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Abstract
Numerous recent works show that overparame-
terization implicitly reduces variance, suggesting
vanishing benefits for explicit regularization in
high dimensions. However, this narrative has been
challenged by empirical observations indicating
that adversarially trained deep neural networks
suffer from robust overfitting. While existing ex-
planations attribute this phenomenon to noise or
problematic samples in the training data set, we
prove that even on entirely noiseless data, achiev-
ing a vanishing adversarial logistic training loss is
suboptimal compared to regularized counterparts.

1. Introduction
A modern narrative in machine learning suggests that reg-
ularization is superfluous for good performance of large
overparameterized models. This perspective is motivated
by theoretical and experimental findings that analyze the
population risk in a setup where the training and test data are
drawn from the same distribution (see Hastie et al. (2019);
Bartlett et al. (2020); Yang et al. (2020); Nakkiran et al.
(2020) and references therein). However, the successful
adoption of machine learning models in real-world applica-
tions crucially hinges on the models’ robustness to adver-
sarial attacks or distribution shifts. A popular method to
achieve low robust risk is to minimize a robust training loss,
for example using adversarial training (Goodfellow et al.,
2015). Mounting empirical evidence suggests that when
minimizing the robust loss, the narrative that regularization
is superfluous is incorrect: additional regularization such as
early-stopped adversarial training often leads to more robust
generalization (Rice et al., 2020; Sagawa et al., 2020a;b).
For example, Rice et al. (2020) show that overparameter-
ized deep neural networks that are adversarially trained with
`∞ perturbations benefit from early stopping on image data
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Figure 1. The robust risks for the robust max-margin solution (λ→
0) are strictly higher than for a regularized minimizer (λopt > 0)
even in the overparameterized regime d � n and for noiseless
training data (see detailed setting in Section 2 and experimental
details in Appendix C). This illustrates how adversarial training
benefits from regularization.

sets. This phenomenon is sometimes referred to as robust
overfitting.

For noisy settings, previous works have proposed the fol-
lowing explanation for robust overfitting: since the robust
risk amplifies estimation errors, its variance is larger, and
regularization can hence be beneficial for robust generaliza-
tion (Sanyal et al., 2021). However, Figure 4 in Appendix B
shows that even when estimating mostly noiseless signals,
robust overfitting persists! This observation does not only
apply to image data but also to simple linear models: Fig-
ure 1 shows the gap in performance between `∞-robust
logistic regression regularized by a ridge penalty with opti-
mal parameter λopt and the robust max-margin solution.

Existing theoretical results neither predict nor explain those
observations. In particular, it is perhaps unexpected that for
noiseless data, strictly sacrificing robust data fit by increas-
ing the weight of the ridge penalty term leads to better gen-
eralization. In this paper, we show for robust logistic regres-
sion and a sparse ground truth that in the high-dimensional
regime, where d > n, maximizing the robust margin leads
to suboptimal robust generalization. Specifically,

• We prove that a strictly positive ridge parameter leads
to a systematic improvement in generalization com-
pared to the robust max-margin solution. Our results
provide the first rigorous proof for robust overfitting
even in the absence of noise.
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• We experimentally show a perhaps unexpected effect
of noise in the training procedure: noisy data might
not be robustly linearly separable, rendering the robust
max-margin estimator infeasible and hence inducing
spurious regularization effects.

2. Risk minimization framework
In this section, we describe the setup for our theoretical
analysis of adversarial training with the logistic loss. We
define the data generating process, the standard and robust
population risks, and formally introduce the estimators that
we analyze.

2.1. Problem setting

We consider a discriminative data-generating model for
classification with covariates (or features) x ∈ Rd drawn
from an isotropic Gaussian distribution x ∼ N (0, Id).
In this paper we focus primarily on training with noise-
less data, namely we observe deterministic labels given by
y = sgn〈θ?, x〉 ∈ {−1,+1} for all covariates x ∈ Rd,
where the fixed vector θ? denotes the ground truth. We
consider the scenario where the ground truth has inherent
low-dimensional structure in the form of sparsity and pick
θ? = (1, 0, . . . , 0)>. As we discuss later in this section,
`∞ robustness and sparsity via its convex surrogate, the `1
norm, are related objectives.

The results in this paper are of asymptotic nature and hold
when d/n→ γ as both the dimensionality d and the num-
ber of samples n tend to infinity. This high-dimensional
regime is widely studied in the literature (Bühlmann & Van
De Geer, 2011; Wainwright, 2019) as it yields precise pre-
dictions for many real-world problems where both the input
dimension and the data set size are large. It is also the pre-
dominant setting considered in previous theoretical papers
that discuss overparameterized linear models (Dobriban &
Wager, 2018; Hastie et al., 2019; Ali et al., 2020; Deng et al.,
2021; Javanmard et al., 2020; Javanmard & Soltanolkotabi,
2020; Sur & Candès, 2019).

2.2. Robust risk for evaluation

The broad application of ML models in real-world decision-
making processes increases requirements on their robust-
ness. For example, for the image domain, robust classifiers
should yield the same prediction when an image is attacked
via an additive imperceptible `∞-perturbation that does not
change the ground truth label. In this case, the estimator
which has zero standard population risk also achieves zero
robust population risk. Transferred to linear classification,
we require such additive consistent perturbations to be or-
thogonal to θ?, that is δ ∈ Uc(ε) := {δ ∈ Rd : ‖δ‖∞ ≤
ε and 〈θ?, δ〉 = 0}. We hence evaluate the adversarially
robust risk of a parameter θ with respect to consistent `∞-

perturbations, defined as follows:

Rε(θ) := EX∼P min
δ∈Uc(ε)

1sgn(〈θ,X+δ〉) 6=sgn(〈θ?,X〉), (1)

where the expectation is taken over the marginal feature
distribution P and 1 is the indicator function.

For ε = 0 we obtain the population 0-1 risk, also called
standard risk, denoted by R(θ). For the 1-sparse ground
truth θ?, the risks have a closed-form expression given by
Lemma A.1 in Appendix A.1.

2.3. Interpolating and regularized estimator

We say that the data is robustly separable when the robust
max-margin solution exists. Its direction is given by

θ̂0 := arg min
θ
‖θ‖2 such that for all i, (2)

max
δ∈U(ε)

yi〈θ, xi + δ〉 ≥ 1.

Robust separability is guaranteed for noiseless data and for
consistent perturbations U(ε) = Uc(ε) that are orthogonal
to the ground truth θ?. Unfortunately, minimization with
respect to consistent perturbations in Equation (2) requires
full knowledge of the ground truth during training, thus
leaking information about θ?. Instead, many papers to date
(e.g. Javanmard et al. (2020); Javanmard & Soltanolkotabi
(2020)) consider the unrestricted (and hence inconsistent)
`∞-perturbation set Uic(ε) := {δ ∈ Rd : ‖δ‖∞ ≤ ε}.
However, when training with inconsistent perturbations, it
is possible that the perturbed data crosses the true decision
boundary. Thus, a minimizing solution might fit wrong
labels even if the actual training samples are noiseless.

We want to study the purely noiseless setting and hence
focus primarily on adversarial training with consistent per-
turbations. According to classical wisdom, this setting is
also the one in which we expect regularization to help the
least. We revisit inconsistent adversarial training in Sec-
tion 4.2 and show that its effects can at least spuriously
improve the robust risk.

We compare the robust max-margin interpolator with the
ridge-regularized robust logistic regression. We can write
the minimizer of the regularized `∞ robust logistic loss as
follows:

θ̂λ := arg min
θ

1

n

n∑
i=1

max
δ∈U(ε)

log(1+e−〈θ,xi+δ〉yi)+λ‖θ‖22.

(3)
Notice that for robustly separable data, the direction of the
robust max-margin solution aligns with that of the minimizer
θ̂λ for λ→ 0, i.e., θ̂0 = limλ→0 θ̂λ. This fact follows from
the results in (Rosset et al., 2004) when using the closed
form expression for the consistent robust risk (1). Since the
robust risk is independent of the estimator norm, we refer
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Figure 2. (a) Robust and standard risks of the robust max-margin (λ→ 0) and robust regularized minimizer (λ = 1) using ε = 0.05 as
a function of the overparameterization ratio d/n for simulations (markers) and asymptotic theoretical predictions from Theorem 3.1
(lines). (b),(c) Normalized robust margins and risks of empirical simulations using ε = 0.1 and d/n = 8, with respect to: (b)
increasing 1/λ; and (c) gradient descent iterations when minimizing Equation (3) using λ = 0. The normalized robust margin is defined
as miniminδ∈Uc(ε) yi〈θ, xi + δ〉/‖θ‖2. Both ridge regularization and early stopping yield superior robust and standard risks. All
experiments use n = 1000 and consistent `∞ perturbations. See Appendix C for experimental details.

to the robust max-margin solution as the normalized vector
θ̂0/‖θ̂0‖2 and for brevity simply call it the max-margin
solution.

Finally, we remark that for standard logistic regression, gra-
dient descent converges to the same direction as the max-
margin solution (Ji & Telgarsky, 2019; Soudry et al., 2018),
and, as argued in (Javanmard & Soltanolkotabi, 2020), this
result can also be extended to adversarial training (3).

3. Regularization for robustly separable data
In this section, we prove that the robust max-margin solu-
tion (2) overfits since it generalizes worse than the regular-
ized estimator (3) with optimally chosen λ > 0 for entirely
noiseless training data. We derive precise asymptotic predic-
tions that show a systematic benefit of ridge regularization
for robust logistic regression as d, n → ∞ and d/n → γ.
We further show that early-stopped gradient descent on the
unregularized robust logistic loss in Equation (3) yields
much smaller population risks than the robust max-margin
solution at convergence.

3.1. Benefits of ridge regularization

We now present an informal statement describing the asymp-
totic standard and robust risk for linear classification with
the logistic loss as d, n→∞. We refer to Appendix D for
the precise statement and the proof, which is inspired by
the works of Javanmard & Soltanolkotabi (2020); Salehi
et al. (2019) and uses the Convex Gaussian Minimax Theo-
rem (CGMT) (Gordon, 1988; Thrampoulidis et al., 2015).

Theorem 3.1 (Informal). Assume that ε = ε0/
√
d for some

constant ε0 independent of n, d and θ? = (1, 0, · · · , 0).

Then, the robust and standard risks of the estimator θ̂λ from
Equation (2),(3) with respect to consistent attacks and λ ≥ 0
converge in probability as d, n→∞, d/n→ γ

R(θ̂λ)→ 1

π
arccos

(
ν?‖

ν?

)
Rε(θ̂λ)→ R(θ̂λ) +

1

2
erf

(
ε0δ

?

√
2ν?

)
+ I

(
ε0δ

?

ν?
,
ν?‖

ν?

)
with erf the error function,

I(t, u) :=

∫ t

0

1√
2π

exp

(
−x

2

2

)
erf

(
xu√

2(1− u2)

)
dx

and where ν? =
√

(ν?⊥)2 + (ν?‖)
2, and ν?⊥, ν

?
‖ , δ

? are the

unique solution of a scalar optimization problem specified
in Appendix D that depends on θ?, γ, ε0 and λ.

We illustrate the theorem’s claim in Figure 2a where we
show the standard and robust risks obtained by the asymp-
totic theoretical predictions for d, n → ∞ and the risks
obtained from simulations for n = 1000 and ε = 0.1. The
theoretical curves are obtained by solving the scalar opti-
mization problem specified in Appendix D; the empirical
setup is described in Appendix C. We observe that the pre-
cise asymptotics indeed predict benefits of regularization for
robust logistic regression on noiseless training data. This
trend is further supported by our simulation results closely
following the theoretical curves. Furthermore, in Figure 2b,
we observe for a fixed overparameterization ratio d/n = 8
how optimizing the robust logistic loss well beyond 100%
robust training accuracy (i.e. the robust margin becomes
positive) substantially hurts generalization.
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Figure 3. (a) Training loss and robust risks with respect to increasing training label noise for ε = 0.1, d = 8000 and n = 1000. We
observe for unregularized estimators (λ→ 0) that, counterintuitively, moderate amounts of label noise decrease the robust risk by avoiding
the robust max-margin solution. While this might spuriously imply that injecting label noise increases robustness, estimators with optimal
ridge parameter (λopt) still outperform their unregularized counterparts in terms of robust risk. (b) Training loss and risks with respect to
increasing train and test ε for d = 500, n = 1000 and λ→ 0. In contrast to training with consistent attacks, unregularized inconsistent
adversarial training (AT) does not achieve vanishing training loss for large enough ε, and hence leads to a smaller robust risk.

3.2. Benefits of early stopping

In addition to varying the ridge coefficient λ, we observe
the same trends as for 1/λ→∞ on the optimization path
when training with gradient descent as the iterations t→∞.
Figure 2c indicates that early stopped gradient descent can
improve the robust risk for logistic regression, similar to
ridge regularization. Both early stopping and ridge regular-
ization avoid the max-margin solution t→∞ and λ→∞
respectively, and yield an estimator with significantly lower
standard and robust risk.

4. The benefits of avoiding robust separability
In the previous section we focused on noiseless settings
and studied the generalization performance of regularized
estimators that do not maximize the robust margin. In this
section, we show how, surprisingly, as a consequence of
avoiding robust separability, adding noisy labels in the train-
ing loss also leads to an estimator with better robust gener-
alization than the max-margin solution of the corresponding
noiseless problem. However, we note that explicit regu-
larization is still the preferred choice of avoiding the max-
margin solution as it yields a significantly lower robust risk.

4.1. Avoiding the max-margin solution via label noise

We first consider the case where we introduce label noise to
the training data. Figure 3a shows the robust and standard
risk together with the training loss of estimator θ̂λ (3) for
λ→ 0 with varying percentages of flipped labels. For low
noise levels, the data is robustly separable and the training
loss vanishes, yielding the max-margin solution (2). For
high enough noise levels, the constraints in (2) become in-
feasible and the training loss of the resulting estimator starts

to increase. This effectively induces implicit regularization
as the robust risk at this point starts to decrease again. While
it is well known that covariate noise can act as an implicit
regularization (Bishop, 1995), in contrast to common intu-
ition, we show that the performance can also improve when
introducing wrong labels in the training loss as it prevents
the estimator from converging to the max-margin solution
as λ → 0. While this spuriously implies that label noise
benefits robustness, the estimator with optimal ridge param-
eter λopt always outperforms the unregularized estimator,
even if the data is not robustly-separable.

4.2. Avoiding the max-margin solution via inconsistent
training

For large ε and inconsistent perturbations Uic(ε), even noise-
less training data might not be robustly separable, rendering
the max-margin solution infeasible for λ → 0. Conse-
quently, this leads to a similar effect as adding label noise
as discussed in Section 4.1. Indeed, Figure 3b reveals that
the resulting estimator trained with inconsistent adversarial
perturbations achieves a better performance than the corre-
sponding max-margin estimator (2).

5. Conclusions
In this paper, we prove that on high-dimensional input
data, the ridge-regularized robust logistic loss yields a so-
lution that is more robust than the unregularized robust
max-margin estimator, even on entirely noiseless data. We
further show experimentally that early-stopped gradient de-
scent yields similar benefits and discuss other phenomena
that unexpectedly improve robust generalization by avoiding
the max-margin solution.
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A. Setting
In Section A.1 we derive closed-form expressions of the standard and robust risks (1). Furthermore, Section A.2 discusses
that the robust risk (1) upper-bounds the worst case risk under distributional mean shifts.

A.1. Closed-form of robust risk for classification

Similarly to linear regression, we can express the robust and standard risk for the linear classification model in Section 3 as
stated in the following lemma.

Lemma A.1. Assume that PX is the isotropic Gaussian distribution and θ? = (1, 0, · · · , 0)>. Then,

1. For any non-decreasing loss ` : R→ R we have

max
δi∈U∞(ε)

`(yi 〈xi + δi, θ〉) = `(yi 〈xi, θ〉 − ε‖Π⊥θ‖1). (4)

2. For the 0-1 loss the robust risk (1) with respect to `∞ perturbations is given by

Rε(θ) =
1

π
arccos

(
〈θ?, θ〉
‖θ‖2

)
+

1

2
erf

(
ε‖Π⊥θ‖1√

2‖θ‖2

)
+ I

(
ε‖Π⊥θ‖1
‖θ‖2

,
〈θ?, θ〉
‖θ‖2

)
, (5)

with

I(t, u) :=

∫ t

0

1√
2π

exp

(
−x

2

2

)
Φ

(
xu√

2
√

1− u2

)
dx. (6)

Proof. We first prove Eq (4). Because ` is non-increasing, we have

max
δi∈U∞(ε)

`(yi 〈xi + δi, θ〉) = `( min
δi∈U∞(ε)

yi 〈xi + δi, θ〉)

= `(yi 〈xi, θ〉+ min
‖δi‖∞≤ε,δi⊥θ?

〈δi, θ〉).

While minimization over δ has no closed-form solution in general, we note that for θ? = (1, 0, · · · , 0), we get
min‖δi‖∞≤ε,δi⊥θ? 〈δi, θ〉 = −ε‖Π⊥θ‖1 and Equation (4).

Let 1{E} be the indicator function, 1 if the event E holds. Since `(·) = 1·≤0 is non-increasing we can use (4) and write

Rε(θ) = EX max
δ∈U∞(ε)

1{sgn(〈X, θ?〉)〈X + δ, θ〉 ≤ 0}

= EX1{sgn(〈X, θ?〉)〈X, θ〉 − ε‖Π⊥θ‖1 ≤ 0}.

Let Π̂‖ := 1
‖θ‖22

θθ> be the projection onto the subspace spanned by θ and Π̂⊥ := Id− Π̂‖ the projection onto the orthogonal
subspace. Since X is a vector with i.i.d. standard normal distributed entries, we equivalently have

Rε(θ) = EZ1,Z21{Z1 sgn
(
Z1‖Π̂‖θ?‖2 + Z2‖Π̂⊥θ?‖2

)
− ε‖Π⊥θ‖1

‖θ‖2
≤ 0}, (7)

with Z1, Z2 two independent standard normal random variables. For brevity of notation, define ν = ε‖Π⊥θ‖1
‖θ‖2 and

b(Z1, Z2) = sgn
(
Z1‖Π̂‖θ?‖2 + Z2‖Π̂⊥θ?‖2

)
=: sgn(β>Z) with β> = (‖Π̂‖θ?‖2, ‖Π̂⊥θ?‖2).

Define the event A = {sgn
(
Z1‖Π̂‖θ?‖2 + Z2‖Π̂⊥θ?‖2

)
− ε‖Π⊥θ‖1

‖θ‖2 ≤ 0}. Because Z2 is symmetric, the distribution of
Z1b(Z1, Z2) is symmetric, hence we can rewrite the risk

Rε(θ) = P(b(Z1, Z2) ≤ 0|Z1 ≥ 0)︸ ︷︷ ︸
T1

+ P(Z1 ≤ ν, b(Z1, Z2) ≥ 0|Z1 ≥ 0)︸ ︷︷ ︸
T2

(8)

and derive expression for T1, T2 separately.
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Step 1: Proof for T1 Note that due to ‖θ?‖2 = 1 we have ‖β‖2 = 1 and recall that T1 = P(β>Z ≤ 0|Z1 ≥ 0). Using
the fact that both Z1 and Z2 are independent standard normal distributed random variables, a simple geometric argument

then yields that T1 = α
π with α = arc cos

(
β1√
β2

1+β2
2

)
= arc cos(β1). Noting that β1 = ‖Π̂‖θ?‖2 = 〈θ?,θ〉

‖θ‖2 then yields

T1 = 1
π arccos

(
〈θ?,θ〉
‖θ‖2

)
.

Step 2: Proof for T2 First, assume that 〈θ?, θ〉 ≥ 0. We separate the event V = {Z1 ≤ ν, b(Z1, Z2) ≥ 0} into two events
V = V1 ∪ V2

V1 = {Z1 ≤ ν, Z2 ≥ 0} and V2 = {Z1 ≤ ν, b(Z1, Z2) ≥ 0, Z2 ≤ 0}.
The conditional probability of the first event is directly given

P(V1|Z1 ≥ 0) = P(Z2 ≥ 0)P(Z1 ≤ ν|Z1 ≥ 0) =
1

2
erf

(
ν√
2

)
.

Hence it only remains to find an expression for P(V2|Z1 ≥ 0). Letting µ denote the standard normal distribution, we can
write

P(Z1 ≤ ν, Z2 ≤ 0, b(Z1, Z2) ≥ 0|Z1 ≥ 0) = 2

∫ ν

0

∫ β1x
β2

0

dµ(y)dµ(x) =

∫ ν

0

1

2
erf

(
β1x

β2

)
dµ(x).

Together with Step 1, Equation (5) follows by noting that β2
1 + β2

2 = 1. Finally, the proof for the case where 〈θ?, θ〉 ≤ 0
follows exactly from the same argument and the proof is complete.

A.2. Distribution shift robustness and consistent adversarial robustness

In this section we rigorously introduce distribution shift robustness and show the relation to consistent `p adversarial
robustness for certain types of distribution shifts.

When learned models are deployed in the wild, the i.i.d. assumption does not always hold. That is, the test loss might be
evaluated on samples from a slightly different distribution. Shifts in the mean of the covariate distribution is a standard
intervention studied in the invariant causal prediction literature (Bühlmann et al., 2020; Chen & Bühlmann, 2020). For mean
shifts in the null space of the ground truth θ? we define an alternative evaluation metric that we refer to as the distributionally
robust risk defined as follows:

R̃ε(θ) := max
Q∈Vq(ε;P)

EX∼Q`test(〈θ,X + δ〉, 〈θ?, X〉), with

Vp(ε; P) := {Q ∈ P : ‖µP − µQ‖p ≤ ε and 〈µP − µQ, θ
?〉 = 0}

where Vp is the neighborhood of mean shifted probability distributions.

A duality between distribution shift robustness and adversarial robustness has been established in earlier work such as (Sinha
et al., 2018) for general convex, continuous losses `test. For our setting, the following lemma holds.
Lemma A.2. For any ε ≥ 0 and θ, we have R̃ε(θ) ≤ Rε(θ).

Proof. The proof follows directly from the definition and consistency of the perturbations Up(ε) and orthogonality of the
mean shifts for the neighborhood Vp. By defining the random variable w = x− µP for x ∼ P we have the distributional
equivalence

x′ = µP + δ + w
d
= x+ δ

for x′ ∼ Q and x ∼ P with µQ − µP = δ and hence

R̃ε(θ) = max
Q∈Vp(ε)

Ex∼Q`test(〈θ, x〉, 〈θ?, x〉) = max
‖δ‖p≤ε,δ⊥θ?

Ex∼P`test(〈θ, x+ δ〉, 〈θ?, x〉)

≤ Ex∼P max
‖δ‖p≤ε,δ⊥θ?

`test(〈θ, x+ δ〉, 〈θ?, x〉) = Rε(θ)

where the first line follows from orthogonality of the mean-shift to θ?.
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B. Neural networks on sanitized binary MNIST
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Figure 4. Increase in robust test accuracy when using early stopping for single hidden layer neural networks with different widths on
a subset of MNIST classes 1 vs 3. The curves depict the differences of the test robust accuracy between the best and last iteration of
training. Even if we discard training samples that are difficult to fit (pruned data), early stopping yields strictly positive benefits for the
robust accuracy.

Figure 4 shows that robust overfitting in the overparameterized regime also occurs for single hidden layer neural networks on
an image classification problem that we chose to be arguably devoid of noise. We consider binary classification on MNIST
classes 1 vs 3 and further reduce variance by removing “difficult” samples: We train networks of width p ∈ {10, 100, 10k}
on the full MNIST training dataset and discard all images that take at least one of the models more than 100 epochs of training
to learn. While some recent work argues that such sanitation procedures can effectively mitigate robust overfitting (Dong
et al., 2021), we still observe a significant increase from the final test robust accuracies to the best (early stopped) ones in
Figure 4.

We train all networks on a subset of n = 2000 training samples using vanilla mini-batch stochastic gradient descent with
learning rate νp =

√
0.1/p that we multiply by 0.1 after 300 epochs. This learning rate schedule minimizes the training loss

efficiently; we did not perform tuning using test or validation data. For the robust test error, we approximate worst-case `∞
perturbations using 10-step SGD attacks on each test sample.

C. Experimental details
In this section we provide additional details on our experiments. All our code including instructions and hyperparameters
can be found here: https://github.com/michaelaerni/interpolation_robustness.

C.1. Empirical predictions

If not mentioned otherwise, all empirical simulations use noiseless i.i.d. samples from our synthetic data model as described
in Section 2.1. Whenever we simulate label noise, we flip a fixed percentage of all training labels chosen uniformly at
random. However, we calculate all risks in closed-form without noise and, in the robust case, with consistent perturbations.
We approximate the integral for the robust 0-1 risk in Theorem 3.1 using a numerical integral solver since we cannot obtain
a solution analytically.

We fit all logistic regression models except in Figure 2c by minimizing the (regularized) robust logistic loss (3) using the
CVXPY library in combination with the Mosek convex programming solver. To obtain the max-margin solution whenever
feasible for λ→ 0, we optimize the constrained problem (2) directly since (3) with λ = 0 has many optimal solutions.

In Figure 1, we use ε = 0.1 for the robust risk and consistent adversarial training on n = 1000 samples. In the noisy case,
we flip 2% of all training labels. For Figure 2c, we run zero-initialized gradient descent on the unregularized loss (λ = 0)
for 500k iterations. We start with a small initial step size of 0.01 that we double every 30k steps until iteration 300k.

https://github.com/michaelaerni/interpolation_robustness
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C.2. Theoretical predictions

In order to obtain the asymptotic theoretical predictions for logistic regression in Figure 2a corresponding to the empirical
simulations with n = 1000 and ε = 0.05, we obtain the solution of the optimization problems in Theorem D.1,D.2 with
ε0 = 0.05

√
1000γ by solving the system of equations in Corollary D.4,D.5 using MATLAB’s optimization toolbox where

we approximate expectations via numerical integration.

D. Details on Theorem 3.1
In this section we give a formal statement for Theorem 3.1. The results are based on the Convex Gaussian Minimax Theorem
(CGMT)(Gordon, 1988; Thrampoulidis et al., 2015). The results presented in this section have similarities with the ones in
(Javanmard & Soltanolkotabi, 2020), however, we study the discriminative data model with features drawn from a single
Gaussian and 1-sparse ground truth. In contrast, in the paper (Javanmard & Soltanolkotabi, 2020), the authors study a
generative data model with features drawn from two Gaussians. Furthermore, several papers study logistic regression for
isotropic Gaussian features in high dimensions (Salehi et al., 2019; Sur & Candès, 2019), but the analysis is focused on the
standard risk and the authors do not consider adversarial robustness.

An immediate consequence of the proof of Lemma A.1 is that the adversarial loss from Equation (3) for the 1-sparse ground
truth writes as

Lε,λ(θ) =
1

n

n∑
i=1

`train(yi〈θ, xi〉 − ε‖Π⊥θ̂‖1) + λ‖θ‖22. (9)

LetMf (x, t) = miny
1
2t (x − y)2 + f(y) be the Moreau envelope and let Z‖, Z⊥ be two independent standard normal

distributed random variables. We can now state Theorem D.1 which describes the asymptotic risk of θ̂λ, for λ > 0, and for
the asymptotic regime where d, n→∞. The proof of the theorem can be found in Appendix D.3.
Theorem D.1. Assume that the we have i.i.d. random features xi drawn from an isotropic Gaussian with noiseless
observations yi = sgn(〈xi, θ?〉) and ground truth θ? = (1, 0, . . . , 0)>. Further, assume that λ > 0 and ε = ε0/

√
d, where

ε0 is a numerical constant. Let (ν?⊥, ν
?
‖ , r

?, δ?, µ?, τ?) be the unique solution of

min
ν⊥≥0,τ≥0,
ν‖,δ≥0

max
r≥0,
µ≥0

EZ‖,Z⊥

[
M`(|Z‖|ν‖ + Z⊥ν⊥ − ε0δ,

τ

r
)
]
− δµ+

rτ

2
+ λ(ν2

⊥ + ν2
‖)

−ν⊥

√√√√[(µ2 + γr2)− (µ2 + γr2)erf(µ/(
√
γr
√

2))−
√

2

π

√
γrµ exp(−µ2/(γr22))

]
.

(10)

Then, for λ > 0 the estimator θ̂λ from Equation (3) with logistic loss and consistent `∞ attacks satisfies asymptotically as
d, n→∞, d/n→ γ

1√
d
‖Π⊥θ̂λ‖1 → δ? and 〈θ̂0(ε), θ?〉 → ν?‖ and ‖θ̂λ‖22 → ν?2‖ + ν?2⊥ . (11)

The convergences hold true in probability.

For λ > 0, the Equation (9) has a unique minimizer. In contrast, for λ = 0 the minimizer of Equation (9) is not unique since
the data is robustly seperable. As discussed in Section 3, for λ = 0 we study instead the penalized max-margin solution
from Equation (2). The asymptotic behavior of the corresponding solution is characterized in Theorem D.2 with proof in
Appendix D.4.
Theorem D.2. Assume that the we have i.i.d. random features xi drawn from an isotropic Gaussian with noiseless
observations yi = sgn(〈xi, θ?〉) and θ? = (1, 0, · · · , 0)> as described in Section 3. Further, assume that ε = ε0/

√
d. Let

(ν?⊥, ν
?
‖ , r

?, δ?, ζ?, κ?) be the unique solution of

min
ν⊥≥0,
δ≥0,κ,ν‖

max
ζ,r≥0

ν2
‖ − κν

2
⊥ − δζ −

γr2

4(1 + κ
+ r

√
EZ‖,Z⊥

[
max

(
0, 1 + ε0δ − |Z‖|ν‖ + Z⊥ν⊥

)2]

+
1

2(1 + κ)

(
γr2 + ζ2

2
erf

(
ζ√

2
√
γr

)
− ζ2

2
+

√
γrζ
√

2π
exp

(
− ζ2

2γr2

))
.

(12)
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Then, the estimator θ̂0(ε) from Equation (2) with logistic loss and consistent `∞ attacks satisfies asymptotically as d, n→∞,
d/n→ γ

1√
d
‖Π⊥θ̂0(ε)‖1 → δ? and 〈θ̂0(ε), θ?〉 → ν?‖ and ‖θ̂0(ε)‖22 → ν?2‖ + ν?2⊥ . (13)

The convergences hold true in probability.

Remark D.3. Theorem 3.1 is obtained from Theorem D.1,D.2 when inserting the expression from Equation (11),(13) into
the expression of the risk in Lemma A.1.

D.1. Solving the optimization problems

To obtain concrete predictions from Theorems D.1 and D.2 we need to solve the corresponding optimization problems.
Using the fact that the objective is concave in r, µ respectively r, ζ and convex in all other variables, we find the unique
solution by solving the systems of equations stated in Corollary D.4,D.5 presented below — assuming that the solution is
not obtained on the boundary. For numerical predictions, we solve the systems of equations using a least squares solver in
MATLAB where we approximated the expectations using a standard numerical integrator.

Regularized estimate (λ > 0): We make use of the following well known facts on the derivative of the Moreau envelope
(e.g. see (Jourani et al., 2014)):

∂Mf (x, t)

∂x
=

1

t
(x− Proxf (x, t)) and

∂Mf (x, t)

∂t
= − 1

2t2
(x− Proxf (x, t))2

where Proxf (x, µ) is the proximal operator

Proxf (x, µ) = arg min
t
f(t) +

1

2µ
(t− x)2.

Let M = EZ‖,Z⊥

[
M`(Z‖ν‖ + Z⊥ν⊥ − εδ, τr )

]
and denote with

Mν‖ = EZ‖,Z⊥

[
∂xM`

∂x
(Z‖ν‖ + Z⊥ν⊥ − εδ,

τ

r
)
∂(Z‖ν‖ + Z⊥ν⊥ − εδ)

∂ν‖

]

the derivative of the expected Moreau envelope with respect to ν‖ and similar for the other variables.

Further, define

g := (µ2 + γr2)− (µ2 + γr2)erf(µ/(
√
γr
√

2))−
√

2

π

√
γrµ exp(−µ2/(γr22))

and denote with gµ respectively gr the corresponding partial derivatives. This allows us to express the optimization objective
from Theorem D.1 as

C = M − ν⊥
√
g − δµ+

rτ

2
+ λ(ν2

⊥ + ν2
‖).

Since the problem is concave in r, µ and convex in the other variables, we can equivalently solve the system of equations
that results from setting the first order conditions, i.e.∇C = 0, which gives us the following corollary.

Corollary D.4. Assume that the solution of Equation (10) from Theorem D.1 is not obtained on the boundary. Then, the
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solution satisfies the following system of Equations.

0 =
∂

∂ν‖
C = Mν‖ + 2λν‖

0 =
∂

∂ν⊥
C = Mν⊥ + 2λν⊥ −

√
g

0 =
∂

∂r
C = Mr −

ν⊥
2
√
g
gr +

τ

2

0 =
∂

∂δ
C = Mδ − µ

0 =
∂

∂µ
C = − ν⊥

2
√
g
gµ − δ

0 =
∂

∂τ
C = Mτ +

r

2

Robust max-`2-margin interpolator (λ = 0): Similarly, we can also reformulate the optimization problem in Theorem
D.2. For brevity of notation, let T = EZ‖,Z⊥

[
max

(
0, 1 + ε0δ − Z‖ν‖ + Z⊥ν⊥

)2]
and

H =

(
γr2 + ζ2

2
erf

(
ζ√

2
√
γr

)
− ζ2

2
+

√
γrζ
√

2π
exp

(
− ζ2

2γr2

))
.

Further, denote with Tν⊥ the derivative of T with respect to ν⊥ and similarly for the other variables. We use the same
notation for the partial derivatives of H . Finally, we can write the optimization objective from Theorem D.2 as

C = ν2
‖ − κν

2
⊥ − δζ −

γr2

4s
+ 2sH + r

√
T +

τrκ

2
.

Since, once again, the solution of the optimization problem must satisfy ∇C = 0 if it does not lie on the boundary, we
analogously obtain the following corollary.

Corollary D.5. Assume that the solution of Equation (12) from Theorem D.2 is not obtained on the boundary. Then, the
solution satisfies the following system of Equations.

0 =
∂

∂ν‖
C = 2ν‖ +

1

2
√
T
rTν‖

0 =
∂

∂ν⊥
C = −2κν⊥ +

1

2
√
T
rTν⊥

0 =
∂

∂r
C =

√
T +Hr −

γr

2(1 + κ)

0 =
∂

∂δ
C = −ζ +

1

2
√
T
rTδ

0 =
∂

∂ζ
C = −δ +Hy

0 =
∂

∂κ
C = −ν2

⊥ +Hκ +
γr2

4(1 + κ)2

D.2. Label noise

While our results assume noiseless observations yi = sgn(〈xi, θ?〉), Theorem D.1,D.2 can be extended to the case where
additional label noise is added to the observations. That is, it can be extended to the case where yi = sgn(〈xi, θ?〉)ξi with ξi
i.i.d. distributed and P(ξi = 1) = 1− σ P(ξi = −1) = σ with label noise σ.
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Note that as discussed in Section 4.2, the robust max-margin solution (2) might not exists for noisy observations. In this
case, the estimate (3) has a unique solution also for λ = 0. In fact, asymptotically we can find a threshold γ? such that for
any γ < γ? the robust max-margin solution does not exists and for any γ ≥ γ? the robust max-margin solution exists. The
threshold can be found using the CGMT when following the same argument as in Theorem 6.1 (Javanmard & Soltanolkotabi,
2020).

Finally, we remark that when λ > 0 or λ = 0 and γ < γ? we can apply Theorem D.1 when replacing |Z‖| with ξ|Z‖|.
Similarly, for λ = 0 and γ ≥ γ? we can apply Theorem D.2 when replacing |Z‖| with ξ|Z‖| where ξ is drawn form the
same distribution as ξi defined above.

D.3. Proof of Theorem D.1

The proof is similar to the proof of Theorem 6.4 (Javanmard & Soltanolkotabi, 2020). Denote with X ∈ Rn×d the input data
matrix and with y ∈ Rn the vector containing the observations. Recall that the estimator θ̂ is given by

θ̂ = arg min
θ

1

n

n∑
i=1

`(yi〈xi, θ〉 − ε‖Π⊥θ‖1) + λ‖θ‖22

= arg min
θ

1

n

n∑
i=1

`(vi − ε‖Π⊥θ‖1) + λ‖θ‖22 such that v = DyXθ, (14)

where `(x) = log(1 + exp(−x)) is the logistic loss, X ∈ Rn×d is the data matrix and Dy the diagonal matrix with entries
(Dy)i,i = yi. We can then introduce the Lagrange multipliers u ∈ Rn to obtain:

min
θ,v

max
u

1

n

n∑
i=1

`(vi − ε‖Π⊥θ‖1) +
1

n
u>DyXθ − 1

n
u>v + λ‖θ‖22.

Furthermore, we can separate X = XΠ⊥ + XΠ‖, which gives us:

min
θ,v

max
u

1

n

n∑
i=1

`(vi − ε‖Π⊥θ‖1) +
1

n
u>DyXΠ‖θ +

1

n
u>DyXΠ⊥θ −

1

n
u>v + λ‖θ‖22. (15)

Convex Gaussian Minimax Theorem We can now make use of the CGMT, which states that

min
θ∈Uθ

max
u∈Uu

u>Xθ + ψ(u, θ), (16)

with ψ convex in θ and concave in u has asymptotically pointwise the same solution when d, n→∞, d/n→ γ as

min
θ∈Uθ

max
u∈Uu

‖u‖2g>θ + u>h‖θ‖2 + ψ(u, θ), (17)

with g ∈ Rd, h ∈ Rn random vectors with i.i.d. standard normal distributed entries and compact sets Uθ and Uu. As
commonly referred to in the literature, we call Equation (24) the primal optimization problem and Equation (17) the auxiliary
optimization problem. We omit the precise statement and refer the reader to (Thrampoulidis et al., 2015). The CGMT has
already been used in several works studying high dimensional asymptotic logistic regression (Salehi et al., 2019) and also
when training with adversarial attacks (Javanmard & Soltanolkotabi, 2020). Essentially, the application of the CGMT is
based on the following facts:

1. The objective (15) is concave in u and convex in v, θ.

2. We can restrict u, v, θ to compact sets without changing the solution. For θ we note that this is a consquence of λ > 0
and for u we note that the stationary condition requires ui = `′(vi − ε‖Π⊥θ‖1).

3. XΠ⊥ is independent of the observations y and of XΠ‖.
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As a result, the CGMT states that the solution of the primal optimizatin problem (15) asymptotically concentrates around
the same value the solution of the following auxiliary optimization problem

min
θ,v

max
u

1

n

n∑
i=1

`(vi − ε‖Π⊥θ‖1) +
1

n
u>DyXΠ‖θ +

1

n
‖u>Dy‖2g>Π⊥θ

+
1

n
u>Dyh‖Π⊥θ‖2 −

1

n
u>v + λ‖θ‖22,

where g ∈ Rd and h ∈ Rn are vectors with i.i.d. standard normal distributed entries.

Scalarization of the optimization problem We now aim to simplify the optimization problem. In a first step, we
maximize over u. For this, define r = ‖u‖2/

√
n, which allows us to equivalently write:

min
θ,v

max
r≥0

1

n

n∑
i=1

`(vi − ε‖Π⊥θ‖1) +
r√
n
‖DyXΠ‖θ +Dyh‖Π⊥θ‖2 − v‖2 +

1√
n
rg>Π⊥θ + λ‖θ‖22,

where we have used the fact that ‖u>Dy‖2 = ‖u‖2. In order to proceed, we want to separate Π⊥θ form the loss
`(v,Π⊥θ) := 1

n

∑n
i=1 `(vi − ε‖Π⊥θ‖1). Denoting by ˜̀ the conjugate of ` we can write `(v,Π⊥θ) in terms of its conjugate

with respect to Π⊥θ:

`(v,Π⊥θ) = sup
w

1√
d
w>Π⊥θ − ˜̀(v, w)

= sup
w

1√
d
w>Π⊥θ − sup

δ≥0

(√
d√
d
δ‖w‖∞ −

1

n

n∑
i=1

`(vi −
√
dεδ)

)

= sup
w

inf
δ≥0

1√
d
w>Π⊥θ − δ‖w‖∞ +

1

n

n∑
i=1

`(vi − ε0δ),

where for the second identity we use the derivation for the conjugate of ` from Lemma A.2 in the paper (Javanmard &
Soltanolkotabi, 2020).

Next, we note that because the problem is convex in r and concave in θ, v, we can swap maximization with minimization.
Interchanging the order of maximization over w and minimization over δ, we get

max
r≥0

min
θ,v,
δ≥0

1

n

n∑
i=1

`(vi − ε0δ) +
r√
n

∥∥DyXΠ‖θ +Dyh‖Π⊥θ‖2 − v
∥∥

2
+ λ‖θ‖22 (18)

+ max
w

[
1√
d
w>Π⊥θ − δ‖w‖∞ +

1√
n
rg>Π⊥θ

]
where we used again the fact that we can interchange the order maximization and minimization. Next, we simplify the
optimization over θ. Write Π‖θ = Π‖1ν‖ where ν‖ ∈ R and let ν⊥ = ‖Π⊥θ‖2. We can simplify

max
r≥0

min
ν⊥≥0,
δ≥0,
ν‖,v

1

n

n∑
i=1

`(vi − ε0δ) +
r√
n
‖DyXΠ‖1ν‖ +Dyhν⊥ − v‖2 + λ(ν2

‖ + ν2
⊥) (19)

+ max
w

[
− 1√

d
ν⊥‖Π⊥(w −√γrg)‖2 − δ‖w‖∞

]
In order to obtain a low dimensional scalar optimization problem, we still need to scalarize the optimization over w and
v. For this, we replace the term ‖DyXΠ‖1ν‖ +Dyhν⊥ − v‖2 with its square, which is achieved by using the following
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identity minτ≥0
x2

2τ + τ
2 = x. Hence,

max
r≥0

min
ν⊥≥0,τ≥0
δ≥0,
ν‖,v

1

n

n∑
i=1

`(vi − ε0δ) +
r

2τn
‖DyXΠ‖1ν‖ +Dyhν⊥ − v‖22 +

τr

2
+ λ(ν2

‖ + ν2
⊥)

+ max
w

[
− 1√

d
ν⊥‖Π⊥(w −√γrg)‖2 − δ‖w‖∞

]
interchanging again the order of maximization and minimization, we can now separately solve the following two inner
optimization problems:

max
w
− ν⊥

1

d
‖Π⊥(w −√γrg)‖2 − δ‖w‖∞ (20)

min
v

r

2τn
‖DyXΠ‖1ν‖ +Dyhν⊥ − v‖22 +

n∑
i=1

`(vi − ε0δ) (21)

Equation (20) Let STt(x) =

{
0 |x| ≤ t

sgn(x)(|x| − t) else
be the soft threshold function. We have

max
w
− ν⊥

1√
d
‖Π⊥(w −√γrg)‖2 − δ‖w‖∞

= −min
w

ν⊥
1√
d
‖Π⊥(w −√γrg)‖2 − δ‖w‖∞

µ=‖w‖∞
= −min

µ≥0
ν⊥

√√√√1

d

d∑
i=2

(STµ (
√
γrgi))

2
+ δµ

LLN as d→∞→ −min
µ≥0

ν⊥

√
EZ (STµ (

√
γrZ))

2
+ δµ,

where we used in the third line that the ground truth θ? is 1-sparse and in the last line that the expectation exists for
Z ∼ N (0, 1). Finally, we can further simplify

EZ (STµ (
√
γrZ))

2
= γr2EZ

(
STµ/(√γr) (Z)

)2
= γr2EZ(Z − µ/(√γr))2 − EZ1|Z|≤µ/(√γr)(Z − µ/(

√
γr))2

= (µ2 + γr2)
(

1− erf(µ/(
√

2γr))
)
−√γrµ

√
2

π
exp(−µ/(2γr2)).

Hence, we can conclude the first term.

Equation (21) For the second term we also aim to apply the law of large numbers. We have

min
v

r

2τn
‖DyXΠ‖1ν‖ +Dyhν⊥ − v‖22 +

1

n

n∑
i=1

`(vi − ε0δ)

ṽ=v−εδ
= min

ṽ

r

2τn
‖DyXΠ‖1ν‖ +Dyhν⊥ − ṽ − ε0δ‖22 +

1

n

n∑
i=1

`(ṽi)

ṽ=v−εδ
= min

ṽ

1

n

n∑
i=1

r

2τn

(
(DyXΠ‖1ν‖)i + (Dyhν⊥)i − ṽi − ε0δ

)2
+ `(ṽi)

LLN→ EZ‖,Z⊥

[
M`(|Z‖|ν‖ + Z⊥ν⊥ − ε0δ,

τ

r
)
]
,

where in the last line we used that (DyXΠ‖Π⊥1)i = yix
>
i θ

? = ξσ sgn(x>i θ
?)x>i θ

? has the same distribu-
tion as |Z‖| with Z‖ ∼ N (0, 1). Further, to apply the law of large numbers, we need to show that the
Moreau envelope exists. Similarly to Theorem 1 (Salehi et al., 2019), this follows immediately when noting that
M`(x, µ) ≤ `(x) = log(1 + exp(−x)) ≤ log(2) + |x|. Finally, we obtain the desired optimization problem in Equation
(10) when combining these results.
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Convergences Finally, note that the optimum δ? in Equation (18) satisfies δ? = 1√
d
‖Π⊥θ‖, and similarly the optima ν?⊥

and ν?‖ in Equation (19) satisfy ν?⊥ = ‖Π⊥θ‖2 and ν?‖ = 〈θ, θ?〉. Hence we can conclude the proof as the solutions (10),
(14) concentrate asymptotically as d, n→∞ around the same optima.

D.4. Proof of Theorem D.2

The proof is similar to the proof of Theorem 6.3 (Javanmard & Soltanolkotabi, 2020). Recall the robust max-margin solution
from Equation (2):

min
θ
‖θ‖22 such that 〈θ, xi〉 − ε‖Π⊥θ‖1 ≥ 1 for all i (22)

After introducing the Lagrange multipliers ζ and u we can write equivalently:

min
θ,δ

max
u:ui≥0,
ζ≥0

‖θ‖22 +
1

n
u> (1 + 1ε0δ −DyXθ) + ζ

(
‖Π⊥θ|1√

d
− δ
)
. (23)

and separating again X = XΠ⊥ + XΠ‖, we get

min
θ,δ

max
u:ui≥0,
ζ≥0

‖θ‖22 +
1

n
u>
(
1 + 1ε0δ −DyXΠ‖θ −DyXΠ⊥θ

)
+ ζ

(
‖Π⊥θ‖1√

d
− δ
)

(24)

Convex Gaussian Minimax Theorem Since the adversarial attacks are consistent and the observations are noiseless, we
know the solution in Equation (22) exists for all d, n. Yet, in order to apply the CGMT, we have to show that we can restrict
u and θ to compact sets. This follows from a simple trick as explained in Section D.3.1 in (Javanmard & Soltanolkotabi,
2020). Hence, the primal optimization problem from Equation (24) can be asymptotically replaced with the following
auxiliary optimization:

min
θ,δ

max
u:ui≥0,
ζ≥0

‖θ‖22 +
1

n
u>
(
1 + 1ε0δ −DyXΠ‖θ +Dyh‖Π⊥θ‖2

)
+

1

n
‖u‖2g>Π⊥θ + ζ

(
‖Π⊥θ‖1√

d
− δ
)

(25)

Scalarization of the optimization problem The goal is again to scalarize the optimization problem. As a first step, we
can solve the optimization over u when defining r = ‖u‖2√

n
:

min
θ,δ

max
r≥0,
ζ≥0

‖θ‖22 +
r√
n
‖max

(
0, 1 + 1ε0δ −DyXΠ‖θ +Dyh‖Π⊥θ‖2

)
‖2

+
r
√
γ

√
d
‖u‖2g>Π⊥θ + ζ

(
1√
d
‖Π⊥θ‖1 − δ

)
,

where max is taken elementwise over the vector. We now want to separate ‖Π⊥θ‖2 from the term in max(.). This is
achieved by introducing the variable ν⊥ ≥ 0 and the Lagrange multiplier κ. Further, we set ν‖ = 〈θ?,Π‖θ〉, which allows
us to equivalently write

min
ν⊥≥0,
ν‖,δ

max
r≥0,
ζ≥0,κ

ν2
‖ + ‖Π⊥θ‖22 + κ(‖Π⊥θ‖22 − ν2

⊥) +
r√
n
‖max

(
0, 1 + 1ε0δ −DyXΠ‖θ0ν‖ +Dyhν⊥

)
‖2

+
r
√
γ

√
d
‖u‖2g>Π⊥θ + ζ

(
1√
d
‖Π⊥θ‖1 − δ

) (26)

We further note that

r√
n
‖max

(
0, 1 + 1ε0δ −DyXΠ‖θ0ν‖ +Dyhν⊥

)
‖2

LLN→ r

√
EZ‖,Z⊥

[
max

(
0, 1 + ε0δ − |Z‖|ν‖ + Z⊥ν⊥

)2]
=:
√
T .
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Next, by completion of the squares we get

min
ν⊥≥0,
ν‖,δ

max
r≥0,
ζ≥0,κ

ν2
‖ + (1 + κ)‖Π⊥θ +

r
√
γ

√
d2(1 + κ)

g‖22 −
r2γ

4(1 + κ)
‖g/
√
d‖22

− κν2
⊥ +
√
T + ζ

(
1√
d
‖Π⊥θ‖1 − δ

)
,

with ‖g/
√
d‖22 → 1. Hence, it only remains to solve the inner optimization over Π⊥θ. We can write:

min
Π⊥θ

(1 + κ)‖Π⊥θ +
r
√
γ

√
d2(1 + κ)

g‖22 + ζ
‖Π⊥θ‖1√

d

θ̃⊥=
Π⊥θ√
d

= min
θ̃⊥

1

d
(1 + κ)‖θ̃⊥ +

r
√
γ

2(1 + κ)
g‖+ ζ

‖Π⊥θ‖1
d

=
1

d

d∑
i=2

min
(θ̃⊥)i

(1 + κ)((θ̃⊥)i +
r
√
γ

2(1 + κ)
gi)

2 + ζ|(θ̃⊥)i|

=
1

d
2(1 + κ)

d∑
i=2

min
(θ̃⊥)i

1

2
((θ̃⊥)i +

r
√
γ

2(1 + κ)
gi)

2 +
ζ

2(1 + κ)
|(θ̃⊥)i|

=
1

d
2(1 + κ)

d∑
i=2

`H(−
r
√
γ

2(1 + κ)
gi,

ζ

2(1 + κ)
)

→2(1 + κ)EZ `H

(
r
√
γ

2(1 + κ)
Z,

ζ

2(1 + κ)

)

where `H is the Huber loss, given by `H(x, y) =

{
0.5x2 |x| ≤ y
y(|x| − 0.5y)

. Finally, we can conclude the proof from

EZ `H (aZ, b) =
a2 + b2

2
erf

(
b√
2a

)
− b2

2
+

ab√
2π

exp

(
− b2

2a2

)

Convergence We note again that the optimum δ? in Equation (23) satisfies δ? = 1√
d
‖Π⊥θ‖, and similarly the optima ν?⊥

and ν?‖ in Equation (26) satisfy ν?⊥ = ‖Π⊥θ‖2 and ν?‖ = 〈θ, θ?〉. Hence we can conclude the proof as the solutions (24),
(25) concentrate asymptotically as d, n→∞ around the same optima.


