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ABSTRACT

Forecasting human motion in indoor scenes is crucial for collaborative robotics
and embodied AI. While prior approaches have incorporated gaze implicitly or
used it only to rank segmented objects, we argue that gaze, particularly fixations,
offers a more intentional and spatially precise signal for predicting human intent.
In this work, we introduce a fixation-driven, time-aware framework for 3D hu-
man motion forecasting that explicitly supervises a gaze network to distinguish
fixations from saccades, and uses fixation-weighted vectors to not only rank can-
didate objects but to also localize precise interaction points, improving robustness
to segmentation errors. Our contribution further includes a duration prediction
module that generates variable-length motion sequences, adapting to the spatial
and temporal demands of the task. We evaluate our approach on the GIMO and
GTA-IM datasets to show more accurate predictions particularly in challenging
scenes with small or merged objects, and varying interaction durations through
variable-length motion generation. Our code will be made publicly available.

1 INTRODUCTION

Forecasting human motion is critical for collaborative robots, with gaze being among the most reli-
able predictors of human intent, often preceding motor actions. For instance, wearable eye trackers
have been shown to anticipate actions over one second in advance using gaze-centered visual input
Li et al.[(2018); [Liu et al.|(2020). Among gaze behaviors, fixations play a crucial role by stabilizing
attention on task-relevant targets, providing strong signals for accurate motion prediction |[Foulsham
(2015). In contrast, saccades, rapid gaze shifts between points, are less informative for forecasting
motion. Explicitly modeling these distinct patterns is vital for reliable intention forecasting.

Previous research has focused on designing increasingly complex multimodal fusion architectures
Zheng et al.|(2022); Lou et al.| (2024a) or leveraging instance segmentation |Q1 et al.|(2017) to rank
candidate objects using either prior motion cues [Lou et al.| (2024b) or gaze information [Yu et al.
(2025). While these approaches have reduced overall prediction errors, they typically treat gaze as
an auxiliary or implicit signal. However, because gaze is a uniquely intentional and interpretable
cue, it enables direct geometric inference of intent, which can be diluted when gaze is entangled
with scene and motion features during fusion. Likewise, approaches that use gaze only to rank
object segments lose the spatial precision afforded by fixation patterns.

In this work, we demonstrate the importance of explicitly modeling fixations as a core component of
our method. We explicitly supervise the gaze network to distinguish fixations from saccades, produc-
ing more reliable gaze vectors for downstream tasks such as object prediction and pose forecasting.
These fixation-weighted vectors are then used not only to rank objects but to also precisely localize
interaction points within the scene, improving spatial precision and robustness to segmentation er-
rors, particularly for small objects that are often merged with background segments. We additionally
extend prior work |Lou et al.|(2024b), which forecasts fixed-length trajectories toward multiple candi-
date targets, by introducing a duration prediction module that generates variable-length trajectories.
This enables the model to adapt motion duration to the spatial distance and context of each target, re-
sulting in more realistic and temporally aligned forecasts. By integrating these novel contributions,
our method achieves state-of-the-art performance on indoor motion prediction benchmarks.

Overall, our innovations are as follows: (1) We propose a fixation-based gaze classification module.
Instead of treating all gaze points equally, we train the model to explicitly identify fixations, defined
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in this work as gaze directed toward the object of interest, and use only these fixations to guide
intent. (2) We use fixations to pinpoint the exact surface a person intends to interact with, rather
than relying on purely the object geometry as was done in prior work. (3) We train a network to
predict how many frames are needed to reach the target object, depending on distance and action
type. This lets our method be more versatile as it allows forecasting toward multiple objects.

2 RELATED WORKS

Gaze-Conditioned Pose Forecasting: Human pose forecasting is typically framed as a sequence-
to-sequence learning problem, with methods differing primarily in their encoding and decoding
strategies. These include autoregressive [Martinez et al.[(2017) and non-autoregressive [Tevet et al.
(2022) approaches, as well as deterministic [Lyu et al.[| (2025) and stochastic [Wang et al.| (2024)
formulations. While early models relied solely on the human pose as input, later advances integrate
additional contextual cues, such as text|Ahuja & Morency|(2019); Xie et al.|(2024), semantic action
label|Guo et al.| (2020) audio|Li et al.|(2021); Han et al.|(2024)), eye gaze and 3D scene context, often
jointly used Razali & Demiris|(2022); [Zheng et al.| (2022)); [Lou et al.|(2024a); |Yu et al.| (2025)).

Most related to our work are [Hu et al.| (2024); [Yan et al.| (2023)); |[Zheng et al.| (2022); [Lou et al.
(2024a); [Yu et al.[(2025); [Lou et al.|(2024b), which predict 3D human motion using eye gaze. |Yan
et al.| (2023) employs a diffusion model conditioned on gaze and motion to forecast 3D human
motion, while Hu et al.| (2024) predicts future gaze based solely on past gaze before using it to
forecast motion. However, both methods ignore scene information, which makes them quite lim-
ited in indoor environments. GIMO [Zheng et al.| (2022) fuses gaze, scene, and motion features via
cross-modal transformers [Vaswani et al.| (2017) to forecast 3D human motion in indoor scenes, but
does not explicitly model object geometry. SIF3D|Lou et al.|(2024a) supervises point cloud saliency
using eye gaze, but similarly does not incorporate object geometry or predict explicit interaction
targets. DiMoP3D|Lou et al.|(2024b) segments the scene into object instances and ranks them using
prior motion before generating fixed-length motion sequences toward each object. However, it uses
motion cues rather than gaze, which are significantly less informative, especially in cluttered envi-
ronments where multiple objects lie along similar trajectories. GAP3DS |Yu et al.[(2025) segments
the scene into object instances, uses gaze to generate a distance-based heatmap, retrieves the object
instance with the highest score, and then generates motion conditioned on the segmented object ge-
ometry. However, this approach relies heavily on segmentation quality. If a small object of interest,
such as a cup on a table or a banana on the floor, is incorrectly merged into a larger background seg-
ment like the table or floor, the model will completely miss the object and possibly forecast toward a
distant, unrelated target. Moreover, both DiMoP3D and GAP3DS generate motion based solely on
object geometry without gaze. This makes precise motion generation especially challenging, as the
retrieved object may afford interactions at many possible locations, lacking the spatial specificity
needed for targeted action.

We show in this paper that explicitly using gaze not only to rank object-level targets, but also to
localize the specific region within the object reduces reliance on segmentation and improves spatial
precision. Additionally, a similarity shared across prior works is that none explicitly supervises the
gaze signal during training. In contrast, we introduce a gaze-aware auxiliary loss that trains the
model to distinguish between fixations and saccades, leading to more accurate object inference and
localization.

Motion In-Betweening: Generating motion sequences from partially observed frames, commonly
referred to as motion in-betweening, has been explored using a variety of modern architectures.
Early work explored recurrent models |[Harvey et al.| (2020) before adopting transformer-based ar-
chitectures [Petrovich et al.| (2021)) and diffusion models |Cohan et al.| (2024) to improve temporal
coherence and sample diversity. These models are typically conditioned either on a motion tra-
jectory or a sparse set of keyframes, often the start and end poses, to synthesize the intermediate
motion. Both GAP3DS and DiMoP3D segment the scene to identify multiple candidate targets and
generate corresponding secondary forecasts by in-betweening from the observed motion to each tar-
get’s end pose. While these methods, and diffusion methods in general |Guo et al.|(2022) can support
variable length inputs, they require the number of frames to be fixed in advance, either determined
from the ground-truth duration or manually specified, which limits their adaptability in the context
of indoor motion forecasting, where the number of frames depend on end point distance. In contrast,
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Figure 1: Overview of our method. The model segments the scene, classifies fixations (green lines),
ranks and localizes targets, predicts a gaze-conditioned end pose, and synthesizes motion using
variable-length in-betweening, enabling precise interactions and realistic durations adapted to each
target’s distance and layout.

we explicitly train the model to predict the number of frames required to reach each target, condi-
tioned on the start pose, end pose, and coarse trajectory. This enables our method to generate motion
sequences of variable length that better reflect the spatial and temporal demands of each interaction.

3 METHOD

Welet X _7,.0 = [X_7,,--- ’Xol" € RT1x7%3 denote the observed human pose with .J joints across
Ty timesteps, and g_7,.0 € RT1%2%3 the corresponding gaze vectors, represented as 3D origin-
direction pairs per frame. We define the scene point cloud as a set of 3D coordinates {p;}.¥.,, where
p; € R3 and N is the total number of points. Our goal is to forecast the human motion over T
timesteps, which can be expressed as p(x1.7, |X—1y:0, 8—73:0, {Pi })-

Human-object interactions in indoor scenes often follow structured, spatially consistent patterns.
Objects like chairs, tables, and beds form distinct geometric clusters, and gaze-driven actions typ-
ically target a few semantically meaningful regions. However, not all gaze samples are equally
informative as fixations indicate task-relevant attention, while saccades reflect transient scanning
(2015). By leveraging these insights, we can factorize our forecasting objective into the
following:

p({o;} [ {pi}) -p(g« | 8-1.0,{0i}) ' P(j | 8, {0;})

Instance Segmentation Fixation Classification Object Ranking (1)
. p(XT2 | 0y, g*) 'p(X11T2 | X0y X7y, {pl})
Endpose Prediction Motion In-Betweening

where {o; }37:1 denotes the set of J spatially coherent object candidates inferred from the point
cloud {p;}, with each o; C {p;} corresponding to a physical object such as a chair, table, or bed,
including background regions. The vector g, € R?*3 represents the fixation-aggregated gaze input.
This formulation better reflects the structured nature of indoor human motion forecasting, by first
segmenting the scene into object candidates (Instance Segmentation), identifying fixations (Fixation
Classification), ranking interaction likelihoods based on fixations (Object Ranking), generating a
pose conditioned on object geometry, and additionally on fixation if it intersects the object (Endpose
Generation), and finally synthesizing the full motion sequence between the initial and final poses
(Motion In-Betweening). Fig. [T]illustrates our method. We now describe each component.

Instance Segmentation: We utilize PointNet++ (2017) to perform instance segmentation.
PointNet++ is a hierarchical neural network that learns directly from raw point clouds by capturing
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local geometric structures through set abstraction layers. As shown in Fig[T] the output is a scene-
level point cloud where each point is assigned to a spatially coherent cluster representing an object
instance o; (e.g., chair, table, bed, cup, phone), visualized in unique colors. In practice, small
objects like phones, fruits, or utensils are often missed due to limited point cloud resolution. While
advances in point cloud segmentation have resulted in improved overall segmentation, fine-grained
objects remains challenging. Since end-pose prediction depends on correctly localizing the target
object, segmentation alone is insufficient. We address this by incorporating gaze to localize the
precise interaction region, as described in the section on Gaze-Aware End-Pose Prediction.

Fixation Classification and Object Ranking: Existing works often model gaze implicitly. In
particular, attention-based methods |Zheng et al.| (2022); Lou et al.| (20244a) dilute gaze information
over time, making it difficult to extract reliable fixation cues. To address this, we directly optimize
the gaze input by framing it as a temporal classification task that emphasizes fixations and de-
emphasizes saccades:

f = o(Transformer(g_r,.0, {0;}))

T
1 & @)
B = E;I[t‘t > 0.5 g

where f € [0,1]7 represents the predicted fixation likelihood over the input timesteps, and Z
normalizes the sum. We define fixations in the context of this work as gaze points within 0.3 m of
the target in order to balance precision and noise tolerance. While we adopt this fixed threshold, it
is dataset-dependent and could also be personalized for each user, which we leave for future work.
We further incorporate scene context to improve fixation detection in cases of gaze drift across large
objects such as sofas and beds. At test time, the aggregated gaze vector g, € R2*3 is computed
by averaging over fixations. Given g, and the set of object instances o;, we rank the candidates by
their proximity to the gaze:

rank(j) = sort; (I{réion dist(gx, p)) 3)
J

Intuitively, this ranking corresponds to measuring the distance between the gaze ray and each object
surface. In practice, the top-ranked object is typically the one directly intersected by the aggregated
vector. Based on this, we obtain two types of candidates: primary, where the aggregated vector
intersects the object instance (even if labeled as background), and secondary, where no intersection
occurs. This distinction determines how the end-pose is predicted.

Gaze-Aware End-pose Prediction: We employ a conditional Variational Autoencoder (cVAE)
Kingma et al.|(2013) to generate a static, whole-body pose for each of the top-ranked object can-
didates, conditioned on the object’s Basis Point Set (BPS) Prokudin et al.| (2019) representation,
computed over a 1 m radius around the object instance to capture not only the object shape, but
also nearby obstacles that may influence the final pose. However, small objects like utensils are fre-
quently missed during instance segmentation, which degrades the accuracy of the generated pose.
To address this, we first compute a reference point c, defined as:

pj if p; intersects g,
¢= ﬁ > p otherwise )
? peo;,
and apply horizontal centering using only the horizontal components i.e. [¢;, 0, c,]. This step intu-
itively lets the model observe the input, centered at the interaction point. The pose is then generated
as:
x7, = cVAE(BPS(0; — ¢)) %)

We use a separate cVAE per action type family (e.g., reach, sit, lie), selected based on the instance
label, as it provides a practical compromise between generalization and specialization. For primary
candidates, the reference point is derived from the aggregated gaze, yielding more precise localiza-
tion even when the object is mislabeled as background (e.g., a banana on the floor). For secondary
candidates, where no intersection is detected, the model falls back to centering using object geom-
etry at its mean. This selective use of gaze distinguishes our approach from prior methods such as
GAP3DS and DiMoP3D, which rely solely on object geometry and are unable to forecast motion
toward unsegmented or merged objects. In practice, this distinction is crucial for reaching actions,
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where gaze helps identify small targets often merged into the background, unlike sitting, where
object geometry alone typically suffices.

Motion In-Betweening: Prior work Zheng et al.| (2022); |[Lou et al| (2024a)); |Yu et al.| (2025) re-
quires manually specified lengths, often using the ground-truth number of output frames. While
autoregressive models such as LSTMs can in principle produce variable-length trajectories |Corona
et al.| (2020), they still require a stopping criteria and have been largely outperformed by diffusion
models in quality. However, a limitation of diffusion models in the context of motion forecasting is
that they require the number of frames to fixed in advance, which prevents them from flexibly han-
dling variable-length outputs, which is particularly problematic in indoor motion forecasting where
action durations naturally vary depending on end point distance. For example, if the horizon is set
too short, the generated motion will reach the target unnaturally quickly. If it is too long, the motion
will appear artificially slow. There is thus a need to internally predict motion length rather than
controlling it manually from the outside.

To address this, we first follow [Lou et al.| (2024b)) to generate a coarse trajectory from the final
observed pose X to the predicted end-pose x7, using a graph-based planner such as A* [Hart et al.
(1968). This produces a sequence of anchor poses [Xg,ai,as,...,Xr,|, where each a; € R’*?
only contains the root ground-plane position and zeros elsewhere, in contrast to full poses x; with all
joints. We then use a 1D CNN to estimate the number of in-between frames 7; for each consecutive
pair of anchors:

T:CNN([X05a17a27"'7XT2]) (6)

where each 7; denotes the number of in-between frames for the segment between each neighbouring
anchor pair. Given the anchors and predicted frame counts, we construct a motion template X with
placeholders between anchor poses:

(1) (1) (1) ngz)

X =[X0,X) 55Xy 501,X) yeen, ye ey XTy] 7

71 elements To elements

Each placeholder ng) is initially filled with Gaussian noise and later denoised by the diffusion

model, which learns to generate smooth transitions conditioned on the surrounding anchor frames:

Xt:\/CSTtXO-f—\/].—C_VtG, €NN(O,I)

Xy[i] « Xo[i] foralli e K (8)

where KC denotes the set of anchor frame indices (e.g., initial pose x,, endpose x,, and A*-
generated anchors a;). In short, the diffusion model iteratively denoises the motion sequence, with
known anchor poses overwritten at each timestep to guide generation. Intuitively, it learns to synthe-
size realistic transitions that satisfy both spatial and temporal constraints defined by the anchors. In
summary, the architecture automatically decides the number of frames to output, instead of leaving
this choice to the user|Guo et al.|(2022). We leave training details in the supplementary.

4 EXPERIMENTS

Datasets: The GIMO datasetZheng et al.|(2022) contains ~ 129K frames of body pose sequences
captured using IMUs, eye gaze data recorded via AR headsets, and 3D LiDAR scans of indoor
environments. Participants perform a variety of everyday tasks such as walking to grasp objects such
as door handles and dumbbells, sitting on chairs, or lying on beds. We sample sequences at 15Hz
to obtain more fine-grained gaze data and adopt the official train-val split. The GTA-IM dataset
Cao et al.|(2020) is a synthetic dataset with ~ 1M frames of 3D human poses and semantic scene
information, where the person walks around the scene but only interacts by sitting on chairs. The
human motions are automatically generated using in-game animations, and gaze is approximated
using head orientation in the ground plane. As the person does not directly look at the object of
interest, we modify eq. [2]to exclude scene information. Consequently, the primary object in eqs. [3
[ [5] does not use the gaze intersection at all. We follow the same 15Hz sampling as in GIMO. As
interactions in GTA-IM are sparse, we follow prior work |Yu et al.| (2025) to retrieve only up to 6
seconds preceding the moment of interaction.

Baselines: We compare our approach to the most closely related existing methods: (1) BiFU Zheng
et al.[(2022) employs a bidirectional fusion module that enables mutual conditioning between gaze
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Table 1: Gaze classification and object prediction on the GIMO and GTA-IM datasets. Top-K values
denote classification accuracy, and lower MSE is better. A dash (‘-") indicates that the metric cannot
be computed for the corresponding method.

GIMO GTA-IM
Method Gaze Classification (%)|  Object Prediction (%) |Gaze Classification (%)|  Object Prediction (%)
Acc Prec Rec F1 |Top-1 Top-2 Top-3 Dist. (m)| Acc Prec Rec F1 |Top-1 Top-2 Top-3 Angle (°)
BiFU 445 577 0.04 0.07|79.8 87.1 100 049 |[22.0 91.5 0.04 0.08]|73.4 80.1 100 29.2
SIF3D 493 63.6 0.04 0.08|82.6 89.8 100 046 |21.6 923 0.04 0.09]|75.1 827 100 28.9
DiMoP3D - - - - 19.09 333 424 - - - - - 17.2 385 50.1 -
GAP3DS - - - - | 86.8 943 100 - - - - - | 755 822 100 -
Ours (Gaze) 77.0 86.1 69.3 76.8|83.3 933 100 0.37 [93.9 942 94.7 934|762 824 100 28.7
Ours (Gaze + Scene) | 86.7 87.8 91.0 89.4 932 96.2 100 0.22 - - - - - - - -
GT Gaze 100 100 100 100 | 100 100 100 0.16 100 100 100 100 | 76.2 80.9 100 28.9
Median Gaze 65.2 724 55.1 62.5|81.0 90.5 100 042 |88.1 89.5 899 884|740 79.3 100 29.1

and motion features, while incorporating global scene context via a motion-scene transformer. (2)
SIF3D |Lou et al|(2024a) improves on this by attending over relevant regions of the 3D scene. (3)
DiMoP3D |[Lou et al.| (2024b) segments the scene into object instances ranked by past motion, then
uses A* search to generate fixed-length motion. (4) GAP3DS |Yu et al.| (2025) ranks objects using
gaze and predicts motion toward the top candidate, using affordance rather than precise gaze to infer
interaction points.

Gaze Classification and Object Ranking: We first evaluate the accuracy of gaze estimation
through two tasks: (1) gaze classification, where we distinguish between fixations and saccades,
and (2) object ranking, where the goal is to identify the object of interest based on the aggregated
gaze. For the GIMO dataset, we empirically define a fixation as a gaze point within 0.3 m of the
ground-truth object, and label all other cases as saccades. For GTA-IM, we define fixations as gaze
velocities below 5 °.

We then aggregate classification or attention scores differently across methods. For our method,
which outputs binary classification scores (0 for saccade, 1 for fixation), we compute a weighted
sum over gaze vectors using these scores as weights following eq. 2} For attention-based methods
such as BiFU and SIF3D, which produce continuous attention weights that sum to 1, we find that
selecting the gaze vector corresponding to the maximum attention weight performs better than using
a weighted average. DiMoP3D does not utilize gaze, whereas GAP3DS uses raw gaze vectors to
compute a point-cloud distance matrix, and thus does not output any interpretable scores for the
gaze sequence.

The resulting single gaze vector is then used to evaluate object ranking. For this, we define a simple
protocol based on proximity. For GIMO, we use spatial proximity by computing the intersection of
the aggregated gaze with the scene and measuring its Euclidean distance to each object’s surface.
For GTA-IM, we use angular proximity, measuring the angle between the predicted gaze direction
and the vector from the head to the object center. Objects are ranked based on these distances or
angles, and we report top-N accuracy, where a hit is recorded if the ground-truth object appears
within the top-N. In addition, we report the gaze-to-target distance using the appropriate metric:
Euclidean distance in metres for GIMO and angular distance in degrees for GTA-IM. This metric
captures both model performance and scene clutter. For example, low accuracy but low distance
suggests scene clutter, whereas high distance indicates either poor model performance or unreliable
gaze data.

Table [T] summarizes the results, with metrics grouped according to the two tasks described above:
gaze classification, and object prediction for the Top-1, Top-2, and Top-3 objects, as well as the
gaze-to-target Euclidean or angular distances in meters and degrees respectively. The bottom row
shows the performance using ground-truth gaze vectors, serving as an upper bound under perfect
gaze input. For GIMO, this corresponds to an aggregated gaze point approximately 0.16 m from the
target object when using a 0.3 m fixation threshold. In addition, we include a simple Median Gaze
baseline, which aggregates the gaze sequence by taking its median vector.

Our method, which explicitly models fixations, outperforms prior approaches. This is because gaze,
especially when recorded using wearable eye trackers, is highly informative. During interaction,
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Figure 2: Gaze classification on GIMO. (Green: TP, Orange: FP, Red: FN, Gray: TN). Binary
fixation labels (GT, Ours) and attention weights (SIF3D) are shown below. Our method closely
follows GT, while SIF3D yields inconsistent scores.
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people often fixate directly on the object they intend to engage with rather than on the surrounding
context. This predictable fixation behavior enables our model to more reliably infer the target object.
In contrast, prior methods that rely on implicit cross-modal attention mechanisms, such as BiFU and
SIF3D, may struggle due to variability in fixation and saccade patterns, and the added challenge of
disentangling object geometry. Furthermore, our classification-based approach produces indepen-
dent probability scores for each gaze, whereas attention-based methods must assign weights that
sum to one, which can dilute focus when handling longer input sequences, or lose important cues
when sampling at very low fps. This is illustrated in Fig. 2] where our method consistently classifies
fixations correctly, while SIF3D exhibits inconsistent responses due to distributed attention, with
fixation scores never exceeding 0.2.

As an ablation, we compare our model with and without scene information during gaze classifica-
tion. Both the table and figure highlight its impact: as shown in Fig. 2] on the right, our method
reliably detects fixations even when they are spatially dispersed across a large object. Our method
continues to show improvements over the SOTA even on the more challenging GTA-IM dataset
where gaze merely sweeps along the ground xz plane without any changes in its y component. We
also evaluate alternative architectures for our gaze classifier, specifically Bi-LSTM and CNN vari-
ants, with results provided in the supplementary material.

Grasp Cup

Grasp Banana

(a) Input, End pose, and Eye Gaze (b) View from Eye Tracker (c) Ours (green) and GAP3DS (red)

Figure 3: End-pose prediction on GIMO. Grey poses show input and ground-truth; green vectors
indicate fixations. Predictions are in green (Ours) and red (GAP3DS), with RGB views for reference.
Ours is more accurate for small objects.
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Grasp Dumbbell

Grasp Doorhandle

(a) GT (b) Ours (c) GAP3DS

Figure 4: Motion forecasting on GIMO. GT (gray), ours (green), and GAP3DS (red) are shown
for grasping a dumbbell (top) and doorhandle (bottom). Ours succeeds on small objects whereas
GAP3DS fails due to segmentation errors.

Table 2: MPJPE from 0.5s to 5.0s, End Pose Error, and ACPD, all reported in millimeters (mm).
Lower values indicate better performance. Our method consistently outperforms prior work for
longer durations.

GIMO GTA IM

0.5s 1.0s 2.0s 5.0s End ACPD| 0.5s 1.0s 20s 5.0s End ACPD
BiFU 78 99 118 133 131 3.45 |101.2 109.1 121.8 141.5 1509 2.07
SIF3D 78 97 114 127 130 3.23 |100.4 107.3 119.5 139.1 141.2 221
DiMoP3D 75 93 103 125 104 1.04 | 98.5 104.7 109.8 131.1 949 0.79
GAP3DS 76 92 105 123 101 2.16 | 98.7 104.5 108.5 130.1 96.2 147
Ours (Gaze) 77 94 109 125 112 1.00 | 99.6 105.6 112.0 1342 99.8 0.73
Ours (Gaze + Scene) | 76 93 100 120 80 1.02 | 99.2 1043 1069 127.5 92.2 0.75
Ours (GT Gaze) | 76 93 100 118 75 — | 99.2 103.9 106.0 125.6 91.2 —

Inp, End, and Traj.

Generated Motion

(a) Rank 1 (chair) (b) Rank 2 (table) (c) Rank j (sofa).

Figure 5: Multi-target forecasting on GIMO. Top: input and trajectory (gray), A* anchors, and
predicted end pose (green). Bottom: GT (gray), ours (green), and DiMoP3D (red, third column),
where fixed-length forecasting fails.

End-pose Prediction: Fig. [3]illustrates the importance of conditioning end-pose prediction on
the aggregated gaze. The left column shows the input pose and ground-truth end pose, along with
the aggregated gaze in green. The middle column shows the corresponding RGB view from the
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wearable eye tracker with the red dot indicating the gaze. The right column compares our predicted
end pose (green) against GAP3DS’s (red). Our method correctly forecasts interactions with small
or merged objects, such as a cup on a table or a banana on the floor, even when these objects are
incorrectly merged with their surroundings by the segmentation model. GAP3DS fails in these cases
because it uses gaze solely to rank segmented object instances and does not leverage gaze during
pose prediction. In contrast, our method integrates gaze as a direct conditioning signal for end-pose
prediction. This allows gaze to serve a dual purpose: identifying the target object and precisely
localizing the intended interaction region. As a result, our approach is more robust to segmentation
errors and scene ambiguity. A limitation (in the supplementary) is a case where noisy gaze, or an
improperly selected input sequence leads to floor interaction instead of the chair. We argue that this
reflects plausible stochasticity in human motion, rather than random error.

Motion Forecasting: The quality of end-pose prediction directly impacts downstream motion fore-
casting, as shown in Fig. f] We display intermediate poses every 0.5 m, along with the end pose.
In the dumbbell example, our method correctly predicts the person walking toward the dumbbell
and bending down to pick it up, despite the dumbbell being mislabeled as background. In contrast,
GAP3DS predicts a sitting motion toward a nearby chair, since its retrieval module only considers
segmented objects, and the dumbbell is excluded due to segmentation failure. A similar issue occurs
in the doorbell example, where GAP3DS entirely misses the interaction. Although BiFU and SIF3D
are more robust in such cases as they do not rely on segmentation, they underperform compared to
ours because they do not explicitly predict end-poses, an important geometric constraint that guides
the motion more accurately toward the intended target.

Table 2] reports results using Mean Per Joint Position Error (MPJPE) across time horizons, end-pose
error, and Average Cumulated Penetration Depth (ACPD) [Xu et al.| (2023) all in millimeters (mm).
With ground-truth gaze, our method shows greater improvements in end-pose errors, translating to
consistent overall gains. Short-horizon (e.g. 0.5s) MPJPE remains difficult to improve since very
little movement occurs, making errors naturally small. ACPD remains comparable to prior work,
as obstacle avoidance is only addressed during path planning. Improvements on GTA-IM are lower
due to the lack of fine objects and the focus on sitting interactions.

Multi-Target Motion Forecasting: To showcase our method’s flexibility, we demonstrate its abil-
ity to predict motion lengths and forecast toward multiple secondary targets, each with varying
distances, as shown in Fig. [5] The figure displays the coarse trajectory together with the gen-
erated poses, enabling accurate modeling of motion sequences with variable lengths. In contrast,
DiMoP3D generates fixed-length sequences that do not adapt to the actual distance between the
human and the target. As shown in the third column, its final frame (in red) falls short of the in-
tended sitting pose, which our method successfully reaches. Furthermore, when DiMoP3D’s fixed
sequence exceeds the required length, it often results in frozen or repetitive poses after reaching the
target, further highlighting the limitations of fixed-length generation. These advantages also trans-
late to improved quantitative performance across generative-relevant metrics such as accuracy, FID,
human-object vertex distance and time prediction errors. We further provide additional results in
the supplementary, which highlight the importance of our time prediction module: methods without
it often produce motions that appear unnaturally fast or slow when the number of frames is not ac-
curately set in advance. All corresponding quantitative results for cases without ground-truth frame
counts or poses are also reported in the supplementary.

5 CONCLUSION

We present a fixation-driven, time-aware framework for 3D human motion forecasting in indoor
scenes. By explicitly training the model to distinguish fixations from saccades, we improve gaze
reliability, which in turn enhances object localization, end-pose prediction, and motion forecasting.
Additionally, we introduce a duration prediction module that enables our diffusion-based model to
generate variable-length motion sequences tailored to each interaction. These contributions result
in more accurate forecasts across diverse targets and object configurations. Future work may ex-
plore the use of head orientation as a proxy for gaze in real-world scenarios where eye tracking is
unreliable, as well as methods for more personalized fixation modelling.
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A APPENDIX

Training: We train our architecture with the following objective:

Z)\lft log f; + (1— fi)log(1 — ft) + Xe||7i — il

s,1,t

fixation duration

+ M3|Z, — 21y |3 + MKL + As|leg( Xy, 8) — €3

end pose diffusion

where s denotes the diffusion timestep. Each component is trained independently for ease of tuning
and modularity. We train the model for 1000 epochs using the ADAM optimizer, with a batch size
of 32 on an RTX A5000 GPU, requiring approximately 12 hours in total.

B ADDITIONAL QUANTITATIVE RESULTS

We compare our approach to DiMoP3D and GAP3DS for multi-target forecasting as both BiFU and
SIF3D are limited to producing a single motion sequence. DiMoP3D |Lou et al.[(2024b)) segments
the scene into object instances ranked by past motion, then uses A* search to generate fixed-length
motion. GAP3DS [Yu et al.| (2025) similarly segments the scene and ranks objects using gaze cues,
predicting motion toward the top-ranked instance using object affordances to infer interaction points.
However, both methods do not explicitly predict the number of frames required to reach the target.
We modify both architectures to output the frame count using an LSTM conditioned on the prior
motion and the predicted keyframe. We use the following metrics for evaluating generative human
motion:

¢ Final Pose Accuracy (Acc, %, T): We evaluate the predicted final pose using a pre-trained
MLP action classifier trained to distinguish between reaching, sitting, and lying actions.
This measures whether the generated motion ends in a plausible and semantically correct
posture. Higher is better.

 Fréchet Inception Distance (FID, unitless, |) (Guo et al. (2020): We extract features
from real and generated motion sequences using a pre-trained transformer-based motion
classifier. The FID is computed between the feature distributions, quantifying the realism
and diversity of the generated motions compared to the ground truth. Lower is better.

* Human-Object Vertex Distance (HO Dist., mm, |): We measure the proximity of the
final human pose to the intended target object. For reach actions, we compute the minimum
distance from the left/right hand vertices to the object. For sit/lie actions, we use the full
body. Lower values indicate more accurate spatial grounding.

* Time Error (Time Err., s, |): Measures the discrepancy between the predicted and
ground-truth number of frames required to reach the object, indicating whether the model
correctly anticipates motion duration. Lower is better.

* Average Cumulative Penetration Distance (ACPD, mm, |): Measures the average dis-
tance that the predicted human mesh penetrates into the scene geometry across all frames.
Lower values indicate fewer and smaller collisions.

From the table, GAP3DS and our method achieve similar final pose accuracy, as both directly pre-
dict the target pose and the metric reflects semantic correctness over spatial precision. DiMoP3D
performs slightly worse, likely due to its fixed time constraint (e.g., 5 seconds in their paper), which
may prevent reaching the target. For FID, DiMoP3D remains competitive thanks to its A* planning,
which yields plausible, temporally consistent trajectories even if incomplete, unlike GAP3DS which
does not truncate outputs. As a result, when the predicted motion duration is underestimated, the
steps between frames may become large and unnatural. This reduces motion quality and leads to a
higher FID compared to DiMoP3D or ours.

For human-object vertex distance, our method and GAP3DS perform similarly, as both explicitly
predict the interaction point. DiMoP3D performs worse on this metric because motion truncation
may leave the final pose farther from the intended object. Our time prediction approach, which
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GIMO GTA IM
Acc (1) FID (}) HODist () Time Err. (1) ACPD (}) | Acc (1) FID (}) HODist(}) Time Err. (}) ACPD ({)
DiMoP3D 997 355 212.1 1.52 1.13 100 211 181.4 1.35 1.03
GAP3DS 951  5.12 914 1.47 2.32 100 441 17.3 1.29 2.01
Ours 996  3.51 91.1 0.87 111 100 211 175 0.78 0.96
Ours (w/o Time )| 99.7 5.1 90.9 1.42 1.14 100 431 17.1 1.31 1.01
Avg Vel - - — 2.01 — - - - 1.82 —
Real 100 141 79.5 — — 100 101 11.9 — —

Table 3: Final pose classification accuracy (Acc), Frechet Inception Distance (FID), human-object
distance (HO Dist), time prediction error (Time Err.), and Average Cumulative Penetration Distance
(ACPD). Units: Acc (%), FID (unitless), HO Dist (mm), Time Err. (s), ACPD (mm). 1 indicates
higher is better, | lower is better. Our method performs visibly better overall.

GIMO GTA-IM (without scene information)
Method | G,e Classification (%)|  Object Prediction (%) | Gaze Classification (%)|  Object Prediction (%)
Acc Prec Rec F1 |Top-1 Top-2 Top-3 Dist. (m)| Acc Prec Rec FI |Top-1 Top-2 Top-3 Angle (°)
LSTM 855 850 86.0 85.8(89.0 935 100 0.30 87.8 852 864 859|74.0 79.5 100 29.1
Bi-LSTM 87.2 86.5 88.2 87.3]90.2 945 100 0.27 89.6 86.8 88.0 87.2|74.8 80.5 100 28.9
CNN 84.0 86.2 88.0 87.0[90.0 942 100 0.28 89.4 86.6 87.8 87.0|75.0 80.8 100 28.8
Transformer| 86.7 87.8 91.0 89.4|93.2 96.2 100 0.22 939 942 94.7 934|762 824 100 28.7

Table 4: Gaze classification and object prediction on the GIMO and GTA-IM datasets. Top-K values
denote classification accuracy, and lower distance/angle is better. All architectures are evaluated
using scene information for GIMO, while for GTA-IM the evaluation is performed without scene
information.

estimates motion duration by dividing the trajectory into anchor pose segments, results in lower
errors.

For ACPD, our method performs comparably to DiMoP3D since both use path planning to avoid
obstacles. However, collisions can still occur because the planned trajectory only considers the
root path and not the full body geometry. We include Real as a reference computed using ground-
truth final poses and durations, representing the upper bound for all metrics. Avg Vel serves as a
non-learned baseline for time estimation, where the number of frames is inferred from the average
velocity across the dataset.

Our method achieves strong overall performance, consistently ranking among the top across all met-
rics. Importantly, it does not underperform on any evaluation criterion. For comparison, GAP3DS
yields the highest FID scores, suggesting limited realism in its predicted motion, while DiMoP3D
suffers from large human-object distances. Additionally, all baselines exhibit substantially higher
time prediction errors, with differences exceeding 50% in some cases.

Gaze Classification Architectures: We compare different architectures for gaze classification, in-
cluding an LSTM, Bi-LSTM, CNN, and Transformer, as shown in Fig. 4l The Bi-LSTM and CNN
outperform the vanilla LSTM, likely because they can aggregate temporal information more effec-
tively, with the Bi-LSTM capturing dependencies in both directions. The Transformer achieves
the best performance overall, benefiting from its optimized architecture and ability to attend to in-
formation across the entire sequence simultaneously. All architectures are evaluated using scene
information for GIMO, while for GTA-IM the evaluation is performed without scene information
(see Table|l).

C ADDITIONAL QUALITATIVE RESULTS

We present additional visualizations in Figures [6]to[0] as well as in the supplemental video. Figure
[6illustrates a failure case where an improperly selected input sequence causes the predicted motion
to target the floor instead of the chair. This occurs because our method selects the region where the
aggregated gaze vectors intersect the point cloud, which in this case lies on the floor. However, we
argue that this reflects plausible stochasticity in human motion, rather than random error. Figure
demonstrates the robustness of our method to segmentation failures: while GAP3DS incorrectly
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predicts the person interacting with a chair, our method correctly predicts interaction near the white-
board. Figures [8] and [9] highlight the importance of accurate time prediction. In both cases, the
generated motions from GAP3DS and DiMoP3D appear less natural compared to ours, as shown in
the figures and corresponding videos.

(a) Ground Truth Motion and Eye Gaze (b) Ours

Figure 6: Fail Case. Our method predicts the human motion interacting with the floor instead of the
chair.

(a) GT Motion and Eye Gaze (b) Ours (c) GAP3DS

Figure 7: Our method can predict the human motion interacting with the whiteboard even in scenes
with poor segmentation.

(a) Ours (b) DiMoP3D (c) GAP3DS

Figure 8: Our method continues to predict the human motion moving at an appropriate speed com-
pared to GAP3DS, while completing the sequence compared to DiMoP3D.
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(a) Ours (b) DiMoP3D (c) GAP3DS

Figure 9: Our method continues to predict the human motion moving at an appropriate speed com-
pared to GAP3DS, while completing the sequence compared to DiMoP3D.
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