=

Å
π(x)

π(φn(x)) |detDφn| (x)

ãβ
= exp

Ñ
β
(
log(π)(x)− log(π)(φn(x))︸ ︷︷ ︸

I

− log(|detDφn|)(x)︸ ︷︷ ︸
II

)
é
,

(36)
so the next step is to upper bound term I and II separately. For term I , we have that

I = log(π)(x)− log(π)(φn(x))

= V (x)− V (x− γgn(x))

= γ 〈∇V (x), gn(x)〉 −
∫ γ

0

(t− γ)
¨
gn(x),∇2V (x− tgn(x))gn(x)

∂
dt

≤ γ 〈∇V (x), gn(x)〉 − L
∫ γ

0

(t− γ) ‖gn(x)‖2 dt

= γ 〈∇V (x), gn(x)〉+
Lγ2

2
‖gn(x)‖2 .

(37)

For term II , we have by Lemma 9.2 that if

γ ≤ 1

6 supx∈Rd ‖∇gn(x)‖F
, (38)

then

II ≤ γ div (gn(x)) + 5γ2 ‖∇gn(x)‖2F . (39)

So combine (37) and (39), we have

β (I + II) ≥ βγ
Å
〈∇V (x), gn(x)〉+ div (gn(x)) + γ

Å
L

2
‖gn(x)‖2 + 5 ‖∇gn(x)‖2F

ãã
, (40)

under condition (38).

16

Combine (40), (36), (35) and use Jensen inequality ψ (E [f(X)]) ≤ E [ψ (f(X))] with ψ(x) = ex − 1 convex

and f(x) = β
(
log(π)(x)− log(π)(φn(x))− log(|detDφn|)(x)

)
, we have

eβDβ+1(ρn+1|π) − eβDβ+1(ρn|π)

=

Å∫ (ρn
π

)β
(x)ρn(x)dx

ã ∫ ÇÅ π(x)

φ−1
n #π(x)

ãβ
− 1

å (
ρn
π

)β
(x)ρn(x)dx∫ (

ρn
π

)β
(x)ρn(x)dx

=

Å∫ (ρn
π

)β
(x)ρn(x)dx

ã ∫ (exp(β(log(π)(x)− log(π)(φn(x))− log(|detDφn|)(x)
))
− 1
) (

ρn
π

)β
(x)ρn(x)dx∫ (

ρn
π

)β
(x)ρn(x)dx

≥
Å∫ (ρn

π

)β
(x)ρn(x)dx

ã
exp

Ñ∫
β
(
log(π)(x)− log(π)(φn(x))− log(|detDφn|)(x)

) (
ρn
π

)β
(x)dρn(x)∫ (

ρn
π

)β
(x)ρn(x)dx

é
− 1





≥
Å∫ (ρn

π

)β
(x)ρn(x)dx

ã
exp

Ñ∫
βγ
Ä
〈∇V (x), gn(x)〉+ div (gn(x)) + γ

Ä
L
2
‖gn(x)‖2 + 5 ‖∇gn(x)‖2F

ää (
ρn
π

)β
(x)dρn(x)∫ (

ρn
π

)β
(x)ρn(x)dx

é
−
∫ (ρn

π

)β
(x)ρn(x)dx

≥
Å∫ (ρn

π

)β
(x)ρn(x)dx

ã
×



exp

Ñ
βγ
∫ (

ρn
π

)β
(x)
(
〈∇V (x), gn(x)〉+ div (gn(x))

)
dρn(x)∫ (

ρn
π

)β
(x)ρn(x)dx

+ βγ2

∫ Ä
L
2
‖gn(x)‖2 + 5 ‖∇gn(x)‖2F

ä (
ρn
π

)β
(x)ρn(x)dx∫ (

ρn
π

)β
(x)ρn(x)dx

é
− 1



 .

(41)
For term III :=

∫ (
ρn
π

)β
(x)
(
〈∇V (x), gn(x)〉+div (gn(x))

)
dρn(x) in the last line of the above equation,

we have

III =

∫ (ρn
π

)β
(x)

Æ
∇V (x),

Å
π

ρn

ãβ
(x) ∧M

∫
k(x, y)∇ log

(ρn
π

)
(y)dρn(y)

∏
dρn(x)

−
∫ Æ
∇
ß
ρn(x)

(ρn
π

)β
(x)

™
,

Å
π

ρn

ãβ
(x) ∧M

∫
k(x, y)∇ log

(ρn
π

)
(y)dρn(y)

∏
dx

=

∫ (ρn
π

)β
(x)

Å
π

ρn

ãβ
(x) ∧M

≠
∇V (x),

∫
k(x, y)∇ log

(ρn
π

)
(y)dρn(y)

∑
dρn(x)

−
∫ Æ(ρn

π

)β
(x)∇ρn(x) + βρn(x)

(ρn
π

)β
(x)∇ log(

ρn
π
)(x),

Å
π

ρn

ãβ
(x) ∧M

∫
k(x, y)∇ log

(ρn
π

)
(y)dρn(y)

∏
dx

=

∫ (ρn
π

)β
(x)

Å
π

ρn

ãβ
(x) ∧M

≠
∇V (x),

∫
k(x, y)∇ log

(ρn
π

)
(y)dρn(y)

∑
dρn(x)

−
∫ (ρn

π

)β
(x)M−1 ∨

Å
π

ρn

ãβ
(x) ∧M

≠
∇ log (ρn) (x),

∫
k(x, y)∇ log

(ρn
π

)
(y)dρn(y)

∑
dρn(x)

− β
∫∫ (ρn

π

)β
(x)

Å
π

ρn

ãβ
∧Mk(x, y)

〈
∇ log

(ρn
π

)
(x),∇ log

(ρn
π

)
(y)
〉
dρn(x)dρn(y)

= −(β + 1)

∫∫ (ρn
π

)β
(x)

Å
π

ρn

ãβ
∧Mk(x, y)

〈
∇ log

(ρn
π

)
(x),∇ log

(ρn
π

)
(y)
〉
dρn(x)dρn(y)

≤ −(β + 1) (IStein (ρn | π)− δ) .
(42)

17

Insert (42) into (41), we have

eβDβ+1(ρn+1|π) − eβDβ+1(ρn|π)

≥
Å∫ (ρn

π

)β
(x)ρn(x)dx

ã
×



exp

Ñ
−β(β + 1)γ (IStein (ρn | π)− δ)∫ (

ρn
π

)β
(x)ρn(x)dx

+ βγ2

∫ Ä
L
2
‖gn(x)‖2 + 5 ‖∇gn(x)‖2F

ä (
ρn
π

)β
(x)ρn(x)dx∫ (

ρn
π

)β
(x)ρn(x)dx

é
− 1



 .

(43)

The left thing is to upper bound IV :=
∫
‖gn(x)‖2(ρnπ)β(x)ρn(x)dx∫

(ρnπ)β(x)ρn(x)dx
and V :=

∫
‖∇gn(x)‖2F (

ρn
π)β(x)ρn(x)dx∫

(ρnπ)β(x)ρn(x)dx
.

Firstly, by the reproducing property and Assumption 4.4, we have

‖s(x)‖ =

Ã
d∑
i=1

‖si(x)‖2 =

Ã
d∑
i=1

∥∥∥〈si(·), k(x, ·)〉H0

∥∥∥2 ≤
Ã

d∑
i=1

B2 ‖si‖2H0
= B ‖s‖H = BIStein (ρn | π)

1
2 ,

(44)
where s(x) :=

∫
k(x, y)∇ log

(
ρn
π

)
(y)dρn(y), and so we have IV ≤MBIStein (ρn | π)

1
2 . Secondly, also

by the reproducing property and Assumption 4.4, we have

‖∇s(x)‖F =

Ã
d∑

i,j=1

∣∣∣∣
∂si(x)

∂xj

∣∣∣∣
2

=

Ã
d∑

i,j=1

〈
∂xjk(x, .), si

〉
H0
≤

Ã
d∑

i,j=1

∥∥∂xjk(x, .)∥∥2H0
‖si‖2H0

=
»
‖∇k(x, .)‖2H ‖s‖

2
H ≤

»
B2 ‖s‖2H = BIStein (ρn | π)

1
2 .

(45)

and

‖∇gn(x)‖F =

∥∥∥∥∥∇
Å
π

ρn

ãβ
(x)s(x)>1Ä π

ρn

äβ
(x)∈[0,M]

(x) +

ñÅ
π

ρn

ãβ
(x) ∧M

ô
∇s(x)

∥∥∥∥∥
F

≤

∥∥∥∥∥β
Å
π

ρn

ãβ
(x)∇ log

Å
π

ρn

ã
(x)s(x)>1Ä π

ρn

äβ
(x)∈[0,M]

(x)

∥∥∥∥∥
F

+

∥∥∥∥∥
ñÅ

π

ρn

ãβ
(x) ∧M

ô
∇s(x)

∥∥∥∥∥
F

≤ −β
Å
π

ρn

ãβ
(x)

∥∥∥∥∇ log

Å
π

ρn

ã
(x)

∥∥∥∥ 1Ä π
ρn

äβ
(x)∈[0,M]

(x)BIStein (ρn | π)
1
2 +MBIStein (ρn | π)

1
2

≤
(
−βM

3
2 eCb +M

)
BIStein (ρn | π)

1
2 ,

(46)
where the last line is due to Lemma 9.1, and so we have V ≤

Ä
−βM

3
2 eCb +M

ä
BIStein (ρn | π)

1
2 .

Combine the upper bound of IV and V , we have

∫ Ä
L
2
‖gn(x)‖2 + 5 ‖∇gn(x)‖2F

ä (
ρn
π

)β
(x)ρn(x)dx∫ (

ρn
π

)β
(x)ρn(x)dx

≤
Å
L

2
M2 + 5(−βM

3
2 eCb +M)2

ã
B2IStein (ρn | π) ,

(47)
and

eβDβ+1(ρn+1|π) − eβDβ+1(ρn|π)

≥
Å∫ (ρn

π

)β
(x)ρn(x)dx

ã
exp

(
−β(β + 1)γ (IStein (ρn | π)− δ)∫ (

ρn
π

)β
(x)ρn(x)dx

+ βγ2B2IStein (ρn | π)
Å
L

2
M2 + 5(−βM

3
2 eCb +M)2

ã)
−
∫ (ρn

π

)β
(x)ρn(x)dx.

(48)

Since
∫ (

ρn
π

)β
dρn(x) ≤ 1 when β ∈ (−1, 0), so if set γ ≤ 2(β+1)(IStein(ρn|π)−δ)

B2IStein(ρn|π)
Å
LM2+10(−βM

3
2 eCb+M)2

ã , we

will have −β(β+1)γ(IStein(ρn|π)−δ)∫
(ρnπ)β(x)ρn(x)dx

+ βγ2B2IStein (ρn | π)
Ä
L
2
M2 + 5(−βM

3
2 eCb +M)2

ä
≥ 0. Finally

18

we use ex ≥ 1 + x when x ≥ 0 to get

eβDβ+1(ρn+1|π) − eβDβ+1(ρn|π) ≥ −β(β + 1) (IStein (ρn | π)− δ)

+ βγ2B2IStein (ρn | π)
Å
L

2
M2 + 5(−βM

3
2 eCb +M)2

ã
eβDβ+1(ρn|π)

≥ −β(β + 1)γ

Å
1

2
IStein (ρn | π)− δ

ã
,

(49)
the last line is because we choose γ ≤ β+1

B2

Å
LM2+10(−βM

3
2 eCb+M)2

ã .

Now, we can finish the proof by giving the condition on the step-size γ:




0 < γ ≤ 1

6

Å
−βM

3
2 eCb+M

ã
BIStein(ρn|π)

1
2

0 < γ ≤ 2(β+1)(IStein(ρn|π)−δ)

B2IStein(ρn|π)
Å
LM2+10(−βM

3
2 eCb+M)2

ã
0 < γ ≤ β+1

B2

Å
LM2+10(−βM

3
2 eCb+M)2

ã , (50)

where M satisfies condition (34).

Lemma 9.1. Under Assumption 4.5, we have

sup
x∈Rd

Å
π

ρn

ãβ
(x)

∥∥∥∥∇ log

Å
π

ρn

ã
(x)

∥∥∥∥ 1Ä π
ρn

äβ
(x)∈[0,M]

(x) ≤ Cf <∞, (51)

for some constant Cf ∈ [0,M
3
2 eCb].

Proof. (51) is equivalent to

βfn(x) + log(‖∇fn(x)‖) ≤ log(Cf), ∀x ∈ Rd such that βfn(x) ≤ log(M), (52)

where fn(x) := log
Ä
π
ρn

ä
(x). If fn satisfies Assumption 4.5, then we have

βfn(x) + log(‖∇fn(x)‖) ≤ βfn(x) +
|βfn(x)|

2
+ Cb ≤

3

2
log(M) + Cb, (53)

for any x ∈ Rd such that βfn(x) ≤ log(M). So finally, we have

sup
x∈Rd

Å
π

ρn

ãβ
(x)

∥∥∥∥∇ log

Å
π

ρn

ã
(x)

∥∥∥∥ 1Ä π
ρn

äβ
(x)∈[0,M]

(x) ≤ Cf , (54)

where constant Cf satisfies
Cf ≤M

3
2 eCb <∞. (55)

Lemma 9.2. Let B be a square matrix and ‖B‖F =
»∑

ij b
2
ij its Frobenius norm. Let ε be a positive number

that satisfies 0 ≤ ε < 1
3‖B‖F

. Then I + ε
(
B +B>

)
+ ε2BB> is positive definite, and

ε tr(B)− ε2

4

Å
9‖B‖2F

1− 3ε ‖B‖F
+ 2‖B‖2F

ã
≤ log | det(I + εB)|

≤ ε tr(B)− ε2

4

Å
9‖B‖2F

1 + 3ε ‖B‖F
+ 2‖B‖2F

ã
.

(56)

Therefore, take an even smaller ε such that 0 ≤ ε ≤ 1
6‖B‖F

, we get

ε tr(B)− 5ε2||B‖2F ≤ log |det(I + εB)| ≤ ε tr(B)− 2ε2||B‖2F .

Proof. We follow the proof from Liu [2017]. When ε < 1

%(B+B>)
, where %(·) denotes the spectrum radius, we

have
%
Ä
I + ε

Ä
B +B>

ä
+ ε2BB>

ä
≥ 1− ε%

Ä
B +B>

ä
> 0,

19

and so I + ε
(
B +B>

)
+ ε2BB> is positive definite. By the property of matrix determinant, we have

log |det(I + εB)| = 1

2
log det

Ä
(I + εB)(I + εB)>

ä
=

1

2
log det

Ä
I + ε

Ä
B +B>

ä
+ ε2BB>

ä
=

1

2
log det

Ä
I + ε

Ä
B +B> + εBB>

ää
.

(57)

Let A = B +B> + εBB>, we can establish

ε tr(A)− ε2

2

‖A‖2F
1− ε%(A) ≤ log det(I + εA) ≤ ε tr(A)− ε2

2

‖A‖2F
1 + ε%(A)

,

which holds for any symmetric matrix A and 0 ≤ ε < 1/%(A). This is because, assuming {λi} are the
eigenvalues of A,

log det(I + εA)− ε tr(A) =
∑
i

[log (1 + ελi)− ελi]

=
∑
i

ï∫ 1

0

ελi
1 + sελi

ds− ελi
ò

= −
∑
i

∫ 1

0

sε2λ2
i

1 + sελi
ds,

while

− ε
2

2

‖A‖F
1− ε%(A) = −1

2

∑
i

ε2λ2
i

1− εmaxi |λi|

≤ −
∑
i

∫ 1

0

sε2λ2
i

1 + sελi
ds

≤ −1

2

∑
i

ε2λ2
i

1 + εmaxi |λi|

= − ε
2

2

‖A‖F
1 + ε%(A)

,

so we have

− ε2

2

‖A‖F
1− ε%(A) ≤ log det(I + εA)− ε tr(A) ≤ − ε

2

2

‖A‖F
1 + ε%(A)

. (58)

Taking A = B +B> + εBB> into Equation (58) and combine it with Equation (57), we get

log |det(I + εB)| ≥ 1

2
log det

Ä
I + ε

Ä
B +B> + εBB>

ää
≥ ε

2
tr
Ä
B +B> + εBB>

ä
− ε2

4

∥∥B +B> + εBB>
∥∥2
F

1− ε% (B +B> + εBB>)

≥ ε tr(B)− ε2

4

Å
9‖B‖2F

1− ε% (B +B> + εBB>)
+ 2‖B‖2F

ã
,

similarly

log | det(I + εB)| ≤ ε tr(B)− ε2

4

Å
9‖B‖2F

1 + ε% (B +B> + εBB>)
+ 2‖B‖2F

ã
where we used the fact that tr(B) = tr

(
B>
)

,
∥∥BB>∥∥

F
≤ ‖B‖2F and

∥∥B +B> + εBB>
∥∥
F
≤ ‖B‖F +∥∥B>∥∥

F
+ ε

∥∥BB>∥∥
F

= 3‖B‖F (since ε ≤ 1
‖B‖F

). Finally we use inequality %
(
B +B> + εBB>

)
≤

%
(
B +B>

)
+ ε%

(
BB>

)
≤ %

(
B +B>

)
+
√
% (BB>) and

%(B +B>)2 ≤ tr
Ä
BB +BB> +B>B +B>B>

ä
= tr(BB) + tr(B>B>) + 2 tr(BB>)

≤ 4 tr(BB>) //since tr(BB) ≤ tr(BB>)

= 4 ‖B‖2F

20

and %(BB>) ≤ ‖B‖2F , so we have

%
Ä
B +B> + εBB>

ä
≤ 3 ‖B‖F . (59)

Combining all of these, we finally get

ε tr(B)− ε2

4

Å
9‖B‖2F

1− 3ε ‖B‖F
+ 2‖B‖2F

ã
≤ log | det(I + εB)|

≤ ε tr(B)− ε2

4

Å
9‖B‖2F

1 + 3ε ‖B‖F
+ 2‖B‖2F

ã
.

(60)

10 Experiments on Bayesian Neural Network and Bayesian Logistic
Regression

Bayesian Neural Network: In this experiment, we compare SVGD with the proposed -0.5-SVGD on Bayesian
Neural Networks. Our experiment setting is similar to the one in Liu and Wang [2018]: we use neural networks
with one hidden layers, and take 50 hidden units for all the datasets; all the datasets are randomly partitioned
into 90% for training and 10% for testing; we use RELU(x) = max(0, x) as the active function. We set the
particle number N = 100 and the mini-batch size as 100. We set the step-size γ = 10−4. In -0.5-SVGD, we
renormalize the Stein matrix by a constant factor, set the mirror descent iteration number m = 50, step-size
r = 0.5 and small gap τ = 0.25. The Stein matrix has small dimension in these cases, which is only 100× 100,
so the computation of the Stein importance weights is efficient. For each dataset: Seeds, Boston house and
Yacht, and each algorithm: SVGD, -0.5-SVGD, we test for 3 times (this experiment is time consuming) with
iteration number n = 500, 1000, 2000. Table 1 shows the averaged test results, where RMSE means the root
mean square deviation, LL means the log likelihood. We find -0.5-SVGD consistently improves over SVGD in
terms of accuracy. For the original data obtained, see Section 11.

SEED with dimension 453
RMSE LL

Iteration SVGD -0.5-SVGD SVGD -0.5-SVGD
500 0.614621857 0.597111981 −1.020867456 -0.961816462
1000 0.550036399 0.533375435 −0.910755822 -0.827453328
2000 0.510597252 0.49012237 −0.807832642 -0.726703193

BOSTON with dimension 753
RMSE LL

Iteration SVGD -0.5-SVGD SVGD -0.5-SVGD
500 6.540663835 6.054613357 −3.330431563 -3.193928609
1000 6.163087914 5.821032633 −3.241251933 -3.134616289
2000 5.871055387 5.541809203 −3.164638536 -3.07889812

YACHT with dimension 403
RMSE LL

Iteration SVGD -0.5-SVGD SVGD -0.5-SVGD
500 9.48556172 7.785107764 −3.820548866 -3.658675596
1000 6.658104806 5.343377953 −3.606474782 -3.399616321
2000 4.812189172 3.543966898 −3.360595158 -3.066375285

Table 1: Average Test Results: the random seeds are set the same for SVGD and -0.5-SVGD in each
test and the running time for -0.5-SVGD is roughly double that of SVGD.

Bayesian Logistic Regression: In this experiment, we compare the performance of SVGD and −0.5-SVGD
on the Bayesian Logistic regression problem. The experiment setting is almost the same as the one in Liu and
Wang [2016], for more details, please refer to Liu and Wang [2016] or Section 11. In the test, we found the Stein
importance weight is close to the identical weight after only a few -0.5-SVGD iterations with relatively big
step-size (specifically, the percentage of weight ωi such that Nωi < 0.1 falls to 0 after the first few iterations
of −0.5-SVGD), so the acceleration effect is not very clear in this case. However, as shown in the first image,
where the step-size is relatively small, we can see a faster improvement in accuracy in the first few hundreds
iterations of -0.5-SVGD. We can also see from the results that when γ is relatively large, due to the Stein
importance weight, −0.5-SVGD is much more stable than SVGD.

21

250 500 750 1000 1250 1500 1750 2000

Iteration

0.525

0.550

0.575

0.600

0.625

0.650

0.675

A
cc
u
ra
cy

step-size=0.0001, N=200

SVGD

-0.5-SVGD

250 500 750 1000 1250 1500 1750 2000

Iteration

0.55

0.60

0.65

0.70

0.75

A
cc
u
ra
cy

step-size=0.0005, N=200

SVGD

-0.5-SVGD

250 500 750 1000 1250 1500 1750 2000

Iteration

0.55

0.60

0.65

0.70

0.75

A
cc
u
ra
cy

step-size=0.001, N=200

SVGD

-0.5-SVGD

250 500 750 1000 1250 1500 1750 2000

Iteration

0.55

0.60

0.65

0.70

0.75

A
cc
u
ra
cy

step-size=0.002, N=200

SVGD

-0.5-SVGD

Figure 2: We test the binary Covertype dataset with 581,012 data points and 54 features (d = 54). We
run 2000 iterations of SVGD and -0.5-SVGD with different step-size and number of particles. In each
iteration of −0.5-SVGD, we run 200 steps of mirror descent with r = 2 to find the Stein importance
weights, we set the small gap τ = 0.05. The time required to run 2000 iterations of −0.5-SVGD and
test the accuracy every 100 iterations is roughly double that required for SVGD.

11 More Experiments and Details

We run the experiments on a Macbook Pro (13-inch,2020) with Processor: 2.3 GHz Quad-Core Intel Core i7 and
Memory: 32 GB 3733 MHz LPDDR4X.

11.1 More Experiments on Gaussian Mixture

In Figure 1, Figure 3, Figure 4 and Figure 5, we use Gaussian Mixture to test the performance of β-SVGD. We

choose the reproducing kernal k(x, y) = e−
‖x−y‖2

d , where d is the dimension.

11.2 More Experiments on Bayesian Logistic Regression

In Figure 6, we compare the performance of SVGD and β-SVGD with β = −0.5 in Bayesian Logistic regression
problem. This Bayesian Logistic regression experiment is done in Liu and Wang [2016] to compare SVGD with
several Markov Chain Monte Carlo methods, more details about this experiment can refer to Liu and Wang

[2016]. As in the Gaussian Mixture experiment, we choose the reproducing kernal k(x, y) = e−
‖x−y‖2

d .

11.3 More Details on Bayesian Neural Network

Table 2 shows the original test data on Bayesian Neural Network.

22

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

20 iterations

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

40 iterations

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

60 iterations

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

80 iterations

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

100 iterations

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

120 iterations

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

140 iterations

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

160 iterations

SVGD with 1000 particles

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

20 iterations

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

40 iterations

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

60 iterations

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

80 iterations

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

100 iterations

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

120 iterations

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

140 iterations

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

160 iterations

-0.5-SVGD with 1000 particles

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

20 iterations

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

40 iterations

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

60 iterations

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

80 iterations

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

100 iterations

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

120 iterations

−5.0 −2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

140 iterations

−2.5 0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

160 iterations

-0.9-SVGD with 1000 particles

Figure 3: The same experiment setting as in Figure 1. We show how the particles move in the update
of β-SVGD with β = 0,−0.5,−0.9.

23

0.5-SVGD

500 Iteration SEEDS-
RMSE SEEDS-LL BOSTON-

RMSE BOSTON-LL YACHT-
RMSE YACHT-LL

1st Test 0.65270335 -1.127949146 7.500990754 -3.578065184 10.90588982 -3.984105331
2nd Test 0.650713242 -1.109967755 7.560059158 -3.564446731 11.4522142 -3.995176488
3rd Test 0.648986116 -1.080414149 7.190867282 -3.544465893 12.19846953 -4.050929325

1000 Iteration SEEDS-
RMSE SEEDS-LL BOSTON-

RMSE BOSTON-LL YACHT-
RMSE YACHT-LL

1st Test 0.579153432 -1.065757383 6.798066541 -3.548783886 8.355382099 -3.897892911
2nd Test 0.583035518 -1.042295985 7.032850283 -3.517889088 8.614608135 -3.854131369
3rd Test 0.580088164 -1.023501313 6.71675912 -3.46875477 8.792347324 -3.898790508

2000 Iteration SEEDS-
RMSE SEEDS-LL BOSTON-

RMSE BOSTON-LL YACHT-
RMSE YACHT-LL

1st Test 0.543722837 -1.028549237 6.58145612 -3.476708161 7.460360406 -3.836464327
2nd Test 0.564119866 -1.046072614 6.894245042 -3.452564756 7.348647643 -3.790306767
3rd Test 0.565132246 -1.006777082 6.618980571 -3.42621784 7.511270881 -3.826691374

SVGD

500 Iteration SEEDS-
RMSE SEEDS-LL BOSTON-

RMSE BOSTON-LL YACHT-
RMSE YACHT-LL

1st Test 0.612381691 -1.023857439 6.536863165 -3.319276377 9.308204171 -3.802498566
2nd Test 0.614235376 -1.028596212 6.652164723 -3.361659105 9.207817711 -3.806520653
3rd Test 0.617248504 -1.010148718 6.432963616 -3.310359208 9.94066327 -3.852627381

1000 Iteration SEEDS-
RMSE SEEDS-LL BOSTON-

RMSE BOSTON-LL YACHT-
RMSE YACHT-LL

1st Test 0.548803339 -0.920039422 6.129287038 -3.231650337 6.582751393 -3.601019046
2nd Test 0.558942951 -0.925617411 6.280277766 -3.267793394 6.511789693 -3.591982423
3rd Test 0.542362907 -0.886610635 6.079698939 -3.224312069 6.879773332 -3.626422876

2000 Iteration SEEDS-
RMSE SEEDS-LL BOSTON-

RMSE BOSTON-LL YACHT-
RMSE YACHT-LL

1st Test 0.508115157 -0.82032888 5.824160413 -3.16041858 4.683719162 -3.352857754
2nd Test 0.521839905 -0.822264856 5.965881345 -3.179169278 4.722228614 -3.345166653
3rd Test 0.501836692 -0.780904191 5.823124403 -3.15432775 5.03061974 -3.383761067

-0.5-SVGD

500 Iteration SEEDS-
RMSE SEEDS-LL BOSTON-

RMSE BOSTON-LL YACHT-
RMSE YACHT-LL

1st Test 0.595794017 -0.966862028 5.997885458 -3.177899474 7.931862638 -3.646890816
2nd Test 0.592175621 -0.952947097 6.090872737 -3.209068156 7.467320009 -3.63783219
3rd Test 0.603366307 -0.96564026 6.075081876 -3.194818196 7.956140646 -3.691303781

1000 Iteration SEEDS-
RMSE SEEDS-LL BOSTON-

RMSE BOSTON-LL YACHT-
RMSE YACHT-LL

1st Test 0.53132468 -0.825319698 5.786683985 -3.128738437 5.309869371 -3.37805003
2nd Test 0.535686912 -0.838001442 5.874849706 -3.147433109 5.136576962 -3.373933488
3rd Test 0.533114714 -0.819038846 5.801564209 -3.127677321 5.583687525 -3.446865446

2000 Iteration SEEDS-
RMSE SEEDS-LL BOSTON-

RMSE BOSTON-LL YACHT-
RMSE YACHT-LL

1st Test 0.490918366 -0.729968036 5.538989749 -3.079445225 3.388128107 -3.041888645
2nd Test 0.489448573 -0.729185581 5.577819672 -3.079523837 3.361486382 -3.022368475
3rd Test 0.490000173 -0.720955963 5.508618189 -3.077725298 3.882286206 -3.134868736

Table 2: Original Test result of Bayesian Neural Network: in each test, the random seed is set the
same (set it 1) for each algorithm. we can observe the effectiveness of the Stein importance weights:
0.5-SVGD is worse than SVGD and -0.5-SVGD is better than SVGD, which matches the theoretical
prediction of Theorem 3.2.

24

0 50 100 150 200 250 300 350 400

Iteration

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

L
o
g
1
0
o
f
S
te
in

F
is
h
er

In
fo
rm

at
io
n

SVGD

dim=3

dim=6

dim=9

dim=12

dim=15

dim=18

dim=21

dim=24

dim=27

dim=30

0 50 100 150 200 250 300 350 400

Iteration

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

L
o
g
1
0
o
f
S
te
in

F
is
h
er

In
fo
rm

at
io
n

-0.5-SVGD

dim=3

dim=6

dim=9

dim=12

dim=15

dim=18

dim=21

dim=24

dim=27

dim=30

Figure 4: In this experiment, we show how the Stein Fisher information changes in the update
of SVGD and −0.5-SVGD. The target distribution is N ((2, . . . , 2)d, Id) and the initial points are
sampled from N ((0, . . . , 0)d, Id) with N = 300. The step-size γ = 0.1 for both algorithm and for
−0.5-SVGD algorithm, we set the small gap τ = 0.01 and we update the Stein importance weight
in every iteration using 40 mirror descent with step-size r = 0.3. We can see that the Stein Fisher
information drops immediately below 1 (note in the picture, the axis y is log10 of the Stein Fisher
information) in −0.5-SVGD, while in SVGD it drops slowly.

0 50 100 150 200 250 300 350 400

Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

f
(ω

)

SVGD

dim=3

dim=6

dim=9

dim=12

dim=15

dim=18

dim=21

dim=24

dim=27

dim=30

0 50 100 150 200 250 300 350 400

Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

f
(ω

)

-0.5-SVGD

dim=3

dim=6

dim=9

dim=12

dim=15

dim=18

dim=21

dim=24

dim=27

dim=30

Figure 5: The experiment settings are the same as in Figure 4. We compare how the Stein importance
weight changes in the update of SVGD and −0.5-SVGD (though we don’t have to compute the Stein
importance weight in the implementation of SVGD). The error is defined by f(ωk) :=

∑N
i=1 |wki − 1

N |,
where ωki denote the Stein importance weight of point xki and N = 300. The results suggest that in
high dimensional cases, the Stein importance weight can help to accelerate the decreasing of Stein
Fisher information in the beginning, then it will approach to the identical weight 1

N quickly.

25

250 500 750 1000 1250 1500 1750 2000

Iteration

0.55

0.60

0.65

0.70

A
cc
u
ra
cy

step-size=0.0001, N=100

SVGD

-0.5-SVGD

250 500 750 1000 1250 1500 1750 2000

Iteration

0.55

0.60

0.65

0.70

0.75

A
cc
u
ra
cy

step-size=0.0005, N=100

SVGD

-0.5-SVGD

250 500 750 1000 1250 1500 1750 2000

Iteration

0.55

0.60

0.65

0.70

0.75

A
cc
u
ra
cy

step-size=0.001, N=100

SVGD

-0.5-SVGD

250 500 750 1000 1250 1500 1750 2000

Iteration

0.55

0.60

0.65

0.70

0.75

A
cc
u
ra
cy

step-size=0.002, N=100

SVGD

-0.5-SVGD

250 500 750 1000 1250 1500 1750 2000

Iteration

0.525

0.550

0.575

0.600

0.625

0.650

0.675

A
cc
u
ra
cy

step-size=0.0001, N=200

SVGD

-0.5-SVGD

250 500 750 1000 1250 1500 1750 2000

Iteration

0.55

0.60

0.65

0.70

0.75

A
cc
u
ra
cy

step-size=0.0005, N=200

SVGD

-0.5-SVGD

250 500 750 1000 1250 1500 1750 2000

Iteration

0.55

0.60

0.65

0.70

0.75

A
cc
u
ra
cy

step-size=0.001, N=200

SVGD

-0.5-SVGD

250 500 750 1000 1250 1500 1750 2000

Iteration

0.55

0.60

0.65

0.70

0.75

A
cc
u
ra
cy

step-size=0.002, N=200

SVGD

-0.5-SVGD

Figure 6: In this experiment, we test the binary Covertype dataset with 581,012 data points and 54
features (d = 54). We run 2000 iterations of SVGD and β-SVGD with different step-size and number
of particles. In each iteration of −0.5-SVGD, we run 200 steps of mirror descent with step-size
r = 2 (since the values of the entries of Kπ in this experiment can be very big, we need to rescale the
matrix by dividing a factor of 109 to resolve the overflow problem, so the step-size for mirror descent
is chosen relatively big) to find the Stein importance weights, we set the small gap τ = 0.05. The time
required to run 2000 iterations of −0.5-SVGD and test the accuracy every 100 iterations is roughly
double that required for SVGD. In this experiment, we found the Stein importance weight is close to
the identical weight after only a few β-SVGD iterations with relatively big step-size (specifically, the
percentage of weight ωi such that Nωi < 0.1 falls to 0 after the first few iterations of −0.5-SVGD),
so the acceleration effect is not very clear in this case. However, as shown in the first and fifth images,
where the step-size is relatively small, we can see a faster improvement in accuracy in the first few
hundreds iterations of β-SVGD. We can also see from the results that when γ is relatively large, due
to the Stein importance weight, −0.5-SVGD is much more stable than SVGD.

26

	Introduction
	Summary of contributions
	Related works

	Preliminaries
	 Rényi divergence
	Background on blue SVGD

	Continuous time dynamics of the blue -SVGD flow
	blue -SVGD flow
	Exponential convergence of blue 1-SVGD flow under the Stein Poincaré inequality

	The blue -SVGD algorithm
	Descent property of the population limit blue -SVGD

	Experiments
	Conclusion
	Calculus
	Stein log-Sobolev inequality implies Stein Poincaré inequality
	Missing Proofs
	Experiments on Bayesian Neural Network and Bayesian Logistic Regression
	More Experiments and Details
	More Experiments on Gaussian Mixture
	More Experiments on Bayesian Logistic Regression
	More Details on Bayesian Neural Network

