
DeepJoint: Robust Survival Modelling
Under Clinical Presence Shift

Vincent Jeanselme
MRC Biostatistics Unit

University of Cambridge
vincent.jeanselme@mrc-bsu.cam.ac.uk

Glen Martin
Health e-Research Centre
University of Manchester

Niels Peek
Health e-Research Centre
University of Manchester

Matthew Sperrin
Health e-Research Centre
University of Manchester

Brian Tom
MRC Biostatistics Unit

University of Cambridge

Jessica Barrett
MRC Biostatistics Unit

University of Cambridge

Abstract

Medical data arise from the complex interaction between patients and healthcare
systems. This data-generating process often constitutes an informative process.
Prediction models often ignore this process or only partially leverage it, potentially
hampering performance and transportability when this interaction evolves. This
work explores how current models may suffer from shifts in this clinical presence
process and proposes a multi-task recurrent neural network to tackle this issue. The
proposed joint modelling competes with state-of-the-art predictive models on a
real-world prediction task. More importantly, the approach appears more robust to
change in the clinical presence setting. This analysis emphasises the importance of
modelling clinical presence to improve performance and transportability.

1 Introduction

Medical observations reflect the complex interaction between patients, clinical staff, and healthcare
services. In the context of a hospital stay, each observation from admission to discharge emerges
from one of these interactions: observations’ times and types reflect the patient’s condition and the
clinical staff’s assessment of what was needed and when. The data-generating process is, therefore,
informative — we refer to this process as clinical presence.

While the machine learning community has leveraged individual aspects of clinical presence for im-
proved performance, there are few predictive approaches that explicitly model this process. More com-
monly, modelling pipelines consist of imputation and re-sampling that assume non-informativeness.
Although practitioners justify ignoring clinical presence to avoid leveraging a changeable process [1]
in the hope of improved robustness, no evidence has demonstrated this property. The challenge
of robustness is at the core of clinical presence as changes in this process can occur due to new
medical findings or insurance policy incentives. Despite the importance of models’ transportability
under clinical presence changes, no work has explored how different strategies for handling clinical
presence impact this robustness.
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Our work studies (i) how state-of-the-art methodologies behave under clinical presence shifts, and
(ii) how to leverage clinical presence for improved transportability. Specifically, we propose a multi-
task architecture explicitly modelling clinical presence in addition to the survival outcome of interest
as shown in Figure 1. Three components aim to detect potential shifts in the clinical presence process
while regularising the survival model to obtain a more robust embedding.

Figure 1: DeepJoint - Joint modelling of clinical presence and survival outcome. An LSTM network
extracts an embedding h which is leveraged to model the clinical presence mechanisms through the
networks L – to model the longitudinal evolution, I – to model the inter-observation time, M – to
model the missingness patterns, and the survival outcome through the network S.

2 Related work

Clinical presence affects Electronic Health Records (EHRs) in multiple ways. First, observation
times potentially provide information on the clinical assessment of a patient’s condition. For instance,
the testing frequency decreases when clinical staff believe that the patient’s condition is improving.
Second, the sequence reflects the clinical staff’s understanding of the disease, e.g. if a laboratory
test is inconclusive, a second would follow. Third, missing values reflect irrelevance for diagnosis,
or non-informativeness [2]. Leveraging these dimensions have shown predictive edge [3, 4, 5],
and reduced biases [6]. For instance, [3, 7] show improved mortality prediction when including
missingness indicators.

Methodologies to handle clinical presence [8] can be divided into four groups: (i) Assumed un-
informative. Assume the observations representative of the patient’s health status. (ii) Lever-
aged for pre-processing. Leverage the sampling process for improved imputation and interpo-
lation [9, 10]. (iii) Featurised. Use measures of clinical presence indicative of medical exper-
tise as model’s inputs, e.g. missing indicators [3], observation times [7, 11, 12], inter-observation
time [13, 14, 15, 16, 17], or frequency [18]. (iv) Jointly modelled. Joint models [6, 19, 20], marked
point process [21] and Markov models [22] and their machine learning extensions [11, 23, 24, 25, 26]
model some aspects of the visit process and the outcome of interest. Through shared effects, state
modelling or decaying embedding, the data-generating process informs the modelling of the outcome
of interest. Closer to our work, this last category of methodologies either relies on strong parametric
assumptions, or does not scale to large datasets. For instance, [27] model irregular time series with
a latent ordinary differential equation and incorporate the temporal process through a parametric
Poisson process. Our proposed methodology aims to tackle this issue by non-parametric modelling
both the clinical presence process and the outcome of interest.

A fundamental feature of clinical presence is its propensity to change as medical practices evolve
or due to hospital-level, regional or national practice differences. This is a crucial limitation of the
application of machine learning for medical data as models may not generalise and may become
outdated as practices and policies evolve [1]. Evidence suggests performance drops across regions
and over time [28, 29, 30, 31]. Developing approaches to detect and potentially improve robustness to
clinical presence changes is essential to machine learning applicability in clinical practice. However,
no previous work has explored how handling clinical presence may impact robustness. Our work
aims to fill this gap.
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3 Deep Joint

3.1 Setting formalisation

The studied medical setting consists of a population of N individuals with a vector of laboratory
tests labi,j – with missing values – observed through time, in which the notation j ∈ [[0, li]] denotes
the jth observation for patient i at time ti,j ∈ R+, where ti,0 = 0 is the patient’s admission to the
Intensive Care Unit (ICU) and li is the last observation for patient i. To study clinical presence,
we introduce two additional notations. First, we model the elapsed time between two observations:
ϵi,j = ti,j−ti,j−1, note the subscript i underlines that observations time may not align across patients.
Second, the data-generating process is also characterised by which laboratory tests practitioners
perform. Consequently, we introduce the mask mi,j = [1Lab k observed at ti,j ]k∈labs indicating the
observed laboratory tests at observation time ti,j .

This work models the survival outcome after the first 24 hours post-admission. Each patient has
an associated time of the end of follow-up Ti and the type of observed event di for which di = 1
signifies that the patient died, di = 0 corresponds to right-censoring.

3.2 Components

The proposed architecture decomposes clinical presence into three dimensions, modelled through
three different neural networks. Each relies on the embedding hi,j outputted by a Long Short
Term Memory (LSTM) network [32] at the observation time ti,j . Note that we input the series of
observations at irregular times. The embedding at the end of the observation time is then leveraged to
model the survival outcome. We now provide further details on the networks used for each of these
tasks.

Longitudinal process The latent state hi,j is leveraged through a multi-layer perceptron L to
model the future value of each laboratory test to be observed after a period t from the prediction
time ti,j . Assuming a Gaussian distribution for the observed data, the neural network L outputs the
mean (µi(t)) and variance (σi(t)) of each future covariate given both the embedding (hi,j) and the
longitudinal prediction time (t):

l̂abi(t) ∼ N (µi(t), σ
2
i (t))

Missingness process A second multi-layer perceptron M leverages hi,j to model the likelihood of
observing the different covariates, i.e. which tests are likely to be performed after the period t. One
can assume a Bernoulli distribution parameterised by a neural network over the missingness patterns:

m̂i(t) ∼ Bern(M(hi,j , t))

Temporal process A monotonic positive neural network I [33] leverages hi,j to model the recurrent
patterns of observations. A monotonic positive neural network is constrained to have positive weights
and a final Softplus layer to guarantee the positivity and monotonicity of the outputted cumulative
hazard I of observing any new laboratory test during the period t. This approach expresses the
probability of observing an event at any time ∆ after t minutes, while avoiding any parametric
assumption:

P(∆ > t) = exp(−I(hi,j , t))

Survival outcome Finally, to model the hazard function λ(t), we used the DeepSurv model [34]
that leverages a multi-layer perceptron S to extract a non-linear covariates shift used in a standard
multiplicative proportional hazards Cox model. Given the baseline hazard λ0, the hazard of observing
an event at horizon t is expressed as:

λ(t) = λ0(t) exp(S(hi,j))

The final model, therefore, combines state-of-the-art architectures in a novel way to jointly model
clinical presence and survival. This results in a latent representation hi,j , which embeds the data-
generating process and the survival process. Further description of the multi-task training strategy is
provided in Appendix A.2.
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3.3 Motivation

DeepJoint for improved performance. The proposed method is motivated by joint models that
incorporate informative processes into the outcome model through a shared effect [6, 19, 20]. Limited
by poor scalability or strong parametric assumptions, we propose a multi-task neural network to tackle
these challenges. Evidence of improved performance [35] and generalisability [36, 37] have been
shown in the multi-task literature. However, theoretical foundations are still lacking [38] and rely on
the intuition of regularisation of the shared embedding [39]. Our work builds a connection between
joint modelling and multi-task learning by modelling the informative data-generating process and
outcome of interest. The aim is to detect if a new patient is not following the clinical presence patterns
observed in the training set with the intent that this regularisation improves generalisability [36].

DeepJoint for robustness. Under the assumption of negligible differences between clinical presence
processes, i.e. similar medical practices, we provide intuition on why multi-task may improve
robustness to small changes in clinical presence. Specifically, we adapt a result from the adversarial
attack literature [40] that shows the proportionality of the error to the inverse of the number of tasks
modelled. Assuming a bounded distance between marked point processes resulting from different
clinical presence processes, one can adapt these theoretical results (see Appendix A.1 for proof and
further discussion of its limitations).

4 Experiments

This paper studies the problem of in-hospital mortality prediction in the Medical Information Mart
for Intensive Care III dataset (MIMIC III) [41] using laboratory tests after a 24-hour observation
period in the intensive care unit. The proposed implementations are available on Github1.

Data We choose to demonstrate the impact of clinical presence on laboratory tests only as other
informative modalities might present different clinical presence patterns, e.g. semi-automatic vital
signs collection. After pre-processing [42] and subselection using an ECLAT algorithm [43], the
resultant cohorts consist of 30,834 patients with 17 shared laboratory tests observed at least once in
the observation period (See Tables 1 and 2 in Appendix).

Baselines We compare the proposed methodology (DeepJoint) against different methods for han-
dling clinical presence. All methods rely on the same normalised data imputed using last-observations-
carried-forward with patient-mean imputation for the initial missing values. All compared approaches
extract a representation of the laboratory tests time series, then leveraged by a DeepSurv [34] ar-
chitecture. First, we compared against two non-sequential approaches: (i) Last: Extract the last
observation li as representation for each patient. (ii) Count: Add the count of each test performed in
the first 24 hours to the previous representation. This assumes the informativeness of the counting
process but ignores its temporal evolution. Then, we used RNN-based approaches to take advantage
of the longitudinal evolution of the laboratory tests: (iii) Ignore: An LSTM is trained on the imputed
data leveraging the inputs’ temporal order but ignoring their irregularity and missingness patterns.
(iv) Resample: Data are re-sampled every hour. (v) GRU-D: Data concatenated with missingness
indicators serve as inputs to a GRU-D model [11] which leverages inter-observation times to decay the
embedding. (vi) Feature: An LSTM leverages missingness indicators and time elapsed since previous
observation [3] in addition to the lab results as inputs to model survival. Finally, our proposed method
(vii) DeepJoint leverages the same input as (vi) but explicitly models clinical presence.

Robustness to shift in clinical presence Motivated by the difference in the counts of tests per-
formed on patients admitted on weekends and weekdays (2.04(1.03) vs 1.91(0.99) tests for weekend
admission, see Figure 4 in Appendix), we hypothesise that practice might differ between weekends
and weekdays due to physicians and laboratory availability. While providing an opportunity to
study survival models’ transfer, the weekend effect [44] is marked by different outcome distributions
(Overall mortality: 15.0% if admitted on weekend, vs. 13.5% if admitted on weekdays). We adopt
the evaluation methodology used in the robustness literature. We stratify patients given days of
admission (from Monday 8 am to Saturday 8 am (n = 23, 359) vs the rest (n = 7, 475)). Each group

1https://github.com/Jeanselme/ClinicalPresence/
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is further divided between training and testing. A first model uses the training set of patients admitted
on weekends and tested on the testing set of weekdays-admitted patients. Then, a second model uses
the training set of patients admitted on weekdays and tested on the testing set of weekdays-admitted
patients. The two resulting models are comparable as evaluated on the same testing set, but trained
under two different clinical presence processes (See Figure 3 in Appendix for visualisation of the
training strategy).

All methods use the same 90%-10% train-test patients split to train the network. Their training
relies on gradient back-propagation with an Adam optimiser [45] over 1000 epochs with early
stopping on the survival loss computed on a left aside 10% of the training set, i.e. validation set.
The entire network is optimised for 500 epochs. The remaining iterations are for fine-tuning the
survival component. We perform hyperparameter tuning on the validation set on the grid presented
in Appendix Table 3. We compute survival prediction at the last observation in the 24-hour post-
admission period. Following the survival literature [46], models are compared using time-dependent
C-index [47] and Brier score [48] evaluated at time horizons of 1, 7 and 14 days after the observation
period. 95% confidence intervals were obtained using 100 bootstrapped iterations on the testing set
predicted values.

5 Results and Conclusions

Figure 2 presents the performance robustness when a model is transferred from one clinical presence
setting to another. A robust model has similar performances when transferred from another setting
and when trained under the same clinical presence. Practitioners should select a model close to the
diagonal with the best discriminative performance (upper right corner).

Figure 2: Time dependent C-index evaluated on patients admitted on weekdays for a transferred
model (y-axis) and an oracle model trained on the train weekdays-admitted patients and tested on the
testing set of this same group (x-axis) (with 95% confidence intervals).

Current clinical presence handling under-perform under shift. Ignoring the clinical presence
process leads to the worst performance and transportability with the naive re-sampling strategy
underperforming in both settings. The performance gap between Last and Count underlines that
simple featurization may not be an adequate approach, as shown by the detrimental effect of the
additional count of events on transportability. Leveraging clinical presence improves performance
with explicit modelling outperforming all other approaches.

Clinical presence reflects short-term instability. Note that performances decay with longer
horizons with shrinking differences between the different methodologies. This observation shows
both the task complexity in intensive care settings and the short-term relevance of clinical presence.

In conclusion, [1, 3] underline how taking advantage of missing data might lead to a mismatch
between the training and deployment settings, but ignoring this information might not be possible.
Our work shows how leveraging clinical presence through modelling improves robustness to changes.
Nonetheless, practitioners should remain wary of informing medical practice with clinical presence
as this process may embed not only informative patterns but also potential historical biases [49].

In future work, we aim to explore how our proposed method can detect changes in clinical presence,
and under which changes to expect improved robustness. Additionally, this work focuses on RNN-
based architecture, additional state-of-the-art approaches could be considered.
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A Appendix

A.1 Multi task robustness to clinical presence shift

For completeness, we repeat and slightly adapt the results presented in [40] (see original paper for
detailed proof). These results motivate the use of multi-task modelling for robust modelling under
shift.

First, we introduce the clinical presence vulnerability defined as the expected change in loss under
two different data-generating processes. Assuming the time series x ∈ f(X), the target y, a loss
L, the data-generating process observed in the original dataset os and the target one ot such that
the difference between the marked point processes resulting from these processes lies in a p-norm
bounded ball with radius r, i.e. ||os(x)− ot(x)||p < r, then the clinical presence vulnerability over
the target dataset is:

∆E := E[|L(os(x), y)− L(ot(x), y)|] ≤ E[ max
||δ||p<r

|L(os(x), y)− L(os(x) + δ, y)|]

Assuming infinitesimal changes in the data-generating processes, i.e. r → 0, one can develop this
expression using Taylor expansion:

|L(os(x), y)− L(os(x) + δ, y)| = |∂xL(os(x), y)δ +O(δ)|

Leveraging the property of the dual norm q, one can show that:

∆E ∝ ∂xE[||L(os(x), y)||q]

Theorem 1 (Theorem 2 from [40]) If the tasks are correlated with each other such that the covari-
ance between the gradient of task i and task j is Cov(ri, rj), and the gradient for each task is i.i.d.
with zero mean (because the model has converged), then clinical presence vulnerability of the given
model is proportional to: √

1 + 2
M

∑M
i=1

∑i−1
j=1

Cov(ri,rj)
Cov(ri,ri)

M

where M is the number of output tasks selected.

Remark 1 Note that we assume a bounded distance between the marked point process from the
source and the target processes, not between the observed and the underlying distributions. This
result may therefore suffer when the data-generating processes present strong dissimilarities but is
robust to consistent mechanisms in the sampling processes. From an application point of view, this
means, for instance, that the theorem holds when practitioners have similar training and incentives,
but may break if the healthcare recommendations differ, e.g. public vs. private systems.
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A.2 DeepJoint Training

Our proposed methodology leverages the multi-task literature to maximise the clinical presence and
survival likelihoods. Each objective is back-propagated simultaneously by averaging the loss of the
different tasks: survival, longitudinal, timing and missingness processes. We ensure that no objective
is over-represented in the average by using a dynamic weighting average scheme [50], as imbalances
can greatly impact performance [51]. Each loss is weighted by its relative change at iteration e as
follows:

∀ task ∈ {L, I,M}, wtask(e) =
ltask(e)

ltask(e− 1) · θ
which is then normalised between the three clinical presence tasks using a Softmax. ltask(e) is the
validation log-likelihood at iteration e for the given task and θ is a temperature hyperparameter that
controls softness, i.e. larger values would lead to equal weights.

Longitudinal process This first neural network aims to maximise the likelihood of the next
observed laboratory test values at time ϵi,j . The assumption of normality leads to the use of the
Gaussian log-likelihood loss:

lL =
∑
i

∑
j∈[[1,li−1]]

mi,j+1 · logN (labi,j+1|µi,j , σ
2
i,j)

=−
∑
i

∑
j∈[[1,li−1]]

mi,j+1 ·
(
(labi,j+1 − µi,j)

2

2σi,j
2

+ log
√

2πσi,j
2

)
with µi,j and σi,j the means, variances vectors outputted by L(hi,j , ϵi,j+1) and ∗ the element-wise
multiplication. Note the filtering through mi,j+1 to avoid a penalty on unobserved data.

Missingness process Similarly, the loss for the missingness process results in the binary cross
entropy loss:

lM =
∑
i

∑
j∈[[1,li−1]]

logBern(mi,j+1|M(hi,j , ϵi,j+1))

=−
∑
i

∑
j∈[[1,li−1]]

(mi,j+1 · log[M(hi,j , ϵi,j+1)] + (1−mi,j+1) · log[1−M(hi,j , ϵi,j+1)])

Temporal process Monontonic networks allow the exact computation of the likelihood without
the need for distributional assumptions on the inter-observation distribution. The model outputs the
cumulative intensity at horizon t, and automatic differentiation results in the instantaneous intensity
at no extra computational cost in the context of the neural networks’ training procedure.

lI =
∑
i

∑
j∈[[1,li−1]]

(
I(hi,j , ϵi,j+1)− log

∂I(hi,j , t)

∂t t=ϵi,j+1

)

Survival outcome DeepSurv relies on the proportional hazards assumption made by the Cox model
resulting in the optimisation of the partial log-likelihood:

lS =
∑

i,di=1

S(hi,j)− log
∑

k,Tk>Ti

exp(S(hi,j))


Finally, the population baseline hazard, λ0(t), is estimated as a piece-wise constant based on the
training population.

The final loss is defined at iteration e as

l(e) = (1− α)lS + α
∑

task∈{L,I,M}

wtask(e) · ltask(e)

With α, a hyperparameter balancing between survival and clinical presence. This loss is computed on
a validation set for early stopping of the multi-task training. Then, we perform a fine-tuning of the
network S with all other weights fixed with early stopping.
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A.3 MIMIC III - Experiments

A.3.1 Data characteristics

Table 1 presents the demographic characteristics of the studied population and Table 2 summarises
the set of tests selected with the mean number of tests performed during the 24 hours post-admission
and their mean values. The results are presented at the population level and differentiated by the
subgroups used to study the impact of clinical presence shift.

Table 1: MIMIC III - Population characteristics between patient admitted on weekdays and
weekends.

Population

Overall Weekday Weekend

Number of patients 30,834 23,359 7,475

Outcome

Length of stay (in days∗) 10.05 (10.49) 10.05 (10.60) 10.03 (10.15)

Death

Overall (%) 13.86 13.50 15.00
1 day+ (%) 1.15 1.13 1.20

7 days+ (%) 7.05 6.79 7.88
14 days+ (%) 10.33 9.94 11.52

Demographics

Gender Male (%) 56.43 56.38 56.62
Female (%) 43.57 43.62 43.38

Ethnicity

White (%) 71.84 72.52 69.74
Other (%) 14.52 14.03 16.04
Black (%) 7.88 7.87 7.92

Hispanic (%) 3.32 3.19 3.73
Asian (%) 2.43 2.39 2.57

Insurance
Public (%) 66.15 65.68 67.59
Private (%) 32.65 33.31 30.58

Self Pay (%) 1.21 1.01 1.82
∗ Mean (std)
+ After first day of observation
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Table 2: MIMIC III - List of laboratory tests used with associated
mean number of tests and values (and standard deviations).

Laboratory test Number of tests Value

Anion gap 1.84 (1.00) 13.87 (3.23)
Bicarbonate 1.88 (1.00) 24.15 (4.34)

Blood urea nitrogen 1.90 (1.00) 24.91 (20.36)
Chloride 1.92 (1.03) 105.09 (5.74)

Creatinine 1.91 (1.00) 1.33 (1.38)
Glucose 2.84 (2.59) 136.77 (49.89)

Hematocrit 2.89 (2.36) 32.89 (5.34)
Hemoglobin 2.39 (2.04) 11.09 (1.91)
Magnesium 1.81 (0.97) 1.98 (0.37)

MCH∗ 1.76 (0.96) 30.29 (2.52)
MCH concentration 1.76 (0.96) 33.82 (1.52)

Mean corpuscular volume 1.76 (0.96) 89.63 (6.65)
Platelets 1.88 (1.10) 224.07 (109.73)

Potassium 2.01 (1.08) 4.13 (0.55)
Red blood cell count 1.87 (1.02) 5.23 (15.24)

Sodium 1.93 (1.08) 138.89 (4.38)
White blood cell count 1.88 (1.03) 11.83 (13.08)

∗ Mean corpuscular hemoglobin.

A.3.2 Hyperparameters tuning

All models hyper-parameters were selected over the following grid of hyperparameters (if appropriate)
following 100 iterations of random search. All experiments were run on a A100 GPU over 100 hours
for each experiment.

Table 3: Grid for hyperparameters search

Hyperparameter Values

Training

Learning rate 10−3, 10−4

Batch size 100, 250
α 0.1, 0.3, 0.5
θ 2∗

RNN Layers 1, 2, 3
Hidden nodes 10, 30

Survival Layers 0, 1, 2, 3
Nodes 50

Clinical Presence
Longitudinal Same parameters explored as survival

Temporal Same parameters explored as survival
Missing Same parameters explored as survival

∗ Following the results from [50].
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A.3.3 Weekend - Weedays differences

Figure 3: Robustness evaluation between patients ad-
mitted on weekdays and weekends. Figure 4: Total number of tests per-

formed in the 24 hours after admission
to the ICU.

A.3.4 Modelling clinical presence

Table 4 presents the discriminative results on the testing set of a random split of the population for
which patients are randomly assigned to train and test sets. The proposed methodology presents
similar performances to Feature which is based on the same inputs. However, as shown Deepjoint
presents better transportability. Similarly, Count seems to achieve better than Last in this setting but
presents strong overfitting when transferred.

Table 4: Time Dependent C-Index - Mean (95%-CI) – Higher is better.

Evaluation horizons
(in days after last observation)

Models 1 7 14

Last 0.851 (0.004) 0.734 (0.002) 0.691 (0.002)
Count 0.860 (0.004) 0.746 (0.002) 0.699 (0.002)
Ignore 0.857 (0.003) 0.740 (0.002) 0.695 (0.002)

Resample 0.845 (0.004) 0.740 (0.002) 0.695 (0.002)
GRU-D 0.855 (0.004) 0.743 (0.002) 0.697 (0.002)
Feature 0.874 (0.003) 0.749 (0.002) 0.698 (0.002)

DeepJoint 0.871 (0.003) 0.748 (0.002) 0.695 (0.002)

Figure 5 and Table 5 present the Brier score obtained on a random split of patients, showing little
difference in the calibration of the different models at shorter time horizons.

Figure 5: Brier score obtained on a random subset of the population.
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Table 5: Time dependent Brier score - Mean (95%-CI) – Lower is better.

Evaluation horizons
(in days after last observation)

Models 1 7 14

Last 0.011 (0.000) 0.079 (0.000) 0.148 (0.001)
Count 0.011 (0.000) 0.078 (0.000) 0.147 (0.001)
Ignore 0.011 (0.000) 0.078 (0.001) 0.148 (0.001)

Resample 0.011 (0.000) 0.078 (0.000) 0.148 (0.001)
GRU-D 0.011 (0.000) 0.079 (0.000) 0.148 (0.001)
Feature 0.011 (0.000) 0.078 (0.000) 0.148 (0.001)

DeepJoint 0.011 (0.000) 0.079 (0.000) 0.150 (0.001)

A.3.5 Transfer performances

Figure 6 shows the performance on patients admitted on weekends. This echoes the conclusion made
in Section 5 that the proposed model is more robust to change in the clinical presence at shorter time
horizons. However, this advantage fades as clinical presence reflects short-term changes.

Figure 6: Robustness evaluation between patients admitted on weekdays and weekends.

Tables 6, 7 and 8 present the discriminative difference on the weekends-admissions testing set between
the model trained on weekends-admissions and the model transferred from weekdays to weekends
(and the opposite scenario).

At short time horizons, methodologies that leverage clinical presence present more robust results.
Note that the proposed methodology presents better performance than Feature based on the same
inputs. Additionally, for weekends-admissions evaluation, GRU-D presents state-of-the-art predictive
performance and robustness but this result didn’t generalise to the other settings. Interestingly,
ignoring the clinical process (Resample or Ignore) seems to be less robust to a change in the
data-generating process, echoing the remark made by [3] about the difficulty of ignoring it.
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Table 6: Performance of models trained and tested on the same type of patients (Internal), transferred
from the other setting (Transfer) and difference in performance between these settings (Difference) at
one day after observation period - Mean (95%-CI). Dashed lines separate models based on different
inputs.

Horizon: 1 day after observation

Evaluated on weekends Evaluated on weekdays

Models Internal Transfer Difference Internal Transfer Difference

Last 0.707 (0.201) 0.748 (0.132) 0.041 (0.021) 0.813 (0.043) 0.823 (0.046) 0.010 (0.004)
Count 0.735 (0.145) 0.801 (0.151) 0.065 (0.010) 0.813 (0.043) 0.789 (0.054) -0.024 (0.006)

Ignore 0.826 (0.089) 0.899 (0.053) 0.073 (0.013) 0.822 (0.045) 0.834 (0.045) 0.012 (0.006)
Resample 0.829 (0.086) 0.790 (0.145) -0.039 (0.022) 0.805 (0.052) 0.758 (0.057) -0.047 (0.004)

GRU-D 0.888 (0.055) 0.901 (0.050) 0.013 (0.005) 0.831 (0.034) 0.825 (0.051) -0.006 (0.005)
Feature 0.833 (0.085) 0.785 (0.108) -0.048 (0.006) 0.820 (0.048) 0.818 (0.048) -0.003 (0.006)

DeepJoint 0.855 (0.074) 0.874 (0.063) 0.018 (0.008) 0.839 (0.042) 0.829 (0.044) -0.010 (0.005)

Table 7: Performance of models trained and tested on the same type of patients (Internal), transferred
from the other setting (Transfer) and difference in performance between these settings (Difference) at
7 days after observation period - Mean (95%-CI)

Horizon: 7 days after observation

Evaluated on weekends Evaluated on weekdays

Models Internal Transfer Difference Internal Transfer Difference

Last 0.649 (0.038) 0.642 (0.037) -0.008 (0.004) 0.718 (0.021) 0.703 (0.021) -0.016 (0.002)
Count 0.662 (0.036) 0.660 (0.038) -0.002 (0.004) 0.727 (0.019) 0.716 (0.023) -0.011 (0.003)

Ignore 0.657 (0.034) 0.670 (0.034) 0.013 (0.004) 0.729 (0.021) 0.711 (0.022) -0.018 (0.003)
Resample 0.659 (0.033) 0.648 (0.034) -0.012 (0.005) 0.719 (0.022) 0.676 (0.025) -0.043 (0.003)

GRU-D 0.653 (0.036) 0.675 (0.036) 0.021 (0.003) 0.731 (0.019) 0.712 (0.022) -0.019 (0.002)
Feature 0.670 (0.030) 0.682 (0.031) 0.012 (0.004) 0.722 (0.021) 0.719 (0.023) -0.002 (0.004)

DeepJoint 0.656 (0.030) 0.675 (0.033) 0.020 (0.004) 0.726 (0.020) 0.725 (0.022) -0.002 (0.003)

Table 8: Performance of models trained and tested on the same type of patients (Internal), transferred
from the other setting (Transfer) and difference in performance between these settings (Difference) at
14 days after observation period - Mean (95%-CI)

Horizon: 14 days after observation

Evaluated on weekends Evaluated on weekdays

Models Internal Transfer Difference Internal Transfer Difference

Last 0.640 (0.029) 0.647 (0.027) 0.007 (0.003) 0.710 (0.019) 0.690 (0.020) -0.020 (0.002)
Count 0.637 (0.031) 0.665 (0.029) 0.028 (0.003) 0.712 (0.019) 0.685 (0.020) -0.027 (0.003)

Ignore 0.643 (0.028) 0.682 (0.026) 0.039 (0.003) 0.715 (0.020) 0.685 (0.021) -0.030 (0.003)
Resample 0.642 (0.029) 0.664 (0.024) 0.022 (0.004) 0.713 (0.020) 0.664 (0.022) -0.049 (0.003)

GRU-D 0.655 (0.030) 0.671 (0.028) 0.016 (0.003) 0.713 (0.019) 0.689 (0.019) -0.025 (0.002)
Feature 0.627 (0.028) 0.662 (0.026) 0.035 (0.004) 0.704 (0.021) 0.688 (0.022) -0.017 (0.003)

DeepJoint 0.619 (0.028) 0.655 (0.026) 0.037 (0.004) 0.712 (0.019) 0.686 (0.022) -0.026 (0.003)
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