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Abstract

Crowdsourcing is a scalable data collecting001
method used in many NLP tasks. Due to the dis-002
parity of expertise among crowd workers, prior003
studies utilize worker selection to improve the004
quality of the crowdsourced dataset. However,005
most of them are designed for and tested on006
simple classification tasks. In this paper, we007
focus on span-based sequence labeling tasks in008
NLP, which are more challenging as nearby la-009
bels have complex inter-dependencies. We pro-010
pose a new worker selection algorithm based011
on combinatorial multi-armed bandit (CMAB).012
Our algorithm maximizes the quality of the an-013
notations while reducing the overall cost by014
using both majority-voted and expert annota-015
tions for evaluations. A key challenge is that016
practical datasets are highly imbalanced and017
of small scale, which makes offline simulation018
of worker selection difficult. To address this019
issue, we present a novel data augmentation020
method called shifting, expanding, and shrink-021
ing (SES), which is customized for sequence022
labeling. We augment two datasets, CoNLL023
2003 NER and Chinese OEI, on which we ex-024
tensively test our worker selection algorithm.025
The results show that our algorithm achieves up026
to 100.04% F1 score compared with an expert-027
evaluation-only (i.e., all annotations evaluated028
by experts) baseline, saving up to 65.97% of029
costs to ask experts. We also include a dataset-030
independent test in which the annotation evalu-031
ation is simulated through a Bernoulli distribu-032
tion. Similarly, our algorithm achieves 97.56%033
F1 and saves 59.88% expert costs.034

1 Introduction035

Crowdsourcing is obtaining labeled data from036

crowd workers (Howe, 2006). Several online037

crowdsourcing platforms have emerged and pros-038

pered in recent years, such as Amazon Mechanical039

Turk1 and Taskrabbit2. Prior studies have applied040

1https://www.mturk.com/
2https://www.taskrabbit.com
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Figure 1: Our online worker selection framework for
crowdsourcing.

crowdsourcing to collect data for a wide range of 041

tasks including image labeling, text classification, 042

and sequence labeling (Venanzi et al., 2014). Gen- 043

erally, one can reduce the cost and improve the 044

efficiency of label collection by hiring crowd work- 045

ers instead of expensive experts (Nowak and Rüger, 046

2010). With these advantages, crowdsourcing has 047

gained great interest and played an important role 048

in data collection for deep learning models. 049

In this paper, we focus on crowdsourcing for 050

span-based sequence labeling tasks. Sequence la- 051

beling involves determining a categorical label to 052

each word in a sentence (Erdogan, 2010). Many 053

tasks come in the form of span-based sequence la- 054

beling, including named entity recognition (NER) 055

and opinion expression identification (OEI) (Col- 056

lobert et al., 2011). In simple sentence classifica- 057

tion tasks, labels are assigned independently. While 058

in sequence labeling tasks, nearby labels have inter- 059

dependencies and are attached to the context (Ro- 060

drigues et al., 2014). This makes sequence labeling 061

tasks more difficult, and annotations from crowd 062

workers less accurate. Therefore, improving anno- 063

tation quality becomes an important and challeng- 064
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ing problem.065

On span-based sequence labeling tasks, prior066

studies Rodrigues et al. (2014); Nguyen et al.067

(2017); Simpson and Gurevych (2019) mainly fo-068

cus on annotation aggregation. These methods are069

used after data collection. Due to the disparity of070

skill levels among crowd workers, it could help to071

improve data quality if we can identify and utilize072

workers with the highest accuracy during data col-073

lection. This approach is known as online worker074

selection to which we resort in this paper. In on-075

line worker selection, the platform allocates a lim-076

ited budget between a set of workers iteratively to077

maximize the quality of annotations (Chen et al.,078

2013). The skill level of the workers is unknown079

a priori and observed through annotations, which080

leads to a tradeoff between exploring new workers081

and exploiting the best workers at the moment. A082

feedback signal is required to update the learning083

process. This is easy in simple classification tasks084

where there is a binary feedback signal (i.e., correct085

or incorrect). But for sequence labeling tasks, it is086

much more difficult to define such a binary signal087

due to correlations of nearby labels. To address088

this, we use the span-level F1 score (Derczynski,089

2016) to measure the quality of annotations and090

it serves as the feedback signal in the worker se-091

lection process. The F1 score is usually calculated092

based on expert-provided ground truth. Then we093

can formulate worker selection as an optimization094

problem that maximizes the overall F1 score of the095

produced annotations.096

While expert annotations tend to be of high qual-097

ity as ground truth, they usually come at a large098

cost. Moreover, they are only available on a small099

portion of the task sequences. In this paper, we em-100

ploy crowd workers for sequence annotations, of101

which the aggregation may serve as ground truth.102

We aim to replace as many expert ground truth103

labels as possible with aggregated crowd ground104

truth labels, while the overall F1 score of the pro-105

duced dataset remains high. An expert ground truth106

is replaced only when the inter-annotator agree-107

ment (i.e., Fleiss’ Kappa (Fleiss, 1971)) among108

crowd workers is high enough. The intuition is109

that the sequence is easy to correctly annotate for110

a majority of crowd workers, which hence, does111

not require expert evaluation. Our worker selection112

algorithm is illustrated in Figure 1. We iteratively113

assign tasks to a subset of available workers, evalu-114

ate their annotations, and use the scores as a crite-115

rion of worker selection in future rounds. Detailed 116

descriptions are deferred to Section 3.1. 117

We evaluate our worker selection algorithm on 118

two datasets (Rodrigues et al., 2014; Zhang et al., 119

2022). However, real datasets are imbalanced and 120

of small scale which may fail our worker selec- 121

tion algorithm. Firstly, a reasonable number (e.g., 122

3) of annotations on each sentence is required 123

since we aggregate crowd annotations by major- 124

ity voting (MV). Secondly, online algorithms (e.g, 125

CMAB) require a relatively large number (e.g., 126

thousands) of iterations to converge on a near- 127

optimal set of workers (Chen et al., 2013). To 128

address these issues, we design a data augmen- 129

tation method for span-based sequence labeling 130

datasets. The main purpose of our augmentation 131

method is to reflect the possible errors when hu- 132

man workers give annotations in practice. Thus, 133

using generated annotations in MV will not lead 134

to meaningless aggregation results. We propose 135

three kinds of modifications, shifting, expanding, 136

and shrinking to the expert annotation on each sen- 137

tence. For each sentence, we generate all possible 138

annotations human workers might give. For each 139

worker, we select one annotation on each sentence 140

to make sure the average F1 score is very close to 141

the worker’s F1 score calculated on the real dataset. 142

Our augmentation method solves the imbalance 143

and insufficiency problem in real datasets, enabling 144

offline evaluation of worker selection algorithms. 145

The main contributions of our paper are summa- 146

rized as follows: 147

• To our best knowledge, we present the initial 148

work of worker selection on span-based se- 149

quence labeling tasks. This is critical as such 150

tasks are more challenging and crowd workers 151

produce less reliable annotations compared 152

with simple classification tasks. 153

• Due to label inter-dependencies, simple bi- 154

nary feedback is not applicable on span- 155

based sequence labeling tasks. We utilize the 156

span-level F1 score evaluated by experts and 157

crowd workers combined as the feedback sig- 158

nal, which is shown to precisely reflect the 159

worker accuracy and hence effectively guide 160

the worker selection process. 161

• We propose a data augmentation method to 162

address the imbalance and insufficiency of 163

real datasets, enabling offline simulation of 164

worker selection. 165
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• We conduct extensive experiments on the aug-166

mented datasets. We use expert-evaluation-167

only as the baseline comparison, which is ex-168

pected to generate the highest F1 score. On169

the Chinese OEI dataset, our method achieves170

up to 99.47% F1 score with 47.19% reduction171

in the expert cost. On the CoNLL 2003 NER172

dataset, our method achieves up to 100.04%173

F1 score with 65.97% reduction in the expert174

cost.175

We have all of our source codes and datasets re-176

leased for research purposes3.177

2 Related Work178

Many studies (Rodrigues et al., 2014; Rodrigues179

and Pereira, 2018; Nangia et al., 2021) have used180

crowdsourcing for its efficiency and scalability.181

However, crowdsourcing suffers from the diversity182

of crowd workers’ expertise and effort levels that183

are hardly measurable to task requesters. Different184

approaches to improving the quality of collected185

data have been proposed and studied. For span-186

based sequence labeling tasks, prior studies mainly187

focus on annotation aggregation. Rodrigues et al.188

(2014) proposed CRF-MA, a CRF-based model189

with an assumption that only one worker is cor-190

rect for any label. HMM-crowd from Nguyen191

et al. (2017) outperforms CRF-MA, but the effect192

of sequential dependencies is not taken into ac-193

count. Simpson and Gurevych (2019) uses a fully194

Bayesian approach BSC which is proved to be more195

effective in handling noise in crowdsourced data.196

Aggregation methods are used after the data collec-197

tion process completes. But we aim to assure data198

quality and reduce cost during collecting. To this199

end, we focus on worker selection in our paper.200

In online worker selection, we need to balance201

between exploring new workers and exploiting ob-202

served good workers. This exploration-exploitation203

tradeoff is extensively studied in the bandit litera-204

ture (Lai and Robbins, 1985). In practice, we usu-205

ally employ multiple crowd workers at the same206

time to finish the tasks more effectively. The com-207

binatorial multi-armed bandit (CMAB) (Chen et al.,208

2013) models this circumstance. Biswas et al.209

(2015); Rangi and Franceschetti (2018) reformulate210

the problem as a bounded knapsack problem (BKP)211

and address it with the B-KUBE (Tran-Thanh et al.,212

2014) algorithm. Song and Jin (2021) introduce213

3https://anonymous.4open.science/r/Costw-225D

empirical entropy as the metric in CMAB and mini- 214

mize the cumulative entropy with upper confidence 215

bound (UCB) based algorithm. Li et al. (2022) con- 216

sider the scalability of worker selection on large- 217

scale crowdsourcing systems. These studies pro- 218

pose different methods under the CMAB settings, 219

but on more complex span-based sequence label- 220

ing tasks there exists no discussion. We present 221

the study of worker selection with CMAB on span- 222

based sequence labeling tasks and show that our 223

work performs well on the quality and efficiency 224

of data collection. 225

3 Methodology 226

3.1 System Overview 227

Consider an online crowdsourcing system that can 228

reach out to a group of crowd workers W = 229

{w1, w2, . . . , wN}. The workers are required to 230

provide sequential annotations to a set of sentences 231

S = {s1, s2, . . . , sM}. More specifically, a worker 232

annotates a sentence by assigning a tag from a finite 233

possible tag set C (e.g., a set of BIO tags (Ramshaw 234

and Marcus, 1995)) to each word. An annotation 235

on sentence si by worker wj is a tag sequence 236

aij = a1a2 . . . ak . . . al where ak ∈ C and l de- 237

notes the length of the sentence. We assume that 238

every sentence is annotated by K different workers 239

independently. We define a task as the process of 240

annotating one entire sentence, and hence there are 241

in total KM tasks. We seek to acquire an anno- 242

tated dataset in which the average F1 score of aij 243

is maximized. If we know which workers give the 244

best annotations a priori, we can simply ask these 245

workers to finish all the tasks. However, such in- 246

formation is unavailable in practice, and we aim 247

to design an algorithm that learns the best workers 248

throughout the crowdsourcing process. 249

In the beginning, we let each crowd worker an- 250

notate one sentence. We also ask the experts(e.g., 251

well-trained linguists assumed to give the most pre- 252

cise annotations) to give one annotation for each 253

of these sentences. Then we calculate the F1 score 254

of the annotation with the expert annotations as 255

ground truth. We use these scores as the initial F1 256

scores of workers. At each time step t after ini- 257

tialization (as illustrated in Figure 1), we select a 258

subset of workers Wt ⊂W to do annotation, based 259

on criteria discussed in Section 3.3. The size of 260

the subset Wt should be neither too big nor too 261

small (e.g., 0.3N ). We randomly choose a subset 262

of sentences St ⊂ S, assign each si ∈ St to K dif- 263
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ferent workers in Wt, and collect their annotations264

Ai = {ai1,ai2, . . . ,aiK},∀i ∈ {1, 2, . . . , |St|}.265

To evaluate workers’ F1 scores on Ai, one can use266

the expert annotations as the ground truth, which,267

however, can be very expensive (İren and Bilgen,268

2014). To cut down this cost, we reduce the usage269

of expert evaluations whenever crowd annotations270

are similar enough. We use the Fleiss’ Kappa score271

κ to measure this similarity. The κ score (κ ≤ 1) is272

a statistical measure of inter-annotator agreement.273

A larger value of κ indicates stronger agreement274

between the workers. κ score exceeding an em-275

pirical threshold indicates that the crowd workers276

reach a consensus on si. In that case, we aggregate277

Ai with MV and use the aggregated annotation as278

the ground truth of sentence si. If the workers do279

not reach a consensus, we resort to expert annota-280

tions as ground truth. Next, we can calculate the F1281

scores of each aij ∈ Ai and update the F1 scores282

of the selected workers.283

3.2 Problem Formulation284

At time step t, we obtain K crowd annota-285

tions Ai on each sentence si ∈ St. We de-286

note all annotations collected on St by At =287

{A1,A2, . . . ,A|St|}. To simplify our expression,288

we use FExp
1 (aij) to represent the F1 score of289

aij using expert annotation as ground truth, and290

FMV
1 (aij) to represent the F1 score of aij using the291

MV aggregation of Ai ∈ At as ground truth. On292

collected annotation sets, FExp
1 (Ai) denotes the av-293

erage F1 score of all aij ∈ Ai. Similarly, FExp
1 (At)294

denotes the average F1 score of all Ai ∈ At. As295

FExp
1 (At) reflects the true accuracy of crowd anno-296

tations, our objective is to maximize the average297

expectation, or equivalently the cumulative expec-298

tation of FExp
1 (At) over time T . We formulate this299

problem as a CMAB problem below:300

max

T∑
t=1

E[FExp
1 (At)] (1)301

s.t. Wt ⊂W, t ∈ {1, 2, . . . , T} (2)302

Since we have no information about workers’303

average F1 scores, we need to balance exploring304

potentially better workers and exploiting the cur-305

rent best workers during worker selection. This306

tradeoff is extensively discussed in bandit litera-307

ture where arms with unknown distributions form308

super-arms. The arms are associated with a set of309

random variables Xj,t with bounded support on [0,310

1]. Variable Xj,t indicates the random outcome of 311

arm j in time step t. The set of random variables 312

{Xj,t|t ≥ 1} associated with arm j are indepen- 313

dent and identically distributed according to certain 314

unknown distribution Dj with unknown expecta- 315

tion µ̄j . The platform plays a super-arm at each 316

time step, and the reward of arms in it is revealed. 317

These rewards are used as a metric for selecting 318

the super-arm in future time steps. After enough 319

time steps, the platform will be able to identify the 320

best super-arm and keep playing it to maximize the 321

overall reward. Similar to bandit terminologies, we 322

call each worker wj ∈ W an arm and the worker 323

subset Wt ⊂W a super-arm selected at t. 324

3.3 Worker Selection Algorithm 325

Specifically, there are three methods to calculate 326

the reward of worker wj at time step t as follows. 327

Expert Only This is a benchmark approach 328

where the F1 score is calculated using only expert 329

annotations as ground truth. This method provides 330

intuitively the most accurate F1 scores. The reward 331

of worker wj is defined as: 332

µ
Exp
j (t) = FExp

1 (aij(t)) (3) 333

The expert-only method requires an expert annota- 334

tion on every sentence, which is costly and usually 335

not practical. 336

Majority Voting (MV) To reduce expert anno- 337

tations, we aggregate Ai for each sentence si, and 338

use the aggregated annotation via MV as ground 339

truth, i.e., 340

µMV
j (t) = FMV

1 (aij(t)) (4) 341

Expert+MV When a task is difficult, workers 342

may give very different annotations on the same 343

sentence, and one can be uncertain about the voted 344

(and possibly noisy) ground truth. In this case, 345

we want to resort to both crowd workers and ex- 346

perts. The choice is based on the well-known 347

Fleiss’ Kappa score κ that can quantitatively eval- 348

uate the agreement of crowd workers. For each 349

sentence si, if κ(Ai) is greater than a preset em- 350

pirical threshold value τ , the reward of annotating 351

workers is FMV
1 (aij(t)). Otherwise, the reward is 352

FExp
1 (aij(t)). In this way, MV is only used when 353

the crowd workers can reach an agreement. Thus 354

the reward is always calculated based on reliable 355
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Algorithm 1 The worker selection algorithm with
the Expert+MV metric.

1: Let each worker wj ∈ W annotate a random
sentence and initialize variable µ̄j with F1 by
expert evaluation

2: For each worker wj ∈W , initialize Tj ← 1
3: t← |W |
4: while unannotated sentences exist do
5: t← t+ 1
6: Select Wt ⊂ W based on certain crite-

rion (e.g., (6), (7))
7: Split Wt into several disjoint subsets

{Wt1, . . . ,Wti, . . . ,Wtn}, each containing
K workers

8: for all Wti do
9: Let each wj ∈Wti annotate an sentence

si and collect the annotations Ai

10: if κ(Ai) > τ then
11: Update Tj and µ̄j with FMV

1 (aij(t))
12: else
13: Update Ti and µ̄j with FExp

1 (aij(t))
14: end if
15: end for
16: end while

ground truth. We summarize the reward of worker356

wj as:357

µ
Exp+MV
j (t) =

{
FMV
1 (aij(t)), κ(Ai) > τ

FExp
1 (aij(t)), κ(Ai) ≤ τ

(5)358

The ϵ-Greedy and Combinatorial Upper Confi-359

dence Bound (CUCB) are two effective algorithms360

to solve the CMAB problem. For each worker361

wj ∈W , both algorithms maintain a variable µ̄j(t)362

as the average reward (i.e., the average F1 score)363

of worker wj at time step t. CUCB additionally364

maintains a variable Tj(t) as the total number of365

sentences worker wj has annotated till time step t.366

Details of the worker selection algorithm with our367

Exp.+MV metric are shown in Algorithm 1. As for368

the selection criterion mentioned in the algorithm,369

ϵ-Greedy utilize a hyper-parameter ϵ which refers370

to the probability of exploring random workers.371

Thus 1 − ϵ refers to the probability of exploiting372

the best workers till the current time step. Formally,373

Wt is selected with a random variable p ∈ [0, 1] as374

below:375

Wt =


random Wt ⊂W, p < ϵ

argmax
Wt⊂W

∑
wj∈Wt

µ̄j , p ≥ ϵ (6)376

CUCB handles the tradeoff by adding an item con- 377

sidering Tj and t to µ̄j like: 378

Wt = argmax
Wt⊂W

∑
wj∈Wt

(
µ̄j +

√
3 ln t

2Tj

)
(7) 379

This makes workers with less annotations more 380

likely to be selected as the algorithm proceeds. We 381

provide a brief analysis in Appendix B. 382

3.4 Data Augmentation Method 383

CMAB-based algorithms require a relatively large 384

number (e.g., thousands) of iterations to converge 385

on selecting a near-optimal set of workers. Hence 386

real datasets can be insufficient on scale. In the best 387

case, the algorithm always selects the same best 388

super-arm at every time step t. Therefore, we need 389

to ensure that these workers have annotations on ev- 390

ery sentence in the dataset. Generating the missing 391

annotations for each worker wj is a great challenge 392

when we expect the generated annotations to re- 393

flect the factual reliability of wj . In other words, 394

we expect the average F1 score of each wj ∈W to 395

remain constant before and after augmenting the 396

dataset with generated annotations. This is criti- 397

cal and difficult since real datasets are imbalanced 398

and of small scale that cannot well support worker 399

selection algorithms. 400

As there is no work on generating missing an- 401

notations, we start with several naive algorithms 402

such as randomly generating label sequences as 403

annotations, and mixing expert annotations with 404

completely incorrect (e.g., empty) annotations. But 405

these algorithms either cannot produce annotations 406

with expected F1 scores, or generate confusing an- 407

notations which make later aggregation meaning- 408

less. This motivates us to design a data augmenta- 409

tion method specialized for span-based sequence 410

labeling datasets. For each sentence si ∈ S, we 411

modify the annotation span based on the expert 412

annotation. We use three types of modifications 413

to generate new annotation spans with different F1 414

scores as illustrated in Figure 2. The goal of these 415

modifications is to simulate varying annotation er- 416

rors made by human annotators. 417

Shifting We move both the left and the right bor- 418

der of the annotation span simultaneously in the 419

same direction by one word per step. 420

Expanding We set one of the span borders fixed, 421

and move the other border by one word per step to 422

increase the length of the annotation span. 423
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Dataset #Sent. #Antr. #Antr. /Sent. #Sent. /Antr. Span Length
Chinese OEI 8047 70 3.2 368 5.05
CoNLL 2003 4580 47 3.6 350 1.51

Table 1: Statistics of datasets. Sent. stands for sentence. Antr. stands for annotator. Numbers of annotators per
sentence, numbers of annotated sentences per annotator, and span lengths are means.

Today’s sunshine is gentle and warm

今天的阳光是轻柔⽽温暖的
Today’s sunshine is gentle and warm

今天的阳光是轻柔⽽温暖的

今天的阳光是轻柔⽽温暖的
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Figure 2: An example of the three methods to generate annotations. Chinese characters and corresponding English
words with red backgrounds indicate annotation spans.

Shrinking We set one of the span borders fixed,424

and move the other border by one word per step to425

decrease the length of the annotation span.426

We perform these modifications on a span multi-427

ple times, generating new annotation spans, until428

(1)the modified span does not overlap with the orig-429

inal one, (2)one of the span borders reaches an end430

of sentence or another span in the same sentence,431

or (3) the span length becomes 0.432

For each sentence si ∈ S, si may contain multi-433

ple annotation spans. We perform modifications on434

each span in si, and find all combinations of spans435

to form possible sentence annotations. With these436

methods, we can imitate crowd annotations with437

different kinds of errors in practice. Next, for each438

worker wj ∈ Wti, if wj has no annotation on si439

in the original dataset, we select one from all the440

expert and generated annotations on si. We first441

calculate φ̄j as the average F1 score of all annota-442

tions by wj on the original dataset, and then follow443

the detailed steps described in Algorithm 2 to do444

the selection. We aim to keep the overall F1 score445

of wj unchanged.446

4 Experiments447

4.1 Original Datasets448

We compare our CMAB-based algorithms to sev-449

eral widely adopted baselines on two span-based450

sequence labeling datasets.451

CoNLL 2003 The CoNLL 2003 English named-452

entity recognition dataset (Tjong Kim Sang and453

De Meulder, 2003) is a collection of news arti- 454

cle from Reuters Corpus(Lewis et al., 2004). The 455

dataset contains only expert annotations for four 456

named entity categories (PER, LOC, ORG, MISC). 457

Rodrigues et al. (2014) collected crowd annotations 458

on 400 articles from the original dataset. 459

Chinese OEI The Chinese OEI dataset (Zhang 460

et al., 2022) consists of sentences on the topic of 461

COVID-19 collected from Sina Weibo4, in which 462

the task is to mark the spans of opinion expressions. 463

The Chinese OEI dataset contains expert and crowd 464

labels for two opinion expression categories (POS, 465

NEG). Detailed statistics are shown in Table 1. 466

4.2 Data Augmentation Results 467

We augment both datasets with the method pro- 468

posed in Section 3.4. Through our method, the 469

average F1 score of each w ∈ W remains nearly 470

unchanged before and after augmenting the original 471

dataset with generated annotations5. Due to space 472

limitation, we present the comparisons of different 473

augmentation methods in Table 5 in the appendix, 474

which shows that our method clearly outperforms 475

the others. 476

4.3 Main Results 477

We test the Exp.+MV method with 4 baselines: 478

Oracle, Random, Exp., and MV. Oracle always 479

4https://english.sina.com/weibo/
5The augmentation procedure takes about 2 hours on a

computer with a 2.9 GHz Quad-Core Intel Core i7 CPU.

6

https://english.sina.com/weibo/


0

5000

0 500 1000 1500 2000 2500 3000 3500 4000
Time S ep

0

500

1000

1500

2000

2500

3000

3500 CUCB(Exp.)
CUCB(MV)
CUCB(Exp.+MV)
E-G(Exp.)
E-G(MV)
E-G(Exp.+MV)
Random

R
eg

re
 

(a) Chinese OEI

0

2500

5000

0 500 1000 1500 2000
Time Step

0

200

400

600

800

CUCB(Exp.)
CUCB(MV)
CUCB(Exp.+MV)
E-G(Exp.)
E-G(MV)
E-G(Exp.+MV)
Random

R
eg

 e
t

(b) CoNLL 2003

Figure 3: Cumulative regrets w.r.t time steps of all different worker selection methods.

selects the empirical best super-arm W opt at ev-480

ery time step t. Random selects a different set of481

workers randomly at every time step t. Exp., MV,482

and Exp.+MV are CMAB-based algorithms intro-483

duced in Section 3.3. The CMAB-based algorithms484

are tested with CUCB and ϵ-Greedy as the worker485

selection criterion respectively.486

We first examine the performance of our worker487

selection algorithms by the cumulative regret de-488

fined as:489

R(T ) =

T∑
t=1

 ∑
wj∈W opt

µ̄j −
∑

wk∈Wt

µk(t)

 (8)490

The regret reveals to what extent the super-arm491

selected by a certain algorithm is worse than the492

one selected by the oracle. In the experiment, we493

request 10 annotations on each sentence to ensure494

that the CMAB-based algorithms can converge. We495

set the size of the super-arm to 20, i.e., 20 work-496

ers are selected in each time step t. On the Chi-497

nese OEI dataset, we set the kappa threshold τ498

in Exp.+MV to 0.4, which results in 57.02% re-499

duction of expert annotation cost. On the CoNLL500

2003 dataset, we set the kappa threshold to 0.65,501

resulting in 43.83% reduction of expert annotation502

cost. The kappa thresholds are adjusted to different503

values so that Exp.+MV would perform the best504

respectively on these two datasets.505

Figure 3 shows that Random is constantly worse506

than all other methods on both datasets. On the507

Chinese OEI dataset, Exp.+MV outperforms MV508

steadily. Exp.+MV produces greater regret com-509

pared with Exp., but it is acceptable since we cut510

down up to 57.02% expert cost. On the CoNLL511

2003 dataset, Exp.+MV even works better than512
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(b) Expert usage w.r.t τ

Figure 4: F1 scores of the produced annotations and us-
age of expert for annotation evaluations w.r.t the kappa
threshold τ of the Exp.+MV method on the CoNLL
2003 dataset.

Exp.. This indicates on simpler tasks like NER, 513

crowd workers may provide extra intelligence com- 514

pared with experts. Besides, we find that algo- 515

rithms work better with the CUCB criterion rather 516

than ϵ-Greedy. In short, CUCB(Exp.+MV) outper- 517

forms other baselines with cumulative regret and 518

expert cost both considered. 519

Next, we discuss how different kappa threshold 520

values τ affect the average F1 score of the produced 521

annotation dataset. We test τ ∈ [0, 1] with a step 522

of 0.05. In real datasets like CoNLL 2003 and 523

Chinese OEI, the number of annotations per sen- 524

tence is often quite small. To better fit the practical 525

situations, we ask for 4 annotations on each sen- 526

tence in the following experiments. Other settings 527

remain unchanged. Since CUCB performs better 528

than ϵ-Greedy on both datasets, we display only 529

the results from CUCB in later experiments. 530

On the Chinese OEI dataset, as illustrated in 531

Figure 5, F1 increases sharply with τ ∈ [0, 0.4]. 532

When τ = 0.4, Exp.+MV achieves 99.47% F1 533

score of Exp., and saves 47.19% of the expert cost. 534
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Method Token-level Span-level Exact Span-level Prop.

P R F1 P R F1 P R F1

Oracle 65.69 83.99 70.00 78.15 72.23 74.96 87.97 80.03 83.82
Random 55.95 66.42 57.50 64.42 55.64 59.40 75.70 62.61 68.54

ϵ-G(Exp.) 64.94 80.48 68.56 75.24 68.16 71.34 85.85 76.79 81.06
ϵ-G(MV) 64.44 80.22 67.98 74.69 67.59 70.77 85.67 76.09 80.59
ϵ-G(Exp.+MV) 64.68 80.94 68.41 75.08 68.37 71.40 85.93 76.62 81.01

CUCB(Exp.) 65.65 80.34 69.24 75.94 69.12 72.20 86.17 77.22 81.45
CUCB(MV) 65.39 80.00 68.91 75.95 68.90 72.08 86.13 76.67 81.12
CUCB(Exp.+MV) 65.33 81.12 69.11 75.70 69.30 72.21 86.17 77.28 81.48

Table 2: Detailed P, R, and F1 scores of all methods on the CoNLL 2003 dataset.

The F1 score goes up slowly until τ reaches 0.8.535

When τ = 0.8, the F1 score of Exp.+MV becomes536

exactly the same as the one of Exp., and Exp.+MV537

still saves 6.6% of the expert cost.538

The results on the CoNLL 2003 dataset are539

shown in Figure 4. Similarly, the F1 score of540

the produced annotation dataset grows fast as τ ∈541

[0, 0.45]. When τ = 0.45, the Exp.+MV method542

already produce an annotation dataset with its F1543

reaching 99.86% of Exp.. At this point, Exp.+MV544

saves 88.57% of the expert cost. When τ = 0.65,545

Exp.+MV outperforms Exp. with a 100.04% F1546

score and a 65.97% reduction in expert usage.547

Previous results show that with our548

CUCB(Exp.+MV) worker selection algo-549

rithm, we do not need to ask the experts to evaluate550

crowd annotations on every sentence. Instead, we551

propose to utilize crowd intelligence for annotation552

evaluations through our kappa-thresholded MV.553

And the dataset produced by our method is of554

nearly the same or even higher quality compared555

with using only expert evaluations.556

All of the F1 scores in the previous experiments557

are span-level proportional scores calculated by the558

proportion of the overlap referring to the expert559

annotation(Zhang et al., 2022). To provide addi-560

tional comparisons between different methods, we561

also invoke token-level and span-level exact P, R,562

F1 scores as supporting metrics. We run the whole563

process from data augmentation to worker selection564

with all 3 metrics separately. The kappa threshold565

τ in Exp.+MV is set to 0.4 on the Chinese OEI566

dataset and 0.65 on the CoNLL 2003 dataset. De-567

tailed scores are listed in Table 2 and 4. The results568

show that Exp.+MV achieves scores as good as569

Exp. and much better than MV, which validates570

previous experiments and shows our worker selec- 571

tion methods are robust to different metrics. 572

We also test our worker selection methods with 573

a feedback simulator. The simulator generates nu- 574

merical feedback from Bernoulli distribution in 575

annotation evaluations. This is to eliminate the 576

varying level of difficulty in different tasks and eval- 577

uate our worker selection algorithms under more 578

stable settings. Our algorithm achieves good results 579

on the simulator as well. Due to space limitations, 580

we put the definitions and results in Appendix A. 581

5 Conclusion 582

This paper focuses on the worker selection prob- 583

lem for span-based sequence labeling tasks. We 584

present the initial work of applying CMAB-based 585

methods to address the problem. Due to label inter- 586

dependencies, the binary feedback signal in con- 587

ventional CMAB is not applicable. We propose 588

to use span-level F1 with Exp.+MV as feedback. 589

The real datasets are unbalanced and insufficient 590

for offline simulation of worker selection. To ad- 591

dress this, we develop a data augmentation method 592

for span-based sequence labeling datasets that re- 593

flects the possible errors in annotating practice. The 594

F1 scores of generated annotations are nearly the 595

same as workers’ actual ones. With the augmented 596

datasets, we conduct extensive experiments. On 597

the Chinese OEI dataset, our method achieves up to 598

99.47% F1 score with 47.19% reduction in the ex- 599

pert cost. On the CoNLL 2003 dataset, our method 600

achieves up to 100.04% F1 score with 65.97% re- 601

duction in the expert cost. Both are compared 602

with expert-evaluation-only baselines. Our method 603

achieves up to 94.86% F1 score and saves 65.97% 604

expert cost on the data-free simulator as well. 605
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Limitations606

In this paper, we provide theoretical analysis and607

offline simulation results of our worker selection608

algorithm. These results show that our algorithm609

performs well. But due to the budget limitation,610

we are unable to apply our algorithm on real online611

crowdsourcing systems and test it with real-time612

annotation tasks.613
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A Feedback Simulator755

The performance of crowd workers may fluctuate756

on different kinds of annotation tasks. To vali-757

date the Exp.+MV worker selection method under758

more stable settings, we exclude the datasets in the759

worker selection process and directly generate the760

numerical feedback when workers give annotations.761

Specifically, for each worker w, we precalculate762

the average F1 score of all annotations by w on the763

original dataset using expert and MV evaluation764

respectively, denoted as φ̄Exp.
w and φ̄MV

w . At time765

step t, for each si ∈ St, we assign K tasks to K766

different workers in Wt, then use a random value767

on [0, 1] as the workers’ agreement κ. If κ > τ ,768

Method F1

Oracle 74.12
Random 65.12

Exp. 69.78
MV 66.80

Exp.+MV 68.29

Table 3: The overall span-level proportional F1 scores
of all methods with the feedback simulator.

we generate feedback for the K workers from 769

Bernoulli(φ̄MV
w ) independently. Otherwise, the 770

feedback is generated from Bernoulli(φ̄Exp.
w ). We 771

set the kappa threshold value τ to 0.4 in Exp.+MV. 772

The results of this experiment are shown in Ta- 773

ble 3. Exp.+MV saves 59.88% of expert usage 774

under these settings. 775

B Regret Analysis 776

We provide a brief regret analysis of the worker 777

selection framework assuming that we use the ϵ- 778

greedy algorithm and that each worker’s reward 779

follows a Bernoulli distribution. 780

The main proof follows the proof of Theorem 781

1 in (Garcelon et al., 2022). The key contribution 782

here is that we need to specify that the evaluation 783

signal (generated by majority voting) is a general- 784

ized linear model of workers’ true reward signal 785

(generated by expert/oracle). To this end, we utilize 786

the following form of the Chernoff bound which 787

applies for any random variables with bounded sup- 788

port. 789

Lemma 1 (Chernoff Bound (Motwani and Ragha- 790

van, 1995)) Let X1, X2, · · · , XN be independent 791

random variables such that xl ≤ Xi ≤ xh for 792

all i ∈ {1, 2, · · · , N}. Let X =
∑N

i=1Xi and 793

µ = E(X). Given any δ > 0, we have the follow- 794

ing result: 795

P (X ≤ (1− δ)µ) ≤ e
− δ2µ2

N(xh−xl)
2 . (9) 796

For the purpose of our discussion, let Xi ∈ {0, 1} 797

be a binary random variable, where Xi = 0 denotes 798

that worker i provides an incorrect solution, and 799

Xi = 1 denotes that worker i generates a correct 800

solution. Define X =
∑

i∈N Xi. 801

We aim to approximate PMV, which is the prob- 802

ability that the majority of the N workers provide 803

the correct estimate. We apply the Chernoff Bound 804
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Method Token-level Span-level Exact Span-level Prop.

P R F1 P R F1 P R F1

Oracle 62.88 68.62 64.80 54.48 51.97 53.07 72.79 64.07 68.15
Random 58.49 57.30 57.42 43.99 35.50 39.18 69.01 52.36 59.55

ϵ-G (Exp.) 61.91 64.58 62.61 51.72 46.37 48.76 72.28 60.25 65.72
ϵ-G (MV) 60.87 63.52 61.55 48.72 44.66 46.37 70.15 58.94 64.05
ϵ-G (Exp.+MV) 61.76 64.46 62.47 49.14 45.35 46.96 71.21 59.92 65.08

CUCB (Exp.) 63.02 63.75 62.93 52.24 45.51 48.56 73.05 59.53 65.60
CUCB (MV) 61.94 62.09 61.55 49.57 44.39 46.66 71.22 57.59 63.68
CUCB (Exp.+MV) 62.83 63.62 62.75 51.31 45.60 48.16 72.48 59.33 65.25

Table 4: Detailed P, R, and F1 scores of all methods on the Chinese OEI dataset.

in Lemma 1 to PMV. We can compute805

E(X) = p̄ =

∑N
i=1 pi
N

. (10)806

Based on (9), we let µ = E(X), δ =
N(p̄− 1

2
)

N
2
+N(p̄− 1

2
)
,807

xl = 0, xh = 1, and get the following result:808

PMV = P

(
X ≥ N

2

)
= 1− P

(
X ≤ N

2

)
809

≥ 1− e−
δ2µ2

N (11)810

= 1− e−

N2(p̄− 1
2 )2

[N2 +N(p̄− 1
2 )]2

[N2 +N(p̄− 1
2 )]2

N (12)811

= 1− e−
N2(p̄− 1

2 )2

N (13)812

= 1− e
−N

(∑N
i=1 pi
N

− 1
2

)2

. (14)813

Through approximating PMV by its lower bound814

in (14), we can see that the evaluation signal (rep-815

resented by PMV) is an increasing function in each816

worker’s capability pi and twice-differentiable.817

That is, PMV is a generalized linear function, which818

satisfies Assumption 3 in (Garcelon et al., 2022).819

Therefore, one can follow the proof of Theorem 1820

in (Garcelon et al., 2022) that the ϵ-greedy algo-821

rithm yields a sub-linear regret with order Õ(T 2/3).822

Algorithm 2 The annotation selection algorithm.
1: For each worker wj ∈ W , maintain (1)a vari-

able φ̂j as the average F1 score of the selected
annotations by wj so far, (2)a set Aj of se-
lected annotations by wj

2: Generate all possible annotations Ap
1 on s1 ∈

S, calculate FExp
1 (a1k) for each a1k ∈ Ap

1

3: For each w ∈ W , initialize φ̂j with the
FExp
1 (a1k) closest to φ̄j , and append the a1k to

Aj

4: for all si ∈ S\s1 do
5: Generate all possible annotations Ap

i on
si ∈ S, calculate FExp

1 (aik) for each aik ∈
Ap

i

6: for all wj ∈W do
7: if φ̂j > φ̄j then
8: Update φ̂j with the maximal FExp

1 (aik)
less than φ̄j , and append aik to Aj

9: else
10: Update φ̂j with the minimal FExp

1 (aik)
greater than φ̄j , and append aik to Aj

11: end if
12: end for
13: end for
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Worker
ID

Ori.
F1

Rnd.
Gen.
F1

SES
Only

F1

SES
+Alg.2

F1

Worker
ID

Ori.
F1

Rnd.
Gen.
F1

SES
Only

F1

SES
+Alg.2

F1

25 62.90 60.07 69.59 62.89 37 37.15 96.10 26.79 37.16
32 60.87 41.37 68.79 60.87 13 36.19 31.62 25.14 36.20
42 53.88 4.37 66.57 53.88 20 36.11 71.44 25.02 36.12
5 52.07 50.74 60.76 52.06 64 35.97 65.66 25.39 35.97
55 50.70 30.24 61.13 50.70 63 35.22 75.40 24.73 35.22
2 50.53 91.99 60.92 50.53 6 35.15 65.74 25.00 35.16
52 50.08 41.93 60.91 50.08 10 34.63 51.28 25.08 34.64
17 49.82 43.73 35.82 49.82 66 33.75 60.98 24.99 33.75
57 49.25 13.17 35.59 49.25 53 32.90 27.51 24.78 32.89
11 49.04 53.71 35.19 49.03 4 32.72 8.40 24.77 32.72
26 48.89 5.17 35.59 48.82 21 32.19 73.47 24.78 32.19
36 48.71 15.53 35.27 48.70 62 32.16 48.71 24.89 32.16
46 48.67 44.84 35.19 48.67 1 32.10 34.42 24.96 32.10
29 48.60 95.39 35.21 48.60 41 31.94 77.55 24.88 31.93
35 47.07 23.64 35.34 47.07 51 31.78 68.07 24.85 31.78
49 46.80 60.30 35.27 46.80 31 31.61 29.44 24.59 31.61
54 45.63 18.74 34.45 45.64 8 31.05 28.55 24.76 31.05
14 45.13 60.99 34.54 45.13 67 30.91 95.51 24.22 30.91
43 44.93 34.91 33.72 44.93 58 30.70 21.64 23.96 30.70
7 44.37 23.89 33.50 44.37 65 30.61 4.51 24.17 30.60
59 44.36 72.37 33.61 44.37 38 30.47 4.82 24.11 30.47
23 43.38 4.85 33.58 43.38 28 29.86 2.63 24.00 29.86
56 43.37 41.96 33.31 43.37 45 29.38 36.13 24.15 29.38
0 41.60 66.81 28.19 41.61 30 28.70 61.16 21.88 28.71
18 41.40 31.53 28.56 41.40 15 25.73 38.92 21.40 25.73
16 41.31 57.13 28.03 41.31 19 24.69 4.39 21.31 24.70
22 41.05 85.83 28.21 41.06 44 23.42 7.15 21.08 23.42
47 40.78 82.33 27.91 40.78 9 22.88 96.22 21.22 22.89
61 40.22 12.20 28.44 40.22 33 22.36 29.89 19.50 22.36
40 40.01 84.98 28.38 40.02 39 20.69 57.73 19.26 20.69
50 39.35 56.04 28.64 39.35 69 20.39 63.02 19.26 20.40
27 38.77 34.07 27.87 38.77 3 17.12 28.70 18.66 17.13
48 38.35 23.77 27.57 38.35 24 16.96 42.73 18.68 16.98
34 38.29 5.69 28.08 38.30 68 14.53 13.63 7.69 14.53
12 37.96 85.14 27.44 37.96 60 13.66 22.69 8.15 13.66

Table 5: Comparisons between different data augmentation methods on the span-level exact F1 score of every
crowd worker. Ori. stands for the original score in real datasets before any augmentation. Rnd. Gen. is a
naive augmentation method with random generated annotations. SES Only indicates the shifting, shrinking, and
expanding method we proposed. SES + Alg.2 means SES with Algorithm 2 which is our final method.
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Figure 5: F1 scores of the produced annotations and us-
age of expert for annotation evaluations w.r.t the kappa
threshold τ of the Exp.+MV method on the Chinese
OEI dataset.

13


