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ABSTRACT

Reinforcement Learning (RL) has played a central role in the recent surge of
LLMs’ math abilities by enabling verification-driven training through binary ver-
ifier signals. In contrast, Supervised Learning (SL) is rarely considered for such
verification-driven training, largely due to its heavy reliance on reference answers
and inability to reflect on mistakes. In this work, we challenge the prevailing no-
tion that self-improvement is exclusive to RL and propose Negative-aware Fine-
Tuning (NFT) — a supervised approach that enables LLMs to reflect on their
failures and improve autonomously with no external teachers. In online training,
instead of throwing away self-generated negative answers, NFT constructs an im-
plicit negative policy to model them. This implicit policy is parameterized with
the same positive LLM we target to optimize on positive data, enabling direct
policy optimization on all LLMs’ generations. We conduct experiments on 7B
and 32B models in math reasoning tasks. Results consistently show that through
the additional leverage of negative feedback, NFT significantly improves over SL
baselines like rejection fine-tuning, matching, or even surpassing leading RL algo-
rithms like GRPO and DAPO. Furthermore, we demonstrate that NFT and GRPO
are actually equivalent in strict-on-policy training, even though they have entirely
different theoretical foundations. Our experiments and theoretical findings bridge
the gap between SL and RL methods in binary-feedback learning systems.

1 INTRODUCTION

The recent surge in math reasoning abilities of Large Language Models (LLMs) is largely driven by
a fundamental shift in their learning paradigm, from imitation to self-improvement (DeepSeek-AI,
2025; OpenAI, 2024; Chen et al., 2025c). Instead of relying on reference answers supplied by human
annotators or stronger models (Liu et al., 2024; OpenAI, 2023), the new paradigm requires only a
question dataset with a binary verifier to judge the correctness of self-generated answers. By reflect-
ing on their own generation, LLMs can improve autonomously. This approach not only eliminates
the need for costly data annotation but also removes competence ceilings imposed by external teach-
ers, offering a promising path toward general intelligence (DeepSeek-AI, 2025; NVIDIA, 2025).

Reinforcement Learning (RL) appears to be a natural fit for such verification-driven training. Spe-
cific algorithms like PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024) are explicitly
designed to maximize reward signals, which can conveniently take the form of a binary verifier
outcome. In contrast, Supervised Learning (SL) is rarely considered for realizing such verification-
driven training. A common view holds that SL is inherently designed to memorize the positive data,
rendering it unsuitable for self-reflective learning from negative mistakes (Chu et al., 2025a).

In this work, we challenge the prevailing notion that verification-driven training is exclusive to RL,
and demonstrate it can be similarly achieved within the supervised learning paradigm.

We start with a simple SL baseline: Rejection Fine-Tuning (RFT) (Yuan et al., 2023b; Dong et al.,
2023). At each iteration, an LLM generates answers to questions. A verifier helps reject all negative
answers. The remaining positive ones are compiled into a dataset to fine-tune the LLM itself in
a supervised manner. RFT has been demonstrated effective (Bai et al., 2022; Yuan et al., 2023a;
Song et al., 2023; Touvron et al., 2023; Xiong et al., 2025). However, it prevents any learning from
negative feedback. LLMs are encouraged to reinforce what they already perform well, rather than
reflect on their mistakes — an ability we believe critical for achieving general intelligence.
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Figure 1: A spectrum of online algorithms for LLM fine-tuning. NFT bridges reinforcement learn-
ing and supervised learning methods through the leverage of negative feedback via supervision.

To overcome this limitation, we propose Negative-aware Fine-Tuning (NFT), an online learning
algorithm that enables LLMs to learn from their negative generations (Sec. 3). Like RFT, NFT
fine-tunes a positive LLM on positive answers via supervision. Crucially, instead of throwing away
negative answers, NFT also constructs an implicit negative policy to model them. This implicit
policy is parameterized with the same positive LLM we target to optimize on positive data, enabling
direct policy optimization on all LLMs’ generations (Figure 2). NFT has minimal memory overhead,
as only a single model is maintained throughout training.

To understand the connection between NFT and RL approaches, we conduct an in-depth comparison
between NFT and GRPO (Sec. 4). Surprisingly, we find the two methods are actually equivalent in
strict-on-policy training, despite that they originate from entirely different theoretical frameworks
(Figure 1). Notably, the “advantage normalization” characteristic of GRPO is already implicitly re-
flected in NFT’s loss function. Their main difference arises in off-policy settings, regarding different
strategies for clipping model gradients when the learned policy deviates from the old policy. These
observations suggest a strong connection between SL and RL in binary-feedback learning systems.

We evaluate NFT on 7B and 32B Qwen models and report two key findings: 1. Supervised Learning
alone can significantly enhance LLMs’ math reasoning with no external teachers. NFT matches or
even surpasses state-of-the-art RL algorithms like GRPO (Shao et al., 2024) and DAPO (Yu et al.,
2025). 2. The performance gap between RFT and RL in online training largely stems from SL’s
past inability to leverage negative feedback, rather than any inherent superiority of RL. Through the
additional leverage of negative data, NFT substantially mitigates this gap.

2 BACKGROUND

2.1 MAXIMUM LIKELIHOOD VS. POLICY GRADIENT

Supervised Learning essentially aims to learn a model πθ(a|q) to fit the data distribution π(a|q).
This can be realized by employing the maximum-likelihood objective:

max
θ

Ea∼π(a|q) log πθ(a|q) ⇔ min
θ

DKL [π(a|q)∥πθ(a|q)] .

In LLM fine-tuning, q usually means the question prompt, and a the answer. To perform Maximum-
likelihood training, we need a dataset D = {q,a ∼ π(a|q)} to draw training samples from.

Reinforcement Learning, by contrast, maximizes pre-defined reward r(q,a) for a ∼ πθ(a|q):
max

θ
J(θ) := Ea∼πθ(a|q)r(q,a).

Directly back-propagating through J(θ) is non-trivial, as r(·) can be an arbitrary scalar function
whose gradient is unknown. Luckily, ∇θJ(θ) can be estimated, making policy optimization feasible.

∇θJ(θ) = Ea∼πθ(a|q)∇θ [r(q,a) log πθ(a|q)] . (1)

Eq. 1 is known as the Policy Gradient (PG) algorithm (Sutton et al., 1999). In sequential decision-
making problems such as language reasoning, a can be interpreted as the token decision for each
step t, and r(q,a) can be replaced with advantage functions A(q,a) (Schulman et al., 2015).

2.2 MATH REASONING RL: FROM POLICY GRADIENT TO GRPO

Eq. 1 requires training to be on-policy, where πθ can only be updated a single time after data collec-
tion. To break this limitation, importance sampling can be applied (Schulman et al., 2017). Suppose

2
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Figure 2: Illustration of the NFT algorithm. Data Collection: An LLM π generates answers to a
set of math questions. Generation results are split into two sub-datasets based on their answer cor-
rectness. Policy Optimization: By constructing an implicit policy for modeling negative data, NFT
enables direct policy optimization on both positive and negative answers via maximum-likelihood.

the policy for collecting the RL dataset is denoted as πold, we have

∇θJ(θ) = Ea∼πold(a|q)

[
πθ(a|q)
πold(a|q)

r(q,a)∇θ log πθ(a|q)
]
= Ea∼πold(a|q) [r(q,a)∇θRθ(q,a)] ,

(2)
where Rθ(q,a) :=

πθ(a|q)
πold(a|q) is the likelihood Ratio between two policies.

In math reasoning tasks, PPO (Schulman et al., 2017) and subsequent GRPO (Shao et al., 2024)
algorithms further apply gradient clipping to constrain the distance between πθ and πold:

LGRPO(θ) = −
∑

q,a∼πold

∑
t

min
[
Rt

θ(q,a)Âq,a, clip(Rt
θ(q,a), 1− ϵ′, 1 + ϵ′)Âq,a

]
, (3)

where Rt
θ(q,a) := πθ(at|q,a<t)

πold(at|q,a<t)
, and Âq,a is the estimated advantage value. Note that we have

dropped some auxiliary loss terms, such as KL and entropy regularization, as they have been pointed
out to be unnecessary by recent studies like DAPO (Yu et al., 2025).

GRPO proposes an efficient way to estimate Âq,a. Collect K answers a1:K and their binary reward
r1:K ∈ {0, 1} for each question. The advantage is defined to be the normalized reward:

Âq,a :=
[
r(q,a)− mean{r1:K}

]
/ std{r1:K}. (4)

Later studies (Liu et al., 2025b) suggest removing the std term from Eq. 4.

3 METHOD

3.1 PROBLEM SETUP

Dataset. Given a set of N math questions {q1:N}, a pretrained LLM πold(a|q), and a verifier for
judging the correctness. In every iteration, we generate a dataset D = {q,a1:K ∼ π, r1:K}1:N ,
where r ∈ {0, 1} is the correctness label, and K the number of answers collected for each question.

Dataset D ∼ π can be split into two subsets: D+ and D−. D+ contains all positive answers, and
D− contains the rest negative ones. We denote the underlying answer distribution of D+ as π+(·|q).

Learning Target. We want to optimize the old policy π into a new policy π+
θ ≈ π+. The target

π+(a|q) can be formalized using Bayes’ Rule:

π+(a|q) := π(a|q, r=1) =
πold(a|q)p(r=1|q,a)∑
A πold(a|q)p(r=1|q,a)

, (5)

where A means all possible language space for a.

Discussion. An obvious solution for learning π+ is to fine-tune solely on correct answers (D+) and
discard D− totally (RFT) (Dong et al., 2023; Xiong et al., 2025). However, this approach prevents
the model from any learning on its negative feedback (D−). We posit that the ability to reflect on
one’s own failures is not merely desirable, but central to general intelligence, marking a shift from
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Figure 3: Left: Policy Splitting. The generation policy can be split into a positive policy and
a negative policy, and re-expressed as their linear combination. Right: Policy Improvement. By
iteratively optimizing towards its positive split, an LLM policy π0 can improve continuously.

pure imitation to self-reflective learning. Though traditionally viewed as a distinctive strength of RL
(Chu et al., 2025a; Yue et al., 2025), we ask: Can self-reflective improvement be similarly achieved
within the SL paradigm?

3.2 DIRECT OPTIMIZATION OF LANGUAGE MODELS WITH NEGATIVE ANSWERS

In this section, we discuss how to leverage negative data D− to directly optimize π+
θ . Despite

seemingly impossible at first thought, we find the target policy π+ and the negative policy π− are
tightly coupled, making feasible training π+

θ directly from D−.

First, we formalize the definition of the negative policy π− similar to Eq. 5

π−(a|q) := π(a|q, r=0) =
πold(a|q)[1− p(r=1|q,a)]∑
A πold(a|q)[1− p(r=1|q,a)]

. (6)

Combining Eq. 5 and Eq. 6, we make a key observation that

rqπ
+(a|q) + [1− rq]π

−(a|q) = πold(a|q), (7)

where rq :=
∑

A πold(a|q)p(r=1|q,a) = p(r=1|q) is the correctness rate of LLM πold over a
question q. In practice, rq ≈ mean{r1:K} can be estimated using the K rewards in dataset D.

Implicit negative policy. Eq. 7 reveals a tight coupling between π+ and π− (Figure 3). Given
that we already have π as the pretrained LLM and rq is estimable, learning π− from negative data
should, in principle, shape the target policy π+

θ , in a manner analogous to SL on positive data.

To realize this idea, we construct an implicit negative policy, denoted π−
θ , by re-parameterizing the

target policy π+
θ using the relationship in Eq. 7:

π−
θ (a|q) :=

πold(a|q)− rqπ
+
θ (a|q)

1− rq
.

Thus, training π−
θ on negative answers directly leads to optimizing the underlying positive LLM π+

θ
(Figure 2). We have the following guarantee:
Theorem 3.1 (Policy Optimization with Negative Answers). Consider the maximum-likelihood
objective for training the implicit negative policy π−

θ :

max
θ

Ep(q)π−(a|q)
[
log π−

θ (a|q)
]
⇔ min

θ

[
− E(q,a)∼D− log

πold(a|q)− rqπ
+
θ (a|q)

1− rq

]
(8)

Assuming unlimited data and model capacity, the optimal solution for solving Eq. 8 is

∀q,a : π+
θ∗(a|q) = π+(a|q)

Proof in Appendix A. Theorem 3.1 demonstrates the feasibility of policy optimization on negative
data only. To further utilize positive data, we additionally conduct supervised training on D+:

LNFT
(a,q,r)∼D(θ) = r

[
− log

π+
θ (a|q)

πold(a|q)

]
+ (1− r)

− log
1− rq

π+
θ (a|q)

πold(a|q)

1− rq

 (9)

4
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Algorithm 1 Negative-aware Fine-Tuning (NFT)

1: Input: Language model π, prompt set q1:N , verifier r(·).
2: Def max v(x, ϵ): //Straight-through Max Operator
3: Return stop gradient[max(x, ϵ)− x] + x //Clip Value while Keeping Gradient
4: for each iteration do
5: for each sampled prompt q do
6: Generate K answers a1:K and verify their correctness r1:K // Data Collection
7: Calculate correctness rate r̂q = mean{r1:K} and token-level likelihood {πold(at|q,a<t)

1:|a|}1:K
8: D ← {q, r̂q, a1:K , r1:K , π1:K

t } If 0 < rq < 1 // Prompt Filtering
9: end for

10: Initialize π+
θ ← π

11: for each mini batch {q,a, r, r̂q, πt} in D do

12: Rt
θ(q,a) =

π+
θ
(at|q,a<t)

πold(at|q,a<t)
,∀t // Positive Likelihood Ratio

13: If r = 0:
14: Rt

θ(q,a) = (1− r̂q Rt
θ(q,a))/(1− r̂q) // Implicit Negative Likelihood Ratio

15: Rt
θ(q,a) = max v[Rt

θ(q,a), ϵ] // Clip Negative Likelihood Ratio
16: θ ← θ + λ∇θ

∑
t logR

t
θ(q,a) (Eq. 10) // Maximum Likelihood Training

17: end for
18: π ← π+

θ , start the next iteration
19: end for=0

Note that we subtract a baseline term − log πold(a|q) from the loss. Since this term is unrelated to θ,
it does not affect the loss gradient and thus the optimal solution. πold(a|q) is the old data likelihood
before optimizer update. At the start of training, we have π+

θ = π such that Lθ
(a,q,r) = 0.

We name our method Negative-aware Fine-Tuning (NFT) as it enables the additional leverage of
negative data for policy optimization compared with RFT.

Continuous Reward. Though we mainly consider binary rewards for math reasoning, NFT is
directly applicable to continuous rewards. Following Levine (2018), we can define optimality reward
r ∈ [0, 1], meaning the answer has a probability of r for being positive, and 1−r for being negative.
The loss definition in Eq. 9 and its convergence property stay unchanged (Proof in Appendix B).

Memory Efficiency. NFT is memory-efficient. In practice, we keep only a single model copy in
memory. The old policy likelihood πold(a|q) can be pre-computed during data generation.

3.3 PRACTICAL ALGORITHM

We introduce several improvements over Eq. 9 and propose a practical objective of NFT:

LNFT
D (θ) = −

∑
q,a,r

ω(q)
∑
t

[
r logRt

θ(q,a) + (1− r) logmax v(
1− r̂q Rt

θ(q,a)

1− r̂q
, ϵ)

]
(10)

where Rt
θ(q,a) =

π+
θ (at|q,a<t)

πold(at|q,a<t)
, and r̂q =

1

K

∑
a|q

r(q,a).

Pseudo code is in Algorithm 1. Below, we explain our key design choices.

Token-level loss. Eq. 9 essentially deals with sequence data, where answer likelihood π(a|q) =∏
t π(at|q,a<t) is heavily correlated with answer length. This introduces high variance in gradient

estimation and causes numerical instabilities during training. Following Schulman et al. (2017); Yu
et al. (2025), we view each token decision as an individual unit and sum up their loss in Eq. 10.

Clipping negative likelihood ratio. The negative loss in Eq. 10 involves a logarithm whose argu-
ment must remain positive, imposing (1 − r̂qR

t
θ)/(1 − r̂q) > 0. When Rt

θ is unoptimized, this
requirement may not be satisfied, potentially leading to training collapse. We therefore enforce a
minimum value of ϵ > 0 for the negative likelihood ratio. To preserve gradient flow after clipping,
we further apply straight-through gradient (Bengio et al., 2013). Details are in Algorithm 1.

5
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Prompt weighting. To focus training on more informative instances, we weight each prompt q by
ω(q), assigning higher importance to hard questions with low rq . An ablation study is posted in
Sec. 5.4. This design also helps align NFT with RL algorithms like GRPO (Sec. 4).

4 UNDERSTANDING THE GAP BETWEEN NFT AND GRPO

Despite originating from entirely different theoretical foundations, NFT and GRPO exhibit signif-
icant similarities. Notably, we find GRPO and NFT are equivalent in on-policy training. To
understand this, we calculate and compare their loss gradients:
Proposition 4.1 (Algorithm Gradient Comparision). Suppose there are r̂qK positive answers
and (1− r̂q)K negative ones for a given question q

(a) GRPO Gradient: Consider only binary reward {0, 1} in Eq. 3, GRPO loss gradient satisfies

∇θLGRPO
D (θ) = −

∑{
rA+

q ·I
[
Rt

θ(q,a) < 1 + ϵ′
]
+(1−r)A−

q ·I
[
Rt

θ(q,a) > 1− ϵ′
]}

∇θR
t
θ(q,a),

where A+
q =

√
1−r̂q
r̂q

and A−
q = −

√
r̂q

1−r̂q
are respectively normalized advantages for answers.

(b) NFT Gradient: Let ω(q) =
√
(1− r̂q)/r̂q , NFT loss gradient satisfies

∇θLNFT
D (θ) = −

∑{
rA+

q · 1

Rt
θ(q,a)

+ (1− r)A−
q ·max

[1− r̂q Rt
θ(q,a)

1− r̂q
, ϵ
]−1

}
∇θR

t
θ(q,a).

0 1.01 ′Rt

Wgrad

r = 0 1.0

1

on-policy

NFT
GRPO

1.0 1 + ′0

1.0

Rt

Wgrad

r = 1

on-policy

NFT
GRPO

Figure 4: Gradient weight for NFT and GRPO.

Proofs are provided in Appendix A. Comparing
∇θLGRPO

D (θ) and ∇θLNFT
D (θ), the only differ-

ence between GRPO and NFT is their strategy
for clipping model gradients when training data
becomes off-policy (Figure 4). GRPO simply
zeros out the gradient when the learned policy
πθ shifts far away from the old policy π, while
NFT takes a “softer” decay schedule.

Surprisingly, we find GRPO and NFT to be
equivalent when training is totally on-policy,
despite their distinctively different derivations:
Proposition 4.2 (On-policy Gradient Equivalence). Following the set up of Proposition 4.1 and
let ϵ ≤ 1, GRPO and NFT loss gradient are equivalent in on-policy training:

Rt
θ(q,a) = 1 =⇒ ∇θLNFT

D (θ) = ∇θLGRPO
D (θ)

Implicit group normalization. Proposition 4.1 shows the “normalized advantage” term is implicitly
present within NFT’s loss function. This partially justifies the Group Normalization design choice
for GRPO, which was initially introduced only as an empirical technique (Shao et al., 2024). In
Appendix A, we further demonstrate that by adjusting ω(q) = 1 − r̂q , NFT also aligns with Dr.
GRPO (Liu et al., 2025b). Our findings suggest a strong connection between RL and SL frameworks.

5 EXPERIMENTS

We seek to answer the following questions through our experiments.

1. How does NFT perform in comparison with existing RL algorithms such as GRPO? (Sec. 5.2)
2. How does negative data contribute to NFT’s performance gain? (Sec. 5.3)
3. Which empirical design choices are important to the effectiveness of NFT? (Sec. 5.4)

5.1 EXPERIMENT SETUPS

Training. We perform online fine-tuning on Qwen2.5-Math-7B and Qwen2.5-32B (Yang
et al., 2024) to enhance their math abilities without relying on external teachers. The training dataset

6
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Figure 5: Comparison of the released NFT-7B with other zero-style math models of Qwen series.

Table 1: NFT performs competitively compared with other algorithms. We report avg@32 for
AIME24, AIME25, and AMC23 and avg@1 for others. Numbers within 1 % of the max are bolded.

Model AIME24 MATH500 AIME25 AMC23 Olympiad Minerva Average
Qwen2.5-Math-7B 13.3 69.0 5.5 45.8 34.7 21.3 31.6
Preference fine-tuning

+ DPO 29.8 79.8 13.8 83.2 48.0 39.0 48.9
Reinforcement fine-tuning

+ GRPO 30.2 80.4 17.1 79.5 51.8 38.2 49.5
+ Dr. GRPO 31.8 83.4 15.7 80.2 49.6 38.2 49.8
+ DAPO 33.1 81.6 18.7 85.0 49.9 39.3 51.2

Supervised fine-tuning
+ RFT 33.7 79.8 13.4 79.7 44.3 38.6 48.3
+ NFT 32.0 83.2 18.3 88.5 47.3 40.8 51.7

Qwen2.5-32B 4.1 68.6 1.0 45.0 31.1 27.9 29.6
+ DAPO 44.1 89.2 33.4 90.9 54.1 47.5 59.9
+ RFT 29.9 86.2 19.1 92.4 45.3 44.1 52.8
+ NFT 37.8 88.4 31.5 93.8 55.0 48.9 59.2

is the publicly available DAPO-Math-17k (Yu et al., 2025), which consists solely of math ques-
tions paired with ground-truth answers in integer form. During training, all models are fine-tuned
for approximately 5,000 gradient steps with a batch size of 512. Generation temperature is 1.0.

Evaluation. We evaluate models on six validation benchmarks and report their average accuracy:
AIME 2024, AIME 2025, AMC 2023 (Li et al., 2024), MATH500 (Hendrycks et al., 2021),
OlympiadBench (He et al., 2024), and Minerva Math (Lewkowycz et al., 2022).

Baseline methods. We compare against a set of online fine-tuning algorithms, including Iterative
DPO (Rafailov et al., 2023; Xiong et al., 2023; Guo et al., 2024), GRPO (Shao et al., 2024), Dr.
GRPO (Liu et al., 2025b), DAPO (Yu et al., 2025), and RFT (Dong et al., 2023; Yuan et al., 2023b).

5.2 NFT PERFORMANCE EVALUATION

Model comparison. By applying NFT to Qwen2.5-Math-7B, we release NFT-7B-Zero (Fig-
ure 5). NFT-7B-Zero achieves competitive performance on all benchmarks compared to other
zero-style 7B math models (Cui et al., 2025; Liu et al., 2025b; Xiong et al., 2025; 2023). This pro-
vides strong empirical evidence for the effectiveness of the NFT algorithm and demonstrates that SL
alone can enable effective verification-driven training in math tasks.

Algorithm comparison. To isolate the contribution of the algorithm itself, we benchmarked various
online algorithms using identical training data, infrastructure, and general hyperparameters (Table
1). Results show that NFT matches or even surpasses state-of-the-art methods such as DAPO. Fig-
ure 6 and 11 present training curves across multiple runs. NFT exhibits convergence speed and final
performance on par with DAPO, further supporting its stability.

5.3 BENEFITS OF NEGATIVE DATA
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Figure 6: Training and validation accuracy curves for 7B experiments. We conducted 3-4 random
and independent experiments for each algorithm and report their mean ± std results.
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Figure 7: Average accuracy across 6 benchmarks for 32B experiments. More curves in Appendix D.
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Figure 8: Entropy curves for 7B and 32B runs.

Negative feedback enhances performance
and exploration. Table 1 shows that NFT con-
sistently outperforms RFT by a clear margin,
highlighting the benefit of incorporating nega-
tive feedback during training. Notably, we ob-
serve a clear divergence in training dynamics
between RFT and NFT. Across both 7B and
32B settings, RFT tends to reduce entropy over
time, whereas NFT and RL methods like DAPO encourage increasing entropy (Figure 8). This
suggests more exploration (Yu et al., 2025), potentially hindering why NFT outperforms RFT.

Negative feedback becomes increasingly important in larger models. The performance gap be-
tween RFT and NFT widens faster over training in 32B experiments compared with the trend in 7B
(Figure 11). Similarly, DeepSeek-AI (2025) also notes RL offers greater benefits over SFT in larger
models. A potential explanation could be the increasing importance of negative data: Larger models
already memorize well enough, so the ability to reflect on mistakes becomes a new bottleneck.

RFT remains a strong baseline. Although surpassed by numerous algorithms, RFT still deserves
attention due to its extreme simplicity. In 32B settings (Figure 11), learning from positive data
(RFT) contributes to 80% of the total gain achieved by our best-performing model, while negative
data only accounts for the remaining 20%. These findings echo recent studies (Yue et al., 2025;
Xiong et al., 2025; Liu et al., 2025a; Zhao et al., 2025; Wang et al., 2025), which suggest RL
primarily amplifies existing capabilities in large models rather than fostering new skills. How to
exploit negative feedback remains an open challenge with heavy potential.
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5.4 INGREDIENTS BEHIND NFT’S EFFECTIVENESS

We discuss two empirical design choices that notably help NFT achieve strong performance.

Prioritize harder questions. We find that assigning higher weights to difficult questions with a low
answer correctness rate r̂q can enhance model performance. We achieve this mainly by selecting
ω(q) in Eq. 10 from 3 choices: (1) ω(q) = 1. (2) ω(q) = 1− rq , which aligns NFT with Dr. GRPO
in on-policy training (Sec. 4). (3) ω(q) =

√
(1− rq)/rq , which aligns NFT with GRPO. Figure

9 visualizes different ω(q), and their effect for NFT and RFT. We find choices (2) and (3) perform
similarly, both outperforming constant weighting choice (1).

Avoid overpenalizing mistakes. The clip value ϵ of NFT (Eq. 10) sets an upper bound on the penalty
weight when the likelihood ratio Rt

θ for negative answers increases. When ϵ is small (e.g., near zero),
the algorithm empirically assigns high penalties to rising likelihoods of incorrect answers (Figure
10). However, our experiments show that overly aggressive penalization with ϵ → 0 degrades overall
performance. We thus adopt a default setting of ϵ = 1.0.

6 RELATED WORKS

Reinforcement Learning with Verifiable Rewards (RLVR) has advanced the frontier of LLM rea-
soning (DeepSeek-AI, 2025; OpenAI, 2024; Team et al., 2025; Chen et al., 2025c). Compared with
previous RL practices that rely on strong reward models (Wang et al., 2023b; Yuan et al., 2024;
Zhang et al., 2024) to simulate human feedback (Ouyang et al., 2022; Christiano et al., 2017; Cui
et al., 2025), RLVR turns to a ground truth verifier for providing reliable binary supervision (Lam-
bert et al., 2024; Shao et al., 2024). Moreover, unlike preference-based learning algorithms such as
DPO (Rafailov et al., 2023; Cai et al., 2023; Azar et al., 2024; Ethayarajh et al., 2024; Wang et al.,
2023a; Chen et al., 2024; Hong et al., 2024; Xu et al., 2023), RLVR does not require paired prefer-
ence data, rendering it more flexible and memory-efficient. Despite the demonstrated effectiveness
of RL algorithms in verification-driven training (Li et al., 2023; Ahmadian et al., 2024; Hu, 2025;
Yu et al., 2025; Chu et al., 2025b; Yuan et al., 2025; Yan et al., 2025), recent studies suggest that
supervised learning (SL) may also suffice for achieving verification-driven training in LLMs (Dong
et al., 2023). Our method further addresses SL’s inability to incorporate negative feedback (Hua
et al., 2024), bridging both the theoretical and the performance gap between the two fields.

A key design of NFT involves implicit policy modeling for direct policy optimization. This design,
emphasizing direct optimization via implicitly defined models, shares conceptual similarities with
some existing approaches. In preference-based training, DPO (Rafailov et al., 2023) introduces an
implicit reward model parameterized by the policy network to allow optimizing policies directly.
Recent visual modeling efforts also leverage implicit conditional or residual models parameterized
by generation networks to avoid guided sampling (Chen et al., 2025b;a; Zheng et al., 2025).

7 CONCLUSION

In this work, we introduce Negative-aware Fine-Tuning (NFT), a supervised approach that enables
LLMs to learn from their own negative generations. In online training, NFT substantially improves
upon supervised learning baselines through the additional leverage of negative feedback, achieving
performance comparable to leading RL algorithms like GRPO. Notably, we unveiled a theoretical
equivalence between NFT and GRPO under strict-on-policy conditions. These findings bridge the
conceptual and practical gap between SL and RL paradigms in verification-driven training.
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REPRODUCIBILITY

We submit code in the supplementary material. Code, model weights, and dataset will be released.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) solely as a writing assistant for language polishing and
improving clarity of presentation. The LLMs were not involved in research ideation, methodolog-
ical design, experimental execution, or result analysis. All scientific contributions and substantive
writing were carried out by the authors.
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A PROOF OF THEOREMS

Theorem A.1 (Policy Optimization with Negative Answers). Consider the maximum-likelihood
objective for training the implicit negative policy π−

θ :

max
θ

Ep(q)π−(a|q)
[
log π−

θ (a|q)
]
⇔ min

θ

[
− E(q,a)∼D− log

πold(a|q)− rqπ
+
θ (a|q)

1− rq

]
Assuming unlimited data and model capacity, the optimal solution for solving Eq. 8 is

∀q,a : π+
θ (a|q) = π+(a|q)

Proof. The proof is quite straightforward. First, we show that maximum-likelihood training leads
to the optimal solution π−

θ∗(a|q) = π−(a|q).

max
θ

Ep(q)π−(a|q)
[
log π−

θ (a|q)
]

⇔max
θ

Ep(q)π−(a|q)
[
log π−

θ (a|q)− log π−(a|q)
]

⇔min
θ

Ep(q)DKL

[
π−(a|q)∥π−

θ (a|q)
]

Since DKL

[
π−(a|q)∥π−

θ (a|q)
]
≥ 0. The equality holds if and only if ∀q : π−

θ = π−. We thus
have

∀q,a : π−
θ∗(a|q) = π−(a|q). (11)

Next, we prove π+
θ∗ = π+.

Note that that during training, π−
θ is only an implicit policy defined by π+

θ through

π−
θ (a|q) :=

πold(a|q)− rqπ
+
θ (a|q)

1− rq
.

On the other hand, the negative data distribution π− has the same relationship with π+ by Eq. 7.

π−(a|q) := πold(a|q)− rqπ
+(a|q)

1− rq
.

We have ensured 0 < rq < 1 during training, combining these observations and Eq. 11, we have

∀q,a : π+
θ∗(a|q) = π+(a|q)

Proposition A.2 (Algorithm Gradient Comparision). Suppose there are r̂qK positive answers
and (1− r̂q)K negative ones for a given question q

(a) GRPO Gradient: Consider only binary reward {0, 1} in Eq. 3, GRPO loss gradient satisfies

∇θLGRPO
D (θ) = −

∑{
rA+

q ·I
[
Rt

θ(q,a) < 1 + ϵ′
]
+(1−r)A−

q ·I
[
Rt

θ(q,a) > 1− ϵ′
]}

∇θR
t
θ(q,a),

where A+
q =

√
1−r̂q
r̂q

and A−
q = −

√
r̂q

1−r̂q
are respectively normalized advantages for answers.

(b) NFT Gradient: Let ω(q) =
√
(1− r̂q)/r̂q , NFT loss gradient satisfies

∇θLNFT
D (θ) = −

∑{
rA+

q · 1

Rt
θ(q,a)

+ (1− r)A−
q ·max

[1− r̂q Rt
θ(q,a)

1− r̂q
, ϵ
]−1

}
∇θR

t
θ(q,a).

Proof. (a) GRPO Gradient: We first copy down the GRPO loss definition from Eq. 3.

LGRPO
D (θ) = −

∑
q,a,t

min
[
Rt

θ(q,a)Âq,a, clip(Rt
θ(q,a), 1− ϵ′, 1 + ϵ′)Âq,a

]
.
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The normalized advantage can be estimated as

Âq,a :=
[
r(q,a)− mean{r1:K}

]
/ std{r1:K}

where mean{r1:K} =
1

K
[r̂qK ∗ 1 + (1− r̂q)K ∗ 0] = r̂q

and std{r1:K} =

√
1

K
[r̂qK ∗ (1− r̂q)2 + (1− r̂q)K ∗ (0− r̂q)2] =

√
r̂q(1− r̂q).

When a is a positive answer, r(q,a) = 1. We have A+
q =

√
1−r̂q
r̂q

> 0.

LGRPO
D+ (θ) = −

∑
q,a+,t

min
[
Rt

θ(q,a
+), 1 + ϵ′

]
Âq,a+

∇θLGRPO
D+ (θ) = −

∑
q,a+,t

A+
q · I

[
Rt

θ(q,a
+) < 1 + ϵ′

]
. (12)

When a is a negative answer, r(q,a) = 0. We have A−
q = −

√
r̂q

1−r̂q
< 0.

LGRPO
D− (θ) = −

∑
q,a−,t

max
[
Rt

θ(q,a
−), 1− ϵ′

]
Âq,a−

∇θLGRPO
D− (θ) = −

∑
q,a−,t

A−
q · I

[
Rt

θ(q,a
−) > 1− ϵ′

]
. (13)

Combining Eq. 12 and Eq. 13, we have

∇θLGRPO
D (θ) = −

∑{
rA+

q ·I
[
Rt

θ(q,a) < 1 + ϵ′
]
+(1−r)A−

q ·I
[
Rt

θ(q,a) > 1− ϵ′
]}

∇θR
t
θ(q,a),

(a) NFT Gradient: We copy down the NFT loss definition from Eq. 10.

LNFT
D (θ) = −

∑
q,a,t

ω(q)

[
r logRt

θ(q,a) + (1− r) logmax v(
1− r̂q Rt

θ(q,a)

1− r̂q
, ϵ)

]
When a is a positive answer, r(q,a) = 1.

LNFT
D+ (θ) = −

∑
q,a+,t

ω(q) logRt
θ(q,a)

= −
∑

q,a+,t

√
1− r̂q
r̂q

logRt
θ(q,a)

= −
∑

q,a+,t

A+
q logRt

θ(q,a
+)

∇θLNFT
D+ = −

∑
q,a+,t

A+
q

1

Rt
θ(q,a

+)
∇θR

t
θ(q,a

+) (14)

When a is a negative answer, r(q,a) = 0.

LNFT
D− (θ) = −

∑
q,a−,t

ω(q) log

[
max v(

1− r̂q Rt
θ(q,a

−)

1− r̂q
, ϵ)

]

= −
∑

q,a−,t

√
1− r̂q
r̂q

log

[
max v(

1− r̂q Rt
θ(q,a

−)

1− r̂q
, ϵ)

]
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∇θLNFT
D− =−

∑
q,a−,t

√
1− r̂q
r̂q

[
max(

1− r̂q Rt
θ(q,a

−)

1− r̂q
, ϵ)−1 · −r̂q

1− r̂q
· ∇θR

t
θ(q,a

−)

]

=−
∑

q,a−,t

−

√
r̂q

1− r̂q

[
max(

1− r̂q Rt
θ(q,a

−)

1− r̂q
, ϵ)−1 · ∇θR

t
θ(q,a

−)

]

=−
∑

q,a−,t

A−
q

[
max(

1− r̂q Rt
θ(q,a

−)

1− r̂q
, ϵ)−1 · ∇θR

t
θ(q,a

−)

]
(15)

Combining Eq. 14 and Eq. 15, we have

∇θLNFT
D (θ) = −

∑{
rA+

q · 1

Rt
θ(q,a)

+ (1− r)A−
q ·max

[1− r̂q Rt
θ(q,a)

1− r̂q
, ϵ
]−1

}
∇θR

t
θ(q,a).

Remark A.3 (Dr. GRPO). The main practical difference between Dr. GRPO (Liu et al., 2025b) and
GRPO is that Dr. GRPO removes the std normalization term when estimating group-normalized
advantages. Following Proposition 4.1, we simply need to set ω(q) = 1 − r̂q instead of ω(q) =√

1−r̂q
r̂q

to align with the Dr. GRPO loss function.

Proposition A.4 (On-policy Gradient Equivalence). Following the set up of Proposition 4.1 and
let ϵ ≤ 1, GRPO and NFT loss gradient are equivalent in on-policy training:

Rt
θ(q,a) = 1 =⇒ ∇θLNFT

D (θ) = ∇θLGRPO
D (θ)

Proof. The proof is simple. When on-policy, Rt
θ(q,a) = 1.

Regarding positive answers a+, GRPO gradient (Eq. 12) and NFT gradient (Eq. 14) both become

∇θLGRPO
D+ (θ) = ∇θLNFT

D+ (θ) = A+
q ∇θR

t
θ(q,a

+).

Regarding negative answers a−, GRPO gradient (Eq. 13) and NFT gradient (Eq. 15) both become

∇θLGRPO
D− (θ) = ∇θLNFT

D− (θ) = A−
q ∇θR

t
θ(q,a

−).

B DISCUSSION FOR CONTINUOUS REWARDS

In this section, we explain how NFTs can be extended to continuous reward settings.

First, we define r := p(o = 1|q,a) ∈ [0, 1], where o = 1 means the answer is an optimal answer.

Then we define positive and negative distributions.

π+(a|q) := π(a|q,o=1) =
πold(a|q)p(o=1|q,a)∑
A πold(a|q)p(o=1|q,a)

∝ πold(a|q)r(q,a),

π−(a|q) := π(a|q,o=0) =
πold(a|q)p(o=0|q,a)∑
A πold(a|q)p(o=0|q,a)

∝ πold(a|q)[1− r(q,a)],

rqπ
+(a|q) + [1− rq]π

−(a|q) = πold(a|q),
Finally we copy training objective Eq. 9 below.

LNFT
(a,q,r)∼D(θ) = r

[
− log

π+
θ (a|q)

πold(a|q)

]
+ (1− r)

− log
1− rq

π+
θ (a|q)

πold(a|q)

1− rq

 (16)

Theorem B.1 (NFT for continuous rewards). Consider the training objective of Eq. 16 with
arbitrary continuous rewards r(q,a) ∈ [0, 1]. Suppose we can accurately estimate rq =
Eπold(a|q)r(q,a). Assuming unlimited data and model capacity, the optimal solution satisfies

∀q,a : π+
θ∗(a|q) = π+(a|q)

16
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Proof.

∇θLNFT
(a,q,r)∼D(θ) = ∇θ

[
r(q,a)

[
− log π+

θ (a|q)
]
+ (1− r(q,a))

[
− log

πold(a|q)− rqπ
+
θ (a|q)

1− rq

]]
=

[
r(q,a)

[
− 1

π+
θ (a|q)

]
+ (1− r(q,a))

[
rq

πold(a|q)− rqπ
+
θ (a|q)

]]
∇θπθ(a|q)

=

[
rqπ

+
θ (a|q)− r(q,a)πold(a|q)

π+
θ (a|q)[πold(a|q)− rqπ

+
θ (a|q)]

]
∇θπθ(a|q)

When rqπ
+
θ (a|q)− r(q,a)πold(a|q) = 0, that is

π+
θ (a|q) =

r(q,a)πold(a|q)
rq

= π+(a|q)

We have ∇θLNFT
(a,q,r)∼D(θ) = 0 constantly holds.

C EXPERIMENT DETAILS

General training setup. All algorithms are implemented based on the official DAPO codebase
within the VeRL framework. We use a learning rate of 1e-6 with a linear warm-up schedule across
all experiments. At each rollout step, we generate 16 answers for each of 512 sampled questions,
then split the data into 16 mini-batches and train the policy network for 16 gradient steps. Models
are trained for 320 rollout steps, totaling over 5,000 gradient steps. Unless otherwise specified, we
follow DAPO’s default design choices, including dynamic data sampling, token-level loss normal-
ization, and no KL regularization. For 7B training, we restrict context lengths to 4K and use 64
NVIDIA H100 GPUs. For 32B training, we restrict context lengths to 32K (DAPO) or 16K (others),
and use 128-256 NVIDIA H100 GPUs.

DAPO. is a variant of GRPO that has achieved state-of-the-art AIME performance on 32B models.
Our NFT implementation is adapted from the official DAPO codebase, based on the VeRL frame-
work (Sheng et al., 2024). NFT inherits most of DAPO’s hyperparameters and design choices, in-
cluding dynamic data sampling, token-level loss normalization, and no KL regularization. We adopt
a faithful implementation of the official DAPO codebase, keeping all hyperparameters untouched.

NFT. Compared with DAPO, NFT modifies the context length to 16K for 32B training. We find this
does not significantly affect performance, but noticeably reduces data collection time. Another dif-
ference is that we remove the overlong reward shaping technique of DAPO to ensure a binary reward
outcome. In our setting, truncated answers are treated as negative, which sufficiently discourages
overlong answers. The negative ratio clipping parameter is set to ϵ = 1.0, and the prompt weight is
defined as ω(q) = 1− rq .

RFT is a simple but effective SL baseline that only fine-tunes LLMs on positive answers and throws
away negative data. In our implementation, the main difference between RFT and NFT is that RFT
zeros out negative data loss and keeps a constant prompt weight ω(q) = 1 during training. For RFT,
we zero out negative data loss in NFT implementation and keep a constant prompt weight ω(q) = 1
during training.

GRPO does not adopt the dynamic sampling technique proposed by DAPO. Rather, it simply lever-
ages all data for training, even though the gradient for all-positive or all-negative questions should be
zeroed out automatically by the algorithm itself (Yu et al., 2025). Other DAPO-related techniques
are kept, such as setting positive clipping parameter to a higher value ϵ′+ = 0.28. Since GRPO
requires less time for sampling data, we train GRPO models for 580+ rollout steps instead of 320
steps, which roughly takes the same training time compared with DAPO experiments.

Dr. GRPO is modified from our GRPO implementation. The only difference is the removal of the
std normalization when computing group-normalized advantages.

Iterative DPO. Comparing DPO with other RL algorithms in a head-to-head fashion is difficult
because DPO requires paired data to calculate the training objective, while we sample 16 unpaired

17
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answers for each question. To solve this problem, we take the implementation of InfoNCA (Chen
et al., 2024), a variation of the DPO algorithm that can handle K > 2 responses per question:

LInfoNCA
(q,a1:K ,r1:K)∼D(θ) = −

K∑
k=1

[
r(k)∑K
i=1 r

(i)
log

eβRθ(q,a
k)∑K

i=1 e
βRθ(q,ai)

]
InfoNCA is guaranteed to become DPO algorithm in K = 2 settings. We ablate β ∈
{0.1, 0.01, 0.02} and report the best averaged validation result. We find InfoNCA training to be
unstable and add an SFT regularization term to the original loss function for stabilizing the training
process.

Validation details. Validation is performed with a top-p value of 0.7. The temperature is set to 1.0
for 7B models and 0.6 for 32B models, with context lengths matching the training configuration.
We use math-verify (Kydlı́ček, 2024) as the verifier during training validation, and simpleRL
(Zeng et al., 2025) for final evaluation. The DAPO-17k benchmark consists solely of training
questions whose ground truth answers are integers and includes both a prefix and a lastfix for each
question. Accordingly, for validation on AIME and AMC questions, we adapt the prompt format
to match the training pattern. For other benchmarks with non-integer answers, question prompts
remain unmodified.

D ADDITIONAL EXPERIMENT RESULTS
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Figure 11: Training and validation accuracy curves for 32B experiments.
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