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Abstract— Multi-robot herding deals with the problem of
steering a group of non-cooperative entities towards desired
locations by means of a team of robots. Herding demands high
levels of coordination due to the complex nonlinear dynamics
of such evasive entities, and the wild environments preclude
the use of central coordination units. These aspects lead to
the need of distributed estimation and graph-based control
protocols. In this work, we propose CIC (Coordinated Implicit
Control), a distributed control protocol that is composed by
two main blocks. The first is an Implicit Control module
that is able to stabilize any continuous input-nonaffine sys-
tem, tackling the complex nature of the herd dynamics. The
second is an Extended Certifiable Optimal Distributed Kalman
Filter that, by defining the multi-robot team as a distributed
communication graph, allows each robot to rapidly recover
the information necessary to compute the control input, while
accounting for potential uncertainties. Different experiments
validate the proposal.

I. INTRODUCTION

The problem of multi-robot herding [1] consists of using
a team of cooperative robots (also called herders) to drive
a group of non-cooperative entities (also called evaders) to
desired locations or trajectories, by considering the poten-
tially adversarial behaviors of the evaders with respect to the
herders’ movements. The importance of multi-robot herding
comes from the fact that many multi-robot applications,
such as entrapment [2], hunting [3] or escorting [4], can
be reformulated as a herding problem. Herding has also
motivated several interdisciplinary research [5]–[7], arriving
at the same conclusion: herding involves complex distributed
coordination and local nonlinear behaviors. To address both
issues, we propose CIC (Coordinated Implicit Control), a
distributed algorithm composed by (i) a local Implicit Con-
trol (IC) [8] module that stabilizes the evaders’ dynamics to
converge to the desired herd references and (ii) an Extended
Certifiable Optimal Distributed Kalman Filter (CO-DKF) [9]
that achieves the desired distributed coordination among
robots, conveniently defined over a communication graph.

Among the works that address the multi-robot herding
problem, a typical assumption is that all the evaders go
to the same desired location [1], [10]–[12]. In contrast, we
propose a solution that allows to specify individual desired
locations for each evader. This feature is achieved in some

This work was supported by ONR Global grant N62909-19-1-2027,
the Spanish projects PID2021-125514NB-I00, PID2021-124137OB-I00,
TED2021-130224B-I00 funded by MCIN/AEI/10.13039/501100011033, by
ERDF A way of making Europe and by the European Union NextGener-
ationEU/PRTR, by the Gobierno de Aragón under Project DGA T45-20R,
and by Spanish grant FPU19-05700.

All the authors are with the Instituto de Investigación en Ingeniería de
Aragón, Universidad de Zaragoza, Spain (email:esebastian@unizar.es,
emonti@unizar.es, csagues@unizar.es)

Fig. 1: In herding, the robotic herders drive the evaders
towards desired trajectories. IC leverages the repulsive forces
to stabilize the herd dynamics and drive the evaders towards
their desired locations. The herders use CO-DKF to commu-
nicate and fuse relevant estimated global information.

works by steering the evaders one by one [13], [14], while
our solution is able to steer all the evaders simultaneously.
Another classical assumption is that of linear [15]–[17]
and/or homogeneous dynamics [1], [18], which might not
reflect the highly complex non-cooperative nature of the
evaders. Thanks to IC, our proposal is capable to deal with
both input-nonaffine evaders’ dynamics and potential het-
erogeneous behaviors of the evaders. Besides, the CO-DKF
module accounts for the uncertainty in the sensors and the
dynamics, increasing the robustness of the solution. Finally,
beyond the literature of centralized solutions [8], [19], the
works that propose distributed cooperative solutions [1], [11],
[12] do not consider the estimation problem, that can both
resolve sensor issues and the lack of global information for
a more effective control. The proposed CO-DKF estimator
solves this, achieving the desired distributed properties for a
scalable protocol.

In what follows, we briefly introduce the problem for-
mulation (section II) and continue with the description of
the proposed CIC algorithm (section III). The algorithm is
composed by the IC module (III-A) and the CO-DKF module
(III-B), which are appropriately presented. After that, we
show illustrative experiments (section IV) to conclude that
CIC solves the multi-robot herding problem successfully for
different evaders’ behaviors and team sizes.

II. PROBLEM STATEMENT

A team of n robots is in charge of herding m evaders,
moving in a 2D space. Herders are indexed by i and evaders
by j. The goal of the paper is to control the position of the
evaders, xj , gathered in the vector x =

[
xT
1 . . . xT

m

]T
,

by positioning the herders, ui,u =
[
uT
1 . . . uT

n

]T
, over

time. The dynamics of each evader is ẋj = fj(x,u), while



the joint system dynamics is

ẋ = f(x,u), (1)

where f(x,u) simply comes from stacking all fj(x,u).
This formulation allows to consider heterogeneous herds,
with different number of evaders and motion models. The
herders are defined over a communication graph G = {V,E}.
Herders i and i′ communicate with each other if (i, i′) ∈ E.
The set Ji = {i′|(i, i′) ∈ E} ∪ {i} denotes the neighbors of
robot i.

Our goal is to herd the evaders towards the desired
positions x∗ or trajectories ẋ∗ simultaneously, using only
the local information available from the neighboring robots.
Finally, to keep the generality of the solution, in this work
we assume that the maximum velocity of both herders and
evaders is vmax > ẋ∗ > 0.

III. COORDINATED IMPLICIT CONTROL

In this section we described CIC (Coordinated Implicit
Control), the proposed algorithm to solve the distributed
multi-robot herding problem. In section III-A we present the
theoretical background of IC and frame the formulation in
the context of herding. After that, in section III-B we present
and describe the extended CO-DKF, the distributed estimator
that addresses the centralized limitations of the IC.

A. Implicit Control

The idea behind IC [8], [19] is that, in systems that are
nonlinear with respect to the input, the classical analytical
expressions lead to implicit equations, so they do not have a
closed-form. Instead, Implicit control considers an analytical
equation in terms of the time derivative of the input. Let

h(x,u) = f(x,u)− f∗(x)− ẋ∗, (2)

with f∗(x) is the desired closed-loop behavior of the herd.
The roots of h(·) correspond to the solutions of the control
input of the problem. Since the analytical solution of this
equation might not exist, the solution proposed by IC is to
consider h as a dynamic system and design u̇ such that h
converges to 0. If u is such that h = 0, then ẋ follows f∗(·)−
ẋ∗; and since f∗(·) is stable, x converges to the desired
tracking reference. If the desired evolution of function h(·)
is defined as

dh(x,u)/dt = h∗(x,u), (3)

with h∗(·) such that h(·) is stable, then the input dynamics

u̇ = J+
u (h∗(x,u)− Jxf(x,u)) (4)

imposes Eq. (3), and h(·) converges to 0. In Eq. (4), Jx is
the Jacobian of h(·) with respect to x, Ju is the Jacobian
of h(·) with respect to u and + is the pseudoinverse of a
matrix. The use of the pseudoinverse is because m ̸= n in
general. Eqs. (1) and (4) yield to the explicit system

ẋ = f(x,u), u̇ = J+
u (h∗(x,u)− Jxf(x,u)) . (5)

The control problem is then reduced to analyzing the stability
of the system in (5). In particular, in this paper it is con-
sidered that f∗(x) = −F1x and h∗(x,u) = −F2h(x,u).

F1,F2 are two matrices chosen such that
(
−F1 0.5I
0.5I −F2

)
is

negative definite [8].
Implicit Control facilitates the design of controllers for

general input-nonaffine systems. This opens the possibility of
controlling heterogeneous herds regardless of the complexity
of the evaders’ dynamics. In our case, x is the position of
the evaders, and f∗(x) the function describing their desired
dynamics. Meanwhile, Eq. (5) determines the derivative of
the herders’ positions u. Note that the computation of the
herders’ position dynamics depends on the positions of
all evaders and herders. In the next section we propose a
distributed estimator to provide each robotic herder with the
state and input information needed to compute the IC output.

B. Certifiable Optimal Distributed Kalman Filter

Up to now, the IC requires that herders know the state and
input of the system perfectly. To overcome this limitation,
we develop an Extended Certifiable Optimal Distributed
Kalman Filter (CO-DKF) [9], tailored to work with the IC.
The objective is, for all the herders, to have an accurate
estimation of evaders’ and herders’ position, aggregated in
the vector ξ =

[
xT
1 . . . xT

m uT
1 . . . uT

n

]T
. Notice

that, in contrast with typical estimation problems, the control
inputs must also be estimated. In typical control solutions this
is not possible because the input has no dynamics, it is just
an algebraic expression. IC addresses this issue by providing
the input dynamics.

Particularizing to the CO-DKF, as in every Kalman filter,
each robot has a predicted and updated version of ξ, denoted
by ξ̄i and ξ̂i respectively. Associated to them, robots keep
track of P̄i and P̂i, the predicted and updated error covari-
ance matrices associated to ξ̄i and ξ̂i. At a given instant,
the robots first compute, locally, the prediction step of an
extended Kalman filter

ξ̄i = (I+∆TJξ) ξ̂i +w,

P̄i = P̂i +∆T (JξP̂i + P̂iJ
T
ξ +Q)

(6)

where Jξ denotes the Jacobian of the expanded system in (5)
evaluated at ξ̂i, ∆T is the discretization sample period and
w ∼ N (0,Q) is a zero mean Gaussian noise with covariance
Q, which can be tuned according to the confidence on the
evaders’ model.

After prediction, robots exchange the information from the
prediction and the sensors:

ci = HT
i R

−1
i zi,Ci = HT

i R
−1
i Hi, s̄i = P̄−1

i ξ̄i, S̄i = P̄−1
i ,

with
zi = Hi(ξ)ξ + vi, (7)

where zi is the measurement taken by herder i, vi ∼
N (0,Ri) is the measurement noise with covariance Ri, and
Hi depends on ξ. It is important to note that the herders’
measurements will depend on its position, i.e., a herder will
only be able to measure the entities that are close to it.

The exchanged quantities are aggregated using the in-
formation provided by the covariances. In the case of the



measurements, this is direct because they are independent:
yi =

∑
j∈Ji

cj and Yi =
∑

j∈Ji
Cj . On the other hand, the

aggregation of predictions is harder due to the correlations
between them. To solve it, CO-DKF uses the outer Löwner-
John method [20], which leads to the optimization problem

S̄∗
i ,λ

∗
i = argmax

S̄,λ

Tr(S̄) (8a)

s.t. 0 ≺ S̄ ⪯
|Ji|∑
j=1

λjS̄j ,

|Ji|∑
j=1

λj ≤ 1, λj ≥ 0, (8b)

where Tr(·) is the trace operator, and ≺ and ⪯ denote
definiteness and semidefiniteness. It is proven [9] that, by
means of the above formulation, the solution of (8) can
be certified as optimal in the Mean Square Error (MSE)
sense, locally and at each instant. It is also proven that this
implies that the estimation is optimal in the MSE sense under
unknown correlations. The output of (8) is used to aggregate
the predictions: P̄∗

i = (S̄∗
i )

−1, ξ̄∗i = P̄∗
i

∑
j∈Ji

λ∗
j s̄j . With

the data aggregated, each robot calculates P̂i = (S̄∗
i +Yi)

−1

and then the estimate is updated

ξ̂i = ξ̄∗i + P̂i(yi −Yiξ̄
∗
i ). (9)

The updated estimate is the one employed in the IC module
to compute the control input, locally and at each robot.

In summary, the CIC algorithm first estimates the position
of evaders and herders in a distributed way by means of the
Extended CO-DKF. Then, the current estimate is employed
to compute the control input by means of the IC module. The
integration between both modules is tight, in the sense that
the same IC provides the dynamic equations to the extended
version of the CO-DKF.

IV. RESULTS

To validate the CIC algorithm, in this section we conduct
simulated experiments, validating the IC and the Extended
CO-DKF modules separately. After that, we show experi-
ments with the complete CIC algorithm

A. Simulations of the IC module

The first case of study is the herding of 3 evaders by 3
herders. We set F1 = 0.25I2m, leading to a settling time of
12s with an exponential transient according to 2m first order
independent systems. To ensure convergence, F2 = 50I2m.
We assume that vmax = 0.4m/s. The control is computed ev-
ery 10ms. To verify the generality of the proposal, we employ
two standard and highly nonlinear evaders’ models from the
literature, called Inverse and Exponential model [8]. Their
parameters are tuned as in [8]. The desired herding configura-
tion evolves with ẋ∗

j = v∗j and ẏ∗j = 0.5w∗
j cos(w

∗
j t+2π/j),

with w∗=[0.05, 0.1, 0.02]rad/s, v∗=[0.05, 0.05, 0.05]m/s.
The IC module is capable of steering each evader simulta-

neously through their associated sinusoidal references. This
yields to herders’ trajectories surrounding and modulating
the interaction forces with the evaders. With the evaders in
their desired trajectories, the system reaches a steady-state

behavior where the periodic movement of the evaders is
shared by the herders.

TABLE I: List of symbols in the figures.

Symbol Meaning

Desired positions

Symbol Meaning

Initial position herders

Final position herders

Trajectories herders

Symbol Meaning

Initial position evaders

Final position evaders

Trajectories evaders

Initial snapshot Following desired trajectories

Fig. 2: Three robotic herders herding three heterogeneous
evaders. The magenta trajectories correspond to Inverse
evaders while the red trajectory is an Exponential evader.
The other symbols follow the convention in Table I.

To validate the flexibility of the IC module, we consider
a showcase with 50 evaders and 5 herders. The control goal
is to steer the centroid of the herd. To maintain cohesion of
the herd and avoid collisions, we add very weak repulsive
and coalition forces among evaders

ẋj=f
inv/exp
j (x,u)+ϑ

m∑
j′=1

djj′

(
1

||djj′ ||3
− ||djj′ ||2

)
(10)

with djj′ = xj − xj′ and ϑ = 2× 10−4.
Fig. 3 shows how the five herders can steer the whole

herd towards desired regions. After an initial shared goal,
the herders can split the herd in two sub-herds and steer
each of them, simultaneously.

B. Simulations of the CO-DKF module

Now we validate the performance of the CO-DKF module
against other DKFs, to assess the improvement in estimation
error. The validation is conducted by comparing with: (i)
AtA-CO-DKF, our proposal but assuming all-to-all commu-
nication, (ii) OCDFK, Algorithm 3 from [21], (iii) TCDFK,
Algorithm 2 from [22], (iv) HDfKF, complete algorithm
in [23], (v) HADfKF, simplified algorithm in [23], (vi) CKF,
centralized equivalent KF. The target system is:

x =


x
y
vx
vy

 , A =


1 0 sinwpT coswpT − 1
0 1 1− coswpT sinwpT
0 0 coswpT sinwpT
0 0 sinwpT coswpT

 ,

(11)
wp = 0.5rad/s, T = 0.1s and Q = 2× 10−6I4.

To do the comparison, we analyze two scenarios. Experi-
ment 1 initializes a random sensor network, with appropriate



t = 0s t = 20s t = 50s t = 70s t = 100s

Fig. 3: 5 herders herding 50 Inverse evaders. In the first 50 seconds, the herd is steered towards the desired location. After
that, the herd is split in two sub-herds and driven towards two desired locations simultaneously.

parameters to obtain a sparse connected topology. Then, a
random uniform distribution decides the quantities sensors
measure among two options: measuring x or y. Hi is picked
from a uniform distribution in the range [1, 3]. A Bernoulli
distribution with p = 0.5 decides if the diagonal values of
Ri are in the range [3, 5]× 10−2 or [3, 5], i.e., high-quality
or low-quality. This is done 100 times, assessing the results
by computing the averaged Mean Square Error MSE over
the experiments. Experiment 2 is the same as Experiment 1,
but only one sensor is of high quality.

The results of Experiments 1 are shown in Fig. 4a.
The best performance among the distributed estimators is
obtained by CO-DKF, with a difference of more than an order
of magnitude with the other state-of-the-art filters. These
differences also hold in Experiment 2 (Fig. 4b).

(a) Experiment 1 (b) Experiment 2

Fig. 4: Averaged MSE for the different estimators.

C. Simulations of the complete CIC algorithm

Now, we combine the IC and the extended version of
the CO-DKF module to deal with the herding of 5 evaders
by 5 herders. We maintain F1 and F2 as in section IV-A.
Besides, we set Q = 0.02I2m+2n and Ri = 0.07I2m+2n

∀i to simulate a scenario with bad sensing capabilities. To
be realistic in the use of the communication bandwidth,
messages are exchanged every 100ms, while the control
is computed every 10ms. Sensing and communication are
defined by a circular region centered at each robot, of radius
dm = dc = 6.5m respectively.

The first row of Fig. 5 shows the trajectories followed
by herders and evaders for the different test cases. IC is
able to herd the evaders successfully, driving each evader
simultaneously towards its desired location. The second
row of Fig. 5 shows that the Root Mean Square Error
(RMSE) between the estimates and real positions of the

Inverse evaders Exponential evaders

Fig. 5: Simulation results of 5 evaders by 5 herders using
CIC. The first row shows the trajectories of herders and
evaders (same symbols of Table I). The second row depicts
the RMSE in the estimation of evaders’ (blue) and herders’
(red) positions, averaged over the five herders.

entities rapidly decreases to the sensor noise level. Before
the first 400ms (4 communication rounds) the estimator
has converged. Despite the different frequencies between
communication and control, the herders are successful in
predicting the global state and controlling the herd.

V. CONCLUSIONS

This paper has proposed a distributed estimation and
control algorithm for the multi-robot herding problem called
Coordinated Implicit Control. The algorithm departs from a
graph-based modeling of the multi-robot team, and builds
upon to main blocks, namely: an Implicit Control module
which is able to control general and heterogeneous input-
nonaffine non-cooperative evaders’ dynamics, and an Ex-
tended Certifiable Optimal Distributed Kalman Filter that
achieves the desired distributed architecture while recovering
the global state and input of the system. Different experi-
ments confirm the generality, flexibility and robustness of the
CIC algorithm for wide variety of herding settings, avoiding
unnecessary central coordination units and exploiting the
distributed communications among robots.
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