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ABSTRACT

RL with Verifiable Rewards (RLVR) has emerged as a promising paradigm for
improving the reasoning abilities of large language models (LLMs). Current
methods rely primarily on policy optimization frameworks like PPO and GRPO,
which follow generalized policy iteration that alternates between evaluating the
current policy’s value and improving the policy based on evaluation. While ef-
fective, they often suffer from training instability and diversity collapse, requiring
complex heuristic tricks and careful tuning. We observe that standard RLVR in
math reasoning can be formalized as a specialized finite-horizon Markov Deci-
sion Process with deterministic state transitions, tree-structured dynamics, and
binary terminal rewards. Though large in scale, the underlying structure is sim-
pler than general-purpose control settings for which popular RL algorithms (e.g.,
PPO) were developed, suggesting that several sophisticated techniques in exist-
ing methods may be reduced or even omitted. Based on this insight, we prove
a surprising result: the optimal action can be recovered from the Q-function of
a fixed uniformly random policy, thereby bypassing the generalized policy itera-
tion loop and its associated heuristics. We introduce Random Policy Valuation
for Diverse Reasoning (ROVER) to translate this principle into a practical and
scalable algorithm for LLM math reasoning, a minimalist yet highly effective RL
method that samples actions from a softmax over these uniform-policy Q-values.
ROVER preserves diversity throughout training, allowing sustained exploration
of multiple valid pathways. Across multiple base models and standard math rea-
soning benchmarks, ROVER demonstrates superior performance in both quality
(+8.2 on pass@1, +16.8 on pass@256) and diversity (+20.5%), despite its radical
simplification compared to strong, complicated existing methods.
“Simplicity is the ultimate sophistication.” - Leonardo da Vinci
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Figure 1: (a) Pass@1 & Pass@256 results on Qwen3-8B-Base averaged over AIME24, AIME25,
and HMMT25 tasks. (b) Illustrative example demonstrating that ROVER achieves high-quality
solutions with a lightweight procedure while maintaining diversity. (c) Comparison of different
methods on multiple diversity metrics. Higher value denotes better diversity.

1 INTRODUCTION

RLVR has emerged as a promising paradigm for post-training LLMs and enhancing reasoning ca-
pabilities (Jaech et al., 2024; Guo et al., 2025). The field has primarily relied on Proximal Policy
Optimization (PPO) (Schulman et al., 2017), a powerful algorithm originally designed for standard
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deep RL benchmarks such as computer games and robotic control. This general-purpose algorithm
and its specialized derivatives like Group-Relative Policy Optimization (GRPO) (Shao et al., 2024)
have achieved notable successes in improving LLM reasoning performance. Fundamentally, cur-
rent methods follow the generalized policy iteration (GPI) (Sutton et al., 1998) paradigm, which
iteratively alternates between evaluating the current policy and improving it based on the evaluation.

Despite its success, they suffer from unstable learning dynamics (Yang et al., 2025a) and entropy
collapse (Huang et al., 2024; Yang & Holtzman, 2025) induced by the reward-maximizing nature
within the iterative policy evaluation-improvement cycle. As the policy continuously evolves, the
evaluation target becomes non-stationary, leading to training instability and narrowed exploration
spaces. Recent variants mitigate this through an intricate ballet of heuristic techniques such as clip-
ping (Yu et al., 2025), KL regularization (Liu et al., 2025a), and data selection (Liang et al., 2025).
While incorporating these tricks offers partial improvements, they add layers of implementation
complexity and typically require careful, case-specific tuning (Liu et al., 2025d).

We take a fundamentally different approach by examining the underlying structure of LLM math
reasoning tasks with verifiable rewards. Unlike standard RL environments that sophisticated RL
algorithms like PPO were originally designed for and evaluated (e.g., discrete computer games with
cyclic state transitions that forms a graph instead of a tree (Bengio et al., 2021), robotics with con-
tinuous spaces, possibly with stochastic transitions and intermediate rewards), standard RLVR for
math reasoning corresponds to a specialized finite-horizon Markov Decision Process (MDP) with
deterministic, tree-structured transitions, and binary terminal reward. In this structurally simplified
MDP, each action induces a deterministic and new branch, and each partial sequence has exactly
one parent state. This critical observation leads us to a central question: whether we are applying
unnecessarily complex tools to a structurally simpler (albeit larger) problem, and is there a mini-
malist yet highly effective RLVR algorithm that maintains both quality and diversity under this
specialized MDP structure? Our theoretical analysis reveals a surprising result under this scenario:
the optimal actions can be derived by simply evaluating a fixed uniformly random policy and then
selecting actions greedily based on its Q-values. This surprising finding means that we can bypass
the standard GPI cycle to identify optimal policies, which requires only policy evaluation of the
simplest possible policy (uniformly random), without iterative evaluation of the updated policy and
without the many heuristic tricks that plague current methods. Although it was widely believed that
this kind of uniform policy is trivial that cannot provide meaningful guidance for control (Asadi
& Littman, 2017), the value of uniform policies (He et al., 2025b) has been observed empirically
in specific discrete environments (Laidlaw et al., 2023) recently, and we provide a first theoretical
analysis account for LLM math reasoning and leverage it as the foundation of our approach.

However, as in standard reward-maximizing RL, while a naive greedy selection guarantees optimal-
ity, it sacrifices diversity critical for reasoning tasks (Si et al., 2024). To balance quality and diversity,
we leverage a key insight based on our analysis: uniform-policy Q-values capture the probability
of successful continuations that lead to positive rewards. As this creates a natural value map of the
reasoning landscape, we sample actions via softmax over the uniform-policy Q-values, which main-
tains performance guarantees while aligning with modern LLM practices (Sheng et al., 2024; Kwon
et al., 2023). To translate our theoretical insights into a practical and scalable algorithm for LLM
reasoning which involves vast state and action spaces as well as long horizons (a wide and deep
tree), we present Random Policy Valuation for Diverse Reasoning (ROVER). ROVER efficiently
parameterizes the Q-function intrinsically based on the LLM’s parameters, which eliminates the
need for a separate value network and also leverages the LLM’s strong priors for efficient navigation
in the vast token space and stabilizing training through relative improvements. To mitigate the high
variance caused by the reward signals, we leverage group reward centering inspired by Naik et al.
(2024), and broadcast the reward to improve training efficiency.

Our contributions are as follows: (i) We prove a surprising result: in the deterministic tree-structured
MDPs with binary terminal rewards that characterize math reasoning, the optimal action can be
derived directly from Q-values evaluated under a uniformly random policy, a finding that funda-
mentally simplifies RL for this domain. (ii) We introduce ROVER, a practical and minimalist RL
algorithm that is scalable to LLM reasoning tasks through a simplified framework compared to the
current complicated methods. (iii) Despite ROVER’s radical simplification, extensive experiments
across diverse tasks and various model scales demonstrate that it consistently achieves superior
performance, yielding +8.2 improvement on pass@1 and +16.8 improvement on pass@256 on the
competition-level AIME24, AIME25, and HMMT25 tasks. Interestingly, we observe ROVER can
find novel reasoning strategies absent from the base model and models trained through standard RL
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approaches (GRPO), thereby evidencing its potential to push the reasoning boundary. Our codes are
available at https://anonymous.4open.science/r/ROVER.

2 PRELIMINARIES

RL with Verifiable Rewards in LLMs. We investigate reinforcement learning (RL) for post-
training LLMs with verifiable rewards, such as mathematical reasoning tasks. We formulate the
problem as a Markov Decision Process (MDP), defined by a tuple (S,V,R,P, γ,X ). Here, the
state space S denotes all finite-length strings formed by the concatenation of elements in V . The
action space V is the vocabulary set. We set the discount factor γ = 1 in practice. R : S × V → R
is the binary reward function, and P : S × V → S is a deterministic transition function. At the
beginning of each episode, a prompt x is sampled from the initial state distribution X . At each
step t, the LLM selects an action at ∈ V according to πθ(·|st), and then transits to the next state
st+1 = {x, a0, · · · , at} by concatenation. This autoregressive generation continues until forming an
entire response y = {a0, a1, · · · , a|y|−1}, and finally receives a verifiable reward r(x, y) ∈ {0, 1}.
The goal is to learn a policy π∗ = argmaxπ Ex∼X ,y∼π(x)

[
r(x, y)] by maximizing the expected cu-

mulative reward r. The prevailing works leverage policy gradient (Williams, 1992) and a surrogate
objective introduced by PPO (Schulman et al., 2017) to optimize πθ:

J(θ) = Ex∼X ,y∼πθold
(x)

[
1
|y|
∑|y|−1

t=0

(
min

(
IStAt, clip(ISt, 1− ϵlow, 1 + ϵhigh)At

)
− βDKL(πθ|πref)

)]
, (1)

where ISt = πθ(at|st)/πθold(at|st) is the importance sampling ratio, πθold is the behavior pol-
icy to sample data, st = {x, a<t} is current state, ϵlow and ϵhigh is the clipping range of impor-
tance sampling ratios, DKL denotes the KL regularization term, and At is the advantage of current
action. At is implemented differently across RL algorithms, such as REINFORCE++ (Hu et al.,
2025a) and GRPO (Guo et al., 2025). For example, GRPO (Guo et al., 2025) samples G > 1

responses for each prompt and estimates the advantage At =
r(x,yi)−mean({r(x,yi)}G

i=1)

std({r(x,yi)}G
i=1)

within
each group to reduce variance. Notably, while existing policy optimization methods rely on a
KL-divergence penalty (DKL) to prevent catastrophic forgetting and maintain exploration during
continual learning (Liu et al., 2025a), our approach achieves these desiderata without such an ex-
plicit regularization term. For a comprehensive discussion of related work, please see Appendix C.

Figure 2: Illustration of GPI.

Generalized Policy Iteration (GPI). GPI (Sutton et al.,
1998) is a unifying view that describes many RL algo-
rithms (e.g., PPO) as illustrated in Fig. 2. GPI consists
of two interacting processes, which are policy evaluation
that estimates how good a policy is, (e.g., via Qπ(st, at) =
r(st, at) + γE [Qπ(st+1, at+1)], value function, or advan-
tage function), and policy improvement that updates the pol-
icy to prefer actions scored better by the current estimates
(e.g., π(s) ← argmaxa Q

π(s, a) or other methods). GPI-
based methods require an alternative learning over these
two processes until finding the fix point, where the learn-
ing target remains non-stationary throughout training (Mnih
et al., 2015). In contrast, our proposed method relies solely on policy evaluation to derive the Q-
values of a fixed, uniform random policy, which is much simpler for training and implementation (a
high-level illustration is shown in Fig. 3).

3 ROVER: RANDOM POLICY VALUATION FOR DIVERSE REASONING

𝜋!
Evaluate 𝜋!

𝑄"! 𝜋∗Greedyaction selection

Uniform
policy

Optimal
policy

Figure 3: Illustration of ROVER
(greedy).

RLVR for math reasoning can be cast as a decision-making
problem in a specialized finite-horizon MDP M with deter-
ministic transitions and binary terminal rewards (correct or
incorrect) in a tree-structured space (each state has a unique
parent and actions lead to disjoint subtrees). This contrasts
with general-purpose RL settings that often feature general
control problems with stochastic dynamics, complex reward
structures, and discrete (or continuous) graph-based state spaces where states can have multiple par-
ents or even cycles. Although the PPO family achieves promising results in LLM reasoning, it was
designed for general control and can encounter entropy and diversity collapse in RLVR, which also
introduces unnecessary computational overhead and complexity.
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Motivated by this structural mismatch, we consider an important question overlooked in the liter-
ature: can there exist a minimalist and simple RL approach that exploits these properties of RLVR
MDP to achieve both high quality and diversity? In contrast to adding various implementation-
level tricks to PPO/GRPO, we present ROVER, which is built upon a surprising discovery: simply
evaluating a uniformly random policy and selecting actions greedily based on its Q-values is suf-
ficient for optimal behavior in this context (Fig. 3), avoiding the complexities of modern deep RL
algorithms (Schulman et al., 2017) and can bypass the traditional GPI loop in Fig. 2.

We first establish the theoretical basis of this unexpectedly simple yet optimal approach in § 3.1,
extend it to achieve diversity while maintaining performance guarantees in § 3.1.1, and present a
practical algorithm that scales to large spaces and long horizons for math reasoning in § 3.2.

3.1 THE RANDOM POLICY VALUATION FRAMEWORK

We start from the simplest possible policy, the uniform random policy πu(a|s) = 1
|A| , where A

denotes the set of available actions. The corresponding Q-value for πu can be estimated using the
generalized Bellman update (Littman & Szepesvári, 1996; Sutton et al., 1998) with the mean oper-
ator (Asadi & Littman, 2017). The mean operator corresponds to evaluating a uniform policy, and
the update is simplified to Q̂πu(s, a) ← r(s, a) + 1

|A|
∑

a′∈A Q̂πu(s′, a′) for deterministic transi-
tions and γ = 1 (Hu et al., 2025b) that we consider as discussed in § 2. The literature of classical
RL suggests that this mean operator is insufficient for optimal control in general MDPs (Asadi &
Littman, 2017), as it averages across all actions without preference for optimal ones, providing little
guidance. While a few recent studies have empirically noted the potential utility of uniform-policy
values in certain discrete games (Laidlaw et al., 2023; He et al., 2025b), these observations have
remained primarily empirical, with limited theoretical justification.

In our context, LLM math reasoning induces finite-horizon, deterministic, tree-structured MDPs
with binary terminal rewards (correct/incorrect). For a root state s0 = x (i.e., prompt), the reachable
transition graph is a rooted tree, where each state has a unique path from s0 and distinct actions from
a state lead to disjoint subtrees. Under this context, we prove that simply evaluating the fixed uniform
policy and acting greedily with respect to its Q-values already achieves optimality in Theorem 1. The
proof can be found in Appendix A.1.

Theorem 1. Consider a finite-horizon episodic MDP with deterministic transitions, tree-structured
state space, and binary terminal rewards R(s) ∈ {0, R} where R > 0 (R for a correct solution, 0
otherwise). Let πu be the uniform policy, and Qπu its corresponding Q-function. Define the greedy
policy with respect to Qπu by πgreedy(s) = argmaxa Q

πu(s, a), then πgreedy is optimal.

From Theorem 1, we discover that for the specific MDP structure of LLM math reasoning, the op-
timal control problem reduces to a much simpler form than previously recognized. This suggests
two significant implications: First, despite the perceived complexity of LLM math reasoning tasks,
their underlying decision structure exhibits a more tractable structure than commonly assumed. Sec-
ond, the mean operator, although generally insufficient for optimal control, proves to be surprisingly
powerful when paired with a greedy action selection strategy in this context.

Correct

Incorrect
. . .

. . .

. . .

. . .

. . . . . .

...
...

...
...

. . .

. . .

(𝑅 = 1)

(𝑅 = 0)

Figure 4: Intuition of ROVER
(greedy) with πgreedy.

Surprisingly, although the uniformly random policy itself is far
from optimal behavior, its Q-values have a meaningful interpre-
tation here, which equals the probability that, after taking a at s
and then acting uniformly at random until termination, we obtain
a correct outcome. As illustrated in Fig. 4, when Qπu(s, a) = 0,
it indicates that no possible continuation from (s, a) can lead to a
correct solution. Conversely, higher values indicate more promising
directions. By acting greedily with respect to these values, we effec-
tively eliminate branches that cannot lead to valid solutions while
prioritizing the most promising paths. This property enables opti-
mality through a remarkably computationally simple mechanism:
we need only estimate Qπu(s, a) by policy evaluation for a fixed
uniform policy πu, without off-policy corrections or the implementation complexity of popular
methods like PPO and GRPO. Additionally, since our approach evaluates a fixed uniform policy
rather than iteratively improving a learned policy, it mitigates the non-stationarity issues that plague
many modern deep RL methods (Van Hasselt et al., 2016), which can also be advantageous for the
high-dimensional, complex LLM math reasoning tasks.
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A Didactic Example. To empirically validate the optimality of the greedy policy derived from
the Q-function of a uniformly random policy, we design a tabular environment as illustrated in
Fig. 5(a). The environment is a deterministic, tree-structured MDP capturing the essential properties
of LLM math reasoning tasks while remaining transparent for analysis (and we will introduce how
to scale up the method in § 3.2). Starting from an initial null state, a policy executes an action
a ∼ A = {A,B,C,D} by appending it to the current state sequence. We consider an episodic setup
with binary terminal rewards, with 4 specific terminal states (ACD, BDC, CAB, DBA) yielding a
reward of 1 and all others yielding 0. From Fig. 5(c), we observe that the simple mechanism of acting
greedily with respect to a random policy’s Q-function also learns to generate the sequence with the
highest reward, achieving the same optimal behavior as Q-learning (with ϵ-greedy exploration).
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Figure 5: (a) Illustration of the tabular MDP. (b)-(d) Comparison of learned Q-value maps. Accord-
ing to the Q-values, standard Q-learning with ϵ-greedy exploration converges to the mode ACD.
ROVER (greedy) assigns the highest Q-values to optimal actions, but still converges to a single
mode BDC due to its greedy behavior. ROVER is able to assign equally high Q-values to all optimal
actions. (e) Q-learning and ROVER (greedy) converge to a single mode despite both being optimal,
whereas ROVER successfully covers all 4 optimal modes.

3.1.1 BEYOND GREEDY SELECTION: BALANCING QUALITY AND DIVERSITY

While our theoretical analysis shows that the simple scheme of greedy selection over the Q-values of
a uniform policy is already enough for achieving optimality, this deterministic approach often leads
to mode collapse and sacrifices diversity (Fig. 5(e)). For LLM math reasoning tasks, as a given
prompt can elicit multiple viable responses that yield correct solutions, diversity is critical for robust
problem-solving (Li et al., 2025a), which is also important for improving pass@k performance and
generalization to novel problems.

Our analysis reveals a key insight: the Qπu(s, a) characterizes the probability of successful con-
tinuations following the action a, where higher Q-values indicate action branches with denser suc-
cessful pathways. To improve the diversity of policy generation, based on this insight, we transi-
tion from deterministic to stochastic action selection by converting Qπu into a soft sampler, i.e.,
πs(a|s) = exp(Qπu (s,a)/ρ)∑

a′ exp(Qπu (s,a′)/ρ) , where ρ is a temperature parameter. This strategy selects actions
proportional to their estimated success probability, which is able to explore multiple reasoning path-
ways for improving diversity, rather than committing to a single path. Additionally, it aligns with
contemporary LLM decoding strategies (Kwon et al., 2023), making it readily integrable into exist-
ing training frameworks (Sheng et al., 2024). The following result shows that our softmaxing Qπu

approach maintains a guaranteed level of performance relative to the optimal policy, with the bound
tightening as temperature decreases. The proof can be found in Appendix A.2.

Theorem 2. Consider the same MDPM, and let Qπu(s, a) denote the Q-function under the uniform
random policy πu from state-action pair (s, a), N(s) = |{a : Qπu(s, a) = 0}| be the number of
zero-valued actions at state s, A(s) be the number of available actions at state s, and P denotes
the set of key states where both optimal and suboptimal actions exist, i.e., P = {s : 1 ≤ N(s) ≤
A(s) − 1}. Given the softmax policy πs(a|s) = exp(Qπu (s,a)/ρ)∑

a′ exp(Qπu (s,a′)/ρ) with temperature ρ > 0, and
Prπs(s|s0) is the probability of reaching s from s0 with the policy πs, the value function of the

induced policy πs satisfies: V πs(s0) ≥ R
(
1−

∑
s∈P Prπs(s|s0) N(s)

N(s)+exp(maxa Qπu (s,a)/ρ)

)
.

Theorem 2 characterizes that the temperature ρ trades off between diversity and quality. As ρ in-
creases, the policy samples more diverse actions while still favoring higher-value paths. When ρ
approaches zero, the performance gap between the softmax policy and the optimal policy vanishes,
showing that our diversity-promoting approach maintains performance guarantees.
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Justification. In our didactic example (Fig. 5(d)&5(e)), we empirically demonstrate that it achieves
an effective tradeoff. While both greedy approaches (Q-learning and ROVER (greedy)) achieve op-
timal reward but collapse to a single solution mode, ROVER (with ρ = 1) successfully identifies
all four optimal modes while maintaining 100% success rate. Our diversity-seeking RL approach
stands in contrast to typical RL diversity methods that often rely on complex and task-related re-
ward engineering (He et al., 2025a; Cheng et al., 2025; Li et al., 2025a) or post-hoc sampling tech-
niques (Shur-Ofry et al., 2024; Chen et al., 2025b) without guarantees, while remaining simple.

3.2 PRACTICAL IMPLEMENTATION

We now adapt our method to LLMs, where the induced MDP still remains deterministic and tree-
structured, but presents computational challenges due to long horizons (deep trees) and large vo-
cabularies (wide branching). To address these challenges, we introduce practical techniques to ap-
proximate, stabilize the training process, and improve sample efficiency as summarized in Alg. 1,
while preserving the core idea of random policy evaluation. We also provide gradient analysis and
connections to policy gradient methods in Appendix B.

Algorithm 1: Random Policy Valuation for Diverse Reasoning (ROVER)
Input: pre-trained LLM πθ, epochs M, prompt dataset D, group size n, lr η, temperature ρ

1 for epoch m = {1, · · · ,M} do
2 Set πθold ← πθ; Sample a batch of prompts B ∼ D via πθold
3 for each prompt x ∈ B do
4 Rollout responses and compute rewards: {yi}ni=1 ∼ πθold(·|x); r̃ = ri − 1

n

∑n
i=1 ri

5 for each prompt-response pair {x, yi} in batch do
6 for each state st ∈ {x, yi} do
7 Compute Q-value Q(at+1|st+1) = ρ

(
log πθ(at+1|st+1)− log πθold(at+1|st+1)

)
8 Obtain Q̂(at|st)← r̃ + 1

|V|
∑

at+1∈V Q(at+1|st+1) // V: the vocabulary set.

9 LROVER = 1∑n
i=1 |yi|

∑n
i=1

∑|yi|−1
t=0 ∥Q(at|st), sg[Q̂(at|st)]∥2 // sg: stop gradient.

10 θ ← θ − η∇θLROVER by an AdamW optimizer

• Q Parameterization. While we begin with a reference LLM, we lack a pre-trained Q-function.
Training a Q-model from scratch presents substantial costs due to the large scale of action and
state spaces. A compelling approach is to represent the Q-function directly through the LLM’s
intrinsic parameters θ (Li et al., 2025b), thereby eliminating the need for a separate value network.
Fortunately, as indicated in Theorem 2 and following the mean operator for evaluating the value of
the uniform policy in § 3.1, the policy πθ and Q-values are intrinsically linked, i.e., Q(st, at) =
ρ log πθ(at|st), where ρ denotes the temperature. However, this direct formulation is unstable in
practice since the learning target drifts as the policy changes and the Q-value updates are prone
to divergence. To mitigate this instability, we introduce a relative Q-function that measures the
improvement over a fixed baseline: Q(st, at) = ρ

(
log πθ(at|st) − log πθold(at|st)

)
, where πθold

is the behavior policy used to sample data in each epoch, serving as a stable anchor that reduces
fluctuations. This parameterization centers the initial Q-values around zero and ensures the model
learns the change relative to the previous policy instead of absolute values.

• Low-Variance Reward. To create a stable and dense reward signal for learning uniform-policy
Q-values, we sample n responses for each prompt to reduce estimation variance and enrich our ap-
proximation of the value landscape. Inspired by Naik et al. (2024), we subtract the empirical average
reward of the n responses from the raw rewards to obtain mean-centered rewards. Specifically, the
centered reward is given by r̃(x, yi) = r(x, yi)− 1

n

∑n
i=1 r(x, yi), where r(x, yi) reflects the cor-

rectness of the corresponding response yi given the prompt x. This is also related to GRPO’s style of
estimating the advantage function, but without the standard deviation normalization term (Liu et al.,
2025c). Additionally, to ensure efficient credit assignment, especially for long reasoning chains, we
broadcast this centered reward r̃(x, yi) to every token in the generation following Hu et al. (2025b) .

4 EXPERIMENTS

Although simple, our method substantially enhances both the quality and diversity of LLM gen-
erations, leading to improved reasoning capabilities on complex tasks. We evaluate our approach
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on two verifiable tasks that require sophisticated reasoning: countdown tasks, which have multiple
valid answers, and math competitions, which possess single, unambiguous answers.

4.1 COUNTDOWN TASKS

We begin evaluating our method on the countdown task. Given an array of numbers and a target, the
LLM must find the correct sequence using the four basic arithmetic operations (+,−,×,÷) to reach
the target number. We selected Countdown since it offers a restricted search space and multiple valid
answers for a question that enables tractable analysis of both the reasoning behavior and diversity.

Setup. We evaluate on the TinyZero (Pan et al., 2025) dataset with 1,024 test problems. We em-
ploy Qwen2.5-3B (Team, 2024) as our base model, which demonstrates near-zero accuracy on this
specific task that establishes a clear baseline for improvement. We benchmark our method against
the well-recognized GRPO (Shao et al., 2024) and two GRPO variants designed for policy en-
tropy preservation: one with varying KL coefficients and another incorporating the clip-higher tech-
nique (Yu et al., 2025). Detailed task descriptions and the training details are in Appendix D.
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Figure 6: Performance of our method and baselines over training
on countdown tasks. The y-axis of (c) denotes the number of found
distinct correct solution equations, averaged over 1024 questions.

Using the numbers [21, 35,  1, 14], 
create an equation that equals 70

GRPO’s Solutions

(14 + 35) + (21 / 1) 

14 * 1 + (35 + 21)
(21 * 1) + (35 + 14)

(1*21) + (35 + 14)

(1 * 14) + (35 + 21) 

(14 * 1) + (35 + 21)

(21 + 35) + (14 / 1) (1 * 35) + (21 + 14)

(35 * 1) + (21 + 14) 

(14 * 1) + (21 + 35) 

21 * 1 + 35 + 14

(35 + 21) + (14 / 1) 

(35 / 1) + (21 + 14) 

1 * 14 + (21 + 35) 

(21 + 14) + (35 / 1) 
(35 + (21 / 1)) + 14

(1 * 21) + 35 + 14

(1 * 35) + 21 + 14

ROVER’s solutions

1 * 14 + (35 + 21) 

(35 + 14) + (21 * 1) 

Question：

Figure 7: ROVER successfully
finds 17 diverse solution equa-
tions, while only 3 different
equations are given by GRPO.

Results Analysis. From the results shown in Fig. 6, we have the following observations: (i) In
terms of test scores shown in Fig. 6(a), our method surpasses all baselines after 400 training steps,
ultimately reaching the highest ceiling performance. Conversely, the GRPO with a KL coefficient of
0.01 performs distinctly worse, indicating that its performance is hampered by excessive regulariza-
tion. We attribute the efficacy of our method to the preservation of high policy entropy throughout
training. As shown in Fig. 6(b), our method’s entropy decays gracefully while remaining signifi-
cantly higher than that of the baselines, which either collapse (GRPO w/o KL) or fluctuate errati-
cally (GRPO w/ Clip higher). A stable high entropy encourages sustained exploration, which is the
primary driver of our model’s performance, enabling it to achieve the highest scores on both qual-
ity and diversity metrics, as validated in Fig. 6(c), where our method finds more diverse solutions
to address a question. Fig. 7 further provides a visualization example to demonstrate the solution
diversity of ROVER .
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Figure 8: Performance under different ρ.

Ablation on temperature ρ. Consistent with stan-
dard LLM sampling practices (Sheng et al., 2024),
we set temperature ρ = 1 for softmax sampling for
all experiments without any task-specific tuning. This
parameter balances the exploration-exploitation trade-
off: ρ → 0 encourages greedy, deterministic behavior,
while higher values promote diverse sampling. Our ab-
lation study on ρ in Fig. 8 confirms that ρ = 1 achieves
a robust and desirable performance. A higher tempera-
ture causes under-exploitation and slower convergence,
while a lower value triggers premature exploitation, causing an accelerated collapse in policy entropy
and constrained exploration space. In the extreme case where ρ = 0.001, the near-deterministic pol-
icy sampling leads to severe training instability (evidenced in test score), highlighting the importance
of a balanced temperature for effective exploration. We further investigate the effect of ρ on math
reasoning tasks, where similar conclusions are validated. Results are provided in Appendix F.3.1.

4.2 REASONING ON MATH TASKS

Training Setup. We employ models of various sizes for validating the efficacy of our proposed
method, including Qwen3-8B-Base, Qwen3-4B-Base, and DeepSeek-R1-Distill-Qwen-1.5B, where
the results of DeepSeek-1.5B are provided and analyzed in Appendix E due to space limitations.
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Table 1: Pass@1 results across different methods on mathematical and O.O.D benchmarks. The
highest and the second-best scores are shown in bold and underlined, respectively.

Pass@1
Mathematical O.O.D

Avg.AIME
2024

AIME
2025

HMMT
2025

Olympiad
Bench

AMC
2023

MATH
500

GPQA
diamond

Qwen3-4B-Base
Base Model 8.8 4.9 0.8 27.3 35.2 55.6 9.7 20.3
GRPO 16.4 9.4 2.4 43.6 57.0 79.9 38.7 35.3
DAPO 17.1 10.9 0.7 41.7 56.6 78.4 38.5 34.8
REINFORCE++ 14.8 7.8 2.8 42.3 57.9 76.8 31.8 33.5
ROVER (Ours) 17.6 ↑ +8.8 12.6 ↑ +7.7 3.1 ↑ +2.3 45.4 ↑ +18.1 57.1 ↑ +21.9 80.5 ↑ +24.9 39.5 ↑ +29.8 36.5 ↑ +16.2

Qwen3-8B-Base
Base Model 11.5 8.8 0.8 34.7 48.1 68.8 29.1 28.8
GRPO 16.8 15.1 4.8 48.6 66.9 81.9 43.8 39.7
DAPO 20.8 15.2 3.6 49.0 67.9 84.3 46.6 41.1
REINFORCE++ 19.4 16.7 7.1 47.6 63.5 83.6 46.3 40.6
ROVER (Ours) 30.6 ↑ +19.1 22.7 ↑ +13.9 14.6 ↑ +13.8 56.4 ↑ +21.7 74.8 ↑ +26.7 89.6 ↑ +20.8 50.2 ↑ +21.1 48.4 ↑ +19.6

All models are trained on the open-source DeepScaler dataset (Luo et al., 2025). A binary re-
ward is assigned by the open-source verification tool math verify (Kydlı́ček & Face, 2025) upon
the completion of LLM generation. We employ standard RLVR methods as baselines, including
GRPO (Shao et al., 2024), REINFORCE++ (Hu et al., 2025a), and DAPO (Yu et al., 2025).

Evaluation. We select various widely-acknowledged math reasoning benchmarks: AIME24 (MAA,
2024), AIME25 (MAA, 2025), HMMT25 (Balunović et al., 2025), OlympiadBench (He et al.,
2024), AMC23 (AI-MO, 2024), and MATH500 (Hendrycks et al., 2021), along with the O.O.D
benchmark GPQA-diamond (Rein et al., 2024). We report pass@1 and pass@k for comprehensive
analysis, where pass@k measures diversity and the reasoning boundary (Yue et al., 2025). With in-
creased diversity, the model has a higher probability of discovering a correct reasoning path within
k attempts. More details about the experimental setup can be found in the Appendix F.1.

4.2.1 PERFORMANCE ANALYSIS

ROVER consistently outperforms all RL baselines in terms of average pass@1. As detailed
in Table 1, ROVER consistently outperforms standard RL methods across all model sizes. For the
Qwen3-8B-Base model, ROVER achieves pass@1 improvements of +7.3 and +8.2 over the strongest
baseline, averaged on all benchmarks and on the subset of AIME24, AIME25 and HMMT25, re-
spectively. The superiority of our method over baseline methods becomes more pronounced on
increasingly challenging tasks. Notably, for Qwen3-8B-Base, ROVER delivers substantial relative
improvements of +47.1% on AIME24 and +35.9% on AIME25 over the best-performing baseline.
On HMMT25, ROVER nearly doubles the performance of the strongest baseline, REINFORCE++.

(a) AIME 2024 (b) AIME 2025 (c) HMMT 2025

Figure 9: pass@k of ROVER and baselines on Qwen3-8B-Base.
Figure 10: Quality-
Diversity tradeoff.

ROVER significantly improves pass@k. The average pass@k over a dataset reflects the proportion
of problems a model can potentially solve within k trials, serving as a robust evaluation metric of
the model’s reasoning breadth and diversity. To demonstrate the effectiveness of our method in
incentivizing reasoning diversity, we compare ROVER with baselines by scaling pass@k from 1
to 256. Consistent with previous observations (Yue et al., 2025; Li et al., 2025a), the results in
Fig. 9 reveal that while standard RL baseline methods enhance pass@1, their performance quickly
saturates and plateaus, ultimately underperforming the base model at large k values. For example,
DAPO even shows worse performance on AIME25 after k > 4, a trend that is also observed on
HMMT25 for k > 32. In contrast, our method demonstrates sustained and significant performance
gains as k increases, consistently surpassing all the baselines and the base model (+16.8 over the
best baseline on pass@256 averaged on AIME24, AIME25 and HMMT25). This advantage is
particularly pronounced on the most challenging HMMT25 task, where our method’s pass@k score
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continues to accelerate while all baselines have saturated. We attribute the improved pass@k to
ROVER’s ability to maintain a relatively higher entropy during training (see Fig. 20), which ensures
sustained exploration of different reasoning strategies and enhances reasoning diversity.

ROVER shows remarkable generalization on O.O.D tasks. To further evaluate the generalization
capability of ROVER, we incorporate the GPQA-diamond benchmark, a challenging math-unrelated
task containing 198 graduate-level questions in biology, physics, and chemistry. The results in
Table 1 demonstrate ROVER’s stronger generalization beyond the training distribution, achieving
the best performance on the unseen GPQA-diamond benchmark.

4.2.2 DIVERSITY ANALYSIS

ROVER possesses the highest diversity across different metrics. To quantify reasoning diver-
sity, we employ the “number of distinct strategies” metric from NoveltyBench (Zhang et al., 2025c).
Specifically, we sample up to 32 correct responses for each problem from the AIME24 datasets, and
leverage Claude-3.5-Sonnet as the LLM judger to determine strategic equivalence between these re-
sponse pairs (template in Fig. 25). A higher number of distinct strategies (classes) indicates greater
reasoning diversity. We report the results in Fig. 10 (with a 0.6 decoding temperature) and the re-
sults across different decoding temperatures in Fig. 22. From Fig. 10, we observe that ROVER
demonstrates relative diversity improvements of +6.8% and +20.5% when compared with GRPO
and the average of all three baselines, respectively. Conventional RL approaches struggle to im-
prove diversity merely through increasing sampling temperature during inference, while ROVER
consistently improves the Pareto front between quality and diversity. For a more comprehensive
quantitative analysis of generation diversity, we refer to Appendix F.4, which includes results for
additional metrics such as utility (Zhang et al., 2025c) and cosine distance (Fig. 23).

4.2.3 BEHAVIORAL ANALYSIS

(a) AIME 2024 (b) HMMT 2025
Figure 11: Maj@k performance of ROVER
and baselines on Qwen3-8B-Base.

ROVER scales best at test-time due to maintained
diversity. Test-time scaling has received signifi-
cant attention due to its potential to enhance rea-
soning performance, where majority voting is a fun-
damental baseline for evaluating LLM scalability at
test-time (Liu et al., 2025b). Fig. 11 confirms that
ROVER’s maj@k performance scales robustly, con-
sistently improving upon the base model across all
k values, even on the most challenging HMMT25
task. This superior scalability stems from ROVER’s
ability to maintain a diverse distribution over valid
reasoning paths, while baseline methods suffer from mode collapse, causing them to confidently
converge on similar incorrect solutions and preventing performance gains from additional samples.

Figure 12: Comparison of reflec-
tion frequency. ROVER outputs
more reasoning-related tokens.

Enhanced reflection behaviors. To analyze the reasoning pat-
terns learned via ROVER, we adopt the forking tokens defined
in Wang et al. (2025) (see Table 6) and quantify the normal-
ized frequency of these tokens in the generated outputs (256
rollouts per prompt on AIME24, AIME25, and HMMT25).
Fig. 12 shows models trained with ROVER generate a sig-
nificantly higher proportion of these forking tokens, particu-
larly those associated with rethinking and self-correction (e.g.,
‘wait’ and ‘however’). As detailed in Fig. 16, ROVER en-
courages the model to actively reflect upon, verify, and pivot
between different reasoning strategies, rather than committing to a single reasoning path. Fig. 15
examines an AIME24 problem where ROVER discovers two additional novel strategies compared
to the base and GRPO-trained models, showing ROVER’s potential to push the reasoning boundary.

5 CONCLUSION AND LIMITATION

We present ROVER, a minimalist approach to RLVR that achieves high-quality and diverse rea-
soning policies from uniformly random policy Q-values, which eliminates the need for complex
evaluation-improvement loops with superior performance and diversity compared to SOTA meth-
ods. Our experiments are limited to math reasoning tasks with models up to 8B parameters due to
restricted computational resources. See Appendix G for more discussions on limitations.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed proofs of our theoretical results in Appendix A. De-
tailed experimental setup and hyperparameters used during training and evaluation can be found
in Appendix F.1. Moreover, we provide the anonymous codebase at https://anonymous.
4open.science/r/ROVER.

REFERENCES
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A PROOFS IN § 3.1

A.1 PROOF OF THEOREM 1

Theorem 1 Consider an episodic finite-horizon episodic MDP with binary terminal rewards
R(s) ∈ {0, R} where R > 0 (R for a correct solution, 0 otherwise). Let πu be a uniform
policy, and let Qπu denote its Q-function. Define the greedy policy with respect to Qπu by
πgreedy(s) = argmaxa Q

πu(s, a). Then πgreedy is the optimal policy.

Proof. As the underlying graph is a tree, starting from s0 under policy πgreedy gives a unique chain
s0 → s1 → · · · → sn. By definition, for any state-action pair (s, a), if the subtree below (s, a) does
not contain a correct terminal state, then Qπu(s, a) = 0; conversely, if its subtree contains a correct
terminal state, then Qπu(s, a) > 0. Therefore, at s0 we choose a0 = argmaxa Q

πu(s, a), the next
state s1 will necessarily lie on a path that reaches a correct terminal state. We keep proceeding
until sn−1, and πgreedy(a|sn−1) = argmaxa Q

πu(sn−1, a) also selects the optimal action a (as
Qπu(sn−1, an−1) = R(sn−1, an−1) = R).

A.2 PROOF OF THEOREM 2

Theorem 2 Consider the same MDP M, and let Qπu(s, a) denote the Q-function under the
uniform random policy πu from state-action pair (s, a), N(s) = |{a : Qπu(s, a) = 0}| be
the number of zero-valued actions at state s, A(s) be the number of available actions at state
s, and P denotes the set of key states where both optimal and suboptimal actions exist, i.e.,
P = {s : 1 ≤ N(s) ≤ A(s) − 1}. Given the softmax policy πs(a|s) = exp(Qπu (s,a)/ρ)∑

a′ exp(Qπu (s,a′)/ρ)

with temperature ρ > 0, and Prπs(s|s0) is the probability of reaching s from s0 with the policy
πs, the value function of the induced policy πs satisfies the following lower bound: V πs(s0) ≥
R
(
1−

∑
s∈P Prπs(s|s0) N(s)

N(s)+exp(maxa Qπu (s,a)/ρ)

)
.

Proof. Let us sample trajectories from the initial state s0 using policy πs. For any incorrect trajec-
tory τ that achieves a reward value of 0 (one that fails to reach a correct terminal state with positive
reward R), there must exist at least one key state along τ . For each τ , let sτ denote the last key state
along τ .

The probability of trajectory τ can be factored as:

Pr(τ) = Prπs(sτ |s0)
∏
t≥tτ

πs(at|st), (2)

where tτ denotes the index of state sτ in the trajectory sequence.

Let Tw denote the set of all incorrect trajectories, then we have that

Pr(Tw) =
∑
τ∈Tw

Pr(τ). (3)

For any key state s ∈ P , let T (s) denote the set of incorrect trajectories for which s is the last key
state. Since the underlying MDPM has a tree structure, the sets {T (s)}s∈P form a partition of Tw.
Therefore, we have that

Pr(Tw) =
∑
s∈P

Prπs(s|s0)
∑

τ∈T (s)

∏
t≥ts

πs(at|st). (4)

As the state s is the last key state on any trajectory in T (s), we have that∑
τ∈T (s)

∏
t≥ts

πs(at|st) = Pr(Qπu(s, a) = 0|s, πs), (5)
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where Pr(Qπu(s, a) = 0|s, πs) is the probability that policy πs selects an action with zero Q-value
at state s.

By the definition of the softmax policy, we have that

Pr(Qπu(s, a) = 0|s, πs) =
∑

a:Qπu (s,a)=0

πs(a|s) (6)

=
∑

a:Qπu (s,a)=0

exp(Qπu(s, a)/ρ)∑
a′ exp(Qπu(s, a′)/ρ)

(7)

=
N(s)

N(s) +
∑

a′:Qπu (s,a′)>0 exp(Q
πu(s, a′)/ρ)

(8)

≤ N(s)

N(s) + exp(maxa′ Qπu(s, a′)/ρ)
(9)

Combing Eq. (4), Eq. (5), and Eq. (9), we have that

Pr(Tw) ≤
∑
s∈P

Prπs(s|s0)
N(s)

N(s) + exp(maxa′ Qπu(s, a′)/ρ)
. (10)

By definition, the value function of πs is related to the probability of correct trajectories:

V πs(s0) = (1− Pr(Tw))R. (11)

Substituting our upper bound on Pr(Tw), we have that

V πs(s0) ≥ R

(
1−

∑
s∈P

Prπs(s|s0)
N(s)

N(s) + exp(maxa′ Qπu(s, a′)/ρ)

)
. (12)

For any key state s ∈ P , we have that maxa′ Qπu(s, a′) > 0 by definition. As ρ→ 0, the right-hand
side in Eq. (12) converges to R, which is the optimal value.

B GRADIENT ANALYSIS

In this section, we analyze the relationship between our method and existing policy optimization
methods from the gradient perspective.

Proposition 1 Assume only log πθ has parameters (i.e., LLM policy π depends on θ). Define im-
portance sampling ratio IS = πθ(a|s)

πθold
(a|s) , where πθold is the behavior policy. Denote r̃ as our mean-

centered reward. Then the gradient of ROVER’s objective takes the following form, which is similar
to policy-gradient:

∇θLROVER = Es,a,s′∼P [((r̃ +Q′)− log IS)∇θ log πθ(a|s)] , where Q′ =
1

|V|
∑
a′∈V

Q(a′|s′)

(13)

Proof. Recall the details of our method provided in § 3.2, ROVER has the following loss function:

LROVER = Es,a,s′∼P

[(
r̃ +

1

|V|
∑
a′∈V

Q(a′|s′)−Q(s, a)
)2]

. (14)
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Let
u = r̃ +

1

|V|
∑
a′∈V

Q(a′|s′)−Q(s, a)

= r̃ +
1

|V|
∑
a′∈V

Q(a′|s′)− (log πθ − log πθold)

= r̃ +
1

|V|
∑
a′∈V

Q(a′|s′)− log

(
πθ

πθold

)
= r̃ +

1

|V|
∑
a′∈V

Q(a′|s′)− log IS.

(15)

Then the gradient is
∇θLROVER = Es,a,s′∼P [u · ∇θu] (16)

Given that Q′ = 1
|V|
∑

a′∈V Q(a′|s′), where the gradient of Q′ is stopped (see Alg. 1), and πθold

does not involve gradient backpropagation, by combining Eq. 15 and Eq. 16 we have:

∇θLROVER = Es,a,s′∼P

[(
r̃ +

1

|V|
∑
a′∈V

Q(a′|s′)− log IS
)
∇θ log IS

]

= Es,a,s′∼P

[(
r̃ +

1

|V|
∑
a′∈V

Q(a′|s′)− log IS
)
∇θ log πθ(a|s)

]
.

(17)

Note the gradient of a typical policy optimization method, i.e., GRPO (Shao et al., 2024), is

∇θLGRPO = Es,a[A · IS · ∇θIS] = Es,a[A · IS · ∇θ log πθ(a|s)]. (18)

Therefore, we have the following key observation:

• Both gradients share the term∇θ log πθ (core of policy gradient).

• When importance sampling ratio IS→ 1 (small policy update), i.e., log IS→ 0, so:

∇θLROVER ≈ E
[
(r̃ +Q′)∇θ log πθ

]
, ∇θLGRPO = E

[
A · ∇θ log πθ

]
.

These two objectives can be approximately equal if we remove the term Q′ in ROVER and the
advantage A in GRPO is normalized without the standard deviation term.

B.1 EMPIRICAL JUSTIFICATION

Ablation on the term Q′. The Bellman target used for Q-value updates is composed of two com-
ponents: centered reward, r̃, and the expected Q-value of the successor state under a uniform policy,
Q′ = 1

|V|
∑

at+1∈V Q(at+1|st+1). We ablate the contribution of the latter Q-value term in the Bell-
man target by scaling it with a coefficient β = [0.0, 0.2, 1.0, 5.0]. The results show that this term
is essential: removing it (β = 0) causes a collapse in entropy and response length (see Fig. 13(c)
and 13(d)), leading to a sharp drop in pass@k performance. Conversely, an overly dominant Q-term
(β = 5.0) diminishes the reward signal, which also degrades performance. Crucially, as shown in
Fig. 13(a) and 13(b), our method is not sensitive to the precise scaling of this term, with perfor-
mance remaining stable across a wide range (β from 0.2 to 1.0). By default, we set β = 1.0 in other
experiments. Detailed pass@k performances under different β values are shown in Fig. 14.
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(a) (b) (c) (d)

Figure 13: (a)&(b): Impact of coefficient β in ROVER on pass@1 & pass@64, average performance
on AIME24, AIME25, HMMT25 is reported. The X-axis is on a log scale. (c)&(d): Entropy and
response length curves throughout training. All experiments are conducted on Qwen3-4B-Base with
LLM decoding temperature 1.0, and trained for 300 steps.

(a) AIME 2024 (b) AIME 2025 (c) HMMT 2025

Figure 14: pass@k performances under different value of coefficient β in ROVER . All experiments
are conducted on Qwen3-4B-Base and trained for 300 steps.

C RELATED WORK

RL with verifiable rewards (RLVR) (Guo et al., 2025; Team, 2025; Yang et al., 2025a; Comanici
et al., 2025) has found great success in post-training LLMs on verifiable tasks. To bypass the need
for the value model of PPO (Schulman et al., 2017), many actor-only variants have been proposed,
such as GRPO (Shao et al., 2024), RLOO (Ahmadian et al., 2024), ReMax (Li et al., 2024), and RE-
INFORCE++ (Hu et al., 2025a). Nevertheless, leading algorithms like GRPO still exhibit unstable
learning dynamics and are prone to model collapse. Recent works propose to add various heuristics
on advantage normalization (Liu et al., 2025c; Zheng et al., 2025; Zhao et al., 2025), clipping ra-
tio (Yu et al., 2025), KL regularization (Liu et al., 2025a), entropy loss (He et al., 2025c; Zhang et al.,
2025a), reward bonous (He et al., 2025a; Li et al., 2025a; Yao et al., 2025; Cheng et al., 2025; Chen
et al., 2025a;c), data augmentation (Yang et al., 2025b; Liang et al., 2025), and others (Cui et al.,
2025; Wang et al., 2025). Crucially, these existing works are still constrained by the same surro-
gate, policy-gradient-based PPO objective, and often necessitate complex, case-specific tuning (Liu
et al., 2025d). Our work departs from this paradigm, proposing a method grounded in random policy
valuation that offers a minimalist yet theoretically guaranteed approach to fine-tuning LLMs.

Table 2: Summarization of MDP structures across different tasks. While traditional RL tasks have
smaller-scale state and action spaces, the MDP structure of traditional RL tasks can be much more
complex than the LLM reasoning task.

Feature Traditional RL Tasks (e.g., Atari) LLM Reasoning Tasks (e.g., Countdown)
Transition dynamics Stochastic/Deterministic Deterministic

Reward function Stochastic/Deterministic Deterministic
Intermediate/Episodic Episodic

State space structure Graph-like (often be cyclic) Tree-like (no cycles)
Observability Can be partial observable Fully observable
Action space Smaller Larger

Horizon Shorter Longer

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D THE COUNTDOWN TASK

Task Details. Countdown (Gandhi et al., 2025) is a math reasoning task capable of evaluating the
arithmetic capabilities of LLMs. Below illustrates the toy example of the countdown task:

nums: [19, 36, 55, 7],

target: 65,

answer: 55 + 36− 7− 19,

where the LLM should find the correct solution using the given numbers and basic arithmetic op-
erations (+,−,×,÷). The simplicity of the Countdown’s reasoning path, yet challenging for small
LLMs to solve effectively, makes it an accessible test bed for math reasoning.

Training Details. We use the training and testing dataset provided by TinyZero (Pan et al., 2025).
The training dataset contains 327680 problems, and the testing dataset contains 1024 unseen prob-
lems. A reward of 1 is given if the LLM finds the correct equation; Otherwise, it receives a zero
reward. We set the batch size to 128 and the mini batch size to 64 during training. Optimization is
conducted by an AdamW (Loshchilov & Hutter, 2017) where learning rate is 1×10−6. The response
length is set to 1k for both training and evaluation. We rollout 5 responses per prompt to calculate
the mean-centered reward. Other configurations follow the default setting of TinyZero (Pan et al.,
2025). For the baseline of GRPO with Clip higher technique, we set clip ratio ϵlow = 0.2 and
ϵhigh = 0.4. Note that all the experimental settings across different methods remain the same for a
fair comparison.

E RESULTS OF MATH TASKS ON DEEPSEEK-1.5B

We provide the details of the training setup on DeepSeek-R1-Distill-Qwen-1.5B model (Guo et al.,
2025) as follows.

• We employ the datasets provided by DeepScaler (Luo et al., 2025), which contains 40k verifiable
math questions.

• Built upon the veRL infra (Sheng et al., 2024), we set batch size to 128 and mini-batch size to 64.

• we use the AdamW (Loshchilov & Hutter, 2017) optimizer with a constant learning rate of 1 ×
10−6 for gradient backpropagation.

• We rollout 8 responses per prompt to calculate the mean-centered reward r̃.

• Following DeepScaler (Luo et al., 2025), we first train DeepSeek-R1-Distill-Qwen-1.5B for 1k
steps with a 8k response length. Then we scale the response to 16k for an additional 1k training
steps. Experiments are conducted on 8 H200 GPUs for around 5 days.

Following the evaluation scripts provided by veRL, we use a sampling temperature of 0.6, nucleus
sampling (Holtzman et al., 2019) with top p = 0.95, and a maximum response length of 24k for
evaluation. We evaluate our ROVER-trained model and previous SOTA models such as DeepScaler-
1.5B (Luo et al., 2025) and ProRLv2-1.5B (Liu et al., 2025a) on AIME24, AIME25, AMC23, and
MATH tasks. We rollout 128 responses per prompt for each task, and report both the pass@1
(avg@128) and pass@64 (calculated by an unbiased estimator (Chen et al., 2021)) for comprehen-
sive comparison.

From the results summarized in Table 3, we observe that ROVER achieves the best performance in
terms of both pass@1 and pass@64 scores compared with DeepScaler, which is trained on the same
dataset as ours. Note that the comparison with ProRLv2 is not fair since ROVER uses more than
3× smaller datasets (40k (ours) vs. 136k (ProRLv2)). Moreover, the training of ROVER only lasts
for around 960 GPU hours, while ProRLv2 is trained for 16k GPU hours. However, thanks to the
better reasoning diversity brought by our method, ROVER can achieve higher scores than ProRLv2
on pass@64.
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Table 3: Results of DeepSeek-R1-Distill-Qwen-1.5B on typical math competition tasks. The high
and the second-best scores are shown in bold and underlined, respectively.

Models Pass@1 Pass@64
AIME24 AIME25 AMC23 MATH AIME24 AIME25 AMC23 MATH

DeepSeek-R1-Distill-Qwen-1.5B (Guo et al., 2025) 29.3 24.3 62.5 82.9 79.8 58.3 92.9 97.3
DeepScaleR-1.5B (Luo et al., 2025) 41.6 30.8 73.4 87.7 78.5 62.9 95.0 96.8

ProRLv2-Qwen-1.5B (Liu et al., 2025a) 52.6 35.2 81.5 90.6 79.2 59.7 94.3 96.1
ROVER (Ours) 42.2 31.2 74.3 88.3 80.6 64.4 95.2 97.1

F RESULTS OF MATH TASKS ON QWEN MODELS

F.1 TRAINING AND EVALUATION DETAILS

Training Details. To ensure a fair comparison, both ROVER and baselines are trained using the
same learning rate, batch size, and training steps (see Table 4). We fix 600 training steps for ROVER
and baselines. During each training step, 128 × 8 samples are involved to calculate gradients. The
computational requirements are approximately 1,280 GPU hours for experiments initialized with
Qwen3-8B-Base and 832 GPU hours for those with Qwen3-4B-Base.

Evaluation Details. Default hyperparameters of evaluation are summarized in Table 5. To compute
average pass@1, we sample 256 independent runs for AIME24, AIME25, HMMT25, and AMC23
for comprehensive evaluation to reduce the variance introduced by the relatively small sizes of these
benchmarks, while 10 runs are sufficient for the larger OlympiadBench, MATH500, and GPQA-
diamond benchmark.

Table 4: Default hyperparameters for RL train-
ing.

Hyper-parameter Value

Temperature 0.6
Response length 8× 1024
Responses per prompt 8
Train batch size 128
Mini batch size 32
PPO epoch 1
Learning rate 1e− 6

Table 5: Default hyperparameters for evaluation.
Hyper-parameter Value

Temperature 0.6
Response length 24× 1024
top p 0.95

Baselines. We compare ROVER with the following baselines:

• GRPO (Shao et al., 2024): It employs a standard implementation framework with token-
level mean aggregation loss, serving as a fundamental baseline for LLM reinforcement
learning.

• DAPO (Yu et al., 2025): It extends GRPO by introducing several techniques to enhance
LLM training efficiency. These include clip-higher, dynamic sampling, and overlong re-
ward shaping. We set ϵlow = 0.2, ϵhigh = 0.28.

• REINFORCE++ (Hu et al., 2025a): Different from GRPO, it incorporates global advantage
normalization (across responses correspond to different prompts within a batch), resulting
in an unbiased approach that significantly improves training stability. We implement the
REINFORCE++-baseline version in this paper.

All baselines are rigorously implemented following the official veRL recipes (Sheng et al., 2024).

F.2 CASE STUDIES

Discovered strategies comparison. To intuitively show the enhanced diversity of ROVER , we
present a representative prompt from AIME24 that holds multiple potentially feasible strategies.
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Prompt  Find the number of ways to place a digit in each cell of a 2x3 grid so that the sum of the two numbers formed by reading left to right is $999$, 
and the sum of the three numbers formed by reading top to bottom is $99$. The grid below is an example of such an arrangement because $8+991=999$ 
and $9+9+81=99$.\n\\[\\begin{array}{|c|c|c|} \\hline 0 & 0 & 8 \\\\ \\hline 9 & 9 & 1 \\\\ \\hline \\end{array}\\] Let's think step by step and output the final 
answer within \\boxed{}.

Qwen3-8B-Base and GRPO’s Strategy 1 
... Condition 1: The sum of the two numbers formed by reading left to right is 999. 
(100a + 10b + c) + (100d + 10e + f) = 999.

Condition 2: The sum of the three numbers formed by reading top to bottom is 99. 

(10a + d) + (10b + e) + (10c + f) = 99. This leads to: a + d = 9; b + e = 9; c + f = 9 ... 
From the top-bottom sum condition, we get: a + b + c = 8.
According to the stars and bars theorem, the number of non-negative 
integer solutions to a + b + c = 8 where each variable is a digit is: \binom{8+3-1}{3-1} 
= \binom{10}{2} = \boxed{45}.

Qwen3-8B-Base and GRPO’s Strategy 2
... The two equations are: 1. \[ (100a + 10b + c) + (100d + 10e + f) = 999 \] 2. \[ (10a + d) 
+ (10b + e) + (10c + f) = 99 \].
Obtain equation A: 10a + 11d + e - c = 100 Substitute and simplify to get equation C: 10b 
+ 11c + f = 10d - 1.
For each \( d \) from 1 to 9: Find valid \( (b, c) \) pairs that satisfy \( 10d - 10 \leq 10b + 11c 

\leq 10d - 1 \)....
Pattern found: for $d$ from 1 to 9, each value of $d$ 
corresponds to $d$ valid combinations.
Therefore, the total number is: 1 + 2 + 3 + ... + 9 = \boxed{45}.

ROVER’s Strategy 3
Let's denote ...
- S_1 = a + d; S_2 = b + e; S_3 = c + f
- T_1 = a + b + c; T_2 = d + e + f

... Now, we need to find the number of 
non-negative integer solutions to \( d + e 
+ f = 19 \) where \( 0 \leq d, e, f \leq 9 \).
Using the inclusion-exclusion 
principle: 

1. Total solutions without constraints: 
\( \binom{21}{2} = 210 \)
2. Solutions where one variable ≥ 10: \( 3 
\times 55 = 165 \)
Total valid solutions = 
210 - 165 = \boxed{45}.

ROVER’s Strategy 4
... Subtracting equation 2 from equation 
1 and dividing by 9:
- c = 10a + 11d + e - 100
Since \(c\) is a digit (0-9):
- 100 \leq 10a + 11d + e \leq 109
Analyzing the possible values of a, d, e 
(all being digits 0-9), we discover that 
integer solutions satisfying the inequality 
exist only when a = 5, 6, 7, 8, 
9. For each value of a, there are 
exactly 9 corresponding 
combinations of (d,e). Therefore:
Total number of combinations = 
5 × 9 = \boxed{45}.

ROVER’s Strategy 1
... 
For a 2x3 grid, we have two key 
equations: the horizontal sum (100a + 
10b + c) + (100d + 10e + f) = 999 and 
the vertical sum (10a + d) + (10b + e) 
+ (10c + f) = 99. 

...
Now we need to find the number of 
solutions to a + b + c = 8 where a, b, c 
are digits. This is a classic 
"stars and bars" problem 
with the constraint that a, b, c \leq 9.
The number of solutions to \\(a + b + c 
= 8\\) in non-negative integers is given 
by: \binom{8 + 2}{2} = 
\binom{10}{2} = \boxed{45}.

ROVER’s Strategy 2
The two equations are ...
This leads to three key equations:
a + d = 9; b + e = 9; c + f = 9
For each value of c from 0 to 8:
- f is determined by: \[ f = 9 - c \]
- a + b must satisfy: \[ a + b = 8 - c \]
- Number of valid (a,b) pairs equals 
(8-c+1)

...
Pattern found: for $c$ 
from 0 to 8, each value of 
$c$ corresponds to (9-$c$) 
valid combinations.
Therefore, the total number is: 9 + 8 
+ 7 + ... + 1 = \boxed{45}.

Figure 15: Illustration of strategies discovered by Qwen3-8B-Base, GRPO and ROVER . Responses
sharing the same color represent strategically identical approaches. While Qwen3-8B-Base and
GRPO find two distinct strategies 1&2, ROVER not only discovers the same two strategies but
also uncovers two additional strategies 3&4. For example, beyond discovering the Stars and Bars
theorem (strategy 1), ROVER also discovered a solution based on the inclusion-exclusion principle
(strategy 3), which demonstrates ROVER ’s capability in pushing reasoning boundaries.

For each model, 32 samples are generated and subsequently clustered based on strategic equiva-
lence using an LLM judge (the prompt of the LLM judge is given by Fig. 25). Representative CoT
examples for each cluster are illustrated in Fig. 15.

Prompt 

ROVER’s 
probability 

is higher

GRPO’s 
probability 

is higherResponse

Alice and Bob play the following game. A stack of $n$ tokens lies before them. The players take turns with Alice going first. 
On each turn, the player removes either $1$ token or $4$ tokens from the stack. Whoever removes the last token wins. Find 
the number of positive integers $n$ less than or equal to $2024$ for which there exists a strategy for Bob that guarantees that 
Bob will win the game regardless of Alice's play. Let's think step by step and output the final answer within \\boxed{}.

Token Probability difference

...

Figure 16: Token probability differences between ROVER and GRPO (visualized by the heatmap).
ROVER exhibits a significantly higher probabilities to tokens associated with reasoning contrasts
or shifts, exemplified by “ Wait ”.
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Token probability comparison. We visualize a case study to show the token probability differences
between ROVER and GRPO in Fig. 16 (a representative prompt from AIME24 is selected). ROVER
demonstrates higher probabilities for tokens indicating contrasts or shifts, particularly “wait”, which
facilitates the exploration of alternative reasoning paths, thereby contributing to increased strategic
diversity. The specific forking tokens mentioned in § 4 are shown in Table 6.

Table 6: Forking token categories and their corresponding tokens.
Category Tokens

mathematical setup suppose, assume, given, define
contrasts shifts wait, however, unless
progression addition thus, also

F.3 ADDITIONAL EXPERIMENT RESULTS

Pass@k results on Qwen3-4B-Base. As shown in Fig. 17, similar to results on Qwen3-8B-Base,
ROVER demonstrates consistently superior pass@k performance on Qwen3-4B-Base across all k
values, while other RL baselines drop when k becomes higher.

(a) AIME 2024 (b) AIME 2025 (c) HMMT 2025

Figure 17: pass@k performances of ROVER and baselines (Qwen3-4B-Base).

Figure 18: Maj@k performance
of ROVER and baselines on
AIME25 for Qwen3-8B-Base.

Maj@k results. The supplemental results of maj@k perfor-
mance on AIME25 for Qwen3-8B-Base is shown in Fig. 18. To
mitigate random variations in evaluation results, we adopt a re-
peated sampling approach for computing maj@k: k responses
are randomly sampled from the response collection, and this
sampling procedure is repeated 1000 times with the average
value reported.

F.3.1 ABLATION OF TEMPERATURE ρ

Consistent with the findings on the countdown task in Fig. 8,
the training temperature ρ serves as an exploration-exploitation
trade-off. A large ρ (ρ = 4) results in more stochastic behav-
ior and constant entropy throughout training, which affects the
performance (see Fig. 19). Conversely, a smaller ρ (ρ = 0.01) leads to a greedy and deterministic
policy, which compromises diversity (e.g., reduced pass@k) for improved pass@1 performance. By
default, we set ρ = 1 in other experiments.

F.3.2 TRAINING DYNAMICS

We present the training curves of entropy in Fig. 20. The min, mean, and max values of r̃ and Q′

within a training batch are visualized in Fig. 21.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 19: Impact of temperature ρ. All experiments are conducted on Qwen3-4B-Base and trained
for 300 steps. (a): pass@k results (average performance on AIME24, AIME25, HMMT25 are
reported). (b): entropy curves throughout training.

(a) (b)

Figure 20: Training curves of entropy for ROVER and baselines. (a) & (b) are results on Qwen3-
8B-Base and Qwen3-4B-Base, respectively. The entropy of ROVER is maintained at a relatively
higher level, and can even increase stably at later training stages, indicating expanded exploration
space. In contrast, the entropy of baselines inevitably decreases to a low level.

(a) r̃ (Min in batch) (b) r̃ (Mean in batch) (c) r̃ (Max in batch)

(d) Q′ (Min in batch) (e) Q′ (Mean in batch) (f) Q′ (Max in batch)

Figure 21: Absolute scales of r̃ and Q′ throughout training for ROVER (trained on Qwen-8B-Base).
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F.4 MEASURING THE DIVERSITY OF LLM RESPONSES

In addition to the number of distinct strategies mentioned in § 4, we additionally incorporate two
diversity metrics for a comprehensive evaluation. These diversity metrics are introduced as follows.

No. of Distinct strategies (Zhang et al., 2025c). It categorizes all generated responses into equiva-
lent strategy classes and counts the total number of distinct classes.

Utility (Zhang et al., 2025c). It combines diversity and quality using a user patience model where
users have a probability p of requesting additional generations. It rewards novel responses while ap-
plying geometric decay to account for diminishing user attention over multiple generations. Models
capable of generating multiple correct responses with distinct strategies will receive a higher utility
score.

Cosine Distance. We embed all responses using Qwen3-8B-Embedding (Zhang et al., 2025b) and
compute the average pairwise cosine distance between response vectors. Higher distances indicate
greater semantic diversity among generated responses. Specifically, given a set of generated re-
sponses {y1, y2, . . . , yn}, let E(yi) ∈ Rd denote the L2-normalized embedding vector of response
yi obtained from Qwen3-8B-Embedding. The pairwise cosine similarity between responses yi and
yj is:

S(yi, yj) = E(yi) · E(yj).

The average pairwise cosine similarity is:

S̄ =
1

n(n− 1)

n∑
i=1

∑
j ̸=i

S(yi, yj).

Finally, the cosine distance is defined as 1− S̄.

As a supplement to Fig. 10, results of quality-diversity trade-off across t ∈ [0.3, 0.9, 1.2] are shown
in Fig. 22.

Furthermore, we demonstrate the comparison on all three diversity metrics under different decoding
temperatures in Fig. 23. ROVER consistently exhibits greater diversity across all decoding temper-
atures.

(a) t = 0.3 (b) t = 0.9 (c) t = 1.2

Figure 22: Quality-diversity trade-off with different decoding temperature (AIME24).

F.5 PROMPTS

We present the prompt template for RL training and evaluation in Fig. 24, and the prompt for LLM
judger in Fig. 25.

G LIMITATIONS

ROVER provides strong foundations for simplifying RLVR in deterministic tree-structured MDPs
with binary terminal rewards. While autoregressive LLM generation naturally aligns with these
properties, it may not strictly hold in all extended RLVR applications (e.g., with tool calls or with
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(a) t = 0.3 (b) t = 0.9 (c) t = 1.2

Figure 23: Comparison of multiple diversity metrics with different decoding temperatures
(AIME24).

<|im_start|>user
{question}
Please reason step by step, and put your final answer within
\boxed{}.
<|im_end|>
<|im_start|>assistant

Figure 24: Prompt template for RL training and evaluation. The base model uses the same prompt
template as the trained model during evaluation.

intermediate feedback). The practical implementation of ROVER for scaling up to large action
spaces and long horizons also introduces approximation. Although the empirical success suggests
robustness in the underlying principles despite these approximations, an interesting future direction
is to further bridge this gap. We consider these as opportunities to reconsider RLVR from the
first principles, develop more robust simplified approaches, and extend ROVER to other tasks. We
believe that our approach establishes a valuable foundation for future research by demonstrating the
power of a surprising simplification in this domain, and hope that it inspires future research to adapt
and extend these insights to other structures while maintaining the core benefits of simplicity for
high-quality performance and diversity preservation.

H LLM USAGE DETAILS

In compliance with ICLR 2026 policies on large language model usage, we disclose that LLMs are
mainly used for two purposes in this work:

• LLM Judge for Strategic Equivalence Assessment: We employed LLMs as judges to deter-
mine whether two model responses are strategically identical (see Fig. 25). This constitutes
a core component of our research methodology. We have carefully validated the safety and
reliability of the LLM judge outputs through systematic verification procedures.

• Writing Enhancement: We utilized LLMs to polish the paper’s writing at the syntactic and
grammatical levels. All LLM-generated content has undergone thorough human review and
verification to ensure accuracy, appropriateness, and compliance with academic standards.

All LLM outputs were subject to careful human oversight and validation. We take full responsibility
for the accuracy and integrity of all content in this paper, including any sections enhanced with LLM
assistance.
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You are given the original prompt and two model-generated
responses. Determine whether the two responses use different
strategies to solve the problem.

Use the following guidelines to identify different strategies:

1. Mathematical Tools and Concepts:
- Using different mathematical tools (e.g., differentiation vs.
integration, series expansion vs. direct computation)
- Applying different theorems or properties (e.g., mean value
theorem vs. fundamental theorem of calculus)
- Different mathematical domains (e.g., algebraic vs. geometric,
analytical vs. combinatorial)

2. Solution Structure Differences:
- Different variable substitutions or transformations
- Different equation setups for the same problem
- Different ways of breaking down the problem into subproblems

3. Specific Examples of Different Approaches:
- Direct computation vs. recursive method
- Forward solving vs. backward solving (working from the answer)
- Algebraic manipulation vs. numerical approximation
- Using contradiction vs. direct proof
- Using induction vs. direct formula
- Coordinate-based vs. coordinate-free methods

Even if two solutions arrive at the same answer, they should be
considered different if they:
- Use different key mathematical tools or theorems
- Follow different logical sequences in critical steps
- Represent the problem using different mathematical frameworks
- Break down the problem in substantially different ways

Original prompt: {prompt}
Generation 0: {generation0}
Generation 1: {generation1}

Question: Do Generation 0 and Generation 1 use different
strategies? First analyze the key mathematical tools and
solution structure used in each solution, then respond
with "[[yes]]" if the generations use different
strategies or "[[no]]" if they do not.

Figure 25: Prompt for LLM judger to determine whether two responses use different strategies. We
refined the prompt proposed in (Li et al., 2025a) to enhance the LLM judge’s capability for more
nuanced strategy classification.
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