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ABSTRACT

The recent development of Video-based Large Language Models (VideoLLMs),
has significantly advanced video summarization by aligning video features—and,
in some cases, audio features—with Large Language Models (LLMs). Each of
these VideoLLMs possesses unique strengths and weaknesses. Many recent meth-
ods have required extensive fine-tuning to overcome the limitations of these mod-
els, which can be resource-intensive. In this work, we observe that the strengths
of one VideoLLM can complement the weaknesses of another. Leveraging this
insight, we propose a novel video summarization framework inspired by the Mix-
ture of Experts (MoE) paradigm, which operates as an inference-time algorithm
without requiring any form of fine-tuning. Our approach integrates multiple Vide-
oLLMs to generate comprehensive and coherent textual summaries. It effectively
combines visual and audio content, provides detailed background descriptions,
and excels at identifying keyframes, which enables more semantically meaningful
retrieval compared to traditional computer vision approaches that rely solely on
visual information, all without the need for additional fine-tuning. Moreover, the
resulting summaries enhance performance in downstream tasks such as summary
video generation, either through keyframe selection or in combination with text-
to-image models. Our language-driven approach offers a semantically rich alter-
native to conventional methods and provides flexibility to incorporate newer Vide-
oLLMs, enhancing adaptability and performance in video summarization tasks.

Input Video
Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises

Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises

Textual Summary
Sure, the video starts with a person cutting a potato in half and then slicing out the insides. They then cut the potato into 
cubes and put them in a pan with some butter. The potato is then cooked in the oven. After that, the person cuts the potato 
into small pieces and adds cheese, salt, and pepper to it. Finally, the person puts the potato in a baking dish and puts it in 
the oven to cook.
Genarative Images by Stable Diffusion

Figure 1: Visualization of two of our extended applications on HowTo100M (Miech et al., 2019).
The “Input Video” refers to the keyframes selected from the original video based on our textual
summary, and pairing with our textual summary, we can simulate visual manual generation. The
images generated by Stable Diffusion 3 (Esser et al., 2024) simulate privacy-preserving content
generation.
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1 INTRODUCTION

In recent day, the proliferation of video content across various platforms has led to an overwhelm-
ing amount of information, making it challenging for users to efficiently access and digest the key
information. As a result, video summarization has emerged as a crucial task, enabling the efficient
extraction of key segments from lengthy videos. The goal of video summarization is to condense
extensive video content into textual summaries, short video clips, or a collection of representative
images. Given the vast amount of video data generated daily, effective summarization not only
enhances user experience by reducing the time required to access essential information but also
supports efficient content management and retrieval across platforms. Additionally, video sum-
marization has significant applications in areas such as surveillance, education, entertainment, and
multimedia indexing, making it a vital tool for navigating and leveraging the vast expanse of video
data available today.

The success of Visual Language Models (VLMs) (Liu et al., 2024; Wang et al., 2023b; Alayrac
et al., 2022) has paved the way for the development of Video LLMs, such as VideoLLaMA (Zhang
et al., 2023), VideoChat (Li et al., 2023a), and VideoLLaVA (Lin et al., 2023a). These VideoLLMs
leverage human-annotated data for instruction tuning, and they propose different methods to align
video features with the LLM feature space. Each model exhibits distinct strengths: for example,
PG-Video-LLaVA (Munasinghe et al., 2023) demonstrates pixel-grounded capabilities for captur-
ing detailed scenes, Video-LLaMA adopts a multi-branch cross-modal framework that incorporates
audio information in addition to video content, and LLaMA-VID (Li et al., 2023b) excels in captur-
ing background scene details. However, despite these strengths, existing VideoLLMs have inherent
shortcomings and lack coherent methods to address them. For instance, Video-LLaVA and LLaMA-
VID are unable to retrieve audio signals, while Video-LLaMA lacks the grounding abilities required
for retrieving fine-grained details. Additionally, LLMs within these VideoLLMs often suffer from
hallucination issues. To overcome these limitations, previous approaches typically resort to fine-
tuning or retraining models, which can be computationally expensive. Our observation, however,
suggests that the limitations of one VideoLLM can often be mitigated by the strengths of another.
This leads us to ask: What if we could utilize existing VideoLLMs collaboratively, instead of re-
sorting to costly fine-tuning or retraining of a new model?

In this work, we draw inspiration from the Mixture of Experts (MoE) (Shen et al., 2023; Lin et al.,
2024) paradigm, which is designed to enhance performance in processing large and complex tasks
by leveraging multiple expert sub-models. Specifically, our approach employs multiple VideoLLMs
for video summarization, integrating the concept of LLM cooperation to combine the outputs from
these video “experts” through our proposed inference-time algorithm. This method allows us to
address the limitations of individual VideoLLMs by compensating with the strengths of other expert
VideoLLMs. Furthermore, since our framework does not require fine-tuning or retraining, it can
seamlessly adapt to incorporate new or updated VideoLLMs as additional expert models.

Overall, we propose a novel video summarization method that follows a unique path of language-
based semantic understanding. By proposing an inference-time algorithm, we can generate compre-
hensive textual summaries that capture not only visual content but also audio information, providing
detailed descriptions of background scenes to offer users a more holistic view of the original videos.
Additionally, with our comprehensive textual summaries, we can perform various downstream video
summarization tasks, such as identifying keyframes and generating images and videos, thereby sur-
passing the capabilities of existing VideoLLMs.

Our main contributions can be summarized as follows:

• We propose an inference-time algorithm that leverages the capabilities of LLMs to combine
the output summaries of multiple VideoLLMs into a single, coherent, and unbiased sum-
mary. This approach provides more detailed and comprehensive information, enhancing
the overall quality of video summarization.

• Additionally, our comprehensive and coherent summaries enhance keyframe retrieval with
a simple keyframe selection algorithm, surpassing the performance of existing approaches.

• Our proposed method is both flexible and general. The components of our framework can
be easily replaced with more powerful models. Moreover, it is general enough to support
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extended video applications that can leverage our intermediate outputs, such as textual
summaries and keyframes.

2 RELATED WORK

Large Language Models. Large Language Models (LLMs) have revolutionized the field of nat-
ural language processing (NLP) and artificial general intelligence (AGI) with their exceptional ca-
pabilities in language generation, in-context learning, and reasoning. The historical evolution of
these models began with foundational architectures such as BERT (Devlin, 2018), GPT-2 (Rad-
ford et al., 2019), and T5 (Raffel et al., 2020), which set the stage for subsequent advancements.
The introduction of GPT-3 (Brown, 2020), with its 175 billion parameters, marked a significant
breakthrough, showcasing remarkable performance across a wide spectrum of language tasks. This
progress spurred the development of an array of other influential LLMs, including Megatron-Turing
NLG (Smith et al., 2022), Chinchilla (Hoffmann et al., 2022), PaLM (Chowdhery et al., 2023), OPT
(Zhang et al., 2022), BLOOM (Le Scao et al., 2023), LLaMA (Touvron et al., 2023), MOSS (Sun
et al., 2024), and GLM (Zeng et al., 2022). These models, characterized by their scale and open-
source availability, have become invaluable for both training large models and fine-tuning them for
specific applications.

Visual Language Models. With the emergence of LLMs, recent works (Liu et al., 2024; Wang
et al., 2023b; Alayrac et al., 2022) have increasingly explored their use in processing visual inputs,
giving rise to Visual Language Models (VLMs). The central idea behind this line of work is to
align visual features with the textual features of LLMs by utilizing a common framework. This
framework typically involves a pretrained visual encoder to extract visual features, a projection
layer to map these visual representations into the text latent space of LLMs, and the pretrained
LLM to generate responses, thereby enabling the powerful capabilities of LLMs to be applied to
vision tasks. Video-based Large Language Models (VideoLLMs) extend the capabilities of VLMs
by incorporating temporal and/or audio features, allowing for richer video-language understanding
through human-video dialogue interactions. For instance, methods such as VideoChatGPT (Maaz
et al., 2024) and Valley (Luo et al., 2023) use pooling over visual tokens to obtain compact visual
representations. VideoChat (Li et al., 2023a) employs pretrained video foundation models and Q-
Former (Zhang et al., 2024) from BLIP-2 (Li et al., 2022) to aggregate video representations. Video-
LLaMA (Zhang et al., 2023) introduces a Video Q-Former and an Audio Q-Former for multimodal
video comprehension. Furthermore, MovieChat (Song et al., 2024) proposes an advanced memory
management mechanism for reasoning over extended video content.

LLM Evaluator. The field of Natural Language Generation (NLG) evaluation has evolved con-
siderably over the years, launching from traditional metrics to more advanced methodologies, par-
ticularly with the advent of LLMs. Early metrics, such as ROUGE (Lin, 2004) and BLEU (Papineni
et al., 2002), have been foundational in assessing the quality of generated text by comparing it to ref-
erence texts based on n-gram overlap. However, these methods have limitations in capturing deeper
semantic nuances. To address this, embedding-based metrics like BERTScore (Zhang et al., 2019)
were introduced, measuring the semantic similarity between texts using word and sentence embed-
dings. With the rise of LLMs, evaluation methods have further advanced. LLM-based evaluators,
such as GPTScore (Fu et al., 2023), G-Eval (Liu et al., 2023a), and UniEval (Zhong et al., 2022),
leverage the comprehensive understanding and generation capabilities of LLMs to provide deeper
insights into NLG quality. Recognizing the inherent limitations of these early approaches, subse-
quent studies concentrated on enhancing factual accuracy (Min et al., 2023), ensuring interpretability
(Lu et al., 2024), reducing position bias (Wang et al., 2023a), and aligning evaluation more closely
with human judgment standards (Liu et al., 2023b). These efforts represent a significant shift toward
more robust and human-aligned evaluation methods in NLG.

3 METHODOLOGY

Our holistic video summarization framework, illustrated in Figure 2, is composed of three key mod-
ules. In Section 3.1, we introduce two components that utilize VideoLLM “experts” to produce
textual summaries within the video summarization module. In Section 3.2, we present our keyframe
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Figure 2: An overview of our framework. Our approach consists of three main modules: (1) Video
Summarization, which constructs coherent textual summaries by leveraging multiple existing Vide-
oLLMs and our proposed inference-time algorithm; (2) Keyframe Retrieval, which identifies key
moments based on our textual summary using a simple keyframe selection algorithm; and (3) Ex-
tended Applications, which utilize our informative textual summaries and keyframes to address
real-world tasks beyond traditional video summarization.

retrieval module, which details how video frames and textual summaries are projected into a joint
embedding space to identify relevant keyframes. Finally, in Section 3.3, we explore the extended ap-
plications of our framework, demonstrating how the textual summaries and corresponding keyframes
can be used for real-world applications.

3.1 VIDEO SUMMARIZATION

We perform inference on the given input video using multiple VideoLLMs. To fully leverage the
capabilities of these models, we design and employ prompts specifically tailored to the architecture
of each VideoLLM. This approach results in four unique summaries, each capturing different aspects
of the input video and reflecting the strengths of each model.

3.1.1 DENOISE-AND-COOPERATE

There are two primary challenges in utilizing the generated summaries from these VideoLLMs.
First, each VideoLLM exhibits varying degrees of the “hallucination” issue, which can mislead
users and make us difficult to identify the inaccuracies specific to each model. Second, effectively
integrating and combining the “strengths” of each model from the resulting summaries is a complex
task. To address these challenges, we propose the following strategies:

Filter Outliers. We propose two outlier filtering strategies to remove the summaries that deviate
from the others, that is, from the four distinct summaries generated in the previous step, we identify
and exclude the summary that exhibits the lowest similarity to the other three, considering it an
outlier. For the first strategy, we reference the scoring method from Open-Sora1 to evaluate the
summaries generated by each VideoLLM. By calculating the matching score between each summary
and the middle frame of the video, we identify and remove the summary with the lowest score. As for
the second strategy, we aim to enhance the video-text alignment between the generated summaries
and the input video, our implementation is outlined in Algorithm 1. This involves calculating the
average CLIP score across the summaries and discarding the one with the lowest score.

Cooperate. After filtering outliers, we leverage the capabilities of state-of-the-art LLMs, to combine
the remaining summaries into a single coherent paragraph. We propose three distinct strategies for
this synthesis: Merge, Find Common Ground, and Select.

• Merge: This strategy integrates all information from the VideoLLM summaries into a comprehen-
sive single summary, capturing the full spectrum of details provided by each model. The resulting
summary aims to be inclusive and detailed.

1https://github.com/hpcaitech/Open-Sora/tree/main/tools/scoring (last accessed: 2024/09)
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• Find Common Ground: This approach focuses on extracting and consolidating only the common
elements across all VideoLLM summaries. The process produces a coherent summary that empha-
sizes the most consistent and reliable information, potentially reducing noise and inconsistencies.

• Select: This strategy chooses the summary that achieves the highest score based on our evaluation
metric in the outlier filtering stage. We find this approach particularly effective for certain video
types, such as instructional videos in datasets like HowTo100M (Miech et al., 2019).

These strategies provide flexibility in addressing various video content types, allowing for adapt-
ability in the fusion process. The choice of strategy can be tailored to the specific needs of the task
or the nature of the video content being summarized.

Algorithm 1 Calculate Average CLIP Score and Remove Minimum

Require: summary si ∈ S, video frames fi ∈ F
1: Initialize empty average CLIP score list C̄
2: for si ∈ S do
3: Calculate average CLIP score of si with respect to F : c̄ = 1

|F|
∑

fi∈F CLIP(si, fi)

4: Store c̄ to C̄
5: end for
6: Locate the index j of the lowest score in C̄
7: Remove sj from S.

3.2 KEYFRAME RETRIEVAL

After obtaining our coherent summary from the Video Summarization module, previous methods
either prompt the VideoLLM to generate short segments most relevant to the summary (Qian et al.,
2024; Huang et al., 2024), which is an area where current VideoLLMs often underperform, or train-
ing a model specifically to encode visual and textual features (Lin et al., 2023b; Moon et al., 2023).
The latter approach often employs a sliding window technique to capture and align temporal infor-
mation, enabling the accurate identification and retrieval of relevant video segments that correspond
to the summary. However, this method is computationally expensive and can sometimes result in
redundant information.

Given that our textual summary is highly informative, we propose an alternative approach that avoids
the need for training a new model. Instead, we utilize a fixed joint embedding space, combined with
a similarity metric, to guide the keyframe retrieval. Specifically, we encode the input video frames at
two-second intervals, following a sampling technique inspired by Moment-DETR (Lei et al., 2021),
alongside our textual summary. Both the text and video frames are encoded using CLIP (Radford
et al., 2021). We then calculate the cosine similarity between the text embeddings (whole summary)
and the individual frame embeddings, sorting the similarity scores in descending order to identify
the top-k video frames as keyframes.

3.3 EXTENDED APPLICATIONS

Our method extends beyond existing video summarization, offering practical real-world applica-
tions that leverage both our coherent textual summary (from Section 3.1) and retrieved keyframes
(from Section 3.2). These include visual manual generation for instructional videos, aiding product
manufacturers in creating efficient user guides, and privacy-preserving content generation, which
produces short video clips and representative images that capture the essence of the original video
without revealing sensitive content. These applications demonstrate our method’s versatility, ad-
dressing challenges in content creation, information dissemination, and privacy protection across
various domains, thus surpassing the capabilities of existing VideoLLMs.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

5
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Table 1: Statistics of datasets used in our evaluation.

Dataset Videos Video-Qeury Pairs Avg. Video Len (sec) Video Types

QVHighlights 10,148 10,310 150 Diverse (daily, travel, news, etc.)
TACoS 127 18,818 287 Cooking
Charades-STA 9,848 18,131 30 Indoor activities
DiDeMo 10,464 40,543 30 Diverse (from Flickr)

Dataset. We evaluate our approach on four well-established datasets: QVHighlights (Lei et al.,
2021), TACoS (Regneri et al., 2013), Charades-STA (Gao et al., 2017) and DiDeMo (Anne Hen-
dricks et al., 2017). These datasets span diverse video domains, including sports, product reviews,
cooking scenarios, and household activities, etc., providing a comprehensive foundation for assess-
ing our method’s performance. Table 1 summarizes the key characteristics of each dataset.

Implementation Details. In our experiments, we employ four VideoLLM “experts”: Video-
LLaMA (Zhang et al., 2023), Video-LLaVA (Lin et al., 2023a), PG-Video-LLaVA (Munasinghe
et al., 2023), and LLaMA-VID (Li et al., 2023b), which serve as both components of our approach
and individual baselines. We obtain summaries from each expert, use average CLIP scores to remove
outliers, and apply our Find Common Ground strategy with Llama-3-8B-Instruct2 to synthesize
the final coherent summary. For keyframe retrieval task, we encode video frames (sampled at two-
second intervals) and our generated textual summary into CLIP (Radford et al., 2021) embedding
space before calculating similarity metrics.

4.2 EXPERIMENTAL RESULTS

Textual Video Summarization. To evaluate the quality of our textual summaries and their align-
ment with ground truth, we employ G-Eval (Liu et al., 2023a), which we utilize GPT-4-Turbo3 as
the LLM backbone. This method evaluates summaries across seven dimensions: aspect coverage,
coherence, faithfulness, fluency, relevance, sentiment consistency, and specificity. Importantly, G-
Eval not only assesses video-text alignment through the relevance score but also provides insights
into potential human preferences through the remaining metric scores. The results, presented in Ta-
ble 2, demonstrate that our generated summaries consistently outperform all baseline methods. Our
approach achieves superior scores in both video-text alignment and across all aspects that typically
correlate with human preference. This comprehensive evaluation underscores the effectiveness of
our method in producing high-quality, relevant, and potentially more appealing summaries com-
pared to existing approaches. We also present qualitative results comparing our textual summaries
with those of baseline models in Figure 3. While most summaries generated by our baselines capture
the essential content, but our approach captures a broader spectrum of information from the given
video, providing a more complete and nuanced representation of the content. Also, our method
demonstrates potential as an automatic (re-)annotation tool. In cases where ground truth summaries
may be inaccurate, as shown in our qualitative results, our framework can serve as a valuable means
to verify and potentially correct existing annotations. This capability highlights an additional ex-
tensibility of our approach, offering a robust mechanism for enhancing the quality and reliability of
video annotation datasets.

Visual Keyframe Retrieval. Following the evaluation metrics in TVR (Lei et al., 2020) and Tall
(Regneri et al., 2013), we compute the mean Intersection over Union (mIoU) and Recall@1 with IoU
thresholds of 0.5, and 0.7. In addition to individual VideoLLMs as prompt-based baselines, we also
include CG-DETR (Moon et al., 2023) as the query-based baseline. The results, presented in Table
3, demonstrate our approach’s effectiveness. We outperform all baselines on the Charades-STA,
TACoS and DiDeMo datasets, and surpass prompt-based baselines on QVHighlights. Notably, our
method, without fine-tuning, achieves superior performance on Charades-STA, TACoS and DiDeMo
compared to the fine-tuned CG-DETR. While CG-DETR shows better results on QVHighlights, it’s
important to consider that CG-DETR benefits from dataset-specific fine-tuning. In contrast, our

2https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct (last accessed: 2024/09)
3https://openai.com/index/gpt-4/ (last accessed: 2024/09)
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Table 2: Quantitative evaluation of our generated textual video summary among various approaches
with G-Eval (Liu et al., 2023a). The best results are marked in bold.

Dimension OURS Video-LLaVA PG-Video-LLaVA LLaMA-VID Video-LLaMA

aspect coverage 2.77 1.31 1.85 1.97 1.72
coherence 3.35 1.56 2.12 2.76 1.83
faithfulness 2.14 1.31 1.63 1.65 1.49
fluency 3.31 1.66 2.29 2.89 2.01
relevance 2.59 1.5 1.66 1.96 1.42
sentiment consistency 1.92 1.23 1.38 1.6 1.31
specificity 3.22 1.41 2.12 2.44 1.97

method’s strong performance across datasets in a zero-shot setting underscores its robust general-
ization capabilities. We also provide the qualitative comparison of our keyframe retrieval results
against those of our baselines in Figure 4. The visual comparison clearly demonstrates that our
selected keyframes achieve a significantly higher coverage rate of the ground truth compared to
prompt-based baselines. Moreover, our approach shows superior performance even when compared
to CG-DETR. These results visually reinforce the quantitative findings, highlighting our method’s
effectiveness in accurately identifying and retrieving key moments from videos.

Extended Applications. We demonstrate two extended applications of our framework on the
HowTo100M (Miech et al., 2019) dataset, which primarily consists of instructional videos. Fig-
ure ?? presents the qualitative results of these applications, and more results are provided in the
Appendix (cf. A.2). For visual manual generation, our generated summary mimic the textual in-
struction, and the selected keyframes are the visual instructions. This combination of textual and
visual elements effectively simulates the creation of visual manuals for instructional content. In the
privacy-preserving content generation, we utilize Stable Diffusion 3 (Esser et al., 2024) to gener-
ate images based on our textual summaries. The resulting images successfully interpret the content
of the original videos without revealing sensitive information. These qualitative results illustrate the
versatility of our framework in generating practical, real-world applications beyond standard video
summarization tasks.

Table 3: Quantitative evaluation of our keyframe retrieval prediction among prompt-based and
query-based approaches. The best results are marked in bold, and the second-best results are
underlined.

Methods Charades-STA QVHighlights TACoS DiDeMo

mIoU R@0.5 R@0.7 mIoU R@0.5 R@0.7 mIoU R@0.5 R@0.7 mIoU R@0.5 R@0.7

prompt-based
Video-LLaVA 0.68 0.3 0.07 9 3 1.2 10.09 0.37 0 6.83 2.49 0
Video-LLaMA 5.54 1.64 0.48 5.1 1.6 0 0.13 0 0 6.01 0.6 0
LLAMA-VID 20 13.79 6.73 13.8 9.3 3.6 8.23 0.34 0 17.28 9.8 3.7
PG-Video-LLaVA 2.57 1.32 0.57 10.1 4.4 1.3 5.7 0 0 7.63 1.97 0.19

query-based
CG-DETR 26.33 14.86 6.2 53.62 54.47 42.29 31.22 8.46 7.35 17.69 10.24 3.25

Ours 35.72 27.95 13.88 24.08 15.33 10.29 94.17 96.93 96.93 21.96 10.56 3.92

4.3 ABLATION STUDIES

For the experiments in the following studies, the experimental setup follows our main setting in
Section 4.1, and we focus on the keyframe retrieval task evaluated on three datasets: QVHighlights,
Charades-STA, and TACoS, and metrics: mIoU, R@0.3, R@0.5, and R@0.7, unless otherwise
specified.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Colo /  DC /  On Premises

I nput  Vi deo

Text ual  Summar y

Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises

Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises

Colo /  DC /  On Premises

Colo /  DC /  On Premises

Figure 3: Visualization of textual video summaries generated by individual VideoLLMs and our
proposed collaboration approach. Keyframes are displayed at the top as input video. Additionally,
we provide the ground truth summary for reference.
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Figure 4: Visualization of prediction results comparison on QVHighlights (Lei et al., 2021). The
ground truth keyframes are shown at the top as the input video, and the prediction unit is in seconds.
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Table 4: Ablation study of the effect of filtering outliers.

QVHighlights Charades-STA TACoS

mIoU R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7

w Filter outliers 23.93 21.93 14.88 10.29 35.16 36.1 27.03 13.94 94.37 97.04 97.04 97.04
w/o Filter outliers 21.92 19.53 12.9 7.35 N/A N/A N/A N/A 92.27 95.89 95.89 95.89

Table 5: Ablation study of effects of different cooperation strategies utilizing different LLMs.
In the ”LLM” column, “GPT” represents “GPT-4-Turbo”, and “LLaMA” denotes “LLaMA-3-8b-
Instruct”. In the “Cooperate Strategy” column, “CG” refers to the “Find Common Ground” strategy,
while “M” stands for the “Merge” strategy. The best results are marked in bold.

LLM Cooperate
Strategy

QVHighlights Charades-STA TACoS

mIoU R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7

GPT CG 23.93 21.93 14.88 10.29 35.16 36.1 27.03 13.94 94.37 97.04 97.04 97.04
M 23.45 21.23 14.13 9.81 35.81 37.3 27.82 14 94.4 97.06 97.06 97.06

LLaMA CG 24.08 22.31 15.33 10.29 35.41 37.33 27.27 13.72 94.05 96.86 96.86 96.31
M 23.1 20.84 13.92 9.43 35.72 37.76 27.95 13.88 94.18 96.93 96.93 96.93

Effect of filtering outliers. To assess the impact of our “Filter Outliers” component, we compare
our framework’s performance with and without this feature. In both scenarios, we utilize GPT-
4-Turbo to synthesize summaries from individual VideoLLMs using the “Find Common Ground”
strategy. The key difference lies in the input to this fusion process: with outlier filtering, we exclude
the detected outlier, while without it, all four summaries are included. As demonstrated in Table
4, the inclusion of outlier filtering led to a significant improvement in performance, enhancing both
mean Intersection over Union (mIoU) and Recall metrics by at least 2%. This consistent improve-
ment across metrics underscores the effectiveness of our outlier filtering approach in refining the
quality of the final summary.

Effect of different cooperation strategies with different LLMs. We examine the impact of dif-
ferent cooperation strategies and LLMs on our framework’s performance. We compare two coop-
eration strategies, Merge and Find Common Ground, implemented with two distinct LLMs: the
open-source Llama-3-8b-Instruct and the closed-source GPT-4-Turbo, and the prompt template we
apply is provided in the Appendix (cf. A.1). We present the results in Table 5. Our analysis reveals
that the choice of LLM and cooperation strategy has only marginal effects on the overall perfor-
mance. However, all combinations demonstrate substantial improvements over utilizing only the
individual VideoLLM summaries, as shown in Table 3. Our results strongly suggest that our method
of combining and refining summaries from multiple VideoLLMs produces more comprehensive and
accurate textual representations, which in turn lead to improved keyframe selection.

Effect of audio information. To assess the influence of audio information, we conduct experi-
ments with and without audio input, noting that some VideoLLMs, such as Video-LLaMA, incor-
porate audio information, others like Video-LLaVA and LLaMA-VID do not include this modality
in their frameworks. For Video-LLaMA, we remove the audio branch to simulate scenarios without
audio information. In the case of PG-Video-LLaVA, we deactivate the audio branch in our default
setting. The results, presented in Table 6, demonstrate the significant contribution of audio informa-
tion to the quality of video summaries. Including audio led to a 5-10% improvement in downstream
keyframe retrieval performance.

Table 6: Ablation study of the impact of audio information. We remove the audio branch of
Video-LLaMA (Zhang et al., 2023) to simulate the case of “w/o audio”.

QVHighlights Charades-STA

mIoU R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7

w audio 24.08 22.31 15.33 10.29 35.16 36.1 27.03 13.94
w/o audio 19.45 17.28 10.73 7.1 27.75 22.24 10.58 2.5
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5 CONCLUSION

We propose a holistic video summarization framework that leverages multiple VideoLLMs to gen-
erate comprehensive textual summaries that capture the detail of the given video without fine-
tuning. Our extensive experiments demonstrate the effectiveness of our method in downstream tasks
like keyframe retrieval and extended applications such as visual manual generation and privacy-
preserving content creation. Our framework’s adaptability allows for easy integration of more ad-
vanced models, ensuring its relevance as the field progresses. By establishing a foundation for in-
tegrating visual and linguistic information, our approach paves the way for more sophisticated mul-
timedia analysis tools. We anticipate that this framework will catalyze advancements in video un-
derstanding and natural language processing, leading to more intuitive and powerful systems across
various domains.
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parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2023.

Jie Lei, Licheng Yu, Tamara L Berg, and Mohit Bansal. Tvr: A large-scale dataset for video-subtitle
moment retrieval. In ECCV, 2020.

Jie Lei, Tamara L Berg, and Mohit Bansal. Detecting moments and highlights in videos via natural
language queries. In NeurIPS, 2021.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In ICML, 2022.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang,
and Yu Qiao. Videochat: Chat-centric video understanding. arXiv preprint arXiv:2305.06355,
2023a.

Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large language
models. arXiv preprint arXiv:2311.17043, 2023b.

Bin Lin, Bin Zhu, Yang Ye, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning united
visual representation by alignment before projection. arXiv preprint arXiv:2311.10122, 2023a.

Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Junwu Zhang, Munan Ning, and
Li Yuan. Moe-llava: Mixture of experts for large vision-language models. arXiv preprint
arXiv:2401.15947, 2024.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Kevin Qinghong Lin, Pengchuan Zhang, Joya Chen, Shraman Pramanick, Difei Gao, Alex Jin-
peng Wang, Rui Yan, and Mike Zheng Shou. Univtg: Towards unified video-language temporal
grounding. In ICCV, 2023b.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS,
2024.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg
evaluation using gpt-4 with better human alignment. arXiv preprint arXiv:2303.16634, 2023a.

Yuxuan Liu, Tianchi Yang, Shaohan Huang, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei Deng,
Feng Sun, and Qi Zhang. Calibrating llm-based evaluator. arXiv preprint arXiv:2309.13308,
2023b.

Qingyu Lu, Baopu Qiu, Liang Ding, Kanjian Zhang, Tom Kocmi, and Dacheng Tao. Error analysis
prompting enables human-like translation evaluation in large language models. In ACL, 2024.

Ruipu Luo, Ziwang Zhao, Min Yang, Junwei Dong, Da Li, Pengcheng Lu, Tao Wang, Linmei Hu,
Minghui Qiu, and Zhongyu Wei. Valley: Video assistant with large language model enhanced
ability. arXiv preprint arXiv:2306.07207, 2023.

Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
Towards detailed video understanding via large vision and language models. In ACL, 2024.

Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and Josef
Sivic. Howto100m: Learning a text-video embedding by watching hundred million narrated video
clips. In ICCV, 2019.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi. Factscore: Fine-grained atomic evaluation of factual
precision in long form text generation. arXiv preprint arXiv:2305.14251, 2023.

WonJun Moon, Sangeek Hyun, SuBeen Lee, and Jae-Pil Heo. Correlation-guided query-
dependency calibration in video representation learning for temporal grounding. arXiv preprint
arXiv:2311.08835, 2023.

Shehan Munasinghe, Rusiru Thushara, Muhammad Maaz, Hanoona Abdul Rasheed, Salman Khan,
Mubarak Shah, and Fahad Khan. Pg-video-llava: Pixel grounding large video-language models.
ArXiv 2311.13435, 2023.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In ACL, 2002.

Long Qian, Juncheng Li, Yu Wu, Yaobo Ye, Hao Fei, Tat-Seng Chua, Yueting Zhuang, and Siliang
Tang. Momentor: Advancing video large language model with fine-grained temporal reasoning.
In ICML, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 2020.

Michaela Regneri, Marcus Rohrbach, Dominikus Wetzel, Stefan Thater, Bernt Schiele, and Manfred
Pinkal. Grounding action descriptions in videos. TACL, 2013.

Sheng Shen, Le Hou, Yanqi Zhou, Nan Du, Shayne Longpre, Jason Wei, Hyung Won Chung, Bar-
ret Zoph, William Fedus, Xinyun Chen, et al. Mixture-of-experts meets instruction tuning: A
winning combination for large language models. arXiv preprint arXiv:2305.14705, 2023.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using deep-
speed and megatron to train megatron-turing nlg 530b, a large-scale generative language model.
arXiv preprint arXiv:2201.11990, 2022.

Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu, Haozhe
Chi, Xun Guo, Tian Ye, Yanting Zhang, et al. Moviechat: From dense token to sparse memory
for long video understanding. In CVPR, 2024.

Tianxiang Sun, Xiaotian Zhang, Zhengfu He, Peng Li, Qinyuan Cheng, Xiangyang Liu, Hang Yan,
Yunfan Shao, Qiong Tang, Shiduo Zhang, Xingjian Zhao, Ke Chen, Yining Zheng, Zhejian Zhou,
Ruixiao Li, Jun Zhan, Yunhua Zhou, Linyang Li, Xiaogui Yang, Lingling Wu, Zhangyue Yin,
Xuanjing Huang, Yu-Gang Jiang, and Xipeng Qiu. Moss: An open conversational large language
model. Machine Intelligence Research, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu,
Tianyu Liu, and Zhifang Sui. Large language models are not fair evaluators. arXiv preprint
arXiv:2305.17926, 2023a.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
Lei Zhao, Xixuan Song, et al. Cogvlm: Visual expert for pretrained language models. arXiv
preprint arXiv:2311.03079, 2023b.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414, 2022.

Hang Zhang, Xin Li, and Lidong Bing. Video-LLaMA: An instruction-tuned audio-visual language
model for video understanding. In EMNLP, 2023.

Qiming Zhang, Jing Zhang, Yufei Xu, and Dacheng Tao. Vision transformer with quadrangle atten-
tion. IEEE TPAMI, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluat-
ing text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

Ming Zhong, Yang Liu, Da Yin, Yuning Mao, Yizhu Jiao, Pengfei Liu, Chenguang Zhu, Heng Ji,
and Jiawei Han. Towards a unified multi-dimensional evaluator for text generation. arXiv preprint
arXiv:2210.07197, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 MERGING PROMPT

System Prompt:
As an AI specializing in video summarization, your task is to analyze and find the common ground from 
following paragraphs of video summaries. Which the common ground truth means the similar description 
appears in each four paragraphs.These summaries are generated from multiple video understanding models, all 
of which processed the same input videos.

User Prompt:
Find the common ground of the following paragraphs and make it into a coherent paragraph:
Content:
1. { VideoLLaVA}
2. { PGVideoLLaVA}
3. { LLaMAVID}
4. { VideoLLaMA}

Figure 5: Prompt template of “Find common ground” strategy in the cooperation step.

System Prompt:
As a video summarization expert, your purpose is to combine and summarize multiple paragraphs of summary 
generated from different video understanding models. You will take the summaries provided as input and 
transform them into a smooth and coherent paragraph. Additionally, you will automatically discard any 
irrelevant parts to ensure the final summary is concise and relevant. With your expertise in video 
summarization, you will help me extract the most important information from the given summaries and present 
it in a comprehensive manner.

User Prompt:
Combine the following four paragraphs into a cohesive, single paragraph while maintaining the overall essence 
and information provided by each.
Content:
1. { VideoLLaVA}
2. { PGVideoLLaVA}
3. { LLaMAVID}
4. { VideoLLaMA}

Figure 6: Prompt template of “Merge” strategy in the cooperation step.

A.2 HOWTO100M QUALITATIVE RESULT

A.3 CHARADES-STA QUALITATIVE RESULT
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Textual Summary
The video is an  instructional video that shows how to use a rope to pull a tree down. The video starts with a man holding a 
rope and a box of tools. He then shows how  to use the tools to pull the tree down. The video also shows how to use a  rope 
to tie the tree down. The man then shows how to use a rope to pull the  tree down.
Genarative Images by Stable Diffusion

Input Video
Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises

Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises

Textual Summary
The video is an instructional video that shows a man installing a door trim. The man is using a tool to cut the trim, and he 
is also using a drill to attach the trim to the door. The video also shows the man using a tape measure to measure the trim 
and a sandpaper to smooth out the edges. The video ends with the man finishing the installation of the door trim.
Genarative Images by Stable Diffusion

Input Video
Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises

Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises

Textual Summary
The video shows a man working on a car in a garage. He is using a laptop to connect to the car's computer system and diagnose 
the issue. The man then explains the problem and how to fix it.
Genarative Images by Stable Diffusion

Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises

Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises

Input Video

Figure 7: HowTo100M textual summary, selected keyframes, and generative results.
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Colo /  DC /  On Premises

I nput  Vi deo

Text ual  Summar y

Colo /  DC /  On Premises Colo /  DC /  On Premises

Colo /  DC /  On Premises Colo /  DC /  On Premises Colo /  DC /  On Premises

Figure 8: Charades-STA textual summary.
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