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Abstract 
Diffusion models, which have been advancing rapidly in re-
cent years, may generate samples that closely resemble the 
training data. This phenomenon, known as memorization, 
may lead to copyright issues. In this study, we propose a 
method to quantify the ease of reproducing training data in 
unconditional diffusion models. The average of a sample 
population following the Langevin equation in the reverse 
diffusion process moves according to a first-order ordinary 
differential equation (ODE). This ODE establishes a 1-to-1 
correspondence between images and their noisy counterparts 
in the latent space. Since the ODE is reversible and the initial 
noisy images are sampled randomly, the volume of an im-
age’s projected area represents the probability of generating 
those images. We examined the ODE, which projects images 
to latent space, and succeeded in quantifying the ease of re-
producing training data by measuring the volume growth rate 
in this process. Given the relatively low computational com-
plexity of this method, it allows us to enhance the quality of 
training data by detecting and modifying the easily memo-
rized training samples. 

Code — https://github.com/masa-longriver/Quantify-
ing_the_Ease_of_Reproduction 

 Introduction1 

In recent years, diffusion models have led advancements in 
image generation (Sohl-Dickstein et al. 2015; Ho, Jain, and 
Abeel 2020), represented by tools like Stable Diffusion 
(Rombach et al. 2022) and DALL-E (Ramesh et al. 2022). 
However, these advancements raise concerns about copy-
right infringement, as generated images may closely resem-
ble original works by artists. 

Diffusion models sometimes generate images nearly 
identical to their training data (Somepalli et al. 2023a, b). 
This phenomenon, commonly referred to as memorization, 
is influenced by the quantity of training data. When the 
amount of data is limited relative to the model’s capacity, 
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models tend to overfit, reproducing specific training sam-
ples. This raises a natural question: which images are more 
easily memorized? Prior studies identified 1,280 memorized 
images in CIFAR10 (Carlini et al. 2023) and explored the 
likelihood of generating copyrighted images within training 
sets (Vyas, Kakade, and Barak 2023). Our study builds on 
these findings; without such a labor-intensive process, we 
propose a practical method to quantify the ease of reproduc-
ing training data in unconditional diffusion models. 

By employing an ordinary differential equation (ODE) to 
map training samples into the latent space, we establish spe-
cific regions corresponding to each sample. When a ran-
domly chosen initial noisy image enters this region, the cor-
responding training sample is generated. We use the volume 
growth rate of each training sample along the trajectory to 
quantify the volume of the region. As this principle relies 
solely on the diffusion process, the proposed method is ap-
plicable to any diffusion models in various domains. The 
present study not only sheds light on the structure of the la-
tent space, but also has important practical values. 

Related Work 

Score-Based Generative Models 
A diffusion model interprets an image as a continuously 
evolving distribution by progressively adding noise during 
the forward diffusion process, and the model generates an 
image by reversing this process (Ho, Jain, and Abbeel 2020; 
Sohl-Dickstein et al. 2015; Song, Meng, and Ermon 2021). 
Both diffusion and reverse diffusion processes are repre-
sented by stochastic differential equations (SDEs) (Song et 
al. 2021), with forward process in Eq. (1) and its reversed 
process in Eq. (2). 

𝑑𝒙 = 𝒇(𝒙, 𝑡)𝑑𝑡 + 𝑔(𝑡)𝑑𝒘 (1) 
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Here, 𝒇(𝒙, 𝑡) and 𝑔(𝑡) denote the drift and diffusion terms 
of the SDE, and 𝒘 represents noise from Brownian motion. 
The score 𝒔𝜽(𝒙, 𝑡), representing the time-varying log-gradi-
ent of the distribution, allows estimating the data distribu-
tion (Alain and Bengio 2014; Hyvärinen 2005; Song and Er-
mon 2019; Vincent 2011) and is learned by a model like U-
Net (Ronneberger, Fischer, and Brox 2015). The parameter 
𝛾 controls the stochasticity of the reverse process: it is de-
terministic when 𝛾 = 0, while it is stochastic at 𝛾 = 1. 

A commonly used SDE in diffusion models, the Variance 
Preserving SDE (VPSDE), is defined in Eq. (3), 

𝑑𝒙 = −
1
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𝛽(𝑡)𝒙𝑑𝑡 + ඥ𝛽(𝑡)𝑑𝒘 (3) 

where 𝒇(𝒙, 𝑡) = −𝛽(𝑡)𝒙/2  and 𝑔(𝑡) = ඥ𝛽(𝑡) , with 
𝛽(𝑡) = 𝛽 + 𝑡(𝛽௫ − 𝛽). The perturbation kernel is 
expressed in Eq. (4). 
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Extract Memorized Training Data 
Carlini et al. (2023) proposed a method to identify memo-
rized images within the training data for unconditional dif-
fusion models. They generated a total of 2ଶ images from 
16 different diffusion models trained on CIFAR10 and cal-
culated the L2 distance between each generated image and 
every image in the training sets. They found that for memo-
rized images, the generated image is significantly closer to 
its corresponding training data than to other training samples. 
The memorization threshold was determined as follows. 

𝑙(𝒙ෝ, 𝒙; 𝑆𝒙ෝ) =
𝑙ଶ(𝒙ෝ, 𝒙)

𝛼 ∙ 𝔼𝒚∈ௌ𝒙ෝ
[𝑙ଶ(𝒙ෝ, 𝒚)]

(7) 

Here, 𝒙ෝ denotes the generated image, 𝒙 represents an image 
from the training sets being compared, 𝑆𝒙ෝ  is the set of 𝑛 
nearest training samples to 𝒙ෝ, and 𝛼 is a hyperparameter. 
Using this method, they identified 1,280 memorized images 
from CIFAR10. They also found that the memorized images 
are almost model independent, implying that it is a peculiar-
ity of the dataset and samples. 

Proposed Method 

In this section, we examine the structure of the latent space 
from the ODE trajectory of each image. Roughly speaking, 
the latent space is divided into regions for each training sam-
ple, and the volume of each region determines the likelihood 

of image generation. Next, we propose a method to quantify 
the likelihood by the volume growth rate along the image 
trajectory. 

The Ease of Reproducing Training Data 

Starting from a noisy image drawn from a standard Gaussian 
distribution, a diffusion model uses the reverse-time SDE in 
the Langevin equation [Eq. (2)] to generate an image (Song 
et al. 2021). This stochastic process generates similar but 
non-identical images for a given initial noise input. Let’s fo-
cus on the evolution of their average, which is determined 
by an ODE (Gardiner 1985). 

𝑑𝒙 = 𝒇(𝒙, 𝑡) −
1

2
𝑔ଶ(𝑡)𝒔𝜽(𝒙, 𝑡)൨ 𝑑𝑡 (8) 

This is the time-reversal of Eq. (2) with deterministic (𝛾 =
0) condition. This ODE establishes the 1-to-1 mapping be-
tween images and their noise counterparts. Next, consider 
choosing a (hyper)sphere region 𝑆  of small radius 𝜎  cen-
tered on one of the training images. The ODE transforms 
each point in 𝑆 to a noisy image, causing volume changes 
over time. On one hand, recognizable images occupy a small 
volume in the high-dimensional space. On the other hand, 
the diffusion model transforms a randomly drawn noise into 
a recognizable image. Thus, we hypothesize that recogniza-
ble images expand faster than others under the ODE. 

Using 𝑚 in Eq. (4) in place of time 𝑡, the diffusion pro-
cess can be expressed compactly as 

𝑑𝒙 = −[𝒙 + 𝒔(𝒙)]𝑑𝑚 (9) 

𝒔(𝒙) = ∇ log 𝑃(𝒙) (10) 
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(11) 

Here, 𝒚()  represents the 𝑖-th training sample, 𝑃(𝒙) is the 
distribution of the noised one, and 𝑍 is the normalization 
constant.  

Eqs. (9)-(11) reveal interesting properties of the diffusion 
process. First, if there is only one training sample 𝒚, the ex-
act solution for 𝒙(𝑚) is:  

𝒙(𝑚) = 𝒚𝑒ି + √𝑣𝑪 (12) 

where 𝑪 is an arbitrary vector that we take as a point on a 
sphere. The data point 𝒚 moves toward the origin as 𝑒ି𝒚, 
and the distance between 𝒙(𝑚)  and 𝒚(𝑚) = 𝑒ି𝒚  in-
creases monotonically as √𝑣, except when initial 𝒙(0ା) is 
exactly 𝒚(0ା). In short, 𝒙(𝑚) is repelled from 𝒚(𝑚). 

When there are two training samples, each sphere around 
it moves approximately along with its center 𝑒ି𝒚() and 
expands as √𝑣. However, the sphere 𝑆(ଵ) is also repelled by 
𝒚(ଶ)(𝑚), resulting in distortion. Now consider a point 𝒙 on 
the line segment between endpoints 𝑒ି𝒚(ଵ) and 𝑒ି𝒚(ଶ). 
At the midpoint, the scores cancel out. Hence, the right half 
of the line segment always stays in the right half. 



Unfortunately, analyzing the general case with more data 
points is challenging by hand. However, we hypothesize that 
each initial sphere 𝑆() will project to a distinct, non-over-
lapping region 𝑅() in the latent space. Figure 1 shows an 
example where each training data point diffuses into distinct, 
non-overlapping regions in the latent space under the exact 
score. If an initial noisy image is chosen from 𝑅(), it will 
reverse diffuse into the neighborhood of i-th image, meaning 
that the volume of 𝑅() represents the probability of gener-
ating that image. Thus, analyzing the memorization in a dif-
fusion model deduces calculating the volume growth rate 
along the ODE trajectory.  

Quantifying the Ease of Reproduction 
The volume change of a system following an ODE has long 
been studied in dynamical systems in relation to chaos. In 
our equation, the volume change is determined by the diver-
gence of the score, and recent studies reported a method to 
approximate such higher-order derivatives (Meng et al. 
2021). We examined various models for the second deriva-
tives but faced significant challenges. Therefore, inspired by 
the concept of the Lyapunov exponent (Greiner 2009), we 
propose a method to quantify the ease of image reproduction, 
as presented in Algorithm 1. 

Our approach begins with a central data point and placing 
surrounding points orthogonally on a small sphere around it. 
We then evolve these points for a short period according to 
the ODE, and the volume of the resulting parallelepiped pro-
vides the volume growth rate. The stretch rate along each 
axis at each diffusion step, reflecting how far the surround-
ing points move from the center, determines the volume 
growth rate. The cumulative product across steps yields the 
total volume growth rate, which can be formulated as fol-
lows: 

𝑙௧ = ෑ ෑ
ฮ𝒙௧ାଵ

()
− 𝒙௧ାଵ

()
ฮ

ฮ𝒙௧
()

− 𝒙௧
()

ฮ
௧

(13) 

where 𝑙௧ denotes the volume growth rate from time 0 to 𝑡, 
𝒙௧

() is the noisy ground-truth image at time 𝑡, and 𝒙௧
() rep-

resents the 𝑘-th surrounding point in each axis direction. We 

orthogonalize 𝑁 surrounding points 𝒙
(ଵ:ே) on a spherical ra-

dius 𝜎 and diffuse 𝑇 steps. Due to the high dimensionality 
of images, we compute this rate on a logarithmic scale for 
numerical stability. At each diffusion step, we employ 
Gram-Schmidt orthogonalization (Hogben 2013), aligning 
with the axis of largest growth and resetting the length to its 
initial value. While we ideally use the number of surround-
ing points 𝑁 equal to the image dimensions to compute the 
full volume growth rate, we have found that fewer points 
suffice if relative growth rates are needed, as shown in the 
next section. 

Experiments 

In this section, we first validate our proposed method by cal-
culating the volume growth rate of training data in an over-
fitted model. We compare images included in the training 
set (images that can be generated) with those not included 
(images that cannot be generated). In another experiment, 
we analyze the volume growth rates of memorized images 
identified in previous study, comparing them to unmemo-
rized images and demonstrating that memorized images 
show a higher likelihood of being generated. Finally, we in-
vestigate the behavior of our proposed method under various 
parameter settings to assess its robustness and explore more 
efficient approaches for measuring the ease of reproduction.  

Figure 1: Time evolution of samples in two-dimensions 
by Eq. (9) under exact score. The number of samples is 2, 
3, and 5 from left to right. The small (large) circles rep-
resent samples at time 𝑡 = 10ିଷ (𝑡 = 1). 

Algorithm 1: Calculation of log volume expand rate 
Require: 

 𝒙
()

∈ ℝ: Target data (D: Dimension) 
 T: The number of diffusion steps. 
 N: The number of axes. 
 𝜎: Small sphere size of surroundings. 
1: let 𝐿 = [log 𝑙ଵ , … , log 𝑙்] 

2: let 𝑿௧ = ൣ𝒙௧
(ଵ)

, … , 𝒙௧
(ே)

൧ 
3: 𝝐~𝒩(𝟎, 𝑰) ∈ ℝே× 

4: 𝑿 ← 𝒙
()

+ 𝐺𝑟𝑎𝑚𝑆𝑐ℎ𝑚𝑖𝑑𝑡(𝝐) ∗ 𝜎 
5: for 𝑡 = 0 to 𝑇 − 1 do 

6:  𝒙௧ାଵ
()

← 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑂𝐷𝐸൫𝒙௧
()

൯  # eq. (8) 
7:  𝑿௧ାଵ ← 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑂𝐷𝐸(𝑿௧)  # eq. (8) 
8:  log 𝑙௧ାଵ ← log 𝑙௧  
9:  for 𝑘 = 1 to 𝑁 do 

10:   log 𝑙௧ାଵ ← log 𝑙௧ାଵ + logฮ𝒙௧ାଵ
()

− 𝒙௧ାଵ
()

ฮ 

− logฮ𝒙௧
()

− 𝒙௧
()

ฮ 
11:  Sort 𝑿௧ାଵ in descending order based on 

ฮ𝑿௧ାଵ − 𝒙௧ାଵ
()

ฮ 

12:  𝑿௧ାଵ ← 𝐺𝑟𝑎𝑚𝑆𝑐ℎ𝑚𝑖𝑑𝑡൫𝑿௧ାଵ − 𝒙௧ାଵ
()

൯ 

13:  𝑿௧ାଵ ← 𝑿௧ାଵ ∗ 𝜎 + 𝒙௧ାଵ
()  

14: return 𝐿 

 



The Ease of Reproduction in an Overfitted Model 
When the amount of training data is limited, diffusion mod-
els overfit, generating only the images included in training 
data (Zhang et al. 2024). To validate our method, we used 
an overfitted model trained on a small dataset to compare 
the volume growth rates of trained and non-trained images. 
We randomly selected 2 CIFAR10 images, applied hori-
zontal flipping to create 2 images for training, and set the 
number of epochs to 300,000 to induce overfitting. Other 
settings are the same as Song et al. (2021). Volume growth 
rates were calculated for 2 trained and non-trained images 
with parameters 𝑇 = 1000, 𝜎 = 0.05, and 𝑁 = 100. The 
results are shown in Figure 2. 

As seen in the figure, there is a clear difference in volume 
growth rates between trained and non-trained images. The 
trained images exhibit an average volume growth rate of 
𝑒ହଽସ, whereas the untrained images show only 𝑒ଷଷ. Thus, 
the proposed method is a valid metric for quantifying the 
ease of image reproduction. 

The Ease of Reproducing Memorized Images 
Here, we compare the volume growth rates of 1,280 memo-
rized and unmemorized CIFAR10 images (as identified by 
Carlini et al., 2023) to discuss the reproductive ease of mem-
orized images. The 50,000 CIFAR10 images were horizon-
tally flipped and doubled to 100,000. We trained the model 
on them for 1,500 epochs, keeping other settings the same 
as before, which wasn’t overfitted. Volume growth rate for 
1,280 memorized and unmemorized images were measured 
with parameter 𝑇 = 1000, 𝜎 = 0.05, and 𝑁 = 100. The re-
sults are shown in Figure 2. 

Memorized images generally exhibited higher volume 
growth rates. A t-test confirmed significant differences be-
tween memorized and unmemorized images at the 1% level, 
indicating that memorized images are easier to reproduce. 
Therefore, once measuring the volume growth rates of train-
ing data, we can calculate the ease of reproduction by its 
comparison. 

Additionally, some unmemorized images also showed 
high volume growth rates. These images often have distinc-
tive characteristics, such as being monochromatic, having 
simple backgrounds with small objects. Examples of these 
images are provided in Figure 6. Our method easily identi-
fies such images, but we can’t find the reason for their high 
rates. We leave it our future work. 

Investigating Various Parameter Settings 
Finally, we investigate the behavior of the proposed method 
under different parameter settings, demonstrating its robust-
ness and exploring more efficient ways to quantify the ease 
of reproduction.  

Results on varying the number of axes 𝑁 and sphere size 
𝜎 are in Appendix A. The shape of the plot remained con-
sistent across values of 𝑁, suggesting that reproductive ease 
can be quantified without full-dimensional calculations. Ad-
ditionally, varying 𝜎 between 0.001 and 0.1 did not impact 
the ease of reproduction. 

We then compared the t-test p-values for different axis 
counts 𝑁  and diffusion steps 𝑡  in calculating the volume 
growth rate (Figure 3). While higher 𝑁 provides more pre-
cise quantification, even a single axis yields sufficiently 
small p-values. Furthermore, using fewer steps results in 
smaller p-values. These findings indicate that quantifying 
the ease of reproduction requires only the stretch rate along 
a single axis over one step, which has practical applications. 
Using this approach, we selected the top 1,280 images from 
CIFAR10, categorizing as either easy-to-memorize or hard-
to-memorize, as shown in Figures 7 and 8. The results reveal 
that the easy-to-memorize images tend to have simple com-
positions, while the hard-to-memorize images are more 
complex. 

Conclusion 

In this study, we proposed a method to quantify the ease of 
reproducing training data. Images are projected into a spe-
cific region of the latent space via the ODE, and the regions 
they occupy determine generation probability. So, we pro-
posed calculating the volume growth rate to quantify the 

Figure 2: Results of the volume growth rate. (Left) rate in 
log scale for training and non-training images diffused 
with an overfitted model. (Right) same for memorized and 
unmemorized images. 
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Figure 3: p-values when varying the number of axes N and 
steps in experiments comparing the volume growth rate of 
memorized and unmemorized images. (Left) p-values for 
each N at step=1000. (Center) p-values for each step at 
N=1. (Right) p-values for each N at step=1. 



ease of reproduction. We validated our method through two 
experiments, trained images in overfitted model and memo-
rized images of previous work. Our parameter experiments 
demonstrated that only the stretch rate along a single axis 
over one step is sufficient to measure the ease of reproduc-
tion. This straightforward and effective method enables us 
to find easy reproduced images in training sets. Although we 
have demonstrated the method in the image domain, it is ap-
plicable to any diffusion models based on SDEs. Future 
work includes investigating the behavior of this method in 
stochastic diffusion process, latent diffusion models, condi-
tional diffusion models, and the diffusion models in other 
domains. 
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Appendix 

A. Experimental Results Across Various Parameter Settings 
We present the results of the growth rate with varying the number of axes 𝑁 and the small sphere size 𝜎. We tested four varies 
of 𝑁 = {1, 10, 50, 100}, and four varies of 𝜎 = {0.001, 0.01, 0.05, 0.1}. Figure 4 shows the results for the trained and non-
trained images in the overfitted model used in the first experiment. Figure 5 presents the results for the memorized and un-
memorized images from the second experiment. The overall shape of the plot remains consistent across all combinations of 𝑁 
and 𝜎, indicating that this method is robust to changes in both parameters, 𝑁 and 𝜎. 
 

Figure 4: Volume growth rates of trained and non-trained images when varying the number of axes 𝑁 and the small sphere size 
𝜎. 
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Figure 5: Volume growth rates of memorized and unmemorized images when varying the number of axes 𝑁 and the small 
sphere size 𝜎. 
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B. Sample Images Assessed for Ease of Generation 
B-1. Unmemorized Images with Large Volume Expand Ratio 
In the second experiment comparing the volume growth rates of memorized and unmemorized images, we found some un-
memorized images recorded high volume growth rates. These are shown in Figure 6. These images have common characteris-
tics such as being monochromatic or containing small objects with large background areas. 
 

 

Figure 6: Unmemorized images with high volume growth rate. From generated images with 𝑁 = 100, 𝜎 = 0.05, and 𝑠𝑡𝑒𝑝 =
1000, we select those with growth rate greater than 𝑒ହହ. 

B-2. Example of Easily and Hardly Generated Images in CIFAR10 
Examples of easily and hardly generated images in CIFAR10, as identified by our method, are shown in Figures 7 and 8. We 
augmented the 50,000 images to 100,000 by horizontal flipping to train a diffusion model. Then we calculated their volume 
growth rates with 𝑁 = 1, 𝜎 = 0.05, and 𝑠𝑡𝑒𝑝 = 1, selecting the top and bottom 1,280 images. 
 



 

Figure 7: Easily reproduced images extracted from our proposed method. We calculate volume growth rates with 𝑁 = 1, 𝜎 =
0.05, and 𝑠𝑡𝑒𝑝 = 1, then select the top 1,280 images. 



 

Figure 8: Hardly reproduced images extracted from our proposed method. We calculate volume growth rates with 𝑁 = 1, 𝜎 =
0.05, and 𝑠𝑡𝑒𝑝 = 1, then select the bottom 1,280 images. 


