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Abstract
While graph convolutional networks show great practical promises, the the-
oretical understanding of their generalization properties as a function of the
number of samples is still in its infancy compared to the more broadly studied
case of supervised fully connected neural networks. In this article, we predict
the performances of a single-layer graph convolutional network (GCN) trained
on data produced by attributed stochastic block models (SBMs) in the high-
dimensional limit. Previously, only ridge regression on contextual-SBM (CSBM)
has been considered in [1]; we generalize the analysis to arbitrary convex loss
and regularization for the CSBM and add the analysis for another data model, the
neural-prior SBM. We derive the optimal parameters of the GCN. We also study
the high signal-to-noise ratio limit, detail the convergence rates of the GCN and
show that, while consistent, it does not reach the Bayes-optimal rate for any of
the considered cases.

1 Introduction and related work
Understanding the generalization properties of neural networks on unseen data is still unsatisfactory
despite the very active line of work in this direction. In this article, we are specifically interested in
understanding the generalization properties of graph neural networks, where the question remains
even further from closed compared to feedforward neural networks that have been explored more
broadly in the theoretical literature.

Tight analysis in the high-dimensional limit: The question of generalization has been studied
from many angles. Classical learning theory usually aims to avoid assumptions on the data distribution
and to provide generic generalization bounds. Such bounds are, however, often far away from
the actual performance on given benchmark datasets, see e.g. [2]. This generic line of work is
hence complemented by studies of concrete data distributions and concrete target functions. Tight
theoretical results are attainable in the high-dimensional limit, where the number of samples and their
dimension go to infinity while being proportional. In this limit many quantities of interest concentrate
on deterministic values for which a closed-set of dimension-independent fixed point equations is
derived; see e.g. [3–7]. This nice property is referred to as the blessing of dimensionality. This
line of theoretical analysis is very appealing because it is able to provide results for the information-
theoretically attainable generalization error, as well as the one obtained by a specific neural network.
This allows us to evaluate the gap between the generalization ability of neural networks and the
information-theoretically optimal one. The amplitude of the gaps to optimality can then be used to
drive the development of architectures and algorithms that decrease the gap. The behaviour of systems
of moderate sizes converges very fast to the asymptotic behaviour derived in the high-dimensional
limit, thus making it relevant and interesting, as shown by the above works. The main drawback
of this line of work is that so far the available theoretical tools only allow such analysis for only
very simple network architectures, e.g. single layer and two-layer neural networks. Still, there are
many open questions for the two-layer case [8]; and even for the simpler single-layer case, which
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corresponds to high-dimensional regressions, many open questions have been settled only recently:
see e.g. [7, 9, 10]. However, the long-term promise of this direction of research motivates efforts to
establish the tight asymptotic analysis and the underlying tools in broader and broader settings. The
present work is inscribed in this context and it treats a graph convolutional neural network. In the
same sense as done in the literature for the feed-forward fully connected networks, we will consider
only single-layer graph convolutional networks (GCNs). This is a clear limitation of our work which
is justified by the technical challenge of that setting and by the overall aim to build theoretical tools
and understanding that will be able to deal with more realistic architectures in the future. Yet, on
a practical point of view, linear single-layer GCNs can have similar performances to non-linear
multi-layer ones, while being able to deal with very large graphs and being much simpler to train, as
shown by [11] and [12].

Generalization in graph neural networks: Graph neural networks (GNNs) show a broad range
of practical applications, and, as such, understanding their generalization properties is an important
part of our overall goal. Many works consider graph or node classification in a learning scenario
where one has access to many training graphs and unseen test graphs. Some works then derive bounds
based on VC dimension, Rademacher complexity or PAC-Bayesian analysis, see for instance [13]
and the references therein; wide networks can be analyzed thanks to graph neural tangent kernel, see
e.g. [14]. Instead, we consider the semi-supervised (or transductive) learning scenario, where training
and inference are done on the same large graph whose node labels are partially revealed. This setting
is relevant for node classification problems such as community detection. Previous theoretical works
on semi-supervised learning include [15], which studies learning under stochastic gradient descent, or
[16] that focuses on graph convolutional networks and proposes experiments on data generated by the
contextual stochastic block model (CSBM). More similar questions to our work are addressed in [17]
that derives generalization bounds for a particular model of data close to the CSBM, yet considering a
generic GNN. These three works derive only loose bounds for the test performances of the GNN and
they do not provide insights on the effect of the structure of data, such as its heterophily. For instance
[17] derives bounds based on transductive Rademacher complexity; since they are too general the
authors have to model the data as a CSBM. Still the error bound they obtain is increasing with the
number of samples N , which in the limit of large N provides no guarantee. [15] provides sharper
bounds; yet they are not tight, do not take in account the data and depend on continuity constants
that cannot be determined a priori. A series of works closer to our article has been developed by
the authors of [18]. In this work, they consider a one-layer GCN trained on the CSBM by logistic
regression and derive bounds for the test loss; however, they analyze its generalization ability on
new graphs that are independent of the train graph and do not give exact predictions. In [19] they
propose an architecture of GNN that is optimal for the CSBM, among classifiers that process local
tree-like neighborhoods, and they exactly derive its generalization error. These two works consider a
low-dimensional setting.

The tight analysis of generalization in synthetic high-dimensional settings for GNNs is still in its
infancy. The only pioneering reference in this direction we are aware of is [1] where the authors
consider a simple one-layer GCN trained in a semi-supervised way by ridge regression. They predict
its asymptotic performances on data generated by the CSBM and, in particular, show how to tune the
architecture to adapt to the homophily strength of the graph.

A starting point of the tight asymptotic analysis of generalization is a suitable model for generating
data. As [1] showed, the CSBM introduced in [20, 21] is suitable. Data generated by this model
has been used to benchmark various GNN architectures in [16, 22–24] for instance. Another way
to generate graph data with node features is the neural-prior or generalized linear model SBM
(GLM–SBM) introduced in [25], where the features alone do not bring any information. For these
two models, the CSBM and the GLM–SBM, the optimal performance has been derived in the
high-dimensional limit in [25–27].

Our motivation to extend [1] comes from the related line of research we detailed above. This work
does not compare the performance of the GCN to the Bayes-optimality nor study the interplay
between the loss, the regularization and the data; while, as to high-dimensional regression, [7, 28]
established that the generalization error of the ridge regression is suboptimal for some models of data
while logistic regression is much closer to the Bayes-optimality. When it comes to rates with which
the test error goes to zero in the limit of a large number of samples, they are again suboptimal for
ridge regression while they give the Bayes-optimal rates for optimally regularized logistic regression
[7]. For a slightly different setting the Bayes-optimal performance can be achieved [28] just by
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adjusting the regularization. Natural questions thus are: how does the performance of the GCN from
[1] compare to the Bayes-optimal performance? How much do optimal regularization, architecture or
loss improve the generalization? How does this reflect in rates when the signal-to-noise ratio is large?
These questions are answered in the present article.

Main contribution: First we generalize the analysis of [1] by considering generic loss and regular-
ization for the CSBM and the GLM–SBM. We derive the summary statistics and the self-consistent
equations they follow, which allow us to predict the exact generalization performance of the GCN
in the high-dimensional limit. We show that these predictions are in very good agreement with
numerical simulations of the GCN at finite N .

Using these predictions we compare to the Bayes-optimal test accuracy, search for the optimal
parameters of the considered architecture and explore several common loss functions. We show
that in the considered setting large regularization maximizes the test accuracy for the CSBM while
leading to a test accuracy close to the optimum for the GLM–SBM; ridge regression has a large
gap to the optimality, and the logistic and hinge losses do not improve it significantly. We derive
an explicit formula for the test accuracy in the limit of large regularization, that allows us to make
further predictions and understand rather explicitly the trade-off between how the GCN uses the
graph and the features. Then we take the limit of high signal-to-noise ratio (snr). We show that the
simple GCN we consider is consistent in the sense that the test error converges to zero as the snr
diverges. We derive the convergence rates for the two models; they appear to be smaller than the
Bayes-optimal one. Last we derive the optimal self-loop strength of the GCN and provide evidence
that this prediction may be generalizable to a broader class of datasets.

2 Models, setup
Attributed SBMs: We consider a set of N nodes and a graph G. Each node i has a label yi = ±1;
we consider two balanced groups. We precise the law of yi later. We observe an adjacency matrix
A ∈ RN×N whose components are drawn according to

Aij ∼ B

(
d

N
+

λ√
N

√
d

N

(
1− d

N

)
yiyj

)
(1)

where λ is the signal-to-noise ratio (snr) of the graph, d is the average degree of the graph, B is a
Bernoulli law and the components Aij are independent random variables. We take an average degree
d of order N , but d growing with N should be sufficient for our results to hold. We discuss this
assumption more in detail in the appendix B.1. We consider a directed SBM, A non-symmetric, to
simplify the analysis; yet this model can be mapped to a non-directed SBM of snr λ′ =

√
2λ by

taking the adjacency matrix (A+AT )/
√

2.

We consider M hidden independent standard Gaussian variables uν ; we set α = N/M the aspect
ratio. We also observe features X ∈ RN×M . The features are correlated with the node labels.
We consider first the contextual stochastic block model (CSBM) [20, 21] for which the labels are
Rademacher and the features follow a Gaussian mixture:

(CSBM) yi ∼ Rad , X =

√
µ

N
yuT +W (2)

where µ is the snr of the features and W is noise whose components Wiν are independent standard
Gaussians. We will also consider another related model, the neural-prior or GLM–SBM [25], for
which the features are Gaussian and the labels are generated by a generalized linear model (GLM) on
the features, the sign being applied element-wise:

(GLM− SBM) Xiν ∼ N (0, 1) , y = sign

(
1√
N
Xu

)
. (3)

We are given a setR of train nodes and define ρ = |R|/N the training ratio. The test setR′ is selected
from the complement of R; we define ρ′ = |R′|/N as the testing ratio. We assume that R and R′ are
independent from the other quantities. The inference problem is to find back y and u given A, X , R
and the parameters of the model.

We work in the high-dimensional limit N →∞ and M →∞ while the aspect ratio α = N/M is of
order one. The other parameters λ, µ, ρ and ρ′ are also of order one.
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We precise that the total snr of the symmetric CSBM and GLM–SBM are [21, 25]

snrCSBM = λ2 +
µ2

α
, snrGLM−SBM = λ2

(
1 +

4α

π2

)
. (4)

Authors of [21, 25, 29] established that snrCSBM = 1 and snrGLM−SBM = 1 are the detectability
thresholds in the sense that in the unsupervised case ρ = 0 they separate an undetectable phase,
where the labels y cannot be recovered better than at random, from a detectable phase where they
can. In the semi-supervised case ρ > 0 this transition disappears and one can always recover some
information on the test labels. The expression of snrCSBM shows that the snr originating from the
graph is of the strength λ2 while the one originating from the features is µ2/α.

Analyzed GCN architecture: We follow [1] and we consider a single-layer graph convolutional
network (GCN). It transforms the features according to

h(w) =
1

N
Q(Ã)Xw (5)

where Q is a polynomial, w ∈ RM are the trainable weights and Ã ∈ RN×N is a rescaling of the
adjacency matrix defined by Ãij =

(
d
N

(
1− d

N

))−1/2 (
Aij − d

N

)
. For the analysis, we consider Q

of degree one as in [1], i.e. Q(Ã) = Ã+ c
√
NIN where c is a tunable parameter of the architecture.

This corresponds to applying one step of graph convolution to the features with self-loops.

This GCN is trained by empirical risk minimization. We define the regularized loss

LA,X(w) =
1

ρN

∑
i∈R

l(yihi(w)) +
r

ρN

∑
ν

γ(wν) (6)

where γ is a strictly convex regularization function, r is the regularization strength and l is a
convex loss function. We will focus on l2-regularization γ(x) = x2/2 and on the square loss
l(x) = (1 − x)2/2, the logistic loss l(x) = log(1 + e−x) or the hinge loss l(x) = max(0, 1 − x).
Since L is strictly convex it admits a unique minimizer w∗. The average train and test errors and
accuracies of this model are

Etrain/test = E
1

|R̂|

∑
i∈R̂

l(yih(w∗)i) , Acctrain/test = E
1

|R̂|

∑
i∈R̂ ,

δyi=signh(w∗)i (7)

where R̂ stands either for the train set R or the test set R′ and the expectation is taken over y, u, A,
X , R and R′.

Table 1: Summary of the parameters of the model.
N size of the graph
M dimensionality of the attributes

α = N/M aspect ratio
d average degree of the graph
λ snr of the SBM

µ snr of the Gaussian mixture
l, γ loss and regularization functions

ρ = |R|/N fraction of training nodes
r regularization strength
c self-loop strength

Bayes-optimal performances: An important consequence of modeling the data as we propose is
that one has access to the Bayes-optimal (BO) performance on this task, i.e. the upper-bound on
the test accuracy that any algorithm can reach, knowing the model and its parameters α, d, λ, µ. It
is of particular interest since it will allow us to check how far the GCN is from the optimality and
how much improvement can be done. The BO performances for both the CSBM and the GLM–SBM
have been derived in [25–27]. They can be expressed as a function of the solution of the equations
reproduced in appendix C.

3 Asymptotic prediction of the performances of the GCN
In this section we state our main result, namely the asymptotic formulae for the expected losses and
accuracies of the trained GCN. We will derive several consequences from these in the next section.

Result 3.1 (Performances on the CSBM). We consider the high-dimensional limit defined in the
previous section. Let u, ς , ξ, ζ and χ be standard Gaussian random variables and y be a Rademacher
random variable. Let Θ = {mw,mσ, Qw, Qσ, Vw, Vσ} and Θ̂ = {m̂w, m̂σ, Q̂w, Q̂σ, V̂w, V̂σ} be
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the twelve real numbers that satisfy the system of equations (28)-(36) in appendix A. We introduce
the two potentials

ψw(w) = −rγ(w)− 1

2
V̂ww

2 +

(
ς

√
Q̂w + um̂w

)
w (8)

ψout(h, σ; t̄) = −t̄l(yh)− 1

2
V̂σσ

2 +

(
ξ

√
Q̂σ + ym̂σ

)
σ (9)

+ logN
(
h|cσ + λymσ +

√
Qσζ, Vσ

)
+ logN

(
σ|√µymw +

√
Qwχ, Vw

)
whereN (·|m,V ) is a scalar Gaussian density of mean m and variance V . The parameter t̄ ∈ {0, 1}
controls if a given node is revealed t̄ = 1 or not t̄ = 0. We introduce the extremizers of these
potentials:

w∗ = argmax
w

ψw(w) (10)

(h∗, σ∗) = argmax
h,σ

ψout(h, σ; t̄ = 1) (h
′∗, σ

′∗) = argmax
h,σ

ψout(h, σ; t̄ = 0) . (11)

Then the expected errors and accuracies of the GCN on the CSBM are

Etrain = Ey,ξ,ζ,χl(yh∗) Acctrain = Ey,ξ,ζ,χδy=sign(h∗) (12)

Etest = Ey,ξ,ζ,χl(yh
′∗) Acctest = Ey,ξ,ζ,χδy=sign(h′∗) . (13)

The analysis of the GCN is thus reduced to the analysis of a finite set of scalar quantities Θ and Θ̂.
They are called the summary statistics (or order parameters) of this model and they entirely describe
its macroscopic properties. The equations (28)-(36) they satisfy are called the self-consistent or
fixed-point equations.

Result 3.2 (Performances on the GLM–SBM). The performances of the GCN on the GLM–SBM
are given by the same formulae as for the CSBM, except that the law of y is P (y = ±1|χ) =

1
2

(
1± erf

(
mwχ√

2(α−1Qw−m2
w)

))
, that Θ and Θ̂ are the solution to the equations (41)-(49) and that

ψout is taken at µ = 0.

In general there is no simple expression to the solution of the self-consistent equations and one has
to solve them numerically or to consider special cases. We consider the limiting case r →∞. It is
particularly relevant for two reasons. First in this limit simple explicit expressions can be stated; we
give them in appendix A.3 and in result 3.3. Second, as we will show in 4.1, it corresponds to the
optimal performance of the GCN on the CSBM, and close to optimal for the GLM–SBM, and it is
thus the right limit to analyze how effective the GCN is. The ridge-less limit r = 0 and αρ > 1 has
been studied by [1] for the CSBM. We checked that in this case our expressions for the errors and the
accuracies match theirs.

Result 3.3 (Large regularization case). We consider r →∞. For simplicity we state here the case
c = 0; the case c 6= 0 is given in appendix A.3. Then the test accuracy of the trained GCN is

Acctest =
1

2

(
1 + erf(λ

√
τ)
)

(14)

where τ reads, respectively on the CSBM and on the GLM–SBM:

√
τCSBM =

λρ(1 + µ)√
2
√
ρ(1 + α) + λ2ρ2(1 + µ)(1 + α+ µ)

(15)

√
τGLM−SBM =

λρ(1 + 2α/π)√
2
√
ρ(1 + α) + λ2ρ2((1 + 2α/π)(1 + α+ 2α/π)− 4α2/π2)

(16)

Outline of the derivation: We compute the expected errors and accuracies in the high-dimensional
limit N and M large. This problem can be phrased in the same way as in [1]. We define an extended
loss function

H(w) = t
∑
i∈R

l(yih(w)i) + r
∑
ν

γ(wν) + t′
∑
i∈R′

l(yih(w)i) (17)

where t and t′ are external parameters to probe the observables. The loss of the test samples is in
H for the purpose of the analysis; we will take t′ = 0 later and the algorithm is still minimizing the
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Figure 1: Search for the optimal parameters of the GCN on CSBM. α = 4, ρ = 0.1. Top: low
snr, λ = 0.5, µ = 1. Bottom: high snr, λ = 1.5, µ = 3. Full lines: prediction for the test accuracy
obtained by eqs. (13) and (28)-(36); dots: numerical simulation of the GCN for N = 104 and d = 30,
averaged over ten experiments; dotted line: Bayes-optimal test accuracy.

training loss eq. 6. The moment generating function f is defined as

Z =

∫
dw e−βH(w) , f = − 1

βN
E logZ . (18)

β is an ancillary parameter to minimize the loss: we consider the limit β →∞ where Z concentrates
over w∗ at t = 1 and t′ = 0. The train and test errors are then obtained according to Etrain = 1

ρ∂tf

and Etest = 1
ρ′ ∂t′f both evaluated at t = 1 and t′ = 0. One can in the same manner compute the

average accuracies by introducing the observables
∑
i∈R̂ δyi=signh(w)i in H .

To compute f we use the powerful but non-rigorous replica method from Statistical Physics:
E logZ = E∂nZn(n = 0) = ∂nEZn(n = 0). Zn is interpreted as having n independent replica
of the initial system, that become coupled by the expectation. We pursue the computation under
the replica symmetry (RS) assumption, which is justified by the convexity of H . We introduce an
intermediate variable σ = 1√

N
Xw that corresponds to the projected features and that appears in the

previous equations. The computation is then detailed in appendix B.

4 Consequences
In the previous part we described the performances of the trained GCN by a finite set of summary
statistics in the high-dimensional limit and we gave some explicit expressions. In this section we
derive consequences from these equations. In particular we will search for the parameters of the
GCN that optimize the test accuracy, to see whether the GCN can reach the Bayes-optimality. The
possible tunable parameters are the self-loop intensity c, the regularization strength r and the loss
l. As to the regularization γ, we consider only l2-regularization since we are in a simple setting
not involving sparsity or outliers where l1-regularization would have been beneficial. In general
the system of equations (28)-(36) and (41)-(49) defining Θ and Θ̂ has to be solved numerically and
one has to choose particular values for the parameters of the data models. For these, we consider
both low and high snr, on both the CSBM and the GLM–SBM; we keep the signals of the graph and
the features balanced and we take ρ = 0.1 to mimic the common case where relatively few train
labels are available. We did not explore all the parameters of the data models; instead we focused on
plausible values and some corner cases may not follow our statements.
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Details on the numerics are provided in appendix E. Our theoretical predictions are compared to
simulations of the GCN on figs. 1, 4, 5, 6, 8 and 9 for N = 104 and d = 30 or d = N/2. As expected,
the predicted test accuracy, train accuracy and errors are within the statistical errors.
Result 4.1 (Effect of the loss and the regularization). Based on the numerical exploration of our
equations shown in fig. 1 and in figs. 4, 5 and 6 in appendix F, we reach the conclusion that for both
the CSBM and the GLM–SBM:

1. the optimal test accuracies Acctest depend little on the choice of the loss l. On the CSBM it
appears to be reached at large regularization r →∞; on the GLM–SBM large regularization
r →∞ is close to the optimal r;

2. there is an optimal self-loop strength c∗ maximizing Acctest; c∗ is of order one;

3. there is a gap between the optimal test accuracy of the GCN and the Bayes-optimal test accuracy.

We observe in figs. 1, 5 and 6 that on the CSBM for all self-loop strengths c the test accuracy increases
with the regularization r and reaches an optimal value at r →∞. As to the GLM–SBM, we observe
in figs. 4, 5 and 6 that r →∞ is close to the optimality, in particluar if c is not too large. Notice that
at r →∞ the weights w and the output h(w) shrink to zero and that the test and train errors are large;
yet this is not an issue: to assess the performance in a classification problem, the relevant quantity is
the accuracy, not the error. At r →∞ the signs of h(w) are mostly correct and the accuracies have a
non-trivial value. At low regularization r we checked that interpolation peaks appear for the different
losses while varying α or ρ; see figs. 8 and 9 in appendix F. Increasing r smooths the peaks out, as
[1] shows for the quadratic loss; and as it is well known for the feed-forward networks, see e.g. [28].

A surprising result is that the optimal accuracy does not depend significantly on the loss; in particular,
we do not see any significant difference between the three considered losses at optimal regularization.
This is striking because it is rather generically anticipated that for classification the quadratic loss
is less suitable than the logistic or hinge losses. One previous example of r →∞ being optimal is
classification on a binary high-dimensional Gaussian mixture [28]. On the CSBM the CGN behaves
similarly, which could be expected since the features X are a Gaussian mixture. On the GLM–SBM
where X is generated by a GLM, it seems that they are partly mixed by the convolution Q(Ã)X ,
depending on the self-loops c. The fact that at r →∞ the three losses behave similarly is expected
because the output h is small and l can be expanded around 0, where the three losses are identical.

More generally, at fixed small r, the logistic/hinge loss has better performances than the quadratic loss,
as shown on figs. 1 and 4. If not regularized the quadratic loss always suffers from the interpolation
peak at ρα = 1, where the test accuracy is 1/2, as shown on fig. 8. For the logistic/hinge loss, the
interpolation threshold is less harmful and it can be moved away with λ and c, as shown on fig. 9.
A consequence is that at large λ the logistic/hinge loss does not need regularization and reaches its
optimal value even at small r, as depicted on fig. 7 in app. F, while the quadratic loss needs r →∞.

Another remarkable point is that the performances of the GCN are far from the Bayes-optimal
performances (dotted lines in the figures) in all cases. This is a major difference with the feed-forward
case [7, 28], which shows that well-regularized regression performs very closely to the Bayes-optimal
accuracy. One could argue that this can be expected since the GCN performs only one step of
convolution; estimators Q(Ã)Xw with a higher-order polynomial Q could be better. Yet such a gap
exists even for more elaborated GNNs on CSBM [26] and GLM–SBM [25].

The two following results 4.2 and 4.3 come from the analysis of eqs. (52) and (57) in appendix A.3
as to the CGN, and from eqs. (142) and (152) in appendix C as to the Bayes-optimal performances.

Result 4.2 (Consistency and convergence rates). We consider the limit of high graph signal λ→∞
at large regularization r → ∞. We take c = 0 or c = c∗ the optimal self-loop strength. Then the
GCN is consistent on both models:

Acctest −→
λ→∞

1 , log(1−Acctest) ∼
λ→∞

−λ2τ∞ , (19)

where τ∞ is the asymptotic convergence (or learning) rate; for the CSBM and the GLM–SBM
respectively it reads

τ∞CSBM =
1 + µ

2(1 + α+ µ)
, τ∞GLM−SBM =

1 + 2α/π

2
(

1 + α+ 2α/π
1+2α/π

) . (20)

Optimizing Acctest on c only leads to a sub-leading improvement compared to taking c = 0. In both
models the Bayes-optimal rate is τ∞BO = 1.
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Figure 2: Asymptotic misclassification error 1 − Acctest; left: on the CSBM, α = 4; right: on
the GLM–SBM. r = 103, ρ = 0.1. Dots: prediction for the test accuracy obtained by eqs. (13),
(28)-(36) and (41)-(49), for c = c∗ optimal obtained by grid search. Dotted lines are given by (20)
(for τ∞CSBM) and (16) (for τGLM−SBM). The Bayes-optimal values are obtained from the equations
given in appendix C.

Consequently, the GCN never reaches the Bayes-optimal rate. These statements are in agreement
with the numerics depicted in fig. 2.

The expressions of the convergence rates (20) are simple enough to be interpreted. As to τ∞CSBM, this
expression highlights the importance of the features: even at large graph snr λ the GCN relies on the
snr µ of the features. Indeed τ∞CSBM is increasing with µ, from 1/2(1 +α) at µ = 0 to 1/2 at large µ.
As suggested by the expression of the snr of the CSBM (4), increasing α lowers the performance,
since τ∞CSBM goes to zero for large α. The respective snrs µ and α do not contribute to τ∞CSBM in
the same manner as in (4) where only the ratio µ2/α matters. This is a sign that the GCN does not
handle the features optimally. The GCN also seems not to handle the graph optimally. Indeed, the
Bayes-optimal rate τBO = 1 does not depend on the feature snr µ: hence, the graph alone is sufficient
to reach the Bayes-optimal rate. As to τ∞GLM−SBM, it converges to a finite value for large α, contrary
to τ∞CSBM that goes to zero. This could be expected since the snr of the GLM–SBM (4) is increasing
with α. A less intuitive result is that τ∞GLM−SBM reaches its maximum for α going to zero, as for
τ∞CSBM. It seems that there is a trade-off between the feature snr from the GLM (increasing with α)
and the resulting feature snr of the convoluted features Q(Ã)X (decreasing with α).

The learning rates τ∞CSBM and τ∞GLM−SBM can be straightforwardly obtained by taking the limit in
τCSBM and τGLM−SBM. Though being computed for c = 0 they correctly described the leading
behaviour of the GCN at c = c∗ because optimizing on c only leads to a sub-leading improvement
in the limit λ → ∞. This is shown in fig. 2 where the predicted values follow the slopes given by
the different rates up to a small constant shift. As anticipated, this figure also shows that the three
different losses give equal performances and the same rates.

The behaviour of the learning rates with respect to r is depicted on fig. 7 in appendix F. For the logistic
loss, τ∞ does not visibly depend on r and even for small r it achieves its optimal performance; while
for the quadratic loss τ∞ increases with r up to its limit τ∞GLM−SBM (20). As explained in section 4.1,
this is because the interpolation peak is always present for the quadratic loss, while for the logistic
loss at large λ and c = c∗ it disappears.

In conclusion, fig. 2 further illustrates that the GCN does not reach the Bayes-optimal rate. For
all considered settings τ∞CSBM and τ∞GLM−SBM are bounded by 1/2 while τBO = 1. Moreover, the
two τ∞ reach their upper bound 1/2 only for the feature snr µ diverging or α going to zero, which
confirms that the considered GCN has a rather poor performance.

Result 4.3 (Optimal self-loop strength c∗). We consider the limit r → ∞. At λ → 0, the optimal
self-loop strength c∗ reads

c∗CSBM =
µ ((1 + α)(2− ρ) + ρ(1 + µ)(1 + µ+ α))

α(1 + µ)(2 + ρµ)

1

λ
, c∗GLM−SBM = Θ(1/λ) . (21)

At λ→∞, the optimal self-loop strength c∗ reads

c∗CSBM =
1 + µ+ α

α

1

λ
, c∗GLM−SBM = Θ(1/λ) (22)
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Figure 3: Optimal self-loop strength c∗ vs graph snr λ. d = 30, ρ = 0.1, r = 103 and l quadratic.
Left: on the CSBM, N = 104, α = 4, µ = 3. Right: on the fashion-SBM, classes 2 and 4. The
lines are numerical simulations of the GCN averaged over ten experiments. c∗ is computed as the
extremizer of the simulated Acctest.

where for the GLM–SBM the constant is given by solving eq. (62).

c∗ behaves like 1/λ for λ both large and small and on both data models. Fig. 3 left shows that c∗ can
be approximated by 1/λ even for λ of order one. Fig. 3 right shows that the dependency c∗ ≈ 1/λ
seems to hold on a semi-realistic dataset, the fashion-SBM, defined in appendix D.

The case λ → ∞ for the CSBM (22) is simple enough to be interpreted: c∗CSBM increases with µ
and decreases with α; this means that the larger the feature snr is, the more the features should be
taken in account in the convolution, which is expected. Conversely, c∗ increases when the graph snr
λ decreases and reaches∞ when λ = 0: the noisier the graph the less it should be considered in the
convolution. The same happens in the case λ→ 0 for the CSBM (21) if ρ is small, in which case we
have c∗CSBM = µ(1 + α)/λα(1 + µ). For an arbitrary λ, for the two models, c∗ can still be predicted
as the maximizer of eqs. (52) or (57) in the appendix, but it does not admit a simple expression.

An interesting result is that c∗ behaves like 1/λ for λ both small and large, for both models. Though
the constant factors differ, this suggests a universal behaviour, for any λ and beyond the two analyzed
data models. We conjecture that, in general, taking c∗ = 1/λ is a good approximation for the
extremizer of the test accuracy. We tested this conjecture: first (fig. 3 left) by considering λ of order
one on the CSBM, and second (fig. 3 right) by training the GCN on a semi-realistic data model, the
fashion-SBM, for which the features are taken from the fashion-MNIST dataset [30]. Fashion-SBM
is defined defined in appendix D. In the two cases, for λ ranging from 0.5 to 4 we observe that λc∗
remains close to 1, which seems to confirm our conjecture. This suggests that the rule c∗ = 1/λ
can be extended to a broader range of data, not only from the CSBM or the GLM–SBM, and could
be useful in practice. A theoretical interpretation of this universality could be that the convolution
Q(Ã)X tends to transform the features X to a Gaussian mixture, irrespectively to their distribution.
This would explain why the same behaviour appears for the different datasets.

Conclusion. We theoretically predicted the generalization performances and the optimal architec-
ture of a one-layer GCN on two models of attributed graphs. We showed that the optimal test accuracy
is achieved for a finite value of the self-loop intensity at large regularization; it does not depend
visibly on the training loss and there is a significant gap to the Bayes-optimality. This stands both
when the features and the labels are generated by a Gaussian mixture and when they are generated by
a GLM. We derived the optimal learning rates of the GCN and showed they can be interpreted in
terms of feature signal-to-noise ratios. The GCN is consistent at large graph snr but does not reach
the Bayes-optimal rate. We hope this simple setting will be usefull in understanding which aspects of
the GCN are key to reach the optimality.

A future direction of work could be to analyze more complex GNNs such as a GCN with higher-order
graph convolution Q(Ã) or an attention-based GNN and to see if they can reach the optimality.
Another direction could be given by the work [31] that proposes a model for genes where the
components of the features are correlated according to a graph. One could study the role of graph-
induced regularization.
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A Self-consistent equations
The outcome of our computation is that the performances of the trained GCN are described by twelve
scalar summary statistics (or order parameters): the alignements with the solution (or magnetizations)
mw, m̂w, mσ and m̂σ , the norms (or self-overlaps) Qw, Q̂w, Qσ and Q̂σ , and the variances Vw, V̂w,
Vσ and V̂σ .

These statistics follow a system of self-consistent equations we state here. Solving this system allows
to predict the performances of the GCN in the high-dimensional limit.
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We remind the notations from the main part. u, ς , ξ, ζ and χ are standard Gaussian random variables
and y is a binary ±1 random variable. We introduce the two potentials

ψw(w) = −rγ(w)− 1

2
V̂ww

2 +

(
ς

√
Q̂w + um̂w

)
w (23)

ψout(h, σ; t̄) = −t̄l(yh)− 1

2
V̂σσ

2 +

(
ξ

√
Q̂σ + ym̂σ

)
σ (24)

+ logN
(
h|cσ + λymσ +

√
Qσζ, Vσ

)
+ logN

(
σ|√µymw +

√
Qwχ, Vw

)
where N (·|m,V ) is a scalar Gaussian density of mean m and variance V . We introduce the
extremizers of these potentials:

w∗ = argmax
w

ψw(w) (25)

(h∗, σ∗) = argmax
h,σ

ψout(h, σ; t̄ = 1) (h
′∗, σ

′∗) = argmax
h,σ

ψout(h, σ; t̄ = 0) . (26)

For compactness we introduce the operator P that, for a polynomial Q in h and σ, acts according to

P(Q(h, σ)) = ρQ(h∗, σ∗) + (1− ρ)Q(h
′∗, σ

′∗) . (27)

For instance P(σ2) = ρ(σ∗)2 + (1− ρ)(σ
′∗)2.

A.1 CSBM

For the CSBM, y is taken Rademacher; the self-consistent equations are

mw =
1

α
Eu,ς uw∗ mσ = Ey,ξ,ζ,χ yP(σ) (28)

Qw =
1

α
Eu,ς(w∗)2 Qσ = Ey,ξ,ζ,χP(σ2) (29)

Vw =
1

α

1√
Q̂w

Eu,ς ςw∗ Vσ =
1√
Q̂σ

Ey,ξ,ζ,χ ξP(σ) (30)

m̂w =

√
µ

Vw
Ey,ξ,ζ,χ yP(σ −√µymw) (31)

Q̂w =
1

V 2
w

Ey,ξ,ζ,χP
(

(σ −√µymw −
√
Qwχ)2

)
(32)

V̂w =
1

Vw

(
1− 1√

Qw
Ey,ξ,ζ,χ χP(σ)

)
(33)

m̂σ =
λ

Vσ
Ey,ξ,ζ,χ yP(h− cσ − λymσ) (34)

Q̂σ =
1

V 2
σ

Ey,ξ,ζ,χP
(

(h− cσ − λymσ −
√
Qσζ)2

)
(35)

V̂σ =
1

Vσ

(
1− 1√

Qσ
Ey,ξ,ζ,χ ζP(h− cσ)

)
. (36)

As stated in the main part, once a solution to these equations (28)-(36) is found, the expected errors
and accuracies are then expressed as

Etrain = Ey,ξ,ζ,χl(yh∗) Acctrain = Ey,ξ,ζ,χδy=sign(h∗) (37)

Etest = Ey,ξ,ζ,χl(yh
′∗) Acctest = Ey,ξ,ζ,χδy=sign(h′∗) . (38)

A.2 GLM–SBM

For the GLM–SBM ψout is taken at µ = 0 and the law of y is

P (y = ±1|χ) =
1

2

(
1± erf

(
mwχ√

2(α−1Qw −m2
w)

))
. (39)
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For compactness we introduce

ηw = α
m2
w

Qw
and g(χ) =

e−
ηw

2(1−ηw)
χ2√

2πα−1(1− ηw)
. (40)

The self-consistent equations are

mw =
1

α
Eu,ς uw∗ mσ = Eξ,ζ,χEy yP(σ) (41)

Qw =
1

α
Eu,ς(w∗)2 Qσ = Eξ,ζ,χEyP(σ2) (42)

Vw =
1

α

1√
Q̂w

Eu,ς ςw∗ Vσ =
1√
Q̂σ

Eξ,ζ,χEy ξP(σ) (43)

m̂w =
1

Vw
Eξ,ζ,χ

∑
y=±1

yg(χ)P(σ) (44)

Q̂w =
1

V 2
w

Eξ,ζ,χ EyP
(

(σ −
√
Qwχ)2

)
(45)

V̂w =
1

Vw

(
1− 1√

Qw
Eξ,ζ,χ

(
Ey χP(σ)−

∑
y=±1

ymw√
Qw

g(χ)P(σ)

))
(46)

m̂σ =
λ

Vσ
Eξ,ζ,χEy yP(h− cσ − λymσ) (47)

Q̂σ =
1

V 2
σ

Eξ,ζ,χEyP
(

(h− cσ − λymσ −
√
Qσζ)2

)
(48)

V̂σ =
1

Vσ

(
1− 1√

Qσ
Eξ,ζ,χEy ζP(h− cσ)

)
. (49)

As stated in the main part, once a solution to these equations (41)-(49) is found, the expected errors
and accuracies are then expressed as

Etrain = Ey,ξ,ζ,χl(yh∗) Acctrain = Ey,ξ,ζ,χδy=sign(h∗) (50)

Etest = Ey,ξ,ζ,χl(yh
′∗) Acctest = Ey,ξ,ζ,χδy=sign(h′∗) . (51)

A.3 Solution in the large regularization limit

In this subsection we take r →∞; we state the solution to eqs. (28)-(36) and (41)-(49) and we give
the expression of the test accuracy of the GCN.

The following expressions can be derived considering l(x) = (1− x)2/2 quadratic, without loss of
generality, since at large regularization the weights w and the output h(w) of the GCN are small, and l
can expanded around 0 as a quadratic potential. As to the regularization γ we take a l2 regularization,
as explained in the main part 4.

CSBM. The test accuracy of the GCN is

Acctest =
1

2

1 + erf

 λmσ + cVwm̂σ + c
√
µmw

√
2

√
Qσ + c2V 2

wQ̂σ + c2Qw

 , (52)
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the summary statistics being

mw =
ρ

αr

√
µ(λ+ c) Vw =

1

αr
Qw =

ρ

αr2

(
1 + c2(1− ρ) + ρ(1 + µ)(λ+ c)2

)
(53)

mσ =
ρ

αr
(1 + µ)(λ+ c) Vσ =

1

αr
Qσ =

ρ

α2r2

(
(1 + α)(1 + c2(1− ρ)) (54)

+ ρ(1 + µ)(1 + µ+ α)(λ+ c)2
)

m̂w = ρ
√
µ(λ+ c) Q̂w = ρ+ ρ(λρ+ c)2 + (1− ρ)λ2ρ2 (55)

m̂σ = λρ Q̂σ = ρ (56)

GLM–SBM. The test accuracy of the GCN is

Acctest = Eχ
1

2

(
1 + erf

(
1√
2
χ

√
2α

π

))1 + erf

λmσ + cVwm̂σ + c
√
Qwχ

√
2

√
Qσ + c2V 2

wQ̂σ


=

∫
>0

dz√
2π/α

e−αz
2/2

1 + erf

 λmσ + cVwm̂σ + cmwαz
√

2

√
Qσ + c2V 2

wQ̂σ + c2(Qw − αm2
w)

 , (57)

the summary statistics being

mw =
ρ

αr

√
2α

π
(λ+ c) Vw =

1

αr
Qw =

ρ

αr2

(
1 + c2(1− ρ) + ρ(1 + 2α/π)(λ+ c)2

)
(58)

mσ =
ρ

αr
(1 + 2α/π)(λ+ c) Vσ =

1

αr
Qσ =

ρ

α2r2

(
(1 + α)(1 + c2(1− ρ)) (59)

+ ρ((1 + 2α/π)(1 + α) + 2α/π)(λ+ c)2
)

m̂w = ρ

√
2α

π
(λ+ c) Q̂w = ρ+ ρ(λρ+ c)2 + (1− ρ)λ2ρ2 (60)

m̂σ = λρ Q̂σ = ρ (61)

In the limit λ→∞ the maximizer c∗ of (57) is

c∗ =
1

λ
argmin

c̃
e−2bτ∞GLM−SBM+a2τ∞GLM−SBM

(
1− erf

(√
2aτ∞GLM−SBM

))
(62)

a =
√
αc̃

√
2α/π

1 + 2α/π
, b =

c̃

1 + 2α/π
− 1

2

αc̃2 + (1 + α)/ρ

(1 + α)(1 + 2α/π) + 2α/π
(63)

τ∞GLM−SBM =
1 + 2α/π

2
(

1 + α+ 2α/π
1+2α/π

) (64)

B Replica computation
In this appendix, we derive the main equations given in section 3 of the main text and in appendix A.

B.1 Gaussian equivalence

To average over the adjacency matrix Ã we rely on a Gaussian equivalence property. It states that
the rescaled adjacency matrix Ãij =

(
d
N

(
1− d

N

))−1/2 (
Aij − d

N

)
can be approximated by the

rank-one plus noise matrix Ag = λ√
N
yyT + Ξ, where Ξ are random fluctuations whose components

Ξij are independent standard Gaussians, without changing the expected losses and accuracies of the
model, in the limit of large average degree d. It has been stated in [32] for the SBM, proved in [21] as
to the mutual information and tested in [1] for the GCN for d = Θ(

√
N). In practice taking d & 20
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at N = 1000 is enough to observe no difference for the losses and accuracies and assuming d = ω(1)
should be sufficient.

For the equivalence property to hold, the GCN has to compute the convolution over Ã. The constant
shift by d/N can be interpreted as centering A while the constant scaling by

(
d
N

(
1− d

N

))−1/2

normalizes its variance. The convolution over Ã can still be interpreted as a graph convolution.
The scaling can be absorbed in w and r; and if the graph is not too dense d = o(N) the shift is
negligeable.

B.2 CSBM

We first derive the results for the CSBM, generalizing the results of [1] to arbitrary convex loss and
regularization. As stated in the main part 3, we introduce n replica:

Z =

∫ M∏
ν

dwνPW (wν)e−βt
∑
i∈R l(yih(w)i)−βt′

∑
i∈R′ l(yih(w)i) (65)

− βNf = Eu,Ξ,W,y logZ = Eu,Ξ,W,y
∂

∂n
Zn(n = 0) (66)

=
∂

∂n
(n = 0)Eu,Ξ,W,y

∫ n∏
a

M∏
ν

dwaνPW (waν)e
∑n
a −βt

∑
i∈R l(yih(wa)i)−βt′

∑
i∈R′ l(yih(wa)i)

︸ ︷︷ ︸
∗

(67)

where PW (w) = exp(−βrγ(w)) is the prior on the weights induced by the regularization. We
introduce several ancillary variables via δ-Dirac functions to decouple the random variables. We set
h = 1√

N
(Ag + c

√
NIN )σ and σ = 1√

N
Xw. Then we take the expectation on the Gaussian noise:

∗ ∝Eu,Ξ,W,y
∫ ∏

a,ν

dwaνPW (waν)
∏
a,i

dhai dqai e
−βt

∑
a,i∈R l(yih

a
i )−βt′

∑
a,i∈R′ l(yih

a
i )+

∑
a,i iqai (hai−h(wa)i)

(68)

=Eu,Ξ,W,y
∫ ∏

a,ν

dwaνPW (waν)
∏
a,i

dhai dqai dσai dq̂ai e
−βt

∑
a,i∈R l(yih

a
i )−βt′

∑
a,i∈R′ l(yih

a
i )

e
∑
a,i iqai

(
hai− 1√

N

∑
j

(
c
√
Nδi,j+

λ√
N
yiyj+Ξij

)
σaj

)
+
∑
a,i iq̂ai

(
σai − 1√

N

∑
ν(
√

µ
N yjuν+Wjν)waν

)
(69)

=Eu,y
∫ ∏

a,ν

dwaνPW (waν)
∏
a,i

dhai dqai dσai dq̂ai e
−βt

∑
a,i∈R l(yih

a
i )−βt′

∑
a,i∈R′ l(yih

a
i )+i

∑
a,i(q

a
i h
a
i+q̂ai σ

a
i )

e−i
∑
a,i(cq

a
i σ

a
i + λ

N yiq
a
i

∑
j yjσ

a
j )− 1

2N

∑
i,j,a,b q

a
i q
b
iσ
a
j σ

b
j−i

∑
a,i

√
µ

N yiq̂
a
i

∑
ν uνw

a
ν− 1

2N

∑
i,ν,a,b q̂

a
i q̂
b
iw

a
νw

b
ν .

(70)

We integrate over the qs and q̂s. For simplicity we pack the replica into vectors of size n.

∗ =Eu,y
∫ ∏

a,ν

dwaνPW (waν)
∏
a,i

dhai dqai dσai dq̂ai e
−βt

∑
a,i∈R l(yih

a
i )−βt′

∑
a,i∈R′ l(yih

a
i )+i

∑
i q
T
i (hi−cσi− λ

N yi
∑
j yjσj)

e
− 1

2N

∑
i q
T
i (
∑
j σjσ

T
j )qi+i

∑
i q̂
T
i

(
σi−

√
µ

N yi
∑
ν uνwν

)
− 1

2N

∑
i q̂
T
i (
∑
ν wνw

T
ν )q̂i (71)

=Eu,y
∫ ∏

a,ν

dwaνPW (waν)
∏
a,i

dhai dσai e
−βt

∑
a,i∈R l(yih

a
i )−βt′

∑
a,i∈R′ l(yih

a
i )

∏
i

N

hi
∣∣∣∣∣∣cσi +

λ

N
yi
∑
j

yjσj ,
1

N

∑
j

σjσ
T
j

N (σi
∣∣∣∣∣
√
µ

N
yi
∑
ν

uνwν ,
1

N

∑
ν

wνw
T
ν

)
;

(72)
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whereN (x|µ,Σ) = det(2πΣ)−1/2e−(x−µ)TΣ−1(x−µ)/2 is a Gaussian density. The order parameters
are

ma
w =

1

N

∑
ν

uνw
a
ν ma

σ =
1

N

∑
i

yiσ
a
i (73)

Qabw =
1

N

∑
ν

waνw
b
ν Qabσ =

1

N

∑
i

σai σ
b
i (74)

We introduce them via new δ-Dirac functions. We can factorize the i and ν indices.

∗ ∝Eu,y
∫ ∏

a,ν

dwaνPW (waν)
∏
a,i

dhai dσai
∏
a≤b

dQ̂abw dQabw dQ̂abσ dQabσ
∏
a

dm̂a
wdma

wdm̂a
σdma

σ (75)

e−βt
∑
a,i∈R l(yih

a
i )−βt′

∑
a,i∈R′ l(yih

a
i )
∏
a≤b

eQ̂
ab
w (NQabw −

∑
ν w

a
νw

b
ν)+Q̂abσ (NQabσ −

∑
i σ

a
i σ

b
i )

∏
a

em̂
a
w(Nmaw−

∑
ν uνw

a
ν )+m̂aσ(Nmaσ−

∑
i yiσ

a
i )
∏
i

N (hi |cσi + λyimσ, Qσ )N (σi |
√
µyimw, Qw )

=

∫ ∏
a≤b

dQ̂abw dQabw dQ̂abσ dQabσ
∏
a

dm̂a
wdma

wdm̂a
σdma

σ

∏
a≤b

eN(Q̂abw Q
ab
w +Q̂abσ Q

ab
σ )
∏
a

eN(m̂awm
a
w+m̂aσm

a
σ)

[
Eu
∫ ∏

a

dwaeψ
(n)
w (w)

]N/α [
Ey
∫ ∏

a

dhadσaeψ
(n)
out(h,σ;t)

]ρN
(76)

[
Ey
∫ ∏

a

dhadσaeψ
(n)
out(h,σ;t′)

]ρ′N [
Ey
∫ ∏

a

dhadσaeψ
(n)
out(h,σ;0)

](1−ρ−ρ′)N

;

where we defined
ψ(n)
w (w) =

∑
a

logPW (wa)−
∑
a≤b

Q̂abw w
awb −

∑
a

m̂a
wuw

a (77)

ψ
(n)
out(h, σ; t̄) = −βt̄

∑
a

l(yha)−
∑
a≤b

Q̂abσ σ
aσb −

∑
a

m̂a
σyσ

a − 1

2
(h− cσ − λymσ)TQ−1

σ (h− cσ − λymσ)

− 1

2
log detQσ −

1

2
(σ −√µymw)TQ−1

w (σ −√µymw)− 1

2
log detQw .

(78)

We use the replica-symmetric ansatz: we set Q̂aa = 1
2 R̂, Q̂ab = −Q̂, Qaa = R, Qab = Q,

m̂a = −m̂ and ma = m. Since we will take the derivative wrt n and send n to zero we discard all
the terms that are not proportionnal to n. We compute first that

Q−1 =
1

R−Q
In −

Q

(R−Q)2
Jn,n + o(n) (79)

log detQ = n
Q

R−Q
+ n log(R−Q) + o(n) ; (80)

where Jn,n is the matrix filled with ones. We define the variances V = R−Q and V̂ = R̂+ Q̂. We
introduce scalar Gaussian random variables ς , ξ, ζ and χ to decouple the replica and factorize them.
Then

∗ ∝
∫

dQ̂wdV̂wdQwdVwdQ̂σdV̂σdQσdVσdm̂wdmwdm̂σdmσe
nN
2 (V̂wVw+V̂wQw−VwQ̂w+V̂σVσ+V̂σQσ−VσQ̂σ)

e−nN(m̂wmw+m̂σmσ)

[
Eu,ς

(∫
dw eψw(w)

)n]N/α [
Ey,ξ,ζ,χ

(∫
dhdσeψout(h,σ;t)

)n]ρN
[
Ey,ξ,ζ,χ

(∫
dhdσeψout(h,σ;t′)

)n]ρ′N [
Ey,ξ,ζ,χ

(∫
dhdσeψout(h,σ;0)

)n](1−ρ−ρ′)N

(81)

:=

∫
dm dq dv eNφ

(n)(m,q,v) , (82)
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with

ψw(w) = logPW (w)− 1

2
V̂ww

2 +

(
ς

√
Q̂w + um̂w

)
w (83)

ψout(h, σ; t̄) = −βt̄l(yh)− 1

2
V̂σσ

2 +

(
ξ

√
Q̂σ + ym̂σ

)
σ (84)

+ logN
(
h|cσ + λymσ +

√
Qσζ, Vσ

)
+ logN

(
σ|√µymw +

√
Qwχ, Vw

)
and m, q and v standing for all the order parameters. ξ, ζ and χ are scalar standard Gaussians. We
take the limit N →∞ thanks to Laplace’s method.

−βf ∝ 1

N

∂

∂n
(n = 0)

∫
dmdq dv eNφ

(n)(m,q,v) (85)

= extr
m,q,v

∂

∂n
(n = 0)φ(n)(m, q, v) := extr

m,q,v
φ(m, q, v) ; (86)

the free entropy of the problem is

φ =
1

2

(
V̂wVw + V̂wQw − VwQ̂w + V̂σVσ + V̂σQσ − VσQ̂σ

)
− m̂wmw − m̂σmσ

+
1

α
Eu,ς

(
log

∫
dw eψw(w)

)
+ ρEy,ξ,ζ,χ

(
log

∫
dhdσeψout(h,σ;t)

)
+ ρ′Ey,ξ,ζ,χ

(
log

∫
dhdσeψout(h,σ;t′)

)
+ (1− ρ− ρ′)Ey,ξ,ζ,χ

(
log

∫
dhdσeψout(h,σ;0)

)
.

(87)

We take the extremum of the free entropy deriving it wrt the order parameters, evaluated at t = 1 and
t′ = 0. We obtain the following fixed-point conditions.

mw =
1

α
Eu,ς uEPww mσ = Ey,ξ,ζ,χ y

(
ρEPout

σ + (1− ρ)EP ′outσ
)

(88)

Qw + Vw =
1

α
Eu,ςEPww2 Qσ + Vσ = Ey,ξ,ζ,χ

(
ρEPout

σ2 + (1− ρ)EP ′outσ
2
)

(89)

Vw =
1

α

1√
Q̂w

Eu,ς ς EPww Vσ =
1√
Q̂σ

Ey,ξ,ζ,χ ξ
(
ρEPout

σ + (1− ρ)EP ′outσ
)

(90)

m̂w =

√
µ

Vw
Ey,ξ,ζ,χ y

(
ρEPout

(σ −√µymw) + (1− ρ)EP ′out(σ −
√
µymw)

)
(91)

Q̂w − V̂w =
1

V 2
w

Ey,ξ,ζ,χ
(
ρEPout(σ −

√
µymw −

√
Qwχ)2 + (1− ρ)EP ′out(σ −

√
µymw −

√
Qwχ)2

)
− 1

Vw
(92)

V̂w =
1

Vw

(
1− 1√

Qw
Ey,ξ,ζ,χ χ

(
ρEPout

σ + (1− ρ)EP ′outσ
))

(93)

m̂σ =
λ

Vσ
Ey,ξ,ζ,χ y

(
ρEPout

(h− cσ − λymσ) + (1− ρ)EP ′out(h− cσ − λymσ)
)

(94)

Q̂σ − V̂σ =
1

V 2
σ

Ey,ξ,ζ,χ
(
ρEPout

(h− cσ − λymσ −
√
Qσζ)2 + (1− ρ)EP ′out(h− cσ − λymσ −

√
Qσζ)2

)
− 1

Vσ
(95)

V̂σ =
1

Vσ

(
1− 1√

Qσ
Ey,ξ,ζ,χ ζ

(
ρEPout(h− cσ) + (1− ρ)EP ′out(h− cσ)

))
(96)

The measures are

dPw =
dw eψw(w)∫
dw eψw(w)

, dPout =
dhdσ eψout(h,σ;t̄=1)∫
dhdσ eψout(h,σ,t̄=1)

, dP ′out =
dhdσ eψout(h,σ;t̄=0)∫
dhdσ eψout(h,σ,t̄=0)

.

(97)
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These measures can be computed thanks to Laplace’s method in the limit β →∞. We have to rescale
the order parameters not to obtain a degenerated solution. We recall that logPW (w) ∝ β. We take
V̂ → βV̂ , Q̂→ β2Q̂, m̂→ βm̂ and V → β−1V for both w and σ. We define

w∗ = argmax
w

ψw(w) (98)

(h∗, σ∗) = argmax
h,σ

ψout(h, σ; t̄ = 1) (h
′∗, σ

′∗) = argmax
h,σ

ψout(h, σ; t̄ = 0) ; (99)

then, keeping the first order in β in both lhs and rhs, the fixed-point equations are

mw =
1

α
Eu,ς uw∗ mσ = Ey,ξ,ζ,χ y

(
ρσ∗ + (1− ρ)σ

′∗
)

(100)

Qw =
1

α
Eu,ς(w∗)2 Qσ = Ey,ξ,ζ,χ

(
ρ(σ∗)2 + (1− ρ)(σ

′∗)2
)

(101)

Vw =
1

α

1√
Q̂w

Eu,ς ςw∗ Vσ =
1√
Q̂σ

Ey,ξ,ζ,χ ξ
(
ρσ∗ + (1− ρ)σ

′∗
)

(102)

m̂w =

√
µ

Vw
Ey,ξ,ζ,χ y

(
ρ(σ∗ −√µymw) + (1− ρ)(σ

′∗ −√µymw)
)

(103)

Q̂w =
1

V 2
w

Ey,ξ,ζ,χ
(
ρ(σ∗ −√µymw −

√
Qwχ)2 + (1− ρ)(σ

′∗ −√µymw −
√
Qwχ)2

)
(104)

V̂w =
1

Vw

(
1− 1√

Qw
Ey,ξ,ζ,χ χ

(
ρσ∗ + (1− ρ)σ

′∗
))

(105)

m̂σ =
λ

Vσ
Ey,ξ,ζ,χ y

(
ρ(h∗ − cσ∗ − λymσ) + (1− ρ)(h

′∗ − cσ
′∗ − λymσ)

)
(106)

Q̂σ =
1

V 2
σ

Ey,ξ,ζ,χ
(
ρ(h∗ − cσ∗ − λymσ −

√
Qσζ)2 + (1− ρ)(h

′∗ − cσ
′∗ − λymσ −

√
Qσζ)2

)
(107)

V̂σ =
1

Vσ

(
1− 1√

Qσ
Ey,ξ,ζ,χ ζ

(
ρ(h∗ − cσ∗) + (1− ρ)(h

′∗ − cσ
′∗)
))

(108)

The average train and test losses can be computed by deriving φ wrt t and t′ and taking it extremum by
evaluating it at the fixed-point of these equations. Simplifying the notations we obtain the equations
given in part A.

B.3 GLM–SBM

We derive the results for the GLM–SBM, which has not been studied by [1]. The derivation is similar
to the derivation of the previous part on the CSBM. As we saw for the CSBM, one can readily take
the test set R′ being the complement of R i.e. ρ′ = 1− ρ; the resulting equations do not change. As
stated in the main part 3, we introduce n replica:

Z =

∫ M∏
ν

dwνPW (wν)

N∏
i

dyiPo

(
yi|

1√
N
XT
i u

)
e−βt

∑
i∈R l(yih(w)i)−βt′

∑
i∈R′ l(yih(w)i) (109)

− βNf = Eu,Ξ,X logZ = Eu,Ξ,X
∂

∂n
Zn(n = 0) =

∂

∂n
(n = 0) (110)

Eu,Ξ,X
∫ n∏

a

M∏
ν

dwaνPW (waν)

N∏
i

dyiPo

(
yi|

1√
N
XT
i u

)
e
∑n
a −βt

∑
i∈R l(yih(wa)i)−βt′

∑
i∈R′ l(yih(wa)i)

︸ ︷︷ ︸
∗
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where Po(y|z) = δy=sign(z). We introduce ancillary variables: h = 1√
N

(Ag + c
√
NIN )σ, σ =

1√
N
Xw and z = 1√

N
Xu; we average over Ξ and X , pack the replica and integrate.

∗ ∝Eu,Ξ,X
∫ ∏

a,ν

dwaνPW (waν)
∏
i

dyiPo(yi|zi)dzidq̄i
∏
a,i

dhai dqai dσai dq̂ai e
−βt

∑
a,i∈R l(yih

a
i )−βt′

∑
a,i∈R′ l(yih

a
i )

(111)

e
∑
i iq̄i

(
zi− 1√

N

∑
ν Xiνuν

)
+
∑
a,i iqai

(
hai− 1√

N

∑
j

(
c
√
Nδi,j+

λ√
N
yiyj+Ξij

)
σaj

)
+
∑
a,i iq̂ai

(
σai − 1√

N

∑
ν Xiνw

a
ν

)

=Eu
∫ ∏

a,ν

dwaνPW (waν)
∏
i

dyiPo(yi|zi)dzi
∏
a,i

dhai dσai e
−βt

∑
a,i∈R l(yih

a
i )−βt′

∑
a,i∈R′ l(yih

a
i )

(112)∏
i

N

hi
∣∣∣∣∣∣cσi +

λ

N
yi
∑
j

yjσj ,
1

N

∑
j

σjσ
T
j

∏
i

N

(
( ziσi )

∣∣∣∣∣ 0, 1

N

∑
ν

( uνwν ) ( uνwν )
T

)
.

Here ( ziσi ) and ( uνwν ) are vectors of size n+ 1. 1
N

∑
ν u

2
ν self-averages to ρu := 1

αEuu
2 = 1

α . As for
the CSBM the order parameters are

ma
w =

1

N

∑
ν

uνw
a
ν ma

σ =
1

N

∑
i

yiσ
a
i (113)

Qabw =
1

N

∑
ν

waνw
b
ν Qabσ =

1

N

∑
i

σai σ
b
i (114)

We introduce them via new δ-Dirac functions:

∗ ∝Eu
∫ ∏

a,ν

dwaνPW (waν)
∏
i

dyiPo(yi|zi)dzi
∏
a,i

dhai dσai
∏
a≤b

dQ̂abw dQabw dQ̂abσ dQabσ
∏
a

dm̂a
wdma

wdm̂a
σdma

σ

(115)∏
a≤b

eQ̂
ab
w (NQabw −

∑
ν w

a
νw

b
ν)+Q̂abσ (NQabσ −

∑
i σ

a
i σ

b
i )
∏
a

em̂
a
w(Nmaw−

∑
ν uνw

a
ν )+m̂aσ(Nmaσ−

∑
i yiσ

a
i )

e−βt
∑
a,i∈R l(yih

a
i )−βt′

∑
a,i∈R′ l(yih

a
i )
∏
i

N (hi |cσi + λyimσ, Qσ )N
(

( ziσi )
∣∣∣ 0,( ρu mTw

mw Qw

))
=

∫ ∏
a≤b

dQ̂abw dQabw dQ̂abσ dQabσ
∏
a

dm̂a
wdma

wdm̂a
σdma

σ

∏
a≤b

eN(Q̂abw Q
ab
w +Q̂abσ Q

ab
σ )
∏
a

eN(m̂awm
a
w+m̂aσm

a
σ)

[
Eu
∫ ∏

a

dwaeψ
(n)
w (w)

]N/α [∫
dyPo(y|z)dz

∏
a

dhadσaeψ
(n)
out(h,σ;t)

]ρN
(116)

[∫
dyPo(y|z)dz

∏
a

dhadσaeψ
(n)
out(h,σ;t′)

](1−ρ)N

;

where we defined

ψ(n)
w (w) =

∑
a

logPW (wa)−
∑
a≤b

Q̂abw w
awb −

∑
a

m̂a
wuw

a (117)

ψ
(n)
out(h, σ; t̄) = −βt̄

∑
a

l(yha)−
∑
a≤b

Q̂abσ σ
aσb −

∑
a

m̂a
σyσ

a − 1

2
(h− cσ − λymσ)TQ−1

σ (h− cσ − λymσ)

− 1

2
log detQσ −

1

2
( zσ )

T
(
ρu mTw
mw Qw

)−1

( zσ )− 1

2
log det

(
ρu mTw
mw Qw

)
. (118)

We use the replica-symmetric ansatz: we set Q̂aa = 1
2 R̂, Q̂ab = −Q̂, Qaa = R, Qab = Q,

m̂a = −m̂ and ma = m. We define the variances V = R −Q and V̂ = R̂ + Q̂. We take the first

19



Asymptotic generalization error of a single-layer GCN

order in n; and as before we have

Q−1
σ =

1

Vσ
In −

Qσ
V 2
σ

Jn,n + o(n) (119)

log detQσ = n
Qσ
Vσ

+ n log(Vσ) + o(n) ; (120)

we compute that (
ρu mTw
mw Qw

)−1

=

(
1
ρu

+n
m2
w

Vwρ2u
− mw
Vwρu

(1,...,1)

− mw
Vwρu

(1,...,1)T 1
Vw

In− 1
V 2
w

(Qw−
m2
w
ρu

)Jn,n

)
(121)

log det
(
ρu mTw
mw Qw

)
= log ρu +

n

Vw
(Qw −

m2
w

ρu
) + n log Vw + o(n) . (122)

We can factorize the replica introducing scalar standard Gaussians:

∗ ∝
∫

dQ̂wdV̂wdQwdVwdQ̂σdV̂σdQσdVσdm̂wdmwdm̂σdmσe
nN
2 (V̂wVw+V̂wQw−VwQ̂w+V̂σVσ+V̂σQσ−VσQ̂σ)

e−nN(m̂wmw+m̂σmσ)

[
Eu,ς

(∫
dw eψw(w)

)n]N/α [
Eξ,ζ,χ

∫
dydz ψ∗out(y, z)

(∫
dhdσeψout(h,σ;t)

)n]ρN
[
Eξ,ζ,χ

∫
dydz ψ∗out(y, z)

(∫
dhdσeψout(h,σ;t)

)n](1−ρ)N

; (123)

with

ψw(w) = logPW (w)− 1

2
V̂ww

2 +

(
ς

√
Q̂w + um̂w

)
w (124)

ψout(h, σ; t̄) =− βt̄l(yh)− 1

2
V̂σσ

2 +

(
ξ

√
Q̂σ + ym̂σ

)
σ (125)

+ logN
(
h|cσ + λymσ +

√
Qσζ, Vσ

)
+ logN

(
σ
∣∣∣ρ−1
u mwz +

√
(1− ηw)Qwχ, Vw

)
ψ∗out(y, z) =Po(y|z)N (z|0, ρu) , (126)

where we defined ηw =
m2
w

ρuQw
. We take the limit N →∞ and n→ 0. The free entropy is then

φ =
1

2

(
V̂wVw + V̂wQw − VwQ̂w + V̂σVσ + V̂σQσ − VσQ̂σ

)
− m̂wmw − m̂σmσ +

1

α
Eu,ς

(
log

∫
dw eψw(w)

)
+ ρEξ,ζ,χ

(∫
dydz ψ∗out(y, z) log

∫
dhdσeψout(h,σ;t)

)
(127)

+ (1− ρ)Eξ,ζ,χ
(∫

dydz ψ∗out(y, z) log

∫
dhdσeψout(h,σ;t′)

)
.

As before we rescale the order parameters according to V̂ → βV̂ , Q̂ → β2Q̂, m̂ → βm̂ and
V → β−1V for both w and σ, so in the limit β →∞ by Laplace’s method the inner integrals are not
degenerated. We define

w∗ = argmax
w

ψw(w) (128)

(h∗, σ∗) = argmax
h,σ

ψout(h, σ; t̄ = 1) (h
′∗, σ

′∗) = argmax
h,σ

ψout(h, σ; t̄ = 0) . (129)

The fixed-point equations are

mw =
1

α
Eu,ς uw∗ mσ = Eξ,ζ,χ

∫
dydz ψ∗out(y, z)y

(
ρσ∗ + (1− ρ)σ

′∗
)

(130)

Qw =
1

α
Eu,ς(w∗)2 Qσ = Eξ,ζ,χ

∫
dydz ψ∗out(y, z)

(
ρ(σ∗)2 + (1− ρ)(σ

′∗)2
)

(131)

Vw =
1

α

1√
Q̂w

Eu,ς ςw∗ Vσ =
1√
Q̂σ

Eξ,ζ,χ
∫

dydz ψ∗out(y, z)ξ
(
ρσ∗ + (1− ρ)σ

′∗
)

(132)
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m̂w =
1

Vw
Eξ,ζ,χ

∫
dydz ψ∗out(y, z)

(
ρ−1
u z − χ ρ−1

u mw√
(1− ηw)Qw

)
(ρσ∗ + (1− ρ)σ

′∗) (133)

Q̂w =
1

V 2
w

Eξ,ζ,χ
∫

dydz ψ∗out(y, z)
(
ρ(σ∗ − ρ−1

u mwz − χ
√

(1− ηw)Qw)2 (134)

+ (1− ρ)(σ
′∗ − ρ−1

u mwz − χ
√

(1− ηw)Qw)2
)

V̂w =
1

Vw

(
1− 1√

(1− ηw)Qw
Eξ,ζ,χ

∫
dydz ψ∗out(y, z)χ

(
ρσ∗ + (1− ρ)σ

′∗
))

(135)

m̂σ =
λ

Vσ
Eξ,ζ,χ

∫
dydz ψ∗out(y, z)y

(
ρ(h∗ − cσ∗ − λymσ) + (1− ρ)(h

′∗ − cσ
′∗ − λymσ)

)
(136)

Q̂σ =
1

V 2
σ

Eξ,ζ,χ
∫

dydz ψ∗out(y, z)
(
ρ(h∗ − cσ∗ − λymσ −

√
Qσζ)2 + (1− ρ)(h

′∗ − cσ
′∗ − λymσ −

√
Qσζ)2

)
(137)

V̂σ =
1

Vσ

(
1− 1√

Qσ
Eξ,ζ,χ

∫
dydz ψ∗out(y, z)ζ

(
ρ(h∗ − cσ∗) + (1− ρ)(h

′∗ − cσ
′∗)
))

(138)

The average train and test losses can be computed by deriving φ wrt t and t′ and taking it extremum
by evaluating it at the fixed-point of these equations.

The integral on z can be computed by the change of variable χ→ χ√
1−ηw

− ρ−1
u mwz√

(1−ηw)Qw
. We obtain

the expressions given in part A, after simplification of the notations.

C Bayes-optimal performances
In section 4 we compare the GCN to the Bayes-optimal performances. The Bayes-optimal perfor-
mances on the CSBM and the GLM–SBM were derived by [25–27]. They can be expressed as a
function of the fixed-point of a system of equations over three scalar quantities.

These works consider a non-directed SBM with symmetric adjacency matrix A and symmetric
fluctuations Ξ in Ag = λ√

N
yyT + Ξ. In our work for simplicity we take Ξ non-symmetric. Then the

corresponding A and Ag can be mapped to a non-directed SBM by the transform (A+AT )/
√

2 and
it is sufficient to rescale the snr λ of the non-directed SBM by

√
2 to have the same snr as for the

directed SBM. So we set ∆I = 2λ2 the signal-to-noise ratio of the corresponding low-rank matrix
factorization problem.

C.1 CSBM

The equations are given by [26] in its appendix. The self-consistent equations read

mt =
µ

α
mt
u + ∆Im

t−1
y (139)

mt
y = ρ+ (1− ρ)EW

[
tanh

(
mt +

√
mtW

)]
(140)

mt+1
u =

µmt
y

1 + µmt
y

(141)

where W is a standard scalar Gaussian. Once a fixed-point (m,my,mu) is obtained the test accuracy
is given by

Acctest =
1

2
(1 + erf

√
m/2) . (142)

In the large λ limit we have my → 1 and

log(1−Acctest) ∼
λ→∞

−λ2 . (143)
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C.2 GLM–SBM

The equations are given by [27], only for the unsupervised case ρ = 0. The supervised part can be
inferred from the simpler case of Bayes-optimal inference on a GLM [4]. Then the supervised part
and the unsupervised part are merged in a linear fashion as on the CSBM. We need the following (not
normalized) density on y and z:

Q(y, z;B,A, ω, V ) = Po(y|z)e−A/2+By e
−(z−ω)2/2V

√
2πV

. (144)

We define the update functions

Zout(B,A, ω, V ) =

∫
dydz Q(y, z;B,A, ω, V ) Zsup

out (ω, V ) =

∫
dz Q(+1, z; 0, 0, ω, V )

= e−A/2
(

coshB + sinh(B)erf(ω/
√

2V )
)

=
1

2

(
1 + erf(ω/

√
2V )

)
(145)

fout = ∂ω logZout f sup
out = ∂ω logZsup

out (146)
fy = ∂B logZout (147)

Then the self-consistent equations read

m̂t
u = ρEη

[
Zsup

out

(√
mt
uη, ρu −mt

u

)
f sup

out

(√
mt
uη, ρu −mt

u

)2
]

(148)

+ (1− ρ)Eξ,η
[
Zout

(√
∆Imt

yξ,∆Im
t
y,
√
mt
uη, ρu −mt

u

)
fout

(√
∆Imt

yξ,∆Im
t
y,
√
mt
uη, ρu −mt

u

)2
]

mt+1
y = ρ+ (1− ρ)Eξ,η

[
Zout

(√
∆Imt

yξ,∆Im
t
y,
√
mt
uη, ρu −mt

u

)
fy

(√
∆Imt

yξ,∆Im
t
y,
√
mt
uη, ρu −mt

u

)2
]

(149)

mt+1
u =

1

α

m̂t
u

1 + m̂t
u

(150)

where ξ and η are standard scalar Gaussians and ρu = α−1. Once a fixed-point (m̂u,my,mu) is
obtained the test accuracy is given by

Acctest = Eξ,η
[∫

dydz Q
(
y, z;

√
∆Imyξ,∆Imy,

√
muη, ρu −mu

)
δ
y=sign fy(

√
∆Imyξ,∆Imy,

√
muη,ρu−mu)

]
(151)

= Eη

[
1

2

(
1 + erf

( √
muη√

2(ρu −mu)

))(
1 + erf

(√
∆Imy√

2
+

1√
2∆Imy

arcth erf

( √
muη√

2(ρu −mu)

)))]
.

(152)
In the large λ limit we have my → 1 and

log(1−Acctest) ∼
λ→∞

−λ2 . (153)

D Fashion-SBM, a semi-realistic dataset
In fig. 3 we introduced fashion-SBM to show that our prediction c∗ ≈ 1/λ seems to hold for a dataset
more realistic than the CSBM or the GLM–SBM. In this section we detail how fashion-SBM is
constructed.

Fashion-SBM is made by populating a SBM with attributes from fashion-MNIST [30]. The binary
labels y of the nodes are drawn first. The graph is generated according to the SBM described in the
main part, with parameters d and λ. As to the features, we consider only the training set of fashion-
MNIST; out of the ten classes we keep only two classes to form X̃ ∈ RN×M that is normalized
according to

X̂iµ = X̃iµ + εiµ (154)

Xiµ =
√
N

X̂iµ − 1
N

∑
j X̂jµ√∑

j(X̂jµ − 1
N

∑
k X̂kµ)2

(155)
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ε is a small noise added to each pixel to avoid pixels that are always black. The resulting dataset has
dimensions N = 12000 and M = 784.

In the experiment 3 we choose to use the two classes 2 (pullover) and 4 (coat). They are similar enough
to keep balanced the signals of the features and the graph. The other classes are more dissimilar and
cary a stronger signal, which results in the graph having little effect on the performance.

E Details on numerics
The systems (28)-(36) and (41)-(49) are solved by the iterating the twelve equations in parallel until
convergence. About twenty iterations are necessary. The iterations are stable and no damping is
necessary. The integral over (ξ, ζ, χ) is evaluated by Monte-Carlo over 106 points; we use the same
samples over the iterations so they can exactly converge. For the quadratic and hinge losses the
extremizer of the potential (9) has an explicit solution; for the logistic loss we compute it by Newton’s
descent, a few steps are enough. The whole computation takes around one minute on a single CPU
core with 5GB of memory.

For figures 2 and 7 solving these two systems we were only able to reach misclassification errors
1−Acctest of 10−6 because of numerical imprecision and the finite number of Monte-Carlo samples.
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F Supplementary figures
F.1 Optimal architecture

On fig. 4 we search for the optimal architecture for data generated by the GLM–SBM. On figs. 5 and
6 we search for the optimal architecture for data generated at different αs, that is α = 0.7 and α = 2,
for the CSBM and the GLM–SBM. Together with fig. 1 in the main part we reach conclusions that
are detailed in section 4.1.
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Figure 4: Search for the optimal parameters of the GCN on GLM–SBM. α = 4, ρ = 0.1. Top: low
snr, λ = 0.5. Bottom: high snr, λ = 1.5. Full lines: prediction for the test accuracy obtained by
eqs. (13) and (41)-(49); dots: numerical simulation of the GCN for N = 104 and d = 30, averaged
over ten experiments; dotted line: Bayes-optimal test accuracy.
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Figure 5: Search for the optimal parameters of the GCN. α = 0.7, ρ = 0.1. Top: CSBM, λ = 1.5,
µ = 3. Bottom: GLM–SBM, λ = 1. Full lines: prediction for the test accuracy obtained by eqs. (13);
dots: numerical simulation of the GCN for N = 104 and d = 30, averaged over ten experiments;
dotted line: Bayes-optimal test accuracy.
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Figure 6: Search for the optimal parameters of the GCN. α = 2, ρ = 0.1. Top: CSBM, λ = 0.7,
µ = 1. Bottom: GLM–SBM, λ = 1. Full lines: prediction for the test accuracy obtained by eqs. (13);
dots: numerical simulation of the GCN for N = 104 and d = 30, averaged over ten experiments;
dotted line: Bayes-optimal test accuracy.

On fig. 7 we show the effect of the regularization r on the convergence rate at large graph snr λ. For
the quadratic loss, the rate depends on the regularization while for the logistic loss it does not.
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Figure 7: Asymptotic misclassification error 1−Acctest on the GLM–SBM. α = 4, ρ = 0.1. Dots:
prediction for the test accuracy obtained by eqs. (13) and (41)-(49), for c = c∗ optimal obtained by
grid search. The blue dotted line is given by (16).

F.2 Interpolation peak

On fig. 8 we show that an interpolation peak appears for the ridge regression on the GLM–SBM
when the regularization is small while varying the training ratio ρ. At the interpolation peak the train
error becomes strictly positive, the train accuracy becomes strictly smaller than one, the test error
diverges and the test accuracy has an inflexion point. The peak is located at αρ = 1. Increasing the
regularization r smooths it out. Similar curves are obtained for the CSBM.
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Figure 8: Interpolation peak on the GLM–SBM for the quadratic loss. α = 2 and λ = 1. Lines:
predictions by eqs. (13) and (41)-(49); dots: numerical simulation of the GCN for N = 104 and
d = N/2, averaged over ten experiments; dotted line: Bayes-optimal test accuracy.
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On fig. 9 we show that an interpolation peak appears for the logistic regression on the CSBM when
the regularization is small while varying the training ratio ρ. At the interpolation peak the train error
becomes strictly positive, the train accuracy becomes strictly smaller than one, the test error diverges
and the test accuracy has an inflexion point. The position of the peak depends on the self-loop
intensity c and the aspect ratio α. On fig. 10 we show how its position varies with respect to ρ and α
at c = 1. Increasing the regularization r smooths it out. Similar curves are obtained for the hinge loss
and the GLM–SBM.
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Figure 9: Interpolation peak on the CSBM for the logistic loss. α = 4, λ = 1 and µ = 1. Lines:
predictions by eqs. (13) and (28)-(36); dots: numerical simulation of the GCN for N = 104 and
d = N/2, averaged over ten experiments; dotted line: Bayes-optimal test accuracy.
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Figure 10: Position of the interpolation peak on the CSBM for the logistic loss. The interpolation
peak is located at the border of Acctrain < 1. λ = 1, µ = 1 and c = 1. Predictions by eqs. (13) and
(28)-(36).
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