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Abstract

Crowdsourcing is a scalable data collecting
method used in many NLP tasks. Due to the dis-
parity of expertise among crowd workers, prior
studies utilize worker selection to improve the
quality of the crowdsourced dataset. However,
most of them are designed for and tested on
simple classification tasks. In this paper, we
focus on span-based sequence labeling tasks in
NLP, which are more challenging as nearby la-
bels have complex inter-dependencies. We pro-
pose a new worker selection algorithm based
on combinatorial multi-armed bandit (CMAB).
Our algorithm maximizes the quality of the an-
notations while reducing the overall cost by
using both majority-voted and expert annota-
tions for evaluations. A key challenge is that
practical datasets are highly imbalanced and
of small scale, which makes offline simulation
of worker selection difficult. To address this
issue, we present a novel data augmentation
method called shifting, expanding, and shrink-
ing (SES), which is customized for sequence
labeling. We augment two datasets, CoNLL
2003 NER and Chinese OEI, on which we ex-
tensively test our worker selection algorithm.
The results show that our algorithm achieves up
to 100.04% F; score compared with an expert-
evaluation-only (i.e., all annotations evaluated
by experts) baseline, saving up to 65.97% of
costs to ask experts. We also include a dataset-
independent test in which the annotation evalu-
ation is simulated through a Bernoulli distribu-
tion. Similarly, our algorithm achieves 97.56%
F; and saves 59.88% expert costs.

1 Introduction

Crowdsourcing is obtaining labeled data from
crowd workers (Howe, 2006). Several online
crowdsourcing platforms have emerged and pros-
pered in recent years, such as Amazon Mechanical
Turk! and Taskrabbit?. Prior studies have applied
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Figure 1: Our online worker selection framework for
crowdsourcing.

crowdsourcing to collect data for a wide range of
tasks including image labeling, text classification,
and sequence labeling (Venanzi et al., 2014). Gen-
erally, one can reduce the cost and improve the
efficiency of label collection by hiring crowd work-
ers instead of expensive experts (Nowak and Riiger,
2010). With these advantages, crowdsourcing has
gained great interest and played an important role
in data collection for deep learning models.

In this paper, we focus on crowdsourcing for
span-based sequence labeling tasks. Sequence la-
beling involves determining a categorical label to
each word in a sentence (Erdogan, 2010). Many
tasks come in the form of span-based sequence la-
beling, including named entity recognition (NER)
and opinion expression identification (OEI) (Col-
lobert et al., 2011). In simple sentence classifica-
tion tasks, labels are assigned independently. While
in sequence labeling tasks, nearby labels have inter-
dependencies and are attached to the context (Ro-
drigues et al., 2014). This makes sequence labeling
tasks more difficult, and annotations from crowd
workers less accurate. Therefore, improving anno-
tation quality becomes an important and challeng-
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ing problem.

On span-based sequence labeling tasks, prior
studies Rodrigues et al. (2014); Nguyen et al.
(2017); Simpson and Gurevych (2019) mainly fo-
cus on annotation aggregation. These methods are
used after data collection. Due to the disparity of
skill levels among crowd workers, it could help to
improve data quality if we can identify and utilize
workers with the highest accuracy during data col-
lection. This approach is known as online worker
selection to which we resort in this paper. In on-
line worker selection, the platform allocates a lim-
ited budget between a set of workers iteratively to
maximize the quality of annotations (Chen et al.,
2013). The skill level of the workers is unknown
a priori and observed through annotations, which
leads to a tradeoff between exploring new workers
and exploiting the best workers at the moment. A
feedback signal is required to update the learning
process. This is easy in simple classification tasks
where there is a binary feedback signal (i.e., correct
or incorrect). But for sequence labeling tasks, it is
much more difficult to define such a binary signal
due to correlations of nearby labels. To address
this, we use the span-level F; score (Derczynski,
2016) to measure the quality of annotations and
it serves as the feedback signal in the worker se-
lection process. The F; score is usually calculated
based on expert-provided ground truth. Then we
can formulate worker selection as an optimization
problem that maximizes the overall F; score of the
produced annotations.

While expert annotations tend to be of high qual-
ity as ground truth, they usually come at a large
cost. Moreover, they are only available on a small
portion of the task sequences. In this paper, we em-
ploy crowd workers for sequence annotations, of
which the aggregation may serve as ground truth.
We aim to replace as many expert ground truth
labels as possible with aggregated crowd ground
truth labels, while the overall F; score of the pro-
duced dataset remains high. An expert ground truth
is replaced only when the inter-annotator agree-
ment (i.e., Fleiss’ Kappa (Fleiss, 1971)) among
crowd workers is high enough. The intuition is
that the sequence is easy to correctly annotate for
a majority of crowd workers, which hence, does
not require expert evaluation. Our worker selection
algorithm is illustrated in Figure 1. We iteratively
assign tasks to a subset of available workers, evalu-
ate their annotations, and use the scores as a crite-

rion of worker selection in future rounds. Detailed
descriptions are deferred to Section 3.1.

We evaluate our worker selection algorithm on
two datasets (Rodrigues et al., 2014; Zhang et al.,
2022). However, real datasets are imbalanced and
of small scale which may fail our worker selec-
tion algorithm. Firstly, a reasonable number (e.g.,
3) of annotations on each sentence is required
since we aggregate crowd annotations by major-
ity voting (MV). Secondly, online algorithms (e.g,
CMAB) require a relatively large number (e.g.,
thousands) of iterations to converge on a near-
optimal set of workers (Chen et al., 2013). To
address these issues, we design a data augmen-
tation method for span-based sequence labeling
datasets. The main purpose of our augmentation
method is to reflect the possible errors when hu-
man workers give annotations in practice. Thus,
using generated annotations in MV will not lead
to meaningless aggregation results. We propose
three kinds of modifications, shifting, expanding,
and shrinking to the expert annotation on each sen-
tence. For each sentence, we generate all possible
annotations human workers might give. For each
worker, we select one annotation on each sentence
to make sure the average F; score is very close to
the worker’s F; score calculated on the real dataset.
Our augmentation method solves the imbalance
and insufficiency problem in real datasets, enabling
offline evaluation of worker selection algorithms.

The main contributions of our paper are summa-
rized as follows:

* To our best knowledge, we present the initial
work of worker selection on span-based se-
quence labeling tasks. This is critical as such
tasks are more challenging and crowd workers
produce less reliable annotations compared
with simple classification tasks.

* Due to label inter-dependencies, simple bi-
nary feedback is not applicable on span-
based sequence labeling tasks. We utilize the
span-level F; score evaluated by experts and
crowd workers combined as the feedback sig-
nal, which is shown to precisely reflect the
worker accuracy and hence effectively guide
the worker selection process.

* We propose a data augmentation method to
address the imbalance and insufficiency of
real datasets, enabling offline simulation of
worker selection.



* We conduct extensive experiments on the aug-
mented datasets. We use expert-evaluation-
only as the baseline comparison, which is ex-
pected to generate the highest F; score. On
the Chinese OEI dataset, our method achieves
up t0 99.47% F; score with 47.19% reduction
in the expert cost. On the CoNLL 2003 NER
dataset, our method achieves up to 100.04%
F1 score with 65.97% reduction in the expert
cost.

‘We have all of our source codes and datasets re-

leased for research purposes?.

2 Related Work

Many studies (Rodrigues et al., 2014; Rodrigues
and Pereira, 2018; Nangia et al., 2021) have used
crowdsourcing for its efficiency and scalability.
However, crowdsourcing suffers from the diversity
of crowd workers’ expertise and effort levels that
are hardly measurable to task requesters. Different
approaches to improving the quality of collected
data have been proposed and studied. For span-
based sequence labeling tasks, prior studies mainly
focus on annotation aggregation. Rodrigues et al.
(2014) proposed CRF-MA, a CRF-based model
with an assumption that only one worker is cor-
rect for any label. HMM-crowd from Nguyen
et al. (2017) outperforms CRF-MA, but the effect
of sequential dependencies is not taken into ac-
count. Simpson and Gurevych (2019) uses a fully
Bayesian approach BSC which is proved to be more
effective in handling noise in crowdsourced data.
Aggregation methods are used affer the data collec-
tion process completes. But we aim to assure data
quality and reduce cost during collecting. To this
end, we focus on worker selection in our paper.

In online worker selection, we need to balance
between exploring new workers and exploiting ob-
served good workers. This exploration-exploitation
tradeoff is extensively studied in the bandit litera-
ture (Lai and Robbins, 1985). In practice, we usu-
ally employ multiple crowd workers at the same
time to finish the tasks more effectively. The com-
binatorial multi-armed bandit (CMAB) (Chen et al.,
2013) models this circumstance. Biswas et al.
(2015); Rangi and Franceschetti (2018) reformulate
the problem as a bounded knapsack problem (BKP)
and address it with the B-KUBE (Tran-Thanh et al.,
2014) algorithm. Song and Jin (2021) introduce
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empirical entropy as the metric in CMAB and mini-
mize the cumulative entropy with upper confidence
bound (UCB) based algorithm. Li et al. (2022) con-
sider the scalability of worker selection on large-
scale crowdsourcing systems. These studies pro-
pose different methods under the CMAB settings,
but on more complex span-based sequence label-
ing tasks there exists no discussion. We present
the study of worker selection with CMAB on span-
based sequence labeling tasks and show that our
work performs well on the quality and efficiency
of data collection.

3 Methodology

3.1 System Overview

Consider an online crowdsourcing system that can
reach out to a group of crowd workers W =
{wy,ws,...,wn}. The workers are required to
provide sequential annotations to a set of sentences
S ={s1, s2,...,5m}. More specifically, a worker
annotates a sentence by assigning a tag from a finite
possible tag set C' (e.g., a set of BIO tags (Ramshaw
and Marcus, 1995)) to each word. An annotation
on sentence s; by worker w; is a tag sequence
a;j = aijay...ay...a; where a; € C and [ de-
notes the length of the sentence. We assume that
every sentence is annotated by K different workers
independently. We define a task as the process of
annotating one entire sentence, and hence there are
in total K M tasks. We seek to acquire an anno-
tated dataset in which the average F; score of a;;
is maximized. If we know which workers give the
best annotations a priori, we can simply ask these
workers to finish all the tasks. However, such in-
formation is unavailable in practice, and we aim
to design an algorithm that learns the best workers
throughout the crowdsourcing process.

In the beginning, we let each crowd worker an-
notate one sentence. We also ask the experts(e.g.,
well-trained linguists assumed to give the most pre-
cise annotations) to give one annotation for each
of these sentences. Then we calculate the F; score
of the annotation with the expert annotations as
ground truth. We use these scores as the initial F;
scores of workers. At each time step ¢ after ini-
tialization (as illustrated in Figure 1), we select a
subset of workers W; C W to do annotation, based
on criteria discussed in Section 3.3. The size of
the subset 1, should be neither too big nor too
small (e.g., 0.3N). We randomly choose a subset
of sentences S; C .S, assign each s; € S; to K dif-
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ferent workers in W3, and collect their annotations
A; = {ail, a;2,..., aiK},Vi S {1, 2,..., ’St‘}
To evaluate workers’ F; scores on A;, one can use
the expert annotations as the ground truth, which,
however, can be very expensive (Iren and Bilgen,
2014). To cut down this cost, we reduce the usage
of expert evaluations whenever crowd annotations
are similar enough. We use the Fleiss’ Kappa score
K to measure this similarity. The x score (x < 1) is
a statistical measure of inter-annotator agreement.
A larger value of k indicates stronger agreement
between the workers. « score exceeding an em-
pirical threshold indicates that the crowd workers
reach a consensus on s;. In that case, we aggregate
A; with MV and use the aggregated annotation as
the ground truth of sentence s;. If the workers do
not reach a consensus, we resort to expert annota-
tions as ground truth. Next, we can calculate the Fy
scores of each a;; € A; and update the Fy scores
of the selected workers.

3.2 Problem Formulation

At time step ¢, we obtain K crowd annota-
tions A; on each sentence s; € S;. We de-
note all annotations collected on S; by A; =
{A1, A, ..., Ajg,}. To simplify our expression,
we use F}pr(aij) to represent the F; score of
a;; using expert annotation as ground truth, and
Fyv(aij) to represent the F; score of a;; using the
MV aggregation of A; € A; as ground truth. On
collected annotation sets, Flep(Ai) denotes the av-
erage Fy score of all a;; € A;. Similarly, FllixP(At)
denotes the average Fy score of all A; € A;. As
F-*P(A,) reflects the true accuracy of crowd anno-
tations, our objective is to maximize the average
expectation, or equivalently the cumulative expec-
tation of FIEXP(At) over time 7". We formulate this
problem as a CMAB problem below:

T

max ZE[F?XP(AQ] (1)
t=1

st. WycW,te{1,2,...,T} 2)

Since we have no information about workers’
average F; scores, we need to balance exploring
potentially better workers and exploiting the cur-
rent best workers during worker selection. This
tradeoff is extensively discussed in bandit litera-
ture where arms with unknown distributions form
super-arms. The arms are associated with a set of
random variables X; ; with bounded support on [0,

1]. Variable X;; indicates the random outcome of
arm j in time step ¢. The set of random variables
{Xj+|t > 1} associated with arm j are indepen-
dent and identically distributed according to certain
unknown distribution D; with unknown expecta-
tion fi;. The platform plays a super-arm at each
time step, and the reward of arms in it is revealed.
These rewards are used as a metric for selecting
the super-arm in future time steps. After enough
time steps, the platform will be able to identify the
best super-arm and keep playing it to maximize the
overall reward. Similar to bandit terminologies, we
call each worker w; € W an arm and the worker
subset Wy C W a super-arm selected at ¢.

3.3 Worker Selection Algorithm

Specifically, there are three methods to calculate
the reward of worker w; at time step ¢ as follows.

Expert Only This is a benchmark approach
where the F; score is calculated using only expert
annotations as ground truth. This method provides
intuitively the most accurate F; scores. The reward
of worker w; is defined as:

1y P () = Fy(ai;(1)) (3)

The expert-only method requires an expert annota-
tion on every sentence, which is costly and usually
not practical.

Majority Voting (MV) To reduce expert anno-
tations, we aggregate A; for each sentence s;, and
use the aggregated annotation via MV as ground
truth, i.e.,

P () = Y (a;(t)) 4)

Expert+MV When a task is difficult, workers
may give very different annotations on the same
sentence, and one can be uncertain about the voted
(and possibly noisy) ground truth. In this case,
we want to resort to both crowd workers and ex-
perts. The choice is based on the well-known
Fleiss’ Kappa score x that can quantitatively eval-
uate the agreement of crowd workers. For each
sentence s;, if kK(A;) is greater than a preset em-
pirical threshold value 7, the reward of annotating
workers is F)1V (a;;(t)). Otherwise, the reward is
Fl;‘xP(aZ-j(t)). In this way, MV is only used when
the crowd workers can reach an agreement. Thus
the reward is always calculated based on reliable



Algorithm 1 The worker selection algorithm with
the Expert+MV metric.

1: Let each worker w; € W annotate a random

sentence and initialize variable ji; with F; by

expert evaluation

For each worker w; € W, initialize T < 1

t <+ |[W|

while unannotated sentences exist do
t—t+1
Select W, C W based on certain crite-
rion (e.g., (6), (7))

7 Split W; into several disjoint subsets

AN A S o

{Wi, ..., Wy, ..., Wy}, each containing
K workers
8:  for all W do
9: Let each w; € Wy; annotate an sentence
s; and collect the annotations A;
10: if K(A;) > 7 then
11: Update Tj and fi; with F}Y(a;;(t))
12: else
13: Update T; and ji; with Fy*P(a;;(t))
14: end if

15:  end for
16: end while

ground truth. We summarize the reward of worker
w; as:
MV
MExp+MV (t) = Fi' (ai;(t)),
j ~ \E
’ lep(a’ij (t))v

I{(AZ) > T

5

The e-Greedy and Combinatorial Upper Confi-
dence Bound (CUCB) are two effective algorithms
to solve the CMAB problem. For each worker
w; € W, both algorithms maintain a variable fi;(t)
as the average reward (i.e., the average F; score)
of worker w; at time step {. CUCB additionally
maintains a variable T (¢) as the total number of
sentences worker w; has annotated till time step ¢.
Details of the worker selection algorithm with our
Exp.+MV metric are shown in Algorithm 1. As for
the selection criterion mentioned in the algorithm,
e-Greedy utilize a hyper-parameter ¢ which refers
to the probability of exploring random workers.
Thus 1 — e refers to the probability of exploiting
the best workers till the current time step. Formally,
W, is selected with a random variable p € [0, 1] as
below:

random W; C W,

argmax g i,
WicWw ijWt

p<e

Wy = p>e (0

CUCSB handles the tradeoff by adding an item con-
sidering 7 and ¢ to i; like:

o 3Int
ijWt

W, = argmax g
WiCW

This makes workers with less annotations more
likely to be selected as the algorithm proceeds. We
provide a brief analysis in Appendix B.

3.4 Data Augmentation Method

CMAB-based algorithms require a relatively large
number (e.g., thousands) of iterations to converge
on selecting a near-optimal set of workers. Hence
real datasets can be insufficient on scale. In the best
case, the algorithm always selects the same best
super-arm at every time step ¢. Therefore, we need
to ensure that these workers have annotations on ev-
ery sentence in the dataset. Generating the missing
annotations for each worker w; is a great challenge
when we expect the generated annotations to re-
flect the factual reliability of w;. In other words,
we expect the average F; score of each w; € W to
remain constant before and after augmenting the
dataset with generated annotations. This is criti-
cal and difficult since real datasets are imbalanced
and of small scale that cannot well support worker
selection algorithms.

As there is no work on generating missing an-
notations, we start with several naive algorithms
such as randomly generating label sequences as
annotations, and mixing expert annotations with
completely incorrect (e.g., empty) annotations. But
these algorithms either cannot produce annotations
with expected F; scores, or generate confusing an-
notations which make later aggregation meaning-
less. This motivates us to design a data augmenta-
tion method specialized for span-based sequence
labeling datasets. For each sentence s; € .S, we
modify the annotation span based on the expert
annotation. We use three types of modifications
to generate new annotation spans with different F;
scores as illustrated in Figure 2. The goal of these
modifications is to simulate varying annotation er-
rors made by human annotators.

Shifting We move both the left and the right bor-
der of the annotation span simultaneously in the
same direction by one word per step.

Expanding We set one of the span borders fixed,
and move the other border by one word per step to
increase the length of the annotation span.



Dataset #Sent. #Antr. #Antr. /Sent. #Sent. /Antr. Span Length
Chinese OEI 8047 70 32 368 5.05
CoNLL 2003 4580 47 3.6 350 1.51

Table 1: Statistics of datasets. Sent. stands for sentence. Antr. stands for annotator. Numbers of annotators per
sentence, numbers of annotated sentences per annotator, and span lengths are means.

Shifting Expanding Shrinking
Expert 4 R HAIRH R SR T B A R BRI BH e R R T i ) A IR AT BH e R 2R T i 2
P Today’s sunshine is Today’s sunshine is Today’s sunshine is
Modified | 4 KNI ERETRMRIE 4 R 010 R T GV A R 0 B A 5 T
by lword i Today’s sunshinewarm Today’s sunshine Today’s sunshine is gentle
Modified | 4 RHHDEERRE R o S P R R T ) 4 R AL 7 T IR
by 2 words Today’s and warm Today’s‘sunshine is gentle and warm‘ Today’s sunshine is gentle and
Modified | [ B RHIMDEER T TR WE 4 RS T T IRIE N LR T TR
by 3 words | |Today’s sunshine is gentle and warm ‘Today’s sunshine is gentle and warm‘ Today’s sunshine is gentle and warm

Figure 2: An example of the three methods to generate annotations. Chinese characters and corresponding English

words with red backgrounds indicate annotation spans.

Shrinking We set one of the span borders fixed,
and move the other border by one word per step to
decrease the length of the annotation span.

We perform these modifications on a span multi-
ple times, generating new annotation spans, until
(1)the modified span does not overlap with the orig-
inal one, (2)one of the span borders reaches an end
of sentence or another span in the same sentence,
or (3) the span length becomes 0.

For each sentence s; € .5, s; may contain multi-
ple annotation spans. We perform modifications on
each span in s;, and find all combinations of spans
to form possible sentence annotations. With these
methods, we can imitate crowd annotations with
different kinds of errors in practice. Next, for each
worker w; € Wy, if w; has no annotation on s;
in the original dataset, we select one from all the
expert and generated annotations on s;. We first
calculate @¢; as the average Fy score of all annota-
tions by w; on the original dataset, and then follow
the detailed steps described in Algorithm 2 to do
the selection. We aim to keep the overall F; score
of w; unchanged.

4 Experiments

4.1 Original Datasets

We compare our CMAB-based algorithms to sev-
eral widely adopted baselines on two span-based
sequence labeling datasets.

CoNLL 2003 The CoNLL 2003 English named-
entity recognition dataset (Tjong Kim Sang and

De Meulder, 2003) is a collection of news arti-
cle from Reuters Corpus(Lewis et al., 2004). The
dataset contains only expert annotations for four
named entity categories (PER, LOC, ORG, MISC).
Rodrigues et al. (2014) collected crowd annotations
on 400 articles from the original dataset.

Chinese OEI The Chinese OEI dataset (Zhang
et al., 2022) consists of sentences on the topic of
COVID-19 collected from Sina Weibo*, in which
the task is to mark the spans of opinion expressions.
The Chinese OEI dataset contains expert and crowd
labels for two opinion expression categories (POS,
NEG). Detailed statistics are shown in Table 1.

4.2 Data Augmentation Results

We augment both datasets with the method pro-
posed in Section 3.4. Through our method, the
average F; score of each w € W remains nearly
unchanged before and after augmenting the original
dataset with generated annotations’. Due to space
limitation, we present the comparisons of different
augmentation methods in Table 5 in the appendix,
which shows that our method clearly outperforms
the others.

4.3 Main Results

We test the Exp.+MV method with 4 baselines:
Oracle, Random, Exp., and MV. Oracle always

4https: //english.sina.com/weibo/

SThe augmentation procedure takes about 2 hours on a
computer with a 2.9 GHz Quad-Core Intel Core i7 CPU.


https://english.sina.com/weibo/

5000

0 —

3500 —— CUCB(Exp.) d
—— CUCBMV) -

3000 | —— CUCB(Ep+MV) =Tl
-—- E-G(Exp) -

2500 ——n EGMV)
-=- E-G(Exp-+MV)

Random

Regret

2000
P R I
1000
500

0 500 1000 1500 2000 2500 3000 3500 4000
Time Step

(a) Chinese OEI

5000

2500

0

800 T e
e

600

Regret

—— CUCB(Exp.)

—— CUCB(MV)

—— CUCB(Exp-+MV)

—=- E-G(Exp.)

—--- E-G(MV)

—=- E-G(Exp+MV)
Random

400

200

0 500 1000 1500 2000
Time Step

(b) CoNLL 2003

Figure 3: Cumulative regrets w.r.t time steps of all different worker selection methods.

selects the empirical best super-arm W at ev-
ery time step ¢t. Random selects a different set of
workers randomly at every time step t. Exp., MV,
and Exp.+MYV are CMAB-based algorithms intro-
duced in Section 3.3. The CMAB-based algorithms
are tested with CUCB and e-Greedy as the worker
selection criterion respectively.

We first examine the performance of our worker
selection algorithms by the cumulative regret de-
fined as:

R(T) ="

t=

o= Y, m)]| ®

T
1 \wjewort wi, €W

The regret reveals to what extent the super-arm
selected by a certain algorithm is worse than the
one selected by the oracle. In the experiment, we
request 10 annotations on each sentence to ensure
that the CMAB-based algorithms can converge. We
set the size of the super-arm to 20, i.e., 20 work-
ers are selected in each time step ¢. On the Chi-
nese OEI dataset, we set the kappa threshold 7
in Exp.+MYV to 0.4, which results in 57.02% re-
duction of expert annotation cost. On the CoNLL
2003 dataset, we set the kappa threshold to 0.65,
resulting in 43.83% reduction of expert annotation
cost. The kappa thresholds are adjusted to different
values so that Exp.+MYV would perform the best
respectively on these two datasets.

Figure 3 shows that Random is constantly worse
than all other methods on both datasets. On the
Chinese OEI dataset, Exp.+MYV outperforms MV
steadily. Exp.+MYV produces greater regret com-
pared with Exp., but it is acceptable since we cut
down up to 57.02% expert cost. On the CoNLL
2003 dataset, Exp.+MYV even works better than

F1 Score
Expert Usage (%)

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Kappa Threshold Kappa Threshold

(a) Fy score w.r.t 7 (b) Expert usage w.r.t T

Figure 4: F; scores of the produced annotations and us-
age of expert for annotation evaluations w.r.t the kappa
threshold 7 of the Exp.+MYV method on the CoNLL
2003 dataset.

Exp.. This indicates on simpler tasks like NER,
crowd workers may provide extra intelligence com-
pared with experts. Besides, we find that algo-
rithms work better with the CUCB criterion rather
than e-Greedy. In short, CUCB(Exp.+MYV) outper-
forms other baselines with cumulative regret and
expert cost both considered.

Next, we discuss how different kappa threshold
values 7 affect the average F; score of the produced
annotation dataset. We test 7 € [0, 1] with a step
of 0.05. In real datasets like CoNLL 2003 and
Chinese OEI, the number of annotations per sen-
tence is often quite small. To better fit the practical
situations, we ask for 4 annotations on each sen-
tence in the following experiments. Other settings
remain unchanged. Since CUCB performs better
than e-Greedy on both datasets, we display only
the results from CUCB in later experiments.

On the Chinese OEI dataset, as illustrated in
Figure 5, F; increases sharply with 7 € [0,0.4].
When 7 = 0.4, Exp.+MYV achieves 99.47% F,
score of Exp., and saves 47.19% of the expert cost.



‘ Token-level

Span-level Exact

Span-level Prop.

Method

| P R F | P R F | P R F
Oracle 65.69 83.99 70.00 | 78.15 72.23 74.96 | 87.97 80.03 83.82
Random 5595 66.42 57.50 | 6442 55.64 59.40 | 7570 62.61 68.54
e-G(Exp.) 64.94 80.48 68.56 | 7524 68.16 71.34 | 8585 76.79 81.06
e-G(MV) 64.44 8022 67.98 | 74.69 67.59 70.77 | 85.67 76.09 80.59
e-G(Exp.+MV) | 64.68 80.94 68.41 | 75.08 6837 71.40 | 8593 76.62 81.01
CUCB(Exp.) 65.65 80.34 69.24 | 7594 69.12 72.20 | 86.17 77.22 81.45
CUCB(MV) 6539 80.00 6891 | 7595 68.90 72.08 | 86.13 76.67 81.12
CUCB(Exp4+MV) | 6533 81.12 69.11 | 7570 69.30 72.21 | 86.17 77.28 81.48

Table 2: Detailed P, R, and F; scores of all methods on the CoNLL 2003 dataset.

The F; score goes up slowly until 7 reaches 0.8.
When 7 = 0.8, the F; score of Exp.+MYV becomes
exactly the same as the one of Exp., and Exp.+MV
still saves 6.6% of the expert cost.

The results on the CoNLL 2003 dataset are
shown in Figure 4. Similarly, the F; score of
the produced annotation dataset grows fast as 7 €
[0,0.45]. When 7 = 0.45, the Exp.+MYV method
already produce an annotation dataset with its Fy
reaching 99.86% of Exp.. At this point, Exp.+MV
saves 88.57% of the expert cost. When 7 = 0.65,
Exp.+MYV outperforms Exp. with a 100.04% F;
score and a 65.97% reduction in expert usage.

Previous results show that with our
CUCB(Exp.+MV) worker selection algo-
rithm, we do not need to ask the experts to evaluate
crowd annotations on every sentence. Instead, we
propose to utilize crowd intelligence for annotation
evaluations through our kappa-thresholded MV.
And the dataset produced by our method is of
nearly the same or even higher quality compared
with using only expert evaluations.

All of the F; scores in the previous experiments
are span-level proportional scores calculated by the
proportion of the overlap referring to the expert
annotation(Zhang et al., 2022). To provide addi-
tional comparisons between different methods, we
also invoke token-level and span-level exact P, R,
F; scores as supporting metrics. We run the whole
process from data augmentation to worker selection
with all 3 metrics separately. The kappa threshold
7 in Exp.+MYV is set to 0.4 on the Chinese OEI
dataset and 0.65 on the CoNLL 2003 dataset. De-
tailed scores are listed in Table 2 and 4. The results
show that Exp.+MYV achieves scores as good as
Exp. and much better than MV, which validates

previous experiments and shows our worker selec-
tion methods are robust to different metrics.

We also test our worker selection methods with
a feedback simulator. The simulator generates nu-
merical feedback from Bernoulli distribution in
annotation evaluations. This is to eliminate the
varying level of difficulty in different tasks and eval-
uate our worker selection algorithms under more
stable settings. Our algorithm achieves good results
on the simulator as well. Due to space limitations,
we put the definitions and results in Appendix A.

5 Conclusion

This paper focuses on the worker selection prob-
lem for span-based sequence labeling tasks. We
present the initial work of applying CMAB-based
methods to address the problem. Due to label inter-
dependencies, the binary feedback signal in con-
ventional CMAB is not applicable. We propose
to use span-level F; with Exp.+MYV as feedback.
The real datasets are unbalanced and insufficient
for offline simulation of worker selection. To ad-
dress this, we develop a data augmentation method
for span-based sequence labeling datasets that re-
flects the possible errors in annotating practice. The
F; scores of generated annotations are nearly the
same as workers’ actual ones. With the augmented
datasets, we conduct extensive experiments. On
the Chinese OEI dataset, our method achieves up to
99.47% F1 score with 47.19% reduction in the ex-
pert cost. On the CoNLL 2003 dataset, our method
achieves up to 100.04% F; score with 65.97% re-
duction in the expert cost. Both are compared
with expert-evaluation-only baselines. Our method
achieves up to 94.86% F; score and saves 65.97%
expert cost on the data-free simulator as well.



Limitations

In this paper, we provide theoretical analysis and
offline simulation results of our worker selection
algorithm. These results show that our algorithm
performs well. But due to the budget limitation,
we are unable to apply our algorithm on real online
crowdsourcing systems and test it with real-time
annotation tasks.
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A Feedback Simulator

The performance of crowd workers may fluctuate
on different kinds of annotation tasks. To vali-
date the Exp.+MYV worker selection method under
more stable settings, we exclude the datasets in the
worker selection process and directly generate the
numerical feedback when workers give annotations.
Specifically, for each worker w, we precalculate
the average F; score of all annotations by w on the
original dataset using expert and MV evaluation
respectively, denoted as gL"" and MV . At time
step t, for each s; € S;, we assign K tasks to K
different workers in W;, then use a random value
on [0, 1] as the workers’ agreement x. If k > T,

10

Method Fq
Oracle 74.12
Random | 65.12
Exp. 69.78
MV 66.80

Exp.+MV | 68.29

Table 3: The overall span-level proportional F; scores
of all methods with the feedback simulator.

we generate feedback for the K workers from
Bernoulli(gMV") independently. Otherwise, the
feedback is generated from Bernoulli(gL™"). We
set the kappa threshold value 7 to 0.4 in Exp.+MV.
The results of this experiment are shown in Ta-
ble 3. Exp.+MV saves 59.88% of expert usage
under these settings.

B Regret Analysis

We provide a brief regret analysis of the worker
selection framework assuming that we use the e-
greedy algorithm and that each worker’s reward
follows a Bernoulli distribution.

The main proof follows the proof of Theorem
1 in (Garcelon et al., 2022). The key contribution
here is that we need to specify that the evaluation
signal (generated by majority voting) is a general-
ized linear model of workers’ true reward signal
(generated by expert/oracle). To this end, we utilize
the following form of the Chernoff bound which
applies for any random variables with bounded sup-
port.

Lemma 1 (Chernoff Bound (Motwani and Ragha-
van, 1995)) Let X1, Xa, - , XN be independent
random variables such that x; < X; < xp for
alli € {1,2,--- ,N}. Let X = SN X, and
u = E(X). Given any 6 > 0, we have the follow-
ing result:

52 2

P(X<(1—d)p) <e Yo, (9)
For the purpose of our discussion, let X; € {0,1}
be a binary random variable, where X; = 0 denotes
that worker ¢ provides an incorrect solution, and
X; = 1 denotes that worker ¢ generates a correct
solution. Define X =), \- X;.

We aim to approximate Pyry, which is the prob-
ability that the majority of the N workers provide
the correct estimate. We apply the Chernoff Bound
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Method ‘ Token-level Span-level Exact Span-level Prop.

| P R F, | P R F, | P R F;
Oracle 62.88 68.62 64.80 | 5448 51.97 53.07 [ 7279 64.07 68.15
Random 5849 5730 57.42|43.99 3550 39.18 | 69.01 52.36 59.55
e-G (Exp.) 6191 6458 62.61 | 51.72 4637 48.76 | 7228 60.25 65.72
-G (MV) 60.87 63.52 61.55 | 4872 44.66 46.37 | 70.15 58.94 64.05
e-G (Exp+MV) | 61.76 6446 62.47 | 49.14 4535 46.96 | 71.21 59.92 65.08
CUCB (Exp.) 63.02 6375 6293|5224 4551 48.56 | 73.05 59.53 65.60
CUCB (MV) 61.94 62.09 61.55|49.57 4439 46.66 | 7122 57.59 63.68
CUCB (Exp+MV) | 62.83 63.62 62.75 | 51.31 4560 48.16 | 72.48 59.33 65.25

Table 4: Detailed P, R, and F; scores of all methods on the Chinese OEI dataset.

in Lemma 1 to Pyry. We can compute

_ 5,1\11]91
E(X)=p==""—. 1
(X)=p N (10)
_ _ _N@—3)
Based on (9), welet u = E(X), 0 = %+N(ﬁi%),

2, = 0, z), = 1, and get the following result: Algorithm 2 The annotation selection algorithm.

1: For each worker w; € W, maintain (1)a vari-

Pyy = P < X > N ) —1_pP < X < N ) able ©; as the average F; score of the selected
2 2 annotations by w; so far, (2)a set A’ of se-
> 6_% an lected annotati0n§ by wj . ,
N2 p1)? . 2: Generate all pé)ss1ble annotations A1 on sy €
[%Hv(ﬁf%)]g (5 +N(p-3)] S, calculate FIXp(alk) for each aqy, € A’l’
=1—-e" N (12) 3: For each w € W, initialize ¢; with the
_N2-%)? F]fo(alk) closest to ¢;, and append the a1y, to
=1-—e N (13) Aj
_N(Z%lpi_%)Z 4: for all s; € S\s; do
=l-e . (14) 5. Generate all possible annotations A on
s; € S, calculate F}pr(aik) for each a;;, €

Through approximating Pyry by its lower bound

p
in (14), we can se§ that.the eve.lluation s.ign'al (rep- N ;:; all w; € W do
resented by Pyv) is an increasing function in each N -
, . ; . . 7: if ; > ¢, then
worker’s capability p; and twice-differentiable. J 7 i Exp
That is, Pyrv is a generalized linear function, which 8: Update @J;Wlth the maximal Fy (Jalk)
satisfies Assumption 3 in (Garcelon et al., 2022). less than ¢, and append a;, to A
Therefore, one can follow the proof of Theorem 1 o else o o Exp
in (Garcelon et al., 2022) that the e-greedy algo- 10: Update &; Wl_th the minimal Fy (aikj)
rithm yields a sub-linear regret with order O(7%/3). greater than ¢;, and append a;, to A
11: end if
12:  end for
13: end for
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Worker Ori. Rnd. SES SES Worker Ori. Rnd. SES SES

Gen. Only +Alg.2 Gen. Only +Alg.2
ID F; F, F, F, ID F, F, F, F,
25 6290 60.07 69.59  62.89 37 37.15  96.10 26.79  37.16
32 60.87 4137 68.79  60.87 13 36.19  31.62 25.14  36.20
42 53.88 4.37 66.57  53.88 20 36.11 7144 2502  36.12
5 52.07 50.74  60.76  52.06 64 3597 65.66 2539 3597
55 50.70  30.24  61.13  50.70 63 3522 7540 2473 3522
2 50.53 9199 6092  50.53 6 35.15 6574 2500 35.16

52 50.08 4193 6091  50.08 10 34.63 51.28 25.08  34.64
17 49.82 4373 3582 49.82 66 3375 6098 2499 3375
57 49.25 13.17 3559  49.25 53 3290 2751 24778  32.89
11 49.04  53.71 35.19  49.03 4 32.72 8.40 2477 3272
26 48.89 5.17 35.59  48.82 21 3219 7347 24778 3219
36 48.71 1553 3527 48.70 62 32.16 4871  24.89  32.16
46 48.67 44.84 3519  48.67 1 3210 3442 2496  32.10
29 48.60 9539 3521  48.60 41 3194 7755 2488 3193
35 47.07  23.64 3534  47.07 51 3178 68.07 2485 31.78
49 46.80 6030 3527  46.80 31 31.61 2944 2459  31.61
54 45.63 18.74 3445  45.64 8 31.05 2855 2476  31.05
14 45.13 6099 3454  45.13 67 3091 9551 2422 3091
43 4493 3491 33.72 4493 58 30.70  21.64 2396  30.70
7 4437  23.89 3350 4437 65 30.61 4.51 24.17  30.60
59 4436 7237  33.61 44.37 38 30.47 4.82 24.11 30.47
23 43.38 4.85 33.58  43.38 28 29.86 2.63 24.00  29.86
56 4337 4196 3331  43.37 45 29.38  36.13 2415  29.38
0 41.60 6681 28.19 41.61 30 28770  61.16  21.88  28.71
18 4140 3153 2856 4140 15 25.73 3892 2140 2573
16 4131  57.13  28.03 41.31 19 24.69 4.39 2131 24770
22 41.05 8583 2821 41.06 44 2342 7.15 21.08  23.42
47 40.78 8233 2791  40.78 9 22.88 9622 2122  22.89
61 40.22 1220 2844  40.22 33 2236 29.89 19.50  22.36
40 40.01 84.98 2838  40.02 39 20.69  57.73 19.26  20.69
50 39.35 56.04 2864 3935 69 2039  63.02 1926  20.40
27 38777  34.07 2787 3877 3 17.12 2870 18.66  17.13
48 3835 2377 2757 3835 24 1696  42.73 18.68 16.98
34 38.29 5.69 28.08  38.30 68 14.53 13.63 7.69 14.53
12 3796  85.14 2744 3796 60 13.66  22.69 8.15 13.66

Table 5: Comparisons between different data augmentation methods on the span-level exact F; score of every
crowd worker. Ori. stands for the original score in real datasets before any augmentation. Rnd. Gen. is a
naive augmentation method with random generated annotations. SES Only indicates the shifting, shrinking, and
expanding method we proposed. SES + Alg.2 means SES with Algorithm 2 which is our final method.
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Figure 5: F; scores of the produced annotations and us-
age of expert for annotation evaluations w.r.t the kappa
threshold 7 of the Exp.+MV method on the Chinese
OEI dataset.
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