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Abstract

A mainstream of Multi-modal Large Language Models (MLLMs) have two es-
sential functions, i.e., visual recognition (e.g., grounding) and understanding (e.g.,
visual question answering). Presently, all these MLLMs integrate visual recognition
and understanding in a same sequential manner in the LLM head, i.e., generating
the response token-by-token for both recognition and understanding. We think uni-
fying them in the same sequential manner is not optimal for two reasons: 1) parallel
recognition is more efficient than sequential recognition and is actually prevailing
in deep visual recognition, and 2) the recognition results can be integrated to help
high-level cognition (while the current manner does not). Such motivated, this pa-
per proposes a novel “parallel recognition → sequential understanding” framework
for MLLMs. The bottom LLM layers are utilized for parallel recognition and the
recognition results are relayed into the top LLM layers for sequential understanding.
Specifically, parallel recognition in the bottom LLM layers is implemented via
object queries, a popular mechanism in DEtection TRansformer, which we find to
harmonize well with the LLM layers. Empirical studies show our MLLM named
Octopus improves accuracy on popular MLLM tasks and is up to 5× faster on
visual grounding tasks.

1 Introduction

Visual recognition and understanding are two essential abilities for Multi-modal Large Language
Models (MLLMs). While earlier MLLMs [1, 2, 3, 4] focused on the high-level visual understanding
ability (e.g., visual question answering), recent literature finds that visual recognition ability (i.e.,
identifying and locating the objects) are no less important. The importance lies in two aspects: 1)
Many newly-merged MLLM usages are directly related to visual recognition, e.g., visual grounding
[5, 6] and referential dialog [6]. 2) More generally, visual recognition is potential to benefit all
understanding tasks as recognition results are important compositions for understanding. In this
paper, we are interested in better harmonizing these two essentials for MLLM.

Presently, MLLMs unify visual recognition and understanding in a sequential paradigm. In this paper,
the terms “sequential” and “parallel” refer specifically to the inference of LLM head, rather than the
visual encoder. Typically, an MLLM consists of a visual encoder and an LLM head. During inference,
the LLM head sequentially generates the response token-by-token, regardless of whether the task
is more aligned with visual recognition (e.g., grounding) or understanding (e.g., visual question
answering), as in Fig. 1 (left). Sequentially referring the recognition results, particularly textualized
coordinates, is relatively slow. This sequential manner is a legacy of the LLM structure and, more
fundamentally, stems from the inherently sequential nature of language.
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What is funny about this picture? Please 
give positions for the objects you mentioned.

UserPrior MLLMs Our Octopus

This picture is funny because a cat
[0.15, 0.47, 0.45, 0.69]

This picture is funny because a cat
[0.15, 0.47, 0.45, 0.69] is lying on the
sofa [0.00, 0.21, 0.55, 1.00]

This picture is funny because a cat
[0.15, 0.47, 0.45, 0.69] is lying on the
sofa [0.00, 0.21, 0.55, 1.00] with a
remote control [0.32, 0.68, 0.40, 0.82]
nearby, giving the impression that it is
watcing TV.

This picture is funny because a
cat is lying on the sofa with a
remote control nearby, giving the
impression that it is watching TV.

Parallel Recognition (bottom LLM layers)

Sequential Understanding (top LLM layers)Sequential Recognition & Understanding

[0.00, 0.21, 0.55, 1.00]

[0.32, 0.68, 0.40, 0.82]

[0.32, 0.68, 0.40, 0.82]

Figure 1: Comparison between prior MLLMs (left) and our Octopus (right). Left: Prior MLLMs
typically adopt the purely sequential inference: the LLM head infers the response token-by-token,
regardless whether the response token is more aligned with recognition (e.g., detection) or under-
standing. Sequentially inferring the position is slow. Right: In contrast, Octopus establishes a
“parallel recognition → sequential understanding” framework. The bottom LLM layers first recognize
potential objects via visual grounding or referring segmentation (in Appendix:B). The recognition
results (coupled with visual tokens) are relayed into top LLM layers. The top LLM layers thus
do NOT infer the object position but instead, they select boxes (or masks) that have already been
detected. The entire Octopus LLM head (recognition + understanding) is trained end-to-end.

We conjecture the purely sequential paradigm might not be an optimistic framework for MLLM,
especially regarding visual recognition and its cooperation with understanding. There are two reasons:

• First, for both human and deep learning, visual recognition relies heavily on parallel processing
for high efficiency. Before the MLLMs era, most deep recognition models are built on the parallel
paradigm. For instance, the segmentation model infers the semantic for all pixels simultaneously,
and the detection model detects all the objects using parallel anchors [7, 8] or queries [9, 10, 11, 12].
Humans also use parallel processing for simple recognition [13, 14, 15]. In contrast, current purely
sequential paradigm lacks efficiency for visual recognition.

• Second, regarding the cooperation between visual recognition and understanding, there is a hierarchy
of “parallel recognition → sequential understanding”, as revealed by psychology and neurobiology
discoveries [14, 15]. Relatively easier and low-level recognition results are integrated via more
complex mental operations to help high-level cognition [13]. This hierarchy allows the understanding
to take advantage of the recognition results, while the purely sequential paradigm does not offer such
a benefit.

This paper proposes the Octopus (the octopus animal has a central brain and multiple parallel
“auxiliary brains”) framework to improve the efficiency of recognition, and to harness the benefit of
the aforementioned cognition hierarchy. Octopus separates visual recognition and understanding into
parallel and sequential processes, respectively, and then re-integrates them in a “parallel recognition
→ sequential understanding” hierarchy. The comparison between purely sequential MLLMs and
Octopus is illustrated in Fig. 1.

Given visual tokens from the visual backbone, Octopus’s LLM head uses the bottom layers to
detect the potential objects in parallel. The detection results, coupled with the visual tokens, are fed
into the sub-sequential LLM layers for further understanding. Though the understanding remains
sequentially token-by-token, it deviates from previous MLLMs by eliminating the need to infer the
position of objects. Instead, it selects previously-detected boxes and associates them with the objects,
markedly improving efficiency. For example, on Flickr30k dataset (average 4 objects per image),
Octopus reduces the time of recognizing all objects to about 21% (3.80s to 0.82s per image, 5×
increase in speed). Moreover, we empirically find that Octopus improves the accuracy on a range
of understanding tasks compared to its purely sequential counterpart. It indicates that the initial
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parallel recognition can effectively support the understanding, revealing a clear advantage of the
brained-inspired cognitive hierarchy.

Another significant feature of Octopus is: it can automatically adjust its recognition modes, oscillating
between class-agnostic and class-specific, based on user instructions. This flexibility provides
versatile usages for various tasks. For instance, in a grounding task where users specify the particular
interest ,e.g., a cat, the recognition part of Octopus becomes class-specific and and predicts multiple
candidates for the object of interest. The understanding part then selects the best candidate for the
final response. In contrast, in another scenario, where the users do not specify any particular interest
and request a detailed enumeration (including the position), the recognition part automatically shifts
into a class-agnostic detector. Correspondingly, the understanding part then assigns semantics to the
detection results. This flexibility originates from the knowledge in the bottom LLM layers designated
for recognition.

Our main contributions are as summarized as follows:

• We investigate the cooperation between recognition and understanding in current MLLMs. As a
result, we identify an efficiency issue with the purely sequential paradigm, as well as a significant
discrepancy from human cognitive processes.

• We propose the Octopus framework for MLLM. Octopus separates recognition and understanding
into parallel and sequential processes, respectively, and re-integrates them into a “parallel recognition
→ sequential understanding” hierarchy.

• Extensive experiments show Octopus improves inference efficiency and enhances the accuracy,
compared to the purely sequential counterpart.

2 Related Works

Multi-modal Large Language Model. The recent success of large language models (LLMs) has
spurred research into integrating LLMs with computer vision for visual understanding. Flamingo [16]
adds trainable cross-attention layers to each LLM decoder layer to learn visual information. BLIP-
2 [3] introduces the Q-Former to align visual and language spaces. Mini-GPT4 [2] and mPLUG-
OWL [17] also use the Q-Former for visual understanding. LLaVA [18] connects the pretrained
CLIP [19] visual encoder to the LLM with a simple vision-language connector, achieving strong
performance. These efforts demonstrate the potential of Multi-modal Large Language Models
(MLLMs) for complex multi-modal tasks.

Using MLLMs for Visual Recognition. Inspired by that LLM have unified various NLP tasks into
a generation problem in one architecture, recent MLLM works manifest to solve traditional visual
recognition tasks in a unified MLLM architecture. Object detection, a key visual recognition task,
poses a challenge in expressing positional information in language within MLLM frameworks. Some
literature [6, 20, 21, 2] convert the bounding box into natural language format and directly generate
them in text response. However, representing bounding boxes in text form may not be optimal
since the bounding box coordinates are numerical data and are typically predicted by regression.
Some works [22, 23] use output embeddings of LLM as the understanding pivot to call an object
detector for detection. However, the LLM can not benefit from the object detection results from the
detector to enhance its own understanding. A more challenging scenario is the segmentation task,
in which the ground-truth can be in random shape and seems indescribable via language. To tackle
this problem, VisionLLM [24] represents the segmentation mask in text format by representing the
mask by the coordinates of the mask polygon. Sphinx [21] and LLaVA-Plus [25] utilize an offline
model SAM [26] for segmentation. They first generate the bounding box of the object to segment
using MLLM, then they prompt SAM to generate the segmentation mask. LiSA [27] integrates SAM
into MLLM for joint training. They introduce a special “<SEG>” token to predict the segmentation
mask. However, a single “<SEG>” token cannot differentiate between multiple instances, limiting it
to outputting only one segmentation mask.
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Figure 2: The overall training process of Octopus. We omit the visual backbone to highlight the LLM
head. Octopus inputs multiple object queries into the LLM head, in addition to the image tokens and
text prompt tokens,. After passing through several bottom LLM layers, the object queries are fed into
a DETR decoder for parallel recognition. The recognition is not the canonical close-set detection,
but can be class-agnostic detection, visual grounding, referring segmentation, etc., depending on the
user prompt (as shown in Fig.3). Afterwards, these object queries, coupled with the image token and
text tokens, are then sent into the upper LLM layers for sequential understanding. When the users
ask for spotting the mentioned objects (e.g., visual grounding), Octopus finds the object query that
detects each object (e.g., the 2nd object query detects the cat) and points out this object query via a
corresponding index token “<d2>”. The structure of Octopus and its training details are elaborated in
Section 3.2 and Section 3.3.

3 Approach

3.1 Preliminaries

Sequential inference in prior MLLMs. Prior MLLMs [1, 2, 21] solve traditional visual recognition
tasks (e.g., object detection, instance segmentation) in a sequential generation paradigm. Specifically,
they represent the outputs of visual recognition in a natural language format. For example, the bound-
ing boxes are denoted by the coordinates of their corners: “[xmin, ymin, xmax, ymax]”, and segmenta-
tion masks are represented by coordinates of points in polygon mask: “[x1, y1, x2, y2, . . . ]”. Hereby,
each numerical value is expressed as multiple text tokens. Sequentially generating all these position
tokens can be quite time-consuming, e.g., 25 tokens for a bounding box “[0.152,0.475,0.451,0.692]”.
Moreover, generating each token at its core, is based on classification. In contrast, coordinates are
inherently numerical and are typically predicted through regression. This discrepancy suggests that
sequential generation may not be the optimal approach for visual recognition.

A revisit to DEtection TRansformer (DETR). Octopus uses a light-weight DETR decoder to
cooperate with the bottom LLM layers for parallel visual recognition, as illustrated in Fig. 2. We first
give a brief revisit to DETR below.

DETR [9] is an end-to-end object detection approach based on transformer. A DETR model consists of
a visual backbone, an encoder, and a transformer decoder. The backbone and the encoder transforms
an input image into image feature F. Afterwards, the DETR decoder employs a set of parallel object
queries Q = {q1, q2, . . . , qk} to absorb image features through stacked cross-attention layers, which
is formulated as:

Q̄ = Decoder(F,Q), (1)

in which Q̄ is the output state of object queries. Finally, the DETR decoder append class and box
predictors upon the object queries to predict their category and bounding box, respectively:

B = box(Q̄), S = cls(Q̄), (2)

4



User: Where is the white-pink umbrella?
Octopus: <d9>

User: What fruits are in the plate?
Octopus: It contains apples and rambutan.

User: Describe the image with positions.
Octopus: Two girls <d50> <d26> sit on the
grass <d19> beside a lake <d18>.

(a) (b) (c)

Figure 3: Visualization the Results. We visualize the detection results and the LLM output from
Octopus on three tasks: (a) Spotting Caption, (b) Referring Expression Comprehension (REC), and
(c) Visual Dialogue. In the Spotting Caption task, DETR identifies all foreground objects (highlighted
in blue), while in REC, DETR locates only the object-of-interest (highlighted in green) as dictated by
the prompts. DETR seamlessly transitions between these two modes based on user input. In the case
of Visual Dialogue, since the users do NOT ask the MLLM to output object positions, the LLM output
does not contain box information, correspondingly. However, Octopus can still localize the objects
from the intermediate recognition results (we visualize the detection results with a classification score
greater than 0.5).

in which B is the bounding boxes and S is the classification scores. In Octopus we employ DETR as a
class-agnostic detector, S ∈ R1 denotes whether an object is foreground or background. Consequently,
DETR is independent of the number of classes in the training dataset.

We choose DETR decoder to implement visual recognition for the following reasons: 1) The object
queries allow for parallel recognition. 2) The versatility of DETR offers the potential to handle
more visual recognition tasks. In addition to object detection, DETR can be adapted for many
other recognition tasks, e.g., segmentation [28, 29, 30], pose estimation [31, 32, 33], and object
tracking [34, 35, 36]. 3) The object queries can absorb user prompts through attention layers. This
allows Octopus to recognize random objects described in natural language, as will be detailed in the
following section.

3.2 The structure of Octopus

The overall architecture of Octopus is shown in Fig. 2. The image features F extracted the visual
encoder is projected into image tokens V = {v1, v2, . . . , vm}. The text prompts are tokenized and
encoded into text tokens T = {t1, t2, . . . , tn}. Based on this standard MLLM structure, Octopus ad-
ditionally employs k object queries Q = {q1, q2, . . . , qk}. Each qi ∈ RD has the same dimension D
as the image and text tokens. The object queries are placed after image tokens and prompt text tokens.
Consequently, V,T and Q are concatenated and jointly fed into the LLM head, which facilitates
parallel recognition and then sequential understanding as below.

Parallel recognition. In the bottom LLM layers, the object queries Q interact with the image tokens
V and text tokens T through attention. This interaction aligns the object queries with the hidden states
of user prompts and image tokens. In benefit of the language knowledge that is embedded in the LLM
layers, the object queries thus absorb information from the user prompts and get an understanding of
the user interest. It makes the recognition adaptive to user prompts and is crucial for visual grounding
tasks, e.g., referring expression comprehension (REC). Afterwards, the object queries are fed into a
lightweight (4-layers) DETR decoder to detect the objects. Both the Q-V-T interaction and the object
detection DETR decoder are in parallel, yielding the complete recognition for Octopus.

Discussion: It’s worth noting that the key difference between the integrated DETR decoder in
Octopus and traditional DETR trained on closed-set is that in Octopus the DETR decoder makes
predictions based on user prompts. The predictions made by Octopus DETR can be class-agnostic
detection, visual grounding, referring segmentation, etc., depending on the user prompt. Fig. 3 shows
DETR predicts the objects-of-interest depending on user prompts. For example, e.g., it tries to locate
all objects in the image, given the user prompt “Please detect all objects in the image”. Given another
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user prompt “Please spot the black-and-white cat in the image”, DETR focuses on identifying the
specified cat rather than other objects.

Sequential understanding. The recognition results, i.e., the object queries output from the DETR
decoder, coupled with the hidden states of V and T, are relayed into the following LLM layers. These
recognition results will be absorbed into the final output tokens which form the model response, e.g.,
image captions or visual question answers, in a sequential manner.

In visual grounding tasks, the model response is expected to contain bounding boxes for the mentioned
objects. In the previous MLLMs, the bounding box is represented in natural language form, which
takes multiple tokens and is time-consuming to generate (Section 3.1). In contrast, Octopus does
not generate the text of the bounding box in a sequential manner, but instead, it selects the detection
boxes predicted by the DETR. For example, in Fig. 2, the 2nd object query from the DETR decoder
detects the cat. In the LLM output, Octopus generates a special token “<d2>” which indexes the
2nd object query after the “cat” token. We name the token that indexes an object query as index
token. Consequently, Octopus becomes aware of the position of the cat by selecting the bounding
box corresponding to the predicted index token. How Octopus learns to predict the index tokens is
elaborated in the following Section 3.3.

3.3 Training Octopus

Training Octopus involves supervision of two components: the DETR output and the LLM output.
These components are trained jointly, meaning that both the DETR decoder and the LLM are
optimized together.

Supervision on the DETR output. Given the detection predictions Y = {(s1,b1), . . . , (sk,bk)}
and the ground-truth objects Ȳ = {(1, b̄1), . . . , (1, b̄N )}, DETR uses the Hungarian algorithm to
find the optimal assignment σ(·), where each ground-truth object is assigned to its best-matched
prediction. Here, (si,bi) indicates the predicted classification scores and bounding boxes from query
qi. All objects in the targets are treated as foreground objects, and thus, a binary classifier is used to
predict whether an object query is foreground or background (non-object). The classification loss
ℓcls(·) is computed using binary cross-entropy, and the box regression loss ℓbox(·) is computed using
L1 box distance and GIoU loss:

LDETR =

N∑
n=1

(ℓcls(sσ(n), s̄n) + ℓbox(bσ(n), b̄n)), (3)

Supervision on the LLM output. The LLM output is supervised through the next-token-prediction
manner. However, supervising the object position differs significantly. We recall that for spotting
objects, the LLM head does not generate the bounding boxes through text, but predicts an index token
that points to the corresponding detection result. Correspondingly, during training, Octopus is trained
to predict the index token following each mentioned object. The ground-truth index token is not fixed,
but dynamically determined on-the-fly in each training iteration.

Identifying the index token requires matching the ground-truth object to its nearest object query. To
this end, we get the predicted bounding box b̄ (the subscript is omitted) of all object queries, and then
find the nearest query for the ground-truth object at b by:

Cloc =
∥∥b̄− b

∥∥+
(
1− GIoU(b̄,b)

)
, (4)

We replace the bounding boxes in the response with the index tokens to the matched object queries.
This process introduces slight overload to the training (increasing ∼ 10% training time). In inference,
the index tokens are directly generated in the response. Since we exclusively use index tokens to
represent bounding boxes without the need to generate bounding boxes token-by-token, our method
is significantly faster than previous MLLMs.

The LLM computes the training loss as the language modeling loss using next-token prediction, the
same as prior MLLMs.

LLM = −
K∑
i=1

logP (yi|y<i), (5)

where yi represents the target token at position i. The overall training objective is the combination of
DETR training loss and language modeling loss.
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Table 1: Results on Referring Expression Comprehension benchmarks. We note that Octopus with
resolution 224/336 is up to 5×/4× faster than a purely sequential counterpart Shikra (resolution 224)
and achieves higher accuracy. More details of the inference speed comparison are reported in Sec. 4.5

Model Type Method Res.
RefCOCO RefCOCO+ RefCOCOg

val test-A test-B val test-A test-B val test

Generalists

OFA-L[37] 480 79.96 83.67 76.39 68.29 76.00 61.75 67.57 67.58
VisionLLM[24] 224 - 86.70 - - - - - -
Shikra [6] 224 87.01 90.61 80.24 81.60 87.36 72.12 82.27 82.19
MiniGPT-v2 [38] 448 88.06 91.29 84.30 79.58 85.52 73.32 84.19 84.31
Octopus 224 88.77 91.93 82.28 83.05 88.87 75.12 83.11 84.78
Octopus 336 89.02 92.63 83.42 83.55 89.40 76.02 84.25 86.19

Specialists
G-DINO-L [39] 512 90.56 93.19 88.24 82.75 88.95 75.92 86.13 87.02
UNINEXT-H [40] 640 92.64 94.33 91.46 85.24 89.63 79.79 88.73 89.37

4 Experiments

4.1 Settings

Training details. We train Octopus via three stages, i.e., stage-1 for pretraining vision-language align-
ment, stage-2 for pretraining the DETR recognition module, and stage-3 for end-to-end instruction
fine-tuning. The details are as below:

1) Stage-1 pretrains the vision-language connector for vision-language alignment using LLaVA
pretraining data [18]. The visual encoder and LLM are frozen and only the vision-language connector
is trained. 2) Stage-2 pretrains the DETR module on small-scale grounding detection datasets
(RefCOCO [41], RefCOCO+ [42], RefCOCOg [42] and Flickr30k [43]) to quickly obtain the
recognition ability. We freeze LLM and visual encoder and only train the DETR module in this stage.
Stage-2 is mainly for training efficiency, i.e., fast adapting the DETR decoder to the LLM layers. 3)
In stage-3, we finetune the whole LLM head and DETR decoder on LLaVA-Instruct [18], REC data
(RefCOCO, RefCOCO+, RefCOCOg, Visual Genome [44]), and Flickr30k end-to-end. Please refer
to the Appendix for details of the training datasets.

We adopt AdamW as the optimizer and cosine annealing scheduler. The learning rate is initialized to
1e-4 for stage-1 and stage-2, and 2e-5 for stage-3. The entire training takes about 2 hours for Stage-1
(1 epoch), 4 hours for Stage-2 (2 epochs) and 120 hours for Stage-3 on 8 NVIDIA A100 GPUS.

Architecture details. Octopus adopts the ViT pre-trained from CLIP as the visual encoder. All the
vision-language connectors are one-layer MLP with random initialized. The LLM head is initialized
with Vicuna-7B-v1.5 [45] and the DETR decoder consists of 4 standard DETR decoder layers. We
employ 64 object queries and place the DETR decoder after the 16-th LLM layer.

4.2 Evaluation on REC datasets

We evaluate Octopus’s recognition ability on 3 popular referring expression comprehension datasets,
i.e., RefCOCO, RefCOCO+ and RefCOCOg. In Table 1, Octopus achieves the highest accuracy on
seven out of eight dataset splits, among the compared generalist MLLMs. For example, Octopus out-
performs MiniGPT-v2 [46] by +0.96% on val split and +1.34% on test-A split of RefCOCO dataset.
On RefCOCO+, the superiority is even larger, e.g., surpassing MiniGPT-v2 by +3.97% on val split,
+3.92% on test-A split and +2.70% on test-B split.

We particularly note the comparison against Shikra, a purely sequential counterpart that adopts the
same backbone as our Octopus and shares the same training data. Octopus (resolution 224) is up to
5× faster than Shikra under the same image resolution and consistently achieves higher accuracy,
e.g., +1.51% on RefCOCO+ test A. When scaling up the image resolution to 336, Octopus is still
4× faster than Shikra (resolution 224) and further enlarges the accuracy superiority to + 2.04% on
RefCOCO+ test A. These observations show that parallel recognition improves both the efficiency
and accuracy for recognition.
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Table 2: Results on Visual Question Answering benchmarks. Note that specialists are fine-tuned
on each individual evaluation dataset. We gray out those specialists methods, as well as the fine-tuned
results of generalists.

Model Type Method
#LLM

Res. VQAv2 OKVQA GQA VizWiz SciQA
Params

Generalists

BLIP2 [3] 11B 224 65.0 45.9 41.0 19.6 61.0
InstructBLIP [4] 11B 224 - - 49.2 34.5 60.5
Unified-IOXL [47] 2.7B 256 77.9 54.0 - - -
PaLM-E-12B [48] 12B 224 76.2 55.5 - - -
Shikra [6] 7B 224 77.4 47.2 - - -
Octopus 7B 224 78.5 56.0 62.29 45.6 65.7

LLaVA-1.5 [49] 7B 336 78.5 - 62.0 50.0 66.8
Qwen-VL-Chat [50] 7B 448 78.2 56.6 57.5 38.9 68.2
Octopus 7B 336 79.2 57.2 63.3 50.1 67.7

Specialists
GIT [51] 0.7B 384 78.6 - - 68.0 -
GIT2 [51] 5.1B 384 81.7 - - 71.0 -
PaLI-17B [52] 17B 580 84.3 64.5 - 71.6 -

Table 3: Results on popular VL benchmarks. MMB is MMBench [53], LLaVAW is LLaVA-Bench
(In-the-Wild) [18] and MM-V is MM-Vet Benchmark[54]. POPE [55] is reported on the average F1
score of three splits (Adersarial, Popular and Random).

Method #LLM
Params Resolution MMB LLaVAW SEED MM-V POPE

BLIP-2[3] 13B 224 - 38.1 46.4 22.4 -
InstructBLIP [4] 7B 224 36.0 60.9 53.4 26.2 -
InstructBLIP [4] 13B 224 - 58.2 - 25.6 78.9
IDEFICS [16] 7B 480 48.2 - - - -
IDEFICS [16] 65B 480 54.5 - - - -
LLaVA-1.5 [49] 7B 336 64.3 65.4 58.6 31.1 84.2
QwenVL-Chat [50] 7B 448 60.6 - 58.2 - -
Shikra [6] 7B 224 58.8 - - - 83.9
Octopus 7B 224 66.2 63.9 58.6 32.1 84.8

4.3 Evaluation on VQA datasets

General visual question answering (VQA) is a widely employed task for MLLMs. We compare
Octopus on 5 VQA datasets against multiple competing MLLMs in Table 2. It is observed that
Octopus achieves competitive results under both 224 and 336 resolution settings. For instance, at
a 224 image resolution setting, Octopus outperforms Shikra [6] by +1.10Moreover, it surpasses
InstructBLIP [4] by +13.09%, +11.1%, and +5.2% on GQA, VizWiz, and SciQA, respectively.

We note that on these datasets, MLLMs are not asked to provide position of the mentioned objects,
but Octopus still gains benefit from parallel visual recognition. This suggests that the recognition
effectively supports the subsequent understanding, validating the benefit of “parallel recognition →
sequential understanding” hierarchy.

4.4 Evaluation on recent MLLM benchmarks

We report the performance on the recent popular MLLM benchmarks in Table 3. It is observed
that Octopus performs favably against purely sequential counterparts on the five benchmarks. For
example, Octopus is higher than Shikra by +7.4% on MMBench and +0.9% on POPE, respectively.
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Table 4: Comparison of inference speed. We compared the inference speed of our method with
the baseline method Shikra [6] on two benchmarks. The reported inference times (in seconds) are
averaged for one record across the datasets. RefCOCO contains exactly 1 bounding box in outputs,
and Flickr30k contains on average 4 boxes in outputs. Our method is much faster (∼ 5×) than the
baseline in both resolutions.

Method
#LLM

Resolution
RefCOCO Flickr30k

Params infer time ↓ FPS ↑ infer time ↓ FPS ↑
Baseline 7B 224 0.89 1.12 3.80 0.26
Octopus (ours) 7B 224 0.17 5.88 0.82 1.21
Baseline 7B 336 1.16 0.86 6.08 0.16
Octopus (ours) 7B 336 0.27 3.70 1.49 0.67

12 14 16 18 20

78.7
79.4 79.5

79.1

78.2

(a) 48 64 80 100 120

78.1

79.5 79.5

77.9

76.5

(b)

Figure 4: Influence of the recognition layers and number of object queries. We evaluate our
method on RefCOCOg val benchmark. We did not use Visual Genome data [56] in training for
efficiency. (a) Influence of the number of LLM layers employed for recognition. (b) Influence of the
number of object queries.

Octopus also outperforms InstructBLIP by +3.0% on LLaVA-Bench, +5.2% on SEED and +6.5% on
MM-Vet, respectively.

4.5 Ablation Study

The number of LLM layers employed for recognition. We study the optimal layer for positioning
DETR within LLM. Fig. 4 (a) illustrates our method’s performance on the RefCOCOg val benchmark
when placing DETR after different LLM layers. We find that the optimal placement for DETR is
after the 16th LLM layer, which is the middle layer of the LLM (consisting of 32 layers in total). We
infer that positioning DETR on a lower layer might limit its comprehension of the instruction prompt,
while placing it at a higher layer harms the ability of LLM to infer the correct index tokens for the
mentioned objects.

Number of object queries. We compare the impact of different object query number on performance
in Fig. 4 (b). We evaluate Octopus on the val split of RefCOCOg benchmark and observe that 64
and 80 object query achieved the best performance in our setup. We infer that using insufficient
object queries will hamper the recognition capabilities of the bottom LLM layers. On the other hand,
although an excess of object queries can enhance the LLM’s perception ability for foreground objects,
it also increases the complexity for the LLM to select the correct object queries in the final output.

Inference speed. We compare the inference speed of our method against the traditional MLLM on
the grounding detection data. As shown in Table 4, our method is much faster (5×) on all benchmarks.
This is attributed to that our method does not require to generate bounding boxes in discrete tokens.
For each bounding box, we only need to generate an index token to the corresponding detection
results predicted by the DETR module. It saves 24 tokens in generating one box, which is more
significant in scenarios where a larger number of objects exist.

Qualitative analysis. We visualize the recognition results predicted by DETR for non-grounding
data, such as VQA and instruction dialogue, in which no bounding boxes are provided and generated.
As shown in Fig. 3 (c), DETR still locates the mentioned objects in the user prompt even if it is not in
grounding data format. The detection results are helpful for VQA and some tasks, where the MLLM
needs to locate the mentioned objects in the image and answer specific questions.
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5 Limitation and Conclusion

Limitations. Due to limited GPU resources, we have not been able to explore how Octopus would
perform when scaling up on larger LLM and more open-ended instruction-tuning data. Moreover,
DETR is applicable to many recognition tasks beyond detection. We leave it as future works.

Conclusion. We propose Octopus, a novel MLLM framework that disrupts the purely sequential
inference paradigm for LLM head. Octopus perform parallel recognition through the lower LLM
layers and a lightweight DETR decoder, and then passes the recognition results to the upper LLM
layers for further understanding. Consequently, it reformulates the LLM head into a “parallel
recognition → sequential understanding” hierarchy. Empirical results show Octopus improves
accuracy over a range of MLLM tasks and significantly enhances inference efficiency when the task
include recognition objectives.
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A Comparison between the intermediate and final recognition results

In Octopus, there are two components that can give recognition results, i.e., the intermediate outputs
from the DETR and the final LLM outputs. The intermediate recognition results are parallel and re-
dundant, i.e., predicting multiple boxes for each object of interest. Based on these parallel recognition
results, the final LLM outputs choose a single one for each object via the indexing tokens.

We compare these two different results for recognition objectives in Table 5. Since the intermediate
recognition results (DETR results) have multiple predictions, we evaluate the rank-k accuracy, which
indicates the recall of the ground-truth. We draw two observations as below:

First, the final LLM outputs yield higher accuracy than the rank-1 DETR results, e.g., +1.18% and
+ 2.12% under the 224 and 336 resolution settings, respectively. It shows that the LLM top layers
further improves recognition accuracy after understanding all the recognition results.

Second, the redundant DETR results can achieve high recall of the object-of-interest, e.g., 94.56%
rank-5 accuracy under the 224 resolution. Since these intermediate detection results are relayed
into the LLM top layers, we infer the high recall is an important reason for the LLM to improve
recognition accuracy by selecting one result for each object-of-interest.

In addition to the benefit of improving recognition accuracy, the understanding part of Octopus has
another important role: it organizes multiple recognition results into a complete description or
response, e.g., in the spotting caption task (Fig. 5 in the main part).

Table 5: Comparison of Detection Performance.

Method Resolution
Octopus DETR results
Accuracy R@1 R@2 R@3 R@4 R@5

Octopus 224 83.11 81.93 90.54 92.85 93.89 94.56

Octopus 336 84.25 82.13 92.79 94.58 95.36 95.95

B Application on referring segmentation

In addition to detection, Octopus is potential to acquire a broader range of recognition abilities,
taking advantage of the versatility of the DETR mechanism. Hereby, we endow Octopus with
the referring segmentation ability by modifying its object queries into “mask” queries, a common

Where is the bus in center? Where is the chocolate cake? Where is the front-most bus?

Where is the left yogurt? Where is the right sandwich? Where is the right bowl? 

Figure 5: Visualization of the referring segmentation results. Octopus directly makes pixel-wise
predictions rather than predicting the vertexes of the segmentation mask.
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application of DETRs. We add an additional mask head on top of the DETR decoder to predict the
segmentation mask for each mask query. Under this setting, we train Octopus on the training datasets
of referring segmentation datasets (RefCOCO, RefCOCO+, RefCOCOg). Visualization in Fig. 5
shows that Octopus gains referring segmentation ability. The ability of directly predicting pixel-wise
segmentation results rather than vertexes of segmentation masks is valuable for MLLMs.

Table 6: Referring segmentation results on RefCOCO.

Method Resolution val testA testB
Octopus 224 63.6 66.6 61.3

We quantitatively evaluate the referring segmentation performance on the RefCOCO benchmark
using cIoU. Table. 6 show that our model achieves reasonable results. Due to time limit, we only
implement Octopus using the low-resolution CLIP-ViT features (224×224) for this experiment. The
input size is very small for segmentation task and is an important reason that limits our performance
(e.g., 63.6 cIoU on RefCOCO validation set). We note a recent state-of-the-art method LISA achieves
74.6. LISA uses an external strong segmentation model, SAM [26], that is pretrained on SA-1B
datasets and uses large input size. We conjecture that enlarging the input size and adding training
data will bring further improvement to Octopus, as well.

To sum up, by incorporating the bottom layers of LLM head with the DETR query mechanism,
Octopus is potential to acquire various recognition abilities. We will explore more forms of recognition
abilities for Octopus.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
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to reproduce that algorithm.
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the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide these information in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research follows the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have credited and cited the used assets in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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