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ABSTRACT

Decoding of seen visual contents with non-invasive brain recordings has important
scientific and practical values. Efforts have been made to recover the seen images
from brain signals. However, most existing approaches cannot faithfully reflect the
visual contents due to insufficient image quality or semantic mismatches. Com-
pared with reconstructing pixel-level visual images, speaking is a more efficient
and effective way to explain visual information. Here we introduce a non-invasive
neural decoder, termed MindGPT, which interprets perceived visual stimuli into
natural languages from fMRI signals in an end-to-end manner. Specifically, our
model builds upon a visually guided neural encoder with a cross-attention mecha-
nism. By the collaborative use of data augmentation techniques, this architecture
permits us to guide latent neural representations towards a desired language se-
mantic direction in a self-supervised fashion. Through doing so, we found that
the neural representations of the MindGPT are explainable, which can be used to
evaluate the contributions of visual properties to language semantics. Our exper-
iments show that the generated word sequences truthfully represented the visual
information (with essential details) conveyed in the seen stimuli. The results also
suggested that with respect to language decoding tasks, the higher visual cortex
(HVC) is more semantically informative than the lower visual cortex (LVC), and
using only the HVC can recover most of the semantic information.

1 INTRODUCTION

Humans can describe the visual objects of the world using a finite number of words, and draw an
analogy between verbal and visual when communicating with others. This flexible cognition capac-
ity suggests that semantic information, conveyed in language, is deeply intertwined and entangled
with various types of sensory input, especially for vision. Neuroscience studies (Popham et al.,
2021; Tang et al., 2023; Fairhall & Caramazza, 2013; Binder & Desai, 2011) hold that amodal se-
mantic representations are shared between visual and linguistic (V&L) perceptions, e.g., the word
“cat” evokes similar conceptual content to the image of a cat in our mind. However, how the brain
infers semantic relations of conceptual categories, and fulfills seamless switching between V&L
modalities has been rarely quantized or implemented with computational models.

Recent neural decoders (Chen et al., 2023a;b; Takagi & Nishimoto, 2023) demonstrated that vi-
sual content can be reconstructed from visual cortex (VC) representations recorded using functional
Magnetic Resonance Imaging (fMRI). Nevertheless, the reconstructed images still suffered from
being blurry and semantically meaningless or mismatched. For another, the neuroscience commu-
nity has presented compelling evidence (Popham et al., 2021) to support the notion that semantic
concepts in both V&L forms can be accessed in the brain’s VC. The findings strongly encourage us
to introduce a new “mind reading” technology, aiming to verbally interpret what you see. Such an
endeavor has great scientific significance in revealing cross-modal semantic integration mechanisms
and may provide potential application values for restorative or augmentative BCIs.

Here, we introduce a non-invasive neural language decoder, termed MindGPT, which translates the
blood-oxygen-level-dependent (BOLD) patterns elicited by static visual stimuli into well-formed
word sequences, as shown in Fig. 1 Left. For the non-invasive language decoder, to the best of our
knowledge, Tang et al. (2023) made the pioneering attempt to develop a non-invasive neural decoder
for perceived speech reconstruction, which can even recover the meaning of silent videos. Due to
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Figure 1: Left: The overall pipeline of non-invasive language decoder MindGPT. Right: Recon-
struction results of our MindGPT, image captioning model SMALLCAP (Ramos et al., 2023), and
visual decoding methods VQ-fMRI (Chen et al., 2023a) & MinD-Vis (Chen et al., 2023b).

the poor temporal resolution of fMRI, however, the method requires collecting a large amount of
fMRI signals (recorded while subjects listened to spoken stories) to predict the fine-grained semantic
relevance between the candidate words and the evoked brain responses. On the contrary, this study
focuses on whether and to what extent the static visual sensory experiences such as a single image
provide semantic labels for our amodal language maps.

Our MindGPT must meet two key criteria: i) the capability of capturing visual semantic represen-
tations (VSRs) from brain activities, and ii) the incorporation of a mechanism to transition from
acquired VSRs into well-formed word sequences. To do so, firstly, we opt to employ a large lan-
guage model GPT-2 (Radford et al., 2019), as our text generator, thus allowing us to constrain sen-
tence structures to resemble well-formed natural language. We then customize a simple yet efficient
CLIP-guided (Radford et al., 2021) fMRI encoder with cross-attention layers to bridge the semantic
gap between brain-visual-linguistic (B&V&L) representations in an end-to-end fashion. Finally, by
using pseudo-labels, we present a data augmentation technique to construct biologically meaningful
supervision signals from limited annotations. This formulation, unlike previous works that rely on
linear models (Mai & Zhang, 2023), permits us to explore self-supervised neural semantics learners.

In this study, we have demonstrated that the MindGPT could be the bridge of robust V&L semantic
transformations of the brain’s VC and machine. The language generated by our MindGPT reflects
the visual semantics of the observed stimuli (see Fig. 1 Right) with high accuracy, which suggested
that our method successfully learned the generalizable neural semantic representations, and gained a
wide understanding of B&V&L modalities. Furthermore, we found that the well-trained MindGPT
appears to emerge with the ability to capture visual cues (i.e., salient regions) of stimulus images,
even from highly limited fMRI-image training data, which facilitates us to explore the contributions
of visual properties to language semantics. With the help of visualization tool, we also observed that
the latent neural representations learned by MindGPT exhibited desirable locality-sensitive prop-
erties both in low-level visual features and high-level semantic concepts, which conforms to some
neuroscience findings (Bellmund et al., 2018; Yamins & DiCarlo, 2016). Overall, our MindGPT,
different from Tang et al. (2023), indicated that the semantic relations between V&L representations
can be inferred from our brain’s VC without consideration for temporal resolution of fMRI.

2 RELATED WORK

The neural decoding technique offers a unique fashion for advancing our understanding of human
perception. With deep learning technological changes (Goodfellow et al., 2014; Radford et al.,
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2021; Kingma & Welling, 2013; Ho et al., 2020; Rombach et al., 2022) and neuroscience advances
(Haxby et al., 2001; Kamitani & Tong, 2005; Yamins & DiCarlo, 2016; Popham et al., 2021), the
visual neural decoding community is progressing quickly. In recent decades, a lot of inspiring work
with vital guiding implications has sprung up, which can be broadly broken down into three main
paradigms based on decoding objectives (Du et al., 2023), i.e., stimuli classification (Haxby et al.,
2001; Van Gerven et al., 2010; Damarla & Just, 2013; Yargholi & Hossein-Zadeh, 2016; Du et al.,
2023), recognition (Haynes & Rees, 2006; Kay et al., 2008; Horikawa & Kamitani, 2017; Naselaris
et al., 2009), and reconstruction (Beliy et al., 2019; Lin et al., 2022; Chen et al., 2023a;b;c). Among
them, visual reconstruction, which aims to recover the overall organization of seen images, is the
most challenging yet exciting. In the remaining section, we will briefly review the background
material of reconstruction tasks, that puts our study into context.

The key to the success of image reconstruction techniques is to extract low-level image details of
visual stimuli from brain activity using fMRI. Interestingly, for the target of visual reconstruction
tasks, there has been a trend in recent years away from pixel-wise reconstruction and toward seeking
the semantically correct images (namely, allowing visual structure variance under the same seman-
tics) with the rise of diffusion models (Ho et al., 2020; Rombach et al., 2022). The decoded outcomes
of early techniques (Shen et al., 2019b;a; Beliy et al., 2019; Ren et al., 2021; Du et al., 2022) can
preserve the outlines and postures of original stimuli, but they often fail to recover the intricate tex-
ture and rich color in natural scenes due to the limited number of fMRI-image annotations. On the
other hand, high-level semantic decoding methods incorporate visual semantic information into the
GAN models (Mozafari et al., 2020; Ozcelik et al., 2022) or diffusion models (Lu et al., 2023; Tak-
agi & Nishimoto, 2023; Chen et al., 2023b;c), resulting in realistic images due to inherited strong
generative capabilities. However, the models lack control over low-level details such as contour and
texture. More importantly, the reconstructed image usually has a large semantic gap with the actual
stimulus, leaving it difficult to interpret what you see. For humans, remembering the detail of a seen
scene is a tricky issue since our visual system is not like a camera that stores every pixel of images
(Chen et al., 2023a; Desimone et al., 1995), but we are skilled at a general description of the seen
objects, meaning that speaking is a simple but more effective fashion of presenting visual seman-
tics. Previous works (Matsuo et al., 2018; Takada et al., 2020; Mai & Zhang, 2023; Ferrante et al.,
2023) mapped fMRI recordings to the embeddings of pre-trained neural networks like VGGNet by
relatively simple linear regression models, and then feeds the predicted result into language models
to generate word sequences. Unlike existing decoding paradigms, our MindGPT is designed to ex-
plore self-supervised neural semantics reconstruction by using cross-attention mechanisms and data
augmentation techniques. To the best of our knowledge, generating linguistic semantic information
directly from a single brain image in an end-to-end fashion has not been adequately explored.

3 THE MINDGPT APPROACH

MindGPT is a lightweight non-invasive neural decoder, which combines off-the-shelf large language
model GPT-2 (Radford et al., 2019) and pre-trained CLIP (Radford et al., 2021), to describe the
meaning of perceived images by natural language, as shown in Fig. 2.

3.1 DATASET AND PREPROCESSING

In this study, a widely used benchmark dataset that was designed for fMRI-based decoding, termed
as DIR (Shen et al., 2019b), was leveraged to evaluate our MindGPT. In natural image presenta-
tion experiments, including training and test sessions, three healthy subjects were required to view
natural images selected from ImageNet (Deng et al., 2009), and simultaneously fMRI signals were
collected using a 3.0-Tesla Siemens MAGNETOM Verio scanner. Each scanning session includes
anatomical (inplane T2) and functional (EPI) images covering the entire brain (TR, 2 s; TE, 43 ms;
voxel size, 2 × 2 × 2 mm; number of slices, 76). The visual stimuli (1200 training images, and 50
test images) involved in the experiment are identical to those used in another fMRI-image dataset
(Horikawa & Kamitani, 2017), but the DIR dataset contains a larger number of image-fMRI pairs
(5×1200 training samples, and 24×50 test samples). Note that 5 and 24 represent the number of rep-
etitions. To avoid scanner instability effects, for each run, the first 8 s of scans were discarded. All
fMRI data were subjected to 3-dimensional motion correction using SPM, and then co-registered to
the high-resolution anatomical images and regions-of-interest (ROIs) selection (Shen et al., 2019b).
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Figure 2: Schematic diagram of MindGPT framework. We first split an fMRI signal into fixed-
size low-to-high-level ROIs (namely, V1-V4, LOC, FFA, and PPA), and feed the resulting sequence
of voxel vectors to a standard ViT for fMRI visual representations learning guided by CLIP visual
encoder. Then, we use trainable cross-attention modules to bridge a frozen GPT-2 and fMRI encoder.
In this way, our model can generate a word sequence conditioned on the input fMRI.

In this study, we used the voxels from the brain’s visual areas including V1-V4, LOC, FFA, and PPA,
where V1 to V3 is defined as the lower visual cortex (LVC), and the higher visual cortex (HVC) is
formed by LOC, FFA, and PPA (Horikawa & Kamitani, 2017).

3.2 CLIP-GUIDED NEURAL EMBEDDING

The goal of our MindGPT is the process of generating a descriptive sentence for brain activity
patterns evoked by visual objects. To this end, the key here is to guide our model towards a desired
visual direction (i.e., semantic information of stimulus images) with each generation step. Firstly,
to handle fMRI signals, we split the fMRI into a sequence of voxel vectors z ∈ R7×H including
V1-V4, LOC, FFA, and PPA, where H denotes the number of voxels, which is flattened and padded
to the same size. Next, voxel vectors z ∈ R7×H are fed into a trainable linear projection, followed
by a Transformer encoder, to predict latent fMRI representations Z . During the training phase,
we leverage the hidden class embedding Kclip ∈ R768 of CLIP visual encoder (Radford et al.,
2021) as neural proxy, and then seeking a joint semantic space across images and fMRI signals via
fMRI-image representation alignment. Moreover, since the size of the carefully curated dataset is
fairly limited, we present a simple data augmentation strategy, building virtual training examples
by performing linear interpolation on the fMRIs evoked by the same category of images. This
practice shares similarities with mixup technique (Zhang et al., 2018), but the difference is that the
corresponding labels are randomly sampled from the subset (annotated with the same category) of
ImageNet (Deng et al., 2009) rather than generated via equal-weighted interpolation. By doing so,
the model can be encouraged to extract shared high-level semantic features of augmented images.

3.3 VISION-LANGUAGE JOINT MODELLING

In order to restrict the decoded word sequences to well-formed language, our approach uses an
autoregressive language model GPT-2 (Radford et al., 2019), which specializes in modelling text
semantic interactions between the next token si and past tokens (s1, s2, · · · , si−1) at each time-
step. Given any initial prompt, such as “The seen image shows”, GPT-2 will infer the likelihood of
words P (si|[sj ]j<i) that could come next. Nevertheless, even with the constraints imposed by the
prior probability distribution P (S) =

∏n
i=1 P (si|[sj ]j<i) learned from WebText dataset (Radford

et al., 2019), it may be computationally problematic to formalize visually-guided neural language
decoding problem as P (si|[sj ]j<i,Z) directly. This is due to that the fMRI encoder and GPT-2
model operate in different embedding spaces.
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For coupling the V&L representations, we use multi-head cross-attention layers to bridge the fMRI
encoder and GPT decoder, thus leaving each layer of the GPT decoder attends to the fMRI encoder
outputs (Vaswani et al., 2017). Under the circumstances, our task can be boiled down to an end-to-
end multi-task optimization problem. Given an fMRI-image pair (z, y), our loss function Lmind can
then be written as

Lmind = Lgpt

(
Ft(y),EΦ(z); Θ

)
+ Lclip

(
Ec(y),EΦ(z)

)
, (1)

where Ft(y) = [si]1:M is a visual captioning of image y generated from SMALLCAP (Ramos et al.,
2023), Ec(·) denotes frozen CLIP encoder, which returns the hidden visual embedding Kclip ∈
R768, EΦ(·) indicates fMRI encoder with trainable parameters Φ, and Θ is the weights in the cross-
attention modules. The first term uses the standard cross-entropy loss for minimizing the sum of the
negative log-likelihood conditioned on the fMRI embedding and the previous tokens, i.e.,

Lgpt = −∑M
i=1

logP (si|s<i,EΦ(z); Θ). (2)

Note that we freeze the GPT decoder and CLIP encoder, and only train the randomly-initialized
fMRI encoder as well as cross-attention layers. The second term of Eq. 1 is a mean-squared loss for
alignment purposes:

Lclip = λ
∣∣∣∣∣∣[Ec(y)]0 − [EΦ(z)]0

∣∣∣∣∣∣2
2
, (3)

where [·]0 returns the class embedding of Transformer encoder, and λ = 10 is a trade-off hyperpa-
rameter weighing Lgpt and Lclip. Overall, our MindGPT provides a mechanism to learn a direct
mapping between brain activity and text by preserving language attributes under the guidance of vi-
sual cues, which brings desirable expandability, i.e., our framework can easily be extended to other
types of neural decoding such as fMRI-to-sound by an appropriate choice of the decoder. Moreover,
as the result of avoiding separate visual feature decoding step, learning in an end-to-end fashion can
effectively help in reducing the information loss (Shen et al., 2019a).

4 EXPERIMENTAL RESULTS

4.1 IMPLEMENTATION DETAILS AND EVALUATION METRICS

In this work, the architecture of our MindGPT contains two frozen pre-trained sub-models, CLIP-
ViT-B/32 and GPT-2Base, which are provided on HuggingFace (Wolf et al., 2020). In the MindGPT
model, only the parameters of the fMRI encoder and cross-attention layers are trainable. For the
fMRI encoder, we use a standard ViT model with an embedding size of 768, layer number of 8,
and 8-head self-attention. The cross-attention layer with 12-head is added to each of the 12 layers
of GPT-2 decoder. In order to further reduce the number of learnable parameters, following Ramos
et al. (2023), we diminish the default dimensional size (64) of the projection matrices in the cross-
attention layers to 8. During the training phase, we optimize MindGPT by using Adam solver
(Kingma & Ba, 2014) with β1 = 0.9, β2 = 0.999, learning rate of 1e-4, and applying a low weight
decay of 1e-4 until the model converges, which we found to be useful. Our MindGPT trained on
DIR and a subset of ImageNet (Deng et al., 2009), including 150 categories totaling 200.7k images.
Note that there’s no overlap between the training and test categories. The MindGPT is implemented
by Pytorch, and ran on 4 NVIDIA GeForce RTX3090 GPUs.

To provide an across-the-board evaluation of MindGPT’s language decoding performance, we con-
sider the following standard metrics: BLEU-1 (B@1), BLEU-4 (B@4) (Papineni et al., 2002),
ROUGE-L (Lin & Hovy, 2003), METEOR (Denkowski & Lavie, 2014), CIDEr (Vedantam et al.,
2015) and SPICE (Anderson et al., 2016), which widely used in various NLP tasks, e.g., transla-
tion, and image-to-text (image captioning) (Tewel et al., 2022; Ramos et al., 2023). These language
similarity metrics are calculated using COCO evaluation package.

4.2 NEURAL DECODING ACROSS VISION AND LANGUAGE

Qualitative Results. In order to provide an intuitive understanding of the linguistic decoding capac-
ity guided by visual stimuli, Fig. 3 reports few-shot and zero-shot generation examples from subject
3 of the DIR dataset. Note that the default training/test split of DIR has no overlapping image cat-
egories, we randomly sampled 50 fMRI-image training pairs, and added them to the test set for the
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Figure 3: The language decoding results of our MindGPT. Top: Reconstruction results on known
visual categories. Bottom: Reconstruction results on unknown visual categories that are out of the
training set (zero-shot). For each group, the left represents the raw visual stimuli, the right reports
the neural language decoding results of our MindGPT and image captioning results of SMALLCAP.
Correct (or semantically similar) captions are highlighted in blue.

few-shot evaluation. For each group of results, the right shows the linguistic decoding result of our
MindGPT, and provides the reference caption generated by Ramos et al. (2023). From the results,
we see that MindGPT can produce semantically satisfying word sequences in both few-shot and
zero-shot decoding, which extracted not only the meaning of the raw visual stimuli but often even
exact category names such as “airplane”, “windmill”, “grapes”, “school bus”, and “bathroom”. This
demonstrates that fine-grained language semantics information can be recovered from the BOLD
signal evoked by visual objects. Interestingly enough, we observe that our MindGPT appears to
exhibit the capability to capture color information or infer the color tones of images, e.g., “black and
white photo” (col 1, row 3), “brown and white animal” (col 1, row 4), “yellow school bus” (col 2,
row 1). Moreover, although our method may not consistently infer correct classes of objects, it can
still decode approximate semantic information, e.g., “beer”–“wine” (col 2, row 4), “fly”–“insect”
(col 3, row 4), and “sunflower”–“flower” (col 2, row 2), which supports the assumption that V&L
semantic information are well-represented in visual cortex (Popham et al., 2021).

Quantitative Results. Here, we report quantitative results of our MindGPT on different model con-
figurations. For convenience, we use brief notation to indicate the model variants. For example,
compared to the base model, MindGPT-S/8 means the smaller variant, and the scaling factor N = 8
of cross-attention layers. Note that the number of parameters is inversely proportional to the scaling
factor N . The results, as summarized in Tab. 1, are based on the subject 3 of the DIR. From the Tab.
1, a few patterns can be observed. Firstly, the larger model MindGPT-L outperforms MindGPT-B
and MindGPT-S on a range of language similarity metrics. Specifically, with the BLEU-4, which
reflects the matching precision of four consecutive words (i.e., 4-gram), the MindGPT-L/16 is 21%
to 27% higher than the MindGPT-B and MindGPT-S. With the ROUGE, which is mainly designed
to consider recall rate, the MindGPT-L/16 obtains a high value of 41.7. For the CIDEr, which
calculated the semantic similarity between sentences and used TF-IDF to consider word frequency,
performance peaked at 116.5 with MindGPT-L/16 and decreased as the parameters of cross-attention
layers increased. Under the SPICE, which computes the semantic matching degree between gener-
ated descriptions and the reference texts, the larger model, MindGPT-L/16 achieves a high value of
15.2, which is 29% to 52% higher than the other model variants. Secondly, we also note that decod-
ing performance not only depends on the size of the fMRI encoder, but also on the cross-attention
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layers. The reconstruction quality generally increased as cross-attention parameters decreased, i.e.,
the smaller cross-attention modules are good for performance, which is somewhat surprising. Our
MindGPT may have not reached saturation yet within the range tried, we leave it to future work.

Model fMRI Encoder Cross-Attention Params Language Similarity Metrics ↑
Layers Heads B@1 B@4 ROUGE-L METEOR CIDEr SPICE

MindGPT-S/4
4 4

N = 4 38M 34.1 10.7 32.6 10.5 39.2 7.2
MindGPT-S/8 N = 8 35M 37.9 15.9 36.4 12.9 65.7 10.0

MindGPT-S/16 N = 16 33M 37.5 17.0 36.9 12.9 89.6 10.0

MindGPT-B/4
8 8

N = 4 67M 38.8 15.4 37.0 13.1 64.0 10.4
MindGPT-B/8 N = 8 63M 37.9 15.7 35.9 12.8 70.8 10.3
MindGPT-B/16 N = 16 61M 39.7 16.2 39.2 13.8 77.3 11.8

MindGPT-L/4
16 16

N = 4 123M 35.7 11.5 34.7 11.3 55.1 9.5
MindGPT-L/8 N = 8 120M 40.8 17.5 40.4 14.4 75.2 12.3

MindGPT-L/16 N = 16 118M 42.1 20.5 41.7 15.5 116.5 15.2

Table 1: Quantitative results of neural language reconstruction. We report the decoding performance
of our MindGPT on the DIR default test set. Note that all training parameters are set to the default
for different model configurations. The best and worst are highlighted in bold and red, respectively.

4.3 THE IMPACT OF HIERARCHICAL CODING PROPERTY ON LANGUAGE RECONSTRUCTION

In neuroscience, a fairly well-accepted theory is that visual information propagation from the lower
visual cortex (LVC) to the higher visual cortex (HVC) has a hierarchical nature (Yamins & DiCarlo,
2016; Horikawa & Kamitani, 2017). This finding has been widely studied in visual reconstruction
tasks (Fang et al., 2020; Takagi & Nishimoto, 2023). However, it is unclear how the hierarchical
structure of information affects our decoding at the granularity of words and phrases, which regions
are consistently engaged in language reconstruction. In other words, are the LVC and the HVC
complementary or redundant for language representations?

Model ROI Variants Voxel Number Language Similarity Metrics ↑
B@1 B@4 ROUGE-L METEOR CIDEr SPICE

MindGPT-B/8
LVC (V1 + V2 + V3) 6550 39.9 14.1 38.6 12.7 54.1 9.4

HVC (LOC + FFA + PPA) 5633 40.8 17.8 39.4 14.6 91.4 13.0
VC (V4 + LVC + HVC) 14034 37.9 15.7 35.9 12.8 70.8 10.3

Table 2: Language semantics predictions of different brain areas for perceived visual images. All
results are computed by language similarity metrics between the MindGPT predictions and the cor-
responding image captions. The best and worst are highlighted in bold and red, respectively.

Performance of Different Brain Areas. To preliminarily validate the underlying contributions of
different brain regions to the language decoding task, we repeatedly run quantitative experiments
using fMRI voxels of different visual areas (VC, LVC and HVC). Here, voxels of LVC are com-
posed of V1, V2, and V3, voxels from FFA, PPA, and LOC form the HVC, and VC denotes the
whole visual cortex. It should be noted that the default model configuration MindGPT-B/8, and the
same training strategy are used for all three experiments. Tab. 2 shows the results. We find two
phenomena worth exploring: (1) Decoding from the HVC yielded the best performance on all lan-
guage evaluation metrics; (2) the decoding performance of using complete VC is better than that of
LVC. These evidences seem to point in that there is no complementary relationship between LVC
and HVC. Does this mean that LVC is redundant in decoding tasks? For answers, we will perform
the analysis studies of the latent neural representations in the next sub-section.

Analysis of the Latent Neural Representations. Our MindGPT model allows us to decode linguis-
tic semantic information, in which the latent fMRI representations play a crucial role. Therefore,
examining the representation distributions of different brain regions is beneficial to further explain
the above phenomena. The dimension of latent representations is too big, so we leverage the t-SNE
technique (Van der Maaten & Hinton, 2008), which can preserve the local structure of data in low-
dimensional embedding space, to visualize the distributions of fMRI representations. We separately
map VC, LVC, and HVC neural representations to 2-dimensional t-SNE embedding spaces, and put
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Figure 4: Top: The t-SNE visualization of neural representation for different brain areas. Bottom:
Examples of our textual reconstruction conditioned on different brain regions (Red = false captions).

Figure 5: Typical imperfect cases of our MindGPT in textual reconstruction (Red = false captions).
To intuitively understand semantic bias, we also provide visual reconstruction results obtained using
the decoded text of our MindGPT and off-the-shelf Stable Diffusion (Rombach et al., 2022).

the corresponding visual stimulus at the position, as shown in Fig. 4 Top. From the visualization
results of VC and HVC, we can observe that our MindGPT learned a locality-sensitive embedding
structure, which contains several clusters representing different high-level semantic properties or
concepts, e.g., biotic, vehicle, and music. The embedding structure of LVC, by contrast, has no
obvious clustering rule. However, we can still find that similar low-level appearance features are
located at nearby positions such as round and cube. In terms of the latent embedding space of VC, it
inherits the semantic properties of low and high levels from LVC and HVC, but why is there a per-
formance degradation when using the entire VC? The reason for the performance decline with VC
may be that each brain region has a non-trivial probability of decoding failure, which means that the
more brain areas we use, the harder it is to guarantee that all of the brain areas are always functional
within the existing learning paradigm. We can see in Fig. 4 Bottom that low-level visual features
are usually insufficient for effective semantic reconstruction, which tend to generate semantically
inaccurate targets that are similar in appearance. More failure examples are provided in Fig. 5. To
more intuitively evaluate the semantic reconstruction deviation, on the right of each example, we
use off-the-shelf Stable Diffusion (version 1.4) (Rombach et al., 2022) with PLMS sampler to re-
construction visual stimuli (without fine-tuning) by conditioning on our linguistic decoding results.

4.4 DISCOVERING THE VISUAL CUES THAT GUIDE SEMANTIC RECONSTRUCTION

At present little is known about how the MindGPT encodes or infers semantic relations between
V&L representations. We question whether the muted success of MindGPT in linguistic decoding
can be attributed to the appropriate modeling of visual cues. This is also in line with the character-
istics of our human vision system: only a certain part of the rich visual information contained in an
image that interests us is perceived by our brain (Chen et al., 2023a).
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Figure 6: Schematic illustration of the semantic reconstruction guided by visual cues. On left of
each group, we show the attention map based on the cosine similarity between fMRI and CLIP
patch embedding, and its masking counterpart obtained by thresholding, respectively. The results
derived from CLIP [CLS] and patch embeddings are also displayed on the right.

Typically, the [CLS] token’s self-attention weighting coefficient of the ViT can be used to answer
what a visual model is focusing on. However, the self-attention maps of our MindGPT encoder
represent dependencies between different brain regions. In order to discover the visual cues that
guide semantic reconstruction, our practice is using a CLIP visual encoder with 16 × 16 input patch
size (i.e., CLIP-ViT-B/16) to produce a sequence of image patch embeddings, and then calculating
the cosine similarity matrix (CSM) between each image patch embedding and the class embedding
of fMRI. As shown qualitatively in Fig. 6, the CSMs contain information about the salient regions
of an image. Note that we do not provide any supervision signals of salient positions in the form
of labeled data or constraints during the training phase. We observe in Fig. 6 that the semantic
reconstruction process is guided by attention-like visual cues, i.e., the masks of similarity maps are
highly related semantically to the meaning of words or phrases in decoded language such as “a
piano”, “airplane flying in the sky”, and “a tall building”. The semantic deviation of reconstruction
even can be explained by the visual cues. Specifically, for the 5th example in Fig. 6, we can clearly
see that fMRI representation focused on the water around a whale, thus decoding the word “beach”.
In the 6th example, only the gesture of holding is captured, resulting in the decoded phrase “a person
holding”. As for the 7th example, the mask nearly covers the key part of the bicycle, except for the
blue frame, which leads to the decoding bias about color information, i.e., “a black and white photo
of a bicycle”. Interestingly, the CMS of CLIP [CLS] token exhibits a significant discrepancy from
the predictions made by the MindGPT. Since humans often pay attention to task-related objects (Shi
et al., 2023), such visual cues appear to reflect human attention, motivating our future decoding
efforts, i.e., attentional modulation-based reconstruction (Horikawa & Kamitani, 2022).

5 CONCLUSION

In this study, we have explored a non-invasive decoder when coupled with large (vision) language
models to calculate the modality shift from visual to linguistic representations. Our initial results
reveal that this simple, yet scalable, framework works surprisingly well, which suggests that there
might be a rich connection between the amodal semantic concept and visual objects. While this
hypothesis has been proposed in the neuroscience community, our study is the first to demonstrate
that vision-to-language reasoning conditioned on a single brain image would be promising by using
self-supervision models. A potential limitation is the accuracy ceiling imposed by pseudo-labels.
Overall, our MindGPT is not only beneficial to decipher how the brain bridges different types of
sensory information and then infers amodal semantic concepts, but also provides potential therapeu-
tic values for people who are unable to communicate as a result of semantic dementia.

This work also leaves some open questions, and many challenges remain, although the potential of
MindGPT is encouraging. One is that whether the amount of semantic information provided to the
VC can be quantified by the selective visual attention of humans, which awaits further exploration
and verification. Another question is how to explore the semantic relations between the VC and
the anterior temporal lobe (ATL). The extensive evidence shows that ATL degeneration results in
semantic dementia, and the answer to that question could help develop neuro-semantic prostheses
for bypassing the ATL, thus recovering the loss of semantic signals due to ATL lesions.
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A APPENDIX

A.1 NATURAL SCENES DATASET

The Natural Scenes Dataset (NSD) (Allen et al., 2022) is a recently released large-scale dataset
that includes 7T fMRI responses to tens of thousands of natural scenes, with the goal of bridging
cognitive neuroscience and AI. Specifically, NSD provides high-resolution fMRI recordings of eight
subjects when they are presented with natural scenes, collected from the Common Objects in Context
(COCO) dataset (Lin et al., 2014). During 30 to 40 MRI scanning sessions, each subject viewed
between 9,000 to 10,000 different visual stimuli (with 22,000 to 30,000 repetitions).

A.2 PERFORMANCE COMPARISON

To further validate the effectiveness of our MindGPT, we evaluate the reconstructed language in
comparison with existing approach UniBrain (Mai & Zhang, 2023). The quantitative results on sub-
ject 1 of the NSD dataset are summarized in Tab. 3. Compared to ImageNet Deng et al. (2009), the
COCO dataset provides more semantically complex scenes, and comprehensive annotations for both
objects and scenes. That is, semantically complex scenes make it difficult to establish proper corre-
spondences between virtual neural signals and candidate images. Consequently, in this context, we
opt not to build a candidate image set for augmentation. We observe that MindGPT outperforms the
competitor by 28%, 31%, and 1.8% respectively on ROUGE-1, ROUGE-L, and METEOR metrics.

Model Dataset Subject Language Similarity Metrics ↑
B@1 ROUGE-1 ROUGE-L METEOR CIDEr SPICE

UniBrain (Mai & Zhang, 2023) NSD sub-1 - 24.7 22.5 17.0 - -
MindGPT-L/16 (Ours) NSD sub-1 29.6 31.6 29.5 17.3 110.3 15.8

Table 3: Quantitative comparison of MindGPT and UniBrain on the NSD dataset (↑ denotes the
higher the better). The results of UniBrain are taken from Mai & Zhang (2023), and the optimal
indicator values are highlighted in Bold.

A.3 IMPACT OF DATA AUGMENTATION

The final test was conducted to assess the impact of data augmentation techniques on MindGPT’s
performance. Tab. 4 summarizes the language decoding capabilities of our MindGPT under different
numbers of candidate images. The ablation results demonstrate that data augmentation substantially
improves MindGPT’s decoding performance on the small-scale DIR dataset, and the quantity of
candidate images also impacts the quality of the reconstructed word sequences.

Model Dataset Subject DA Amount Language Similarity Metrics ↑
B@1 B@4 ROUGE-L METEOR CIDEr SPICE

MindGPT-L/16

DIR sub-3 × - 30.4 10.2 28.9 10.1 58.3 10.4
DIR sub-3 ✓ 100 37.6 14.4 34.7 13.4 89.5 13.5
DIR sub-3 ✓ 500 40.6 17.2 39.4 14.8 114.8 14.1
DIR sub-3 ✓ All 42.1 20.5 41.7 15.5 116.5 15.2

Table 4: Influence of the data augmentation (DA) on MindGPT. We report performance gains under
varying numbers of candidate images. Note that the number of images here signifies the increase
within the same category.
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