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Abstract

Conformal prediction is a framework for predictive inference with a distribution-
free, finite-sample guarantee. However, it tends to provide uninformative prediction
sets when calibration data are scarce. This paper introduces Synthetic-powered
predictive inference (SPI), a novel framework that incorporates synthetic data—
e.g., from a generative model—to improve sample efficiency. At the core of
our method is a score transporter: an empirical quantile mapping that aligns
nonconformity scores from trusted, real data with those from synthetic data. By
carefully integrating the score transporter into the calibration process, SPI provably
achieves finite-sample coverage guarantees without making any assumptions about
the real and synthetic data distributions. When the score distributions are well
aligned, SPI yields substantially tighter and more informative prediction sets than
standard conformal prediction. Experiments on image classification—augmenting
data with synthetic diffusion-model generated images—and on tabular regression
demonstrate notable improvements in predictive efficiency in data-scarce settings.

1 Introduction

1.1 Background and motivation

Conformal prediction [48, 58, 59] is a general framework for quantifying predictive uncertainty,
providing finite-sample statistical guarantees for any machine learning model. Given a test instance
with an unknown label (e.g., an image), conformal prediction constructs a prediction set—a collection
of plausible labels guaranteed to include the true label with a user-specified coverage probability (e.g.,
95%). To do so, it relies on a labeled holdout calibration set to compute nonconformity scores, which
measure how well a model’s prediction aligns with the true labeled outcome. These scores are then
used to assess uncertainty in future predictions. Crucially, the coverage guarantee holds whenever
the calibration and test data are exchangeable (e.g., i.i.d.), without any assumption on the sampling
distribution.

While conformal prediction offers a powerful coverage guarantee, its reliance on a holdout set limits
its effectiveness when labeled data is scarce—becoming unstable and highly variable in coverage, or
overly conservative and uninformative. As a result, it offers limited value in applications where labeled
data is inherently limited, such as those requiring personalization or subgroup-specific guarantees.
Importantly, this is not merely an abstract concern [7]—for example, in medical settings, it is natural
to seek valid inference tailored to specific patient characteristics such as age, health condition, and/or
other group identifiers of interest, see e.g., [13, 38]. Similarly, in image classification tasks, one may
wish to ensure that coverage holds for the true class label, see e.g., [57]. In these cases and many
others, we often have only a few representative holdout examples for each group or class, which
severely restricts the applicability of standard conformal prediction.
*Equal contribution.
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Meanwhile, we are witnessing rapid progress in the ability to train accurate machine learning models
even under data-scarce settings, driven by the rising quality of synthetic data produced by modern
generative models and by advances in domain adaptation, see e.g., [11]. These developments inspire
the question we pursue in this work: Can we rigorously enhance the sample efficiency of conformal
prediction by leveraging a large pool of synthetic data—such as labeled datapoints from related
subpopulations, or even data sampled from generative models?

At first glance, it may appear hard to use synthetic data to boost sample efficiency in a statistically
valid way. After all, the distribution of synthetic data can be completely different from that of the data
of interest.1 Overcoming this challenge, we propose a principled framework that unlocks conformal
prediction with the ability to incorporate synthetic data while preserving rigorous, model-agnostic,
non-asymptotic coverage guarantees. Crucially, our method—SPI—provides a coverage bound that
requires no assumptions about the similarity between the real and synthetic data distributions. Still,
when the distribution of synthetic and real scores is close, our approach yields a substantial boost in
sample efficiency—resulting in more informative prediction sets than those produced by standard
conformal prediction. A discussion of related literature is deferred to Appendix B.

1.2 Preview of the proposed method and our key contributions

Our key innovation is the introduction of the score transporter: a data-driven empirical quantile
mapping function that transports the real calibration scores to resemble the synthetic scores. This
mapping enables the construction of prediction sets for new test datapoints, leveraging the abundance
of synthetic data. Crucially, the score transporter does not require data splitting, allowing full use of
the real and synthetic calibration data. Furthermore, we develop a computationally efficient algorithm
with a runtime complexity similar to that of standard conformal prediction. A pictorial illustration of
our proposed calibration framework is provided in Figure 1.
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Figure 1: A high-level overview of the proposed method. The approach leverages a small labeled
real dataset alongside a large labeled synthetic dataset. The score transporter maps scores from the
real domain to the synthetic one. Calibration is then performed using the transported real scores and
the synthetic scores.

We support our proposed SPI framework with two theoretical guarantees, where the final coverage
rate bound is the tighter of the two. The first shows that when the synthetic and real score distributions
are close, the achieved coverage closely matches the desired level. More generally, it characterizes
how the distributional shift between the real and synthetic scores and the construction of the score
transporter affect the realized coverage.

The second theoretical result complements the first by providing worst-case bounds on the coverage
probability, even if the synthetic data are of poor quality. This bound is directly controlled by the user,
allowing them to set a “guardrail,” i.e., a lower bound on the coverage probability (say 90%) that
holds regardless of the distribution of the synthetic data. Remarkably, this bound holds even when
the synthetic data depend on the real calibration set. This flexibility enables users to adapt or filter
the synthetic data to improve efficiency, for example, by selecting datapoints that resemble the real
ones—all without requiring any data splitting.

We demonstrate the practicality of our method on multi-class classification and regression tasks.
For image classification on ImageNet, we explore two practical strategies for constructing synthetic
data. The first leverages a generative model (Stable Diffusion [46] or FLUX [30]) to generate
artificial images for each class. The second uses another set of real data, drawn from a different

1We refer to the limited dataset of interest as the real calibration set, to distinguish it from the (potentially
synthetic) calibration data.
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distribution, as the synthetic data. In the regression setting, we consider tabular panel data, using
past panels as synthetic data and a recent panel as the real calibration set. Across all experiments,
our method shows improvements in statistical efficiency—even when the real calibration set is
very small, with as few as 15 datapoints. Software for reproducing the experiments is available at
https://github.com/Meshiba/spi.

2 Problem setup

Consider the standard setting of a prediction problem where we have m i.i.d. (real) calibration
datapoints2 (Xi, Yi)i∈[m]

iid∼ PX,Y = PX × PY |X , for i ∈ [m] := {1, . . . ,m} on X ×Y , where each
Xi ∈ X represents the features and Yi ∈ Y denotes the label or outcome for the i-th datapoint. Given
a new test input Xm+1 ∼ PX , the task is to construct a prediction set Ĉ(Xm+1) for the unknown
label Ym+1 with the following distribution-free coverage guarantee:

P
(Xi,Yi)i∈[m+1]

iid∼PX,Y

{
Ym+1 ∈ Ĉ(Xm+1)

}
≥ 1− α, for any distribution PX,Y on X × Y, (1)

where 1 − α ∈ (0, 1) is a predetermined target level of coverage. Here and below, we abbreviate
by (ai)i∈[k] vectors (a1, a2, · · · , ak). While standard conformal prediction [4, 39, 58, 59] has this
property, its efficiency can be limited when the calibration sample size m is small.

Suppose now that we also have access to a set of synthetic datapoints (X̃j , Ỹj)j∈[N ]
iid∼ QX,Y . These

could be datapoints collected from related distributions, sampled from a generative model, or obtained
otherwise. We hope that QX,Y is close to PX,Y , but do not assume this. We are interested in the
setting where m≪ N , aiming to improve inference with a small calibration set by leveraging a large
synthetic dataset. To make this concrete, we aim to construct a prediction set map Ĉ : X → P(Y)—
where P(Y) is the set of subsets of Y—as a function of the datasets (Xi, Yi)i∈[m] and (X̃j , Ỹj)j∈[N ],
such that the prediction set Ĉ(Xm+1) satisfies, for any distributions PX,Y and QX,Y on X × Y ,

P
(Xi,Yi)i∈[m+1]

iid∼PX,Y ,(X̃i,Ỹi)i∈[N]
iid∼QX,Y

{
Ym+1 ∈ Ĉ(Xm+1)

}
≥ 1− α. (2)

For the classification task where Y is discrete, we extend our discussion beyond the marginal coverage
guarantee in (1) and consider the following label-conditional coverage guarantee [57, 58]:

P
{
Ym+1 ∈ Ĉ(Xm+1)

∣∣∣ Ym+1 = y
}
≥ 1− α, for all y ∈ Y, (3)

where, as before, we aim for a distribution-free guarantee, under any distributions PX,Y and QX,Y —
although the inequality in (3) is written in a simplified form.

2.1 Background: split conformal prediction

Split conformal prediction [39] is an approach to attain the coverage guarantee (1). The first step is to
construct a nonconformity score function s : X × Y → R from an independent dataset.3 Next, we
compute the scores on the calibration datapoints: Si = s(Xi, Yi) for i ∈ [m]. The prediction set is
then given as

Ĉ(Xm+1) :=
{
y ∈ Y : s(Xm+1, y) ≤ Q̂1−α

}
, (4)

where Q̂1−α denotes the ⌈(1− α)(m+ 1)⌉-th smallest score from the (multi-)set (Si)i∈[m].

If the scores (Si)i∈[m] are distinct almost surely, then the split conformal prediction set (4) attains
the following coverage bounds [39, 58, 59]:

1− α ≤ P
{
Ym+1 ∈ Ĉ(Xm+1)

}
≤ 1− α+ 1/(m+ 1). (5)

If m is very small, the split conformal set might be conservative. In particular, if m+ 1 < 1/α, then
the only way to achieve 1− α coverage with m datapoints is by producing a trivial prediction set that
2Some of our results rely on a weaker assumption than i.i.d.—namely, exchangeability of the real calibration
datapoints.

3A typical example for regression problems is s(x, y) = |y − µ̂(x)|, where µ̂ is a predictor pre-trained on a
separate dataset; see e.g., [4, 58], etc.
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includes all labels. For a typical value of α = 0.05, this is the case when m < 19. Since we aim to
handle situations with very low sample sizes, this motivates us to develop a procedure capable of
producing more informative prediction sets by leveraging synthetic data.

3 Methodology

3.1 Synthetic-powered predictive inference

In this section, we introduce our method—SPI—which is designed to leverage the synthetic dat-
apoints to effectively increase the sample size, thereby producing a non-conservative prediction
set. We construct a split-conformal-type method that performs inference based on pre-constructed
nonconformity scores. Throughout the section, we assume that the score function s : X × Y → R is
fixed, and denote the real and synthetic scores as Si = s(Xi, Yi) for i ∈ [m+ 1] and S̃j = s(X̃j , Ỹj)
for j ∈ [N ], respectively. Here Sm+1 is the unobserved test score.

Our strategy is to construct a score-transporter T that maps a real score to a synthetic score—as
a function of the observed scores. We then run split conformal prediction on the synthetic scores
and apply T to obtain a prediction set for the real score Sm+1. A carefully constructed map T can
generate a prediction set with a theoretically controlled coverage rate, while effectively leveraging
the large synthetic dataset. The procedure has three steps.

Step 1. Construct windows in the space of synthetic scores. Denote by S(1), . . . , S(m+1) the real
scores arranged in increasing order. We first define a “window" Im(r) designed to contain the r-th
score S(r) for each r ∈ [m+ 1], as follows:

R−
r = max

{
t ∈ [N + 1] : F (t− 1) ≤ β

2

}
, R+

r = min
{
t ∈ [N + 1] : F (t) ≥ 1− β

2

}
, (6)

where β ∈ (0, 1) is a predefined level, and F := Fm,N,r is defined as4

F (t) =

t∑
k=1

pm,N,r(k), with pm,N,r(k) =
(
k+r−2
r−1

)(
N+m−k−r+2

m−r+1

)
/
(
N+m+1
m+1

)
.

Then, with the synthetic scores S̃(1), . . . , S̃(N) in increasing order, we construct the window as

Im(r) = [Lm(r), Um(r)], where Lm(r) := S̃(R−
r ) and Um(r) := S̃(R+

r ), (7)

and where S̃(N+1) = +∞. This window is designed to satisfy the following property, where we
denote the distribution of s(X,Y ) under PX,Y and QX,Y by P and Q, respectively:

Lemma 3.1. If P = Q and both are continuous distributions, then P
{
S(r) ∈ Im(r)

}
≥ 1− β for

all r ∈ [m+ 1].

The proof is deferred to Appendix G. Intuitively, the window Im(r) represents a region in the
synthetic score space where S(r) is likely to lie, and the transporter we construct in the next step
maps the real score to an element within its corresponding window.

Step 2. Construct the score-transporter. We now define the map T (·) = T (·; (Si)i∈[m], (S̃j)j∈[N ])

mapping real to synthetic scores as follows. For a scalar η, let rη =
∑m

i=1 1 {Si < η}+ 1 denote
the rank of η among (S1, . . . , Sm, η) in increasing order, and with Lm, Um from (7), define

T (η) =


Um(rη), if η ≥ Um(rη),

NN−
m(rη, η), if Lm(rη) ≤ η < Um(rη),

Lm(rη), if η < Lm(rη),

(8)

where the lower nearest neighbor NN−
m is defined as

NN−
m(r, η) := max

R−
r ≤j≤R+

r

{
S̃(j) : S̃(j) ≤ η

}
.

4Here, for non-negative integers a ≤ b,
(
b
a

)
= b!/(a!(b − a)!) denotes the binomial coefficient, where

x! = x · (x− 1) · . . . · 1 is the factorial of a non-negative integer x. Also, pm,N,r(k) is the probability mass
function of the r-th order statistic from a random sample of size m+1 drawn without replacement from a finite
population of size N +m+ 1 [e.g., 62, p. 243].
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Roughly speaking, the score-transporter T maps η to a synthetic score in the corresponding window
Im(rη) that is closest to η. The lower nearest neighbor NN−

m is chosen carefully to act as a lower
bound on the score, ensuring that the coverage can be tightly controlled.

Step 3. Conformal prediction after transport-mapping. Applying the score-transporter T to
a hypothetical score s(Xm+1, y), we construct the prediction set as those y values for which this
mapped value lies in the conformal prediction region constructed from the synthetic data:

Ĉ(Xm+1) =
{
y ∈ Y : T (s(Xm+1, y)) ≤ Q̃1−α

}
. (9)

Here Q̃1−α is the ⌈(1−α)(N +1)⌉-th smallest score in (S̃j)j∈[N ]. We term this procedure Synthetic-
powered predictive inference (SPI). Figure S1 presents a schematic overview of SPI with two
candidate labels, illustrating each of the steps discussed above. Building on the ideas of [57, 58], we
extend our proposed method to achieve label-conditional coverage guarantees in Appendix F.

3.2 Simplifying the computation of SPI

Since T (·) = T (·; (Si)i∈[m], (S̃j)j∈[N ]) depends on (Si)i∈[m] and (S̃j)j∈[N ], the prediction set
Ĉ(Xm+1) in (9) has an a priori potentially complex dependence on y. Fortunately, the prediction set
simplifies to the following formula, which is fast to compute:

Ĉfast(x) =
{
y ∈ Y : s(x, y) ≤ max{min{Q̃′

1−α, S(R̃−)}, S(R̃+)}
}
, S(m+1) = +∞. (10)

Here Q̃′
1−α is the (⌈(1− α)(N + 1)⌉+ 1)-th smallest score among (S̃j)j∈[N ], and

R̃± = max{r ∈ [m+ 1] : R±
r ≤ ⌈(1− α)(N + 1)⌉}. (11)

The following result shows that the prediction set Ĉfast is equivalent to the prediction set (9)—here,
for two sets A and B, A△B denotes the symmetric set difference (A ∩Bc) ∪ (Ac ∪B).

Proposition 3.2. Recall the prediction sets Ĉ from (9) and Ĉfast from (10). If Q is continuous, then

P
{
{Ym+1 ∈ Ĉ(Xm+1)}△{Ym+1 ∈ Ĉfast(Xm+1)}

}
= 0.

Based on this simplification, we present the complete SPI procedure in Algorithm 1.

3.3 Theoretical guarantees

We now derive bounds on the coverage rate of the SPI prediction set (9). The first bound shows that
when the real and synthetic scores are similar (as measured by total variation distance), our method
has a tight coverage around the desired level.
Theorem 3.3 (Coverage depending on the closeness of real and synthetic distributions). Suppose
the real calibration set (Xi, Yi)i∈[m] is exchangeable with the test point (Xm+1, Ym+1) and the
synthetic calibration datapoints (X̃j , Ỹj)j∈[N ] are drawn i.i.d., where the distribution Q of their
scores is continuous. Let Pm+1

(r) and Qm+1
(r) denote the distribution of the r-th order statistic among

m+ 1 i.i.d. draws from P and Q, respectively. Then the prediction set Ĉ(Xm+1) from (9) satisfies

1− α− β − εm+1
P,Q ≤ P

{
Ym+1 ∈ Ĉ(Xm+1)

}
≤ 1− α+ β + εm+1

P,Q + 1/(N + 1),

where εm+1
P,Q = 1

m+1

∑m+1
i=1 dTV(P

m+1
(i) , Qm+1

(i) ) and dTV denotes the total variation distance.

Note that εm+1
P,Q is bounded above by the total variation distance between P and Q. When P = Q,

we have εm+1
P,Q = 0, and thus our procedure provides a tighter upper bound than split conformal

prediction using only the real calibration data (5) when β+1/(N +1) ≤ 1/(m+ 1). When N ≫ m
and β ≪ 1/m, our method offers a tighter coverage. In practice, however, we often observe tight
coverage even for relatively large β—in the proof, the ±β term arises from a union bound that
accounts for the case where the test score Sm+1 is not covered by the corresponding window.
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Remark 3.4. The continuity of the score distribution required in Theorem 3.3 can generally be
attained conveniently. For example, in settings where the originally constructed score outputs discrete
values, one can simply add a negligible amount of i.i.d. Uniform[−δ, δ] noise to the scores, so that
the perturbed scores—which are nearly identical to the original ones—have a continuous distribution.

When the distributions P and Q differ greatly, the bounds in Theorem 3.3 may be loose, as they do
not sufficiently account for the adjustment introduced by the map T under distribution shift. Below,
we provide alternative worst-case bounds for the coverage rate of the SPI prediction set, which
depend only on the sample sizes, and hold regardless of the relationship between Q and P .
Theorem 3.5 (Worst-case coverage). Suppose that the real calibration set (X1, Y1), . . . , (Xm, Ym)
is exchangeable with the test point (Xm+1, Ym+1), and that the synthetic score distribution Q is
continuous. Then the prediction set Ĉ(Xm+1) in (9) satisfies

|{j ∈ [m+ 1] : R+
j ≤ ⌈(1− α)(N + 1)⌉}|
m+ 1

≤ P
{
Ym+1 ∈ Ĉ(Xm+1)

}
≤
|{j ∈ [m+ 1] : R−

j ≤ ⌈(1− α)(N + 1)⌉}|
m+ 1

.

While this result is somewhat non-explicit, the bounds can be computed fast, and remain close to the
target level 1− α, as illustrated in Section D.1 through a set of plots. We emphasize that the bounds
hold due to the careful construction of the score transport map from (8), and would not hold if we
were to simply mix together the real and synthetic data. Moreover, the bounds impose no condition
on the distribution of the synthetic scores—it is even allowed for the synthetic scores to depend on
the real calibration set. This provides significant flexibility in the choice of synthetic data even with a
separate score function; see Section 3.4.

The bounds in Theorem 3.5 depend solely on the constants m, N , α, and β. This allows us to
adjust the levels α and β to achieve a specific lower bound, say 1− α′, for a predetermined value of
α′—which implies that the guarantee (2) can be achieved. However, we advise using our procedure
without level adjustment, in the spirit of Theorem 3.3, since Theorem 3.5 provides worst-case bounds.
In practice, we recommend setting β to meet a user-tolerable guardrail level—for instance, 90%
worst-case coverage when the target level is 1 − α = 95%. Algorithm 4 outlines a procedure to
compute such a β for given N , m, and α, ensuring the user-specified guardrail coverage bound is
satisfied.

Having stated the two theoretical guarantees separately, we pause to highlight the following:
Remark 3.6 (Effective coverage guarantee of SPI). The coverage guarantees of SPI are adaptive to
the quality of the synthetic data, in the sense that the effective theoretical bound automatically takes
the tighter of Theorems 3.3 and 3.5.

3.4 Improving the quality of synthetic scores

The quality of the SPI prediction set depends on how well the distribution of the synthetic score Q
approximates the true score distribution P , as supported by Theorem 3.3. In practice, the alignment
between synthetic and real scores can be assessed using standard goodness-of-fit tests on the empirical
cumulative distribution functions (CDFs), such as Cramér–von Mises or Kolmogorov–Smirnov tests.
These tests can help detect when the synthetic scores deviate substantially from the real scores,
indicating that the synthetic data may be less useful for the inference task or could be modified to
better align with the real data by carefully constructing the synthetic scores.

For instance, we can seek a map g such that the distribution of the adjusted synthetic score S̃′
j = g(S̃j)

better approximates the true distribution P . More generally, we may construct a separate score
function s̃ : X ×Y → R for the synthetic data, so that the distribution of the synthetic score s̃(X̃, Ỹ )
better approximates that of the real score s(X,Y ). Or, we may select a subset of the synthetic scores
that is expected to provide a better approximation. Below, we present two approaches to improve the
quality of synthetic scores.

3.4.1 Constructing a separate synthetic score function

We first discuss the approach of constructing a separate synthetic score function s̃. For example, one
might choose to construct s̃ using a split of the real data and a split of the synthetic data. However, if
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the original data sample size m is small—which is the main focus of this work—we may prefer to
reuse the data both for constructing the adjustment function or synthetic scores and for performing
inference. Therefore, in this section, we focus on data-dependent score construction, while the details
of the data-splitting-based approach are deferred to Section E.

For example, one might consider constructing an adjustment function g as s 7→ g(s) := θ̂1s+ θ̂2,
where the parameters (θ̂1, θ̂2) are fitted using the calibration scores (Si)i∈[m] and (S̃j)j∈[N ] via least
squares:

(θ̂1, θ̂2) = argmin
a,b

m∑
i=1

|a · S̃(⌊iN/m⌋) + b− S(i)|2,

and then constructing the adjusted synthetic scores (g(S̃j))j∈[N ], setting s̃ = g ◦ s; see [63] for a
more sophisticated approach to learning the score function s̃.

For such a synthetic score s̃ constructed in a data-dependent manner, can we still expect a provable
coverage bound? The answer is yes, since the bounds in Theorem 3.5 hold for synthetic scores with
arbitrary dependence on the real calibration set.

Corollary 3.7. Suppose the synthetic score function s̃ is constructed using both the real data
(Xi, Yi)i∈[m] and the calibration data (X̃j , Ỹj)j∈[N ]. Then the prediction set Ĉ from (9), constructed
using S̃j = s̃(X̃j , Ỹj) for j ∈ [N ], attains the bounds stated in Theorem 3.5.

3.4.2 Constructing a subset of synthetic data

Now, we shift to a different approach for improving the quality of synthetic scores: constructing
a subset of the synthetic data that is more relevant for inference on the real data. This approach is
particularly useful when the synthetic data comes from different sources, rather than sampled from a
generative model. The idea is to select synthetic datapoints based on how well they approximate the
real data. Then, we form a subset consisting of points with high approximation quality. Again, since
Theorem 3.5 imposes no condition on the joint distribution of the synthetic scores, the bounds also
hold for the SPI prediction set constructed with this subset of synthetic scores.

Corollary 3.8. Let Isubset = {j1, · · · , jÑ} ⊂ [N ] denote the indices of a subset of synthetic data
points, and suppose that Ñ = |Isubset| is fixed. Then the prediction set Ĉ from (9), constructed using
(S̃jl)l∈[Ñ ] as the synthetic scores, satisfies the bounds stated in Theorem 3.5, with N replaced by Ñ .

Note that this result requires the number of selected points Ñ to be fixed.5 For example, one can use
a nearest-neighbor procedure, in which we partition the synthetic data into subsets of a fixed size
n, and then select k subsets whose score distributions most closely resemble that of the real data,
resulting in Ñ = nk synthetic data points (see Algorithm 2).

4 Experiments

In this section, we compare the performance of the proposed SPI procedure to that of standard
conformal prediction in a setting where a small real calibration set and a large synthetic calibration set
are available, each drawn from distinct and unknown distributions. Further experiments on simulated
data, where the underlying distributions are known, are presented in Appendix I.

Setup and performance metrics We randomly sample two disjoint subsets from the real data,
assigning one as the real calibration set and the other as the test set. Additionally, we sample a
synthetic calibration set from the synthetic data, which is intentionally larger than the real calibration
set, aligning with the focus of this paper. The test set is used to evaluate the procedure based on
two metrics: the coverage rate, and the prediction set size (for classification problems) or prediction
interval width (for regression problems). We report the results from 100 repeated trials, each with
different random calibration, test, and synthetic datasets.

Methods We compare the following methods: OnlyReal—standard split conformal prediction [39]
using the real calibration set; OnlySynth—conformal prediction applied to the synthetic calibration

5More generally, if Ñ is random but independent of the real scores, the same bounds hold for the conditional
probability P{Ym+1 ∈ Ĉ(Xm+1) | Ñ}.
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set as if it were real, which does not provide coverage guarantees; and SPI (ours)—the proposed
procedure outlined in Algorithm 1, applied with β = 0.4.

4.1 Multi-class classification on the ImageNet data

We begin by evaluating our method on a multi-class classification task using the ImageNet dataset [14].
In particular, we aim for marginal (1) and label-conditional coverage guarantees (3); the latter requires
hold-out data for each class. Since our experiments involve generating thousands of images per class,
we restrict our study to a subset of 30 classes (listed in Table S1) that form the real population.

We consider two scenarios for constructing the synthetic data. In the first scenario, we apply a
generative model to produce synthetic images. In the second scenario, the synthetic set is formed
using real images drawn from classes not included in the real population.

Across all experiments and methods, we use a CLIP model [43] as the predictive model, along with
the adaptive prediction sets (APS) score function [45]. We also include additional experiments with
the homogeneous prediction sets (HPS) score function [58] in Appendix J.3. Importantly, CLIP is
not trained on ImageNet images. Additional details on the score functions and pre-trained model are
provided in Appendices C.1 and H.3, respectively.

4.1.1 SPI with generated synthetic data

We use Stable Diffusion [46] to generate synthetic images resembling those in ImageNet. Figure 2
shows representative examples, including images from an additional generative model discussed later.
Additional examples and further details are provided in Figure S5 and Appendix H.4.

Figure 2: Examples of real and generated images for the golden retriever class. The first column
displays real ImageNet images, while the remaining columns show generated samples. The top row
contains images generated by Stable Diffusion [46], and the bottom row by FLUX [30].

For the marginal coverage experiments, we randomly select m = 15 ImageNet images from the real
data, chosen from among 30 classes, to construct the real calibration set. The test set consists of
15,000 real images, and the synthetic calibration set includes N = 1, 000 generated images, sampled
uniformly across all classes. For the label-conditional experiments, we randomly select m = 15 real
images for each of the k = 30 classes to form the real calibration set (resulting in mk = 450 real
data points), 500 real images per class to form the test set, and n = 1, 000 generated images per class
to form the synthetic calibration set (resulting in N = nk = 30, 000 synthetic data points).

Figure 3 presents the performance of various methods under both marginal and label-conditional
guarantees at target coverage level 1− α = 0.95. The label-conditional results are shown for five
representative classes. The observations below apply to both the marginal and label-conditional
settings. We observe that OnlyReal controls the coverage at level 1−α = 0.95. However, it remains
conservative due to the small size of the real calibration set, which results in trivial prediction sets.
The OnlySynth approach fails to achieve the target coverage level of 1−α, exhibiting undercoverage
for some classes. This violation arises from the distribution shift between the real and synthetic data.

In contrast, the proposed method, SPI, achieves coverage within the theoretical bounds established
in Theorem 3.5. For example, for the “Siberian husky” class, where the synthetic images differ
significantly from the real ones, SPI still produces informative prediction sets. For classes where
the synthetic and real data are more aligned, such as the “lighter” class, SPI shows low variance in
coverage with smaller prediction set sizes.

We provide results for additional α levels in Appendix J.1. Further experiments on the effect of
the size of the real calibration set and the parameter β on the performance of SPI are presented
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in Appendices J.1.1 and J.1.2, respectively. In addition, we provide experiments using the FLUX
generative model [30], which exhibit similar trends to those observed with Stable Diffusion; see
Appendix J.1.3. Examples of generated images and details are provided in Figures 2 and S6
and Appendix H.4, respectively.
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Figure 3: Results for the ImageNet data: Coverage rates of OnlyReal, OnlySynth, and SPI at target
level 1 − α = 0.95, averaged over 100 trials. Left: Average coverage. Right: Average prediction
set size, both under marginal (leftmost box in each group) and label-conditional coverage settings.
Label-conditional results are shown for selected classes; see Table S3 for results across all classes.

4.1.2 SPI with synthetic data from k-nearest subset selection

We now explore the performance of the subset-based variant of our approach, referred to as
SPI-Subset and described in Algorithm 2. The experiments in this section reflect scenarios where a
generative model is unavailable.

As before, we aim to control both marginal and label-conditional coverage. In the marginal setting,
we randomly select m = 15 real images, across 30 classes, to form the real calibration set, and 15,000
real images from the same classes to form the test set. In the label-conditional setting, we randomly
sample m = 15 real images per class to form the real calibration set and 500 real images per class
for testing. In both cases, the synthetic calibration set consists of N = 1, 500 annotated ImageNet
images, drawn from 100 classes that are disjoint from the real classes, with n = 15 images per class.

We apply the subset selection approach to improve the quality of the synthetic data, using a k = 20
nearest-subset selection strategy, leading to Ñ = nk = 300 selected synthetic datapoints (see
Algorithm 2). We compare this SPI-Subset variant of our method to SPI-Whole, where the latter
denotes the SPI procedure run with the entire synthetic set. Additionally, as a baseline, we include
standard conformal prediction applied to the real set, OnlyReal.

Figure 4 shows the performance of different methods with marginal and label-conditional guarantees
at target coverage level 1− α = 0.98. The label-conditional results are shown for five representative
classes. We see that OnlyReal controls the coverage at the 1− α level as expected, but it produces
overly conservative—in fact, trivial—prediction sets that contain all 30 possible labels. This is not
surprising as split conformal prediction needs at least 50 datapoints to produce a nontrivial prediction
set at level α = 0.02.

Both SPI-Whole and SPI-Subset achieve coverage within the theoretical bounds, generating
smaller prediction sets compared to OnlyReal. In the label-conditional setting, SPI-Subset achieves
coverage that more closely aligns with the target 1− α and produces smaller prediction sets, outper-
forming SPI-Whole. This highlights the benefit of aligning the synthetic set more closely with the
real distribution through k-nearest subset selection.
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Figure 4: Results for the ImageNet data: Coverage rates of OnlyReal, SPI-Whole, and SPI-Subset
at level 1− α = 0.98, averaged over 100 trials. Left: Average coverage. Right: Average prediction
set size, both under marginal (leftmost box in each group) and label-conditional coverage settings.
Label-conditional results are shown for selected classes; see Table S8 for results across all classes.
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However, in the marginal setting, where the real calibration set includes images from 30 different
classes, selecting a small subset of k synthetic classes does not necessarily improve alignment with
the real distribution. Consequently, SPI-Subset, which uses only a subset of the synthetic data (300
images), exhibits higher variance in coverage compared to SPI-Whole, which leverages the entire
synthetic calibration set of 1,500 images.

We provide results for all classes appearing in the real data at additional values of the target level
α in Appendix J.2. In Appendix J.2.1, we further illustrate the performance of the SPI-Subset
procedure for different values of the hyperparameter k.

4.2 Regression on the MEPS dataset

In this experiment, we evaluate our method on a regression task using the Medical Expenditure
Panel Survey (MEPS) datasets [3]. We first fit a regression model on MEPS panel survey number
19. MEPS panel survey number 20 is then used as the synthetic data, and panel survey number 21
serves as the real data. This setup reflects a scenario in which large historical panels are leveraged as
synthetic data to improve calibration on a recent, smaller real-world population. For all methods, we
use the conformalized quantile regression (CQR) score function [44]. Further details on the score
function and the regression model are provided in Appendices C.1 and H.3, respectively. For each
age group, we construct a real calibration set with m = 15 examples and a synthetic calibration set
with N = 1, 000 examples.

Figure 5 presents the coverage and interval length results for OnlyReal, OnlySynth, and SPI at
target coverage level 1 − α = 0.9, across different age-groups. Similarly to the classification
experiments, OnlyReal attains valid coverage but has a higher variance due to the small size of the
real calibration set. Following that figure, we see that the synthetic and real data are well aligned.
However, OnlySynth, which relies solely on synthetic data, lacks formal coverage guarantees. In
contrast, SPI achieves coverage close to the nominal level of 0.9, as predicted by Theorem 3.3. We
provide results for additional α levels and further experiments in Appendix K.
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Figure 5: Results for the MEPS dataset: Marginal coverage and interval length for each age-group,
obtained by OnlyReal, OnlySynth, and SPI. Target coverage is 1 − α = 0.9; experiments are
repeated for 100 trials.

5 Discussion
In this work, we presented a novel framework that enhances the sample efficiency of conformal
prediction by leveraging synthetic data in a theoretically grounded manner. While we focused on
marginal and label-conditional coverage, many applications require feature-conditional guarantees.
Extending our approach to such settings—e.g., by drawing on ideas from Gibbs et al. [22]—is an
important direction for future work. Another limitation is the assumption that the real calibration data
and the test point are i.i.d., which may not hold in practice. We believe our results can be extended
beyond the i.i.d. setting by building on techniques developed in [8, 28, 42, 51, 53].

Naturally, the quality of the synthetic data affects the performance of SPI. While we found our data-
dependent k-nearest subset approach to be effective, exploring alternative strategies—particularly
those suited to settings with multiple synthetic data sources—may further enhance performance.
Another future direction that we are pursuing is to generalize SPI to enable the broader use of
synthetic data across statistical inference methods, including conformal risk control, hypothesis
testing, and multiple hypothesis testing [9].

As this work aims to advance the field of uncertainty quantification in machine learning, it has
potential social implications, similar to other research in the field.
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A Algorithmic details

Algorithm 1 Synthetic-powered predictive inference (SPI)

1: Input: Real calibration set (Xi, Yi)i∈[m]; synthetic calibration set (X̃i, Ỹi)i∈[N ]; test input
Xm+1; score function s; target coverage level 1− α; parameter for window construction β.

2: Compute the real scores Si = s(Xi, Yi), for i ∈ [m].
3: Compute the synthetic scores S̃j = s(X̃j , Ỹj), for j ∈ [N ], and let Q̃′

1−α = S̃(⌈(N+1)(1−α)⌉+1).

4: Compute R−
r and R+

r for r ∈ [m+ 1], according to (6).
5: Compute R̃− and R̃+, according to (11).
6: Compute the bound Q = max{min{Q̃′

1−α, S(R̃−)}, S(R̃+)}.
7: Compute Ĉ(Xm+1) = {y ∈ Y : s(Xm+1, y) ≤ Q}.
8: Output: Prediction set Ĉ(Xm+1).

Algorithm 2 SPI with data-dependent k-nearest subset selection

1: Input: Real calibration set (Xi, Yi)i∈[m]; subsets of synthetic calibration set (X̃ l
j , Ỹ

l
j )j∈[n],

l = 1, 2, · · · , L; test input Xm+1; score function s; target coverage level 1− α; parameter for
window construction β; parameter for selection k.

2: Compute the real scores Si = s(Xi, Yi), for i ∈ [m].
3: Compute the synthetic scores S̃l

j = s(X̃ l
j , Ỹ

l
j ), for j ∈ [N ] and l ∈ [L].

4: for l in [L] do
5: Distances[l]← Cramer-von-Mises-Statistic({Si : i ∈ [m]}, {S̃l

j : j ∈ [n]}) {Algorithm 3}
6: end for
7: Let L be the set of k subsets in [L] with the smallest values in Distances.
8: Apply Algorithm 1 with {(X̃ l

j , Ỹ
l
j ) : j ∈ [n], l ∈ L} as the synthetic calibration data.

9: Output: Prediction set Ĉ(Xm+1).

Algorithm 3 Cramer-von Mises two-sample test statistic

1: Input: (Xi)i∈[N ]; (Yi)i∈[M ] (all distinct)
2: Let W = {X1, . . . , XN} ∪ {Y1, . . . , YM} be the set of all datapoints.
3: Compute the ranks:

ri = (the rank of Xi in W ) for i ∈ [N ], and si = (the rank of Yi in W ) for i ∈ [M ].
4: Let r(1) < · · · < r(N) and s(1) < · · · < s(M) be the order statistics of (ri)i∈[N ] and (si)i∈[M ],

respectively.
5: Compute

U = N
N∑
i=1

(r(i) − i)2 +M
M∑
j=1

(s(j) − j)2.

6: Compute the Cramer–von Mises test statistic T as:

T =
U

NM(N +M)
− 4MN − 1

6(M +N)
.

7: Output: T .
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Algorithm 4 β-selection

1: Input: Real calibration set size m; synthetic calibration set size N ; target coverage level 1− α;
desired worst-case lower bound L; step size ϵ.

2: Set β ← ϵ.
3: Compute R+

r with β for r ∈ [m+ 1], according to (6).
4: Compute L̃← |{i ∈ [m+ 1] : R+

i ≤ ⌈(1− α)(N + 1)⌉}| / (m+ 1).
5: while L̃ < L do
6: β+ = ϵ
7: Compute R+

r with β for r ∈ [m+ 1], according to (6).
8: Compute L̃← |{i ∈ [m+ 1] : R+

i ≤ ⌈(1− α)(N + 1)⌉}| / (m+ 1).
9: end while

10: Output: β.

B Related work

The concept of prediction sets dates back to foundational works such as Wilks [61], Wald [60],
Scheffe and Tukey [49], and Tukey [54, 55]. The initial ideas behind conformal prediction were
introduced by Saunders et al. [48] and Vovk et al. [59]. Since then, with the rise of machine learning,
conformal prediction has emerged as a widely used framework for constructing distribution-free
prediction sets [e.g., 4, 10, 12, 16, 18, 21, 23–25, 32–37, 39, 40, 45, 47, 56, 58].

More recently, there has been growing interest in extending conformal prediction to offer more refined
guarantees beyond standard marginal coverage. In particular, several works aim to offer approximate
local coverage guarantees in the feature space [23, 26, 64]; group-conditional coverage, which aims
to guarantee valid coverage across pre-defined groups based on features and/or labels [6, 22, 29, 57];
and cluster-conditional coverage, which focuses on label-conditioned subgroups [15]. However, these
approaches still face the inherent limitations of conformal inference in settings where labeled data for
the group-of-interest is limited, as previously discussed.

In contrast, we are interested in obtaining exact label- or group-of-interest conditional coverage
guarantees even when the dataset from our distribution of interest is small. To this end, we take a
different approach, aiming to enhance sample efficiency by incorporating synthetic data.

A related line of work explores the use of unlabeled data to improve sample efficiency [5, 19]. These
methods assume that the unlabeled data is drawn from the same distribution as the labeled calibration
set. In contrast, we consider settings where this assumption is violated and develop methods that
remain valid under such unknown distributional shifts. Moreover, the above methods cannot be
applied in the label-conditional setting, as they require knowing the labels of the unlabeled data.

Another related line of work is few-shot conformal prediction [20, 41], which addresses settings
where only limited data is available for the target task, along with additional auxiliary tasks. These
approaches leverage related but distinct tasks to improve sample efficiency. Fisch et al. [20] provides
asymptotic task-conditional coverage guarantees, whereas our focus is on finite-sample guarantees.
Park et al. [41] mitigate the small-sample challenge using cross-validation, but their methods remain
constrained by the overall number of available datapoints—which we assume to be small in our
setting. Dutta et al. [17] propose to retrieve web images to enable conformal prediction in zero-shot
settings, by leveraging conformal prediction with ambiguous ground truth [52], but do not provide
coverage guarantees for their method.

C Technical background

C.1 Score functions

Adaptive prediction sets (APS) [45] For classification tasks, we assume that the pre-trained model
outputs an estimated probability vector π̂ ∈ [0, 1]K , where K is the number of classes and each entry
represents the estimated probability of the corresponding class. We consider the APS score function
that is defined for a given pair (X,Y ) as follows: Let π̂(1)(X) ≥ π̂(2)(X) ≥ · · · ≥ π̂(K)(X) be
the sorted values of the probability vector π̂(X), and let r(Y, π̂(X)) denote the rank of the label Y
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within this sorted vector. The nonconformity score is then given by:

s(X,Y ) = π̂(1)(X) + π̂(2)(X) + · · ·+ π̂(r(Y,π̂(X)))(X)− U · π̂(r(Y,π̂(X)))(X), (12)

where U is a uniform random variable on [0, 1], independent of everything else.

Homogeneous prediction sets (HPS) [58] As a complementary score function for classification
tasks, we consider the HPS score. Using the same notations as in the APS paragraph, for a given pair
(X,Y ), the HPS nonconformity score is defined as

s(X,Y ) = 1− π̂(r(Y,π̂(X)))(X). (13)

Conformalized quantile regression [44] For the regression task, suppose we have a pre-trained
quantile regression model that estimates the γ-th quantile of the distribution Y | X , denoted as
q̂(X; γ). The conformalized quantile regression (CQR) score is then defined as

s(X,Y ) = max{q̂(X;α/2)− Y, Y − q̂(X; 1− α/2)}. (14)

Applying conformal prediction with this score, the prediction set takes the form

Ĉ(Xn+1) =
[
q̂(Xn+1;α/2)− Q̂1−α, q̂(Xn+1; 1− α/2) + Q̂1−α

]
.
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D Explaining the score transporter

In this section, we provide further intuition about our proposed procedure, as well as the theoretical
bounds established in Theorem 3.5.

Figure S1 provides a schematic overview of the procedure. For clarity, we illustrate the construction
of the prediction set as described in Equation (9). In practice, we use the computationally efficient
procedure described in Equation (10), which we have shown to be equivalent in Proposition 3.2.

We begin by computing nonconformity scores for both real and synthetic data points. We assume
access to a fixed score function s (e.g., a pre-trained black-box model), along with a small real
calibration set (Xi, Yi)i∈[m], a large synthetic calibration set (X̃j , Ỹj)j∈[N ], and a test point Xm+1.

𝑇  

sort sort

𝑠 𝑋𝑚+1, 𝑦1

real scores
synthetic scores

smallest

smallest

largest

largest

nearest neighbor

෨𝑄1−𝛼

(a) Candidate label y1: the test score (purple) ranks second among the real scores. Its mapped synthetic neighbor—
computed via (8) and outlined in purple—falls below the empirical quantile Q̃1−α, hence y1 ∈ Ĉ(Xm+1).

sort sort

𝑠 𝑋𝑚+1, 𝑦2

෨𝑄1−𝛼real scores
synthetic scores

𝑇  

smallest

smallest

largest

largest

nearest neighbor

(b) Candidate label y2: the test score (purple) ranks fourth among the real scores. Its mapped synthetic neighbor—
computed via (8) and outlined in purple—exceeds the empirical quantile Q̃1−α, thus y2 /∈ Ĉ(Xm+1).

Figure S1: Illustration of the synthetic-powered predictive inference for two candidate labels.
Each panel displays sorted nonconformity scores: real scores on the left and synthetic scores on the
right. The rectangle indicates the window in the synthetic space to which the test score can be mapped
(as defined in (7)). The black-outlined circle indicates the (1− α)(1 + 1

N )th empirical quantile of
the synthetic scores, Q̃1−α.

For each candidate label y ∈ Y , we compute the nonconformity score of the test pair (Xm+1, y),
along with those of the real and synthetic calibration sets. These scores are depicted as circles in
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Figure S1, displayed in sorted order. Crucially, the scores for the real and synthetic calibration sets
are computed once and then reused for all candidate labels.

Next, following Equation (7), each real score S(i), i ∈ [m+ 1], is associated with a window in the
synthetic score space. These windows (illustrated as rectangles connected to each real score) define
the set of synthetic scores to which each real score can potentially be mapped. Importantly, these
windows depend only on the sample sizes m, N , and the parameter β—not on the values of the
scores themselves.

For the test score s(Xm+1, y), we identify its synthetic neighbor after mapping, within its associated
window according to (8), denoted by T (s(Xm+1, y)). This synthetic score is then compared to
the (1 − α)(1 + 1

N )th empirical quantile of the synthetic scores, Q̃1−α (outlined in black). If
T (s(Xm+1, y)) ≤ Q̃1−α, the candidate label y is included in the prediction set Ĉ(Xm+1); otherwise,
it is excluded.

To illustrate this, Figure S1a shows the procedure for candidate label y1 ∈ Y . The corresponding test
score (marked in purple) ranks second among the real scores, and its mapped synthetic neighbor within
the corresponding window (outlined in purple) lies below the quantile threshold: T (s(Xm+1, y1)) ≤
Q̃1−α. Thus, y1 ∈ Ĉ(Xm+1). In contrast, Figure S1b depicts the case for label y2 ∈ Y (also
marked in purple), where the test score ranks fourth, and its mapped neighbor exceeds the threshold:
T (s(Xm+1, y2)) > Q̃1−α. Therefore, y2 /∈ Ĉ(Xm+1). This procedure is repeated for each y ∈ Y to
construct the full prediction set Ĉ(Xm+1).

We now illustrate the theoretical bounds established in Theorem 3.5, using the same schematic
from Figure S1. Real and synthetic nonconformity scores are shown as circles in sorted order, with
each real score connected to a window in the synthetic score space (depicted as rectangles). The
(1− α)(1 + 1

N )th empirical quantile of the synthetic scores, Q̃1−α, is outlined in black.

smallest

smallest

largest

largest

𝑅5
+

𝑅4
+

𝑅3
+

𝑅2
+

𝑅1
+

෨𝑄1−α

(a) Values of R+
r (in blue), representing the upper

endpoints of the synthetic windows. The smallest
three real scores satisfy R+

r ≤ Q̃1−α and are thus
guaranteed to be mapped to synthetic scores below
the threshold Q̃1−α.

smallest

smallest

largest

largest

𝑅5
−

𝑅4
−

𝑅3
−

𝑅2
−

෨𝑄1−α

𝑅1
−

(b) Values of R−
r (in blue), representing the lower

endpoints of the synthetic windows. The fifth real
score satisfies R−

5 > Q̃1−α, meaning it is neces-
sarily mapped above the threshold Q̃1−α.

Figure S2: Illustration of the quantities used in the worst-case coverage bounds from Theo-
rem 3.5. Real and synthetic nonconformity scores are shown as circles in sorted order. Each real
score is connected to a window in the synthetic score space (depicted as rectangles). The synthetic
(1− α)(1 + 1

N )th empirical quantile Q̃1−α is outlined in black.

Figure S2 visualizes the quantities used to derive the worst-case coverage bounds. For each real score
S(r) for r ∈ [m+1], we denote the endpoints of its associated window by R−

r and R+
r , as introduced
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in (6). These correspond to the smallest and largest ranks, respectively, of the synthetic scores that
S(r) can be mapped to. For convenience, we refer to R−

r and R+
r as the synthetic scores at those

ranks.

Figure S2a shows the values R+
r (in blue), which are used to compute the lower bound. Since the

transported score T (S(r))—defined as the nearest synthetic score within the window among those
that are smaller than S(r)—is always less than or equal to R+

r , any real score satisfying R+
r ≤ Q̃1−α

must necessarily satisfy T (S(r)) ≤ Q̃1−α. Consequently, the corresponding label will always be
included in the prediction set.

Figure S2b shows the values R−
r (in blue), which are used to compute the upper bound. Real scores

for which R−
r ≤ Q̃1−α may be mapped to a synthetic score below the threshold and thus may be

included in the prediction set—for example, the bottom four real scores in the figure. In contrast, if
R−

r > Q̃1−α (as for the fifth score), then the transported score must exceed the threshold, and the
corresponding label is guaranteed to be excluded.

By exchangeability, the test score is equally likely to take any of the m+ 1 possible ranks among the
real calibration scores. Therefore, the coverage probability is bounded between the fraction of real
scores whose R+

r ≤ Q̃1−α and the fraction whose R−
r ≤ Q̃1−α, as formalized in Theorem 3.5. In

our example, these correspond to 3/5 and 4/5, respectively.

D.1 Coverage guarantee bounds

To illustrate the distribution-free bounds in Theorem 3.5, we present several visualizations. These
bounds are determined solely by the sample sizes m and N , the parameter β, and the target coverage
level 1− α.

Figure S3 presents the upper and lower bounds in Theorem 3.5 as functions of the calibration set size
m and the level α, with fixed N = 1000 and β = 0.4. As m increases, the bounds become tighter
around the target level 1− α.
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(c) α = 0.1

Figure S3: Illustration of the coverage bounds in Theorem 3.5 as a function of the real calibration
set size m. The synthetic calibration size is N = 1000, and we set β = 0.4. Results are presented
for α = 0.02 (a), 0.05 (b), and 0.1 (c). The shaded regions represent the area between the lower and
upper bounds for each α level, with the dashed black lines indicating the target coverage level 1− α.

Next, Figure S4 illustrates how the bounds vary with the parameter β—under m = 15, N = 1000,
and different values of α. As β decreases, the bounds become looser. This trend can be explained as
follows: by the construction of the windows in (6), smaller values of β lead to wider windows. As a
result, fewer R+

r values (for r ∈ [m+ 1]) fall below the (1− α)th empirical quantile, loosening the
lower bound. At the same time, more R−

r values fall below this quantile, resulting in a looser upper
bound. This trend is consistent across various α, as shown in the figure. Further, the bounds exhibit a
stepwise pattern due to their discrete nature—their values change in increments of 1/(m+ 1).

In practice, one may be interested in using our method while ensuring that the lower bound guaranteed
by Theorem 3.5 is no smaller than a user-specified level L. To this end, we provide an algorithm (see
Algorithm 4) for selecting β based on the sample sizes m and N , the target miscoverage level α, step
size ϵ (e.g., 0.01), and the desired lower bound L. As shown in Figure S4, multiple β values may
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(c) α = 0.1

Figure S4: Illustration of the coverage guarantee bounds from Theorem 3.5 as a function of β. The
real calibration set contains m = 15 datapoints. Other details are as in Figure S3.

yield the same lower bound. In such cases, the algorithm selects the smallest β that results in a lower
bound greater than or equal to L, inspired by the result in Theorem 3.3.
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E Constructing a separate synthetic score function with data splitting

In this section, we provide details on constructing the synthetic score function independently of
the calibration data, adding to the discussion in Section 3.4. For instance, suppose we apply data
splitting (to both the real and the synthetic data) and use one split as training data to construct the
synthetic score function s̃. If the data has already been split to construct s, the same split can be
used for constructing s̃. Then we use both real and synthetic (training) data to construct s̃, to ensure
that its distribution better approximates that of the real score. Throughout this section, we condition
everything on the training datasets.

We begin with the method of constructing an adjustment function g and using the transformed score
function s̃ = g ◦ s for the synthetic data. In this case, the prediction set Ĉg(Xm+1), constructed
according to (9), is given by

Ĉg(Xm+1) = {y ∈ Y : T (s(Xm+1, y); (Si)i∈[m], (g(S̃j))j∈N ) ≤ Q̃g
1−α},

where Q̃g
1−α denotes the ⌈(N + 1)(1− α)⌉-th smallest value among {g(S̃j) : j ∈ [N ]}.

Example 1. One option is to construct an affine transformation g(s) = θ1s + θ2 to adjust
the scale and bias of s(X̃, Ỹ ). Denote the training sets by (X ′

1, Y
′
1), . . . , (X

′
mtrain

, Y ′
mtrain

) and
(X̃ ′

1, Ỹ
′
1), . . . , (X̃

′
Ntrain

, Ỹ ′
Ntrain

), and denote the corresponding real and synthetic (training) scores
by (S′

i)i∈[mtrain] and (S̃′
j)j∈[Ntrain], respectively. Then, we can set θ1 and θ2 via least squares:

(θ1, θ2) = argmin
a,b

mtrain∑
i=1

∣∣∣a · S̃′
(⌊iNtrain/mtrain⌋) + b− S′

(i)

∣∣∣2 ,
where S′

(i) and S̃′
(j) denote the order statistics of the real and synthetic training scores, respectively.

More generally, suppose we construct a new score function s̃ using the training data, such that the
distribution of s̃(X̃, Ỹ ) approximates that of s(X,Y ), where (X̃, Ỹ ) ∼ QX,Y and (X,Y ) ∼ P . The
prediction set is then constructed according to (9), using the synthetic scores S̃j = s̃(X̃j , Ỹj):

Ĉ(Xm+1) = {y ∈ Y : T (s(Xm+1, y); (Si)i∈[m], (S̃j)j∈N ) ≤ Q̃1−α}. (15)

Denoting the distribution of s̃(X̃, Ỹ ) as Q̃, we have the following result as a direct consequence of
Theorem 3.3 and 3.56.
Corollary E.1. Suppose the distribution Q̃ is continuous. Then the prediction set Ĉ(Xm+1) from (15),
constructed using S̃j = s̃(X̃j , Ỹj) for j ∈ [N ], satisfies

1− α− β − εm+1

P,Q̃
≤ P

{
Ym+1 ∈ Ĉ(Xm+1)

}
≤ 1− α+ β + εm+1

P,Q̃
+ 1/(N + 1).

Moreover, the bounds stated in Theorem 3.5 also hold for Ĉ(Xm+1) from (15).

F Predictive inference with label-conditional coverage control

Here, we review the standard approach [58] for achieving the label-conditional coverage guarantee (3),
and then discuss a variant of this approach based on SPI.

The basic idea is to partition the calibration set by classes, run conformal prediction within each
class, and then combine the results to construct a prediction set. Specifically, the prediction set is
constructed as follows:

Ĉ(Xm+1) =
{
y ∈ Y : s(Xm+1, y) ≤ Qy

1−α

}
,

where Qy
1−α denotes the ⌈(1− α)(ny + 1)⌉-th smallest element among {Si : i ∈ [m], Yi = y}, and

ny denotes the number of calibration points labeled with y.

6The proofs of these theorems build upon the setting S1, . . . , Sm+1
iid∼ P and S̃1, . . . , S̃N

iid∼ Q, and do not
depend directly on the datasets or the score function. Therefore, the results in Corollary E.1 follow directly by
applying the same arguments with S̃1, . . . , S̃N

iid∼ Q̃.
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Now, we introduce the SPI-based method that ensures the label-conditional coverage guarantee. The
idea follows the same logic as the standard method: We run SPI within each class-specific partition
of the real and synthetic calibration sets and then combine the results. For a class that does not appear
in the synthetic dataset, we run the procedure with the entire synthetic dataset.

To formalize this idea, define
Y1 = {y ∈ Y : Ỹj = y for some j ∈ [N ]} and Y0 = {y ∈ Y : Ỹj ̸= y for all j ∈ [N ]}.

Let Iy = {i ∈ [m] : Yi = y} for each y ∈ Y , and Jy = {j ∈ [N ] : Ỹj = y} for each y ∈ Y1. Then
for each y ∈ Y1, we define the function T y(·) = T (·; (Si)i∈Iy , (S̃j)j∈Jy

), following the definition
in (8). For y ∈ Y0, we let T y(·) = T (·; (Si)i∈Iy , (S̃j)j∈[N ]). Then we define Q̃y

1−α for each y as
follows:

Q̃y
1−α :=

{
⌈(1− α)(|Jy|+ 1)⌉-th smallest element in {S̃j : j ∈ Jy}, if y ∈ Y1,
⌈(1− α)(N + 1)⌉-th smallest element in {S̃j : j ∈ [N ]}, if y ∈ Y0.

Then we construct the prediction set as

Ĉ(Xm+1) =
{
y ∈ Y : T y(s(Xm+1, y)) ≤ Q̃y

1−α

}
. (16)

As a direct consequence of Theorem 3.5, the prediction set (16) attains the following label-conditional
coverage control:

|{j ∈ [m+ 1] : R+
j ≤ ⌈(1− α)(Ny + 1)⌉}|
m+ 1

≤ P
{
Ym+1 ∈ Ĉ(Xm+1)

∣∣∣ Ym+1 = y
}

≤
|{j ∈ [m+ 1] : R−

j ≤ ⌈(1− α)(Ny + 1)⌉}|
m+ 1

, for all y ∈ Y,

where we let Ny = |Jy| for y ∈ Y1 and Ny = N for y ∈ Y0.

G Mathematical proofs

G.1 Proof of Lemma 3.1

The result follows directly from the work of Lee et al. [31], but we provide the proof for completeness.
Define

Rr = min{τ ∈ [N + 1] : S̃(τ) ≥ S(r)}
for each r ∈ [m+ 1], where we let Rr = N + 1 if S(r) ≥ S̃(N). Note that Rr is random, whereas
R−

r and R+
r are not. Then by the exchangeability of (Sr)r∈[m+1] and (S̃j)j∈[N ], the distribution of

the vector (R1, R2, · · · , Rm+1) is given by

(R1, R2, · · · , Rm+1) ∼ Unif
(
{(ζ1, · · · , ζm+1) : 1 ≤ ζ1 ≤ · · · ≤ ζm+1 ≤ N + 1}

)
.

Therefore, for each k ∈ [N + 1], we have

P {Rr = k} = |{(ζ1, · · · , ζm+1) : 1 ≤ ζ1 ≤ · · · ≤ ζm+1 ≤ N + 1 and ζr = k}|
|{(ζ1, · · · , ζm+1) : 1 ≤ ζ1 ≤ · · · ≤ ζm+1 ≤ N + 1}|

=
|{ζ1:(r−1) : 1 ≤ ζ1 ≤ · · · ≤ ζr−1 ≤ k}| · |{ζ(r+1):(m+1) : k ≤ ζr+1 ≤ · · · ≤ ζm+1 ≤ N + 1}|

|{(ζ1, · · · , ζm+1) : 1 ≤ ζ1 ≤ · · · ≤ ζm+1 ≤ N + 1}|

=
kHr−1 ·N−k+2 Hm−r+1

N+1Hm+1
=

(
k+r−2
r−1

)
·
(
N+m−k−r+2

m−r+1

)(
N+m+1
m+1

) ,

where we use the notation nHr to denote the number of ways to select r items with replacement from
n items. Therefore,

P
{
S(r) ∈ Im(r)

}
= P

{
S̃(R−

r ) ≤ S(r) ≤ S̃(R+
r )

}
= P

{
S̃(R−

r ) ≤ S̃(Rr) ≤ S̃(R+
r )

}
= P

{
R−

r ≤ Rr ≤ R+
r

}
= F (R+

r )− F (R−
r − 1) ≥ 1− β,

where the inequality follows from the definition of R−
r and R+

r .
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G.2 Proof of Theorem 3.3

Let rm+1 =
∑m

i=1 1 {Si < Sm+1} + 1 denote the rank of Sm+1 in the increasing order among
S1, . . . , Sm, Sm+1. Observe that T (Sm+1) ≤ Sm+1 holds if Lm(rm+1) ≤ Sm+1, by the con-
struction of the mapping T . Therefore, writing Lr = Lm(r) and Ur = Um(r) for simplicity, we
have

P
{
Ym+1 ∈ Ĉ(Xm+1)

}
= P

{
T (Sm+1) ≤ Q̃1−α

}
= P

{
T (Sm+1) ≤ Q̃1−α, Sm+1 ∈ [Lrm+1

, Urm+1
]
}

+ P
{
T (Sm+1) ≤ Q̃1−α, Sm+1 /∈ [Lrm+1

, Urm+1
]
}

≥ P
{
Sm+1 ≤ Q̃1−α, Sm+1 ∈ [Lrm+1

, Urm+1
]
}
.

We can condition on rm+1 to write that this equals

E
[
P
{
Sm+1 ≤ Q̃1−α, Sm+1 ∈ [Lrm+1

, Urm+1
]
∣∣∣ rm+1

}]
.

Further, since rm+1 ∼ Unif(1, 2, . . . ,m+ 1) by the exchangeability of (Si)i∈[m+1], and since rm+1

is independent of the order statistics S(1), · · · , S(m+1), the expression further simplifies to

1

m+ 1

m+1∑
r=1

P
{
S(r) ≤ Q̃1−α, Lr ≤ S(r) ≤ Ur

∣∣∣ rm+1 = r
}

=
1

m+ 1

m+1∑
r=1

P
{
S(r) ≤ Q̃1−α, Lr ≤ S(r) ≤ Ur

}
.

Now we fix r ∈ [m + 1] and examine the probability in the summation. The event inside the
probability is a function of S(r) ∼ Pm+1

(r) and S̃1, · · · , S̃N
iid∼ Q. Thus, we have

PS(r)∼Pm+1
(r)

,S̃1:N∼QN

{
S(r) ≤ Q̃1−α, Lr ≤ S(r) ≤ Ur

}
≥ PS(r)∼Qm+1

(r)
,S̃1:N∼QN

{
S(r) ≤ Q̃1−α, Lr ≤ S(r) ≤ Ur

}
− dTV(P

m+1
(r) ×QN , Qm+1

(r) ×QN )

= PS(r)∼Qm+1
(r)

,S̃1:N∼QN

{
S(r) ≤ Q̃1−α, Lr ≤ S(r) ≤ Ur

}
− dTV(P

m+1
(r) , Qm+1

(r) ).

Therefore, putting everything together, we have

P
{
Ym+1 ∈ Ĉ(Xm+1)

}
≥ 1

m+ 1

m+1∑
r=1

PS(r)∼Qm+1
(r)

,S̃1:N∼QN

{
S(r) ≤ Q̃1−α, Lr ≤ S(r) ≤ Ur

}
− 1

m+ 1

m+1∑
r=1

dTV(P
m+1
(r) , Qm+1

(r) )

= PS1:(m+1)∼Qm+1,S̃1:N∼QN

{
Sm+1 ≤ Q̃1−α, Sm+1 ∈ [Lrm+1 , Urm+1 ]

}
− εm+1

P,Q .

The probability in the last term is equivalently taken with respect to S1, · · · , Sm+1, S̃1, · · · , S̃N
iid∼ Q,

and thus we have
PS1:(m+1)∼Qm+1,S̃1:N∼QN

{
Sm+1 ≤ Q̃1−α

}
≥ 1− α,

by the standard conformal prediction coverage guarantee (5), and

PS1:(m+1)∼Qm+1,S̃1:N∼QN

{
Sm+1 ∈ [Lrm+1

, Urm+1
]
}
=

1

m+ 1

m+1∑
r=1

P
{
S(r) ∈ [Lr, Ur]

}
≥ 1− β,
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by Lemma 3.1. Therefore, by the union bound, we have

P
{
Ym+1 ∈ Ĉ(Xm+1)

}
≥ 1− α− β − εm+1

P,Q .

Next, defining Q̃′
1−α as in Section 3.2, the events Sm+1 ∈ [Lrm+1 , Urm+1 ] and Sm+1 < Q̃′

1−α

together imply T (Sm+1) ≤ Q̃1−α, by the construction of T , and thus we have

P
{
T (Sm+1) ≤ Q̃1−α

}
≤ P

{
Sm+1 < Q̃′

1−α or Sm+1 /∈ [Lrm+1
, Urm+1

]
}
.

Therefore, applying arguments analogous to the ones above, we have

P
{
Ym+1 ∈ Ĉ(Xm+1)

}
≤ PS(r)∼Qm+1

(r)
,S̃1:N∼QN

{
Sm+1 < Q̃′

1−α or Sm+1 /∈ [Lrm+1
, Urm+1

]
}
+ εm+1

P,Q

≤ 1− α+ β + εm+1
P,Q +

1

N + 1
,

since P
{
Sm+1 < Q̃′

1−α

}
≤ 1 − α + 1

N+1 under exchangeability due to the standard conformal
prediction coverage guarantee (5).

G.3 Proof of Theorem 3.5

Let us define rm+1 as in the proof of Theorem 3.3. By the continuity assumption on Q, the synthetic
scores are almost surely all distinct, and their order is well-defined. Now observe the deterministic
relation

{R+
rm+1

≤ ⌈(1− α)(N + 1)⌉} = {Um(rm+1) ≤ Q̃1−α} ⊂ {Ym+1 ∈ Ĉ(Xm+1)}

⊂ {Lm(rm+1) ≤ Q̃1−α} = {R−
rm+1

≤ ⌈(1− α)(N + 1)⌉},
(17)

which holds by the construction of Ĉ(Xm+1) and the definition of the interval
[Lm(rm+1), Um(rm+1)]. Therefore, the desired inequalities directly follow from the fact
that rm+1 ∼ Unif([m+ 1]) due to the exchangeability of the scores (Si)i∈[m+1].

G.4 Proof of Proposition 3.2

We show that for any x ∈ X , the following relation holds:

Ĉ(x)△ Ĉfast(x) ⊂ {y ∈ Y : s(x, y) ∈ {S̃j : j ∈ [N ]}}.

The claim then follows directly from the continuity of Q.

Fix any x ∈ X . It is sufficient to prove that for any y in the set Λ := {y′ : s(x, y′) /∈ {S̃j : j ∈ [N ]}},
we have y ∈ Ĉ(x) if and only if y ∈ Ĉfast(x) holds.

Let us first take any y ∈ Ĉfast(x) ∩ Λ, and define r
(x,y)
m+1 =

∑m
i=1 1 {Si < s(x, y)} + 1. Then we

have the following:{
y ∈ Ĉfast(x)

}
=

({
s(x, y) ≤ Q̃′

1−α

}
∩
{
s(x, y) ≤ S(R̃−)

})
∪
{
s(x, y) ≤ S(R̃+)

}
=

({
s(x, y) ≤ Q̃′

1−α

}
∩
{
r
(x,y)
m+1 ≤ R̃−

})
∪
{
r
(x,y)
m+1 ≤ R̃+

}
since y ∈ Λ

=
({

s(x, y) ≤ Q̃′
1−α

}
∩
{
Lm(r

(x,y)
m+1) ≤ Q̃1−α

})
∪
{
Um(r

(x,y)
m+1) ≤ Q̃1−α

}
,

and the final set can be expressed as a disjoint union of two events:

(i) s(x, y) ≤ Q̃′
1−α and Lm(r

(x,y)
m+1) ≤ Q̃1−α < Um(r

(x,y)
m+1), (ii) Um(r

(x,y)
m+1) ≤ Q̃1−α.

Note that in the case (ii), T (s(x, y)) ≤ Q̃1−α directly follows, since T (s(x, y)) ≤ Um(r
(x,y)
m+1) holds

deterministically. In the case (i), we have s(x, y) ≤ Q̃′
1−α ≤ Um(r

(x,y)
m+1), and thus T (s(x, y)) is
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equal to either Lm(r
(x,y)
m+1) or NN−

m(r
(x,y)
m+1 , s(x, y)), which are both less than or equal to Q̃1−α: the

first by the condition (i), the second by the definition of NN−
m. Therefore, in either case, we have

y ∈ Ĉ(x).

Next, to prove the contrapositive, let y /∈ Ĉfast(x)—more precisely, y ∈ Ĉfast(x)c ∩ Λ. From the
observations above, we have{

y /∈ Ĉfast(x)
}
=

({
s(x, y) > Q̃′

1−α

}
∪
{
Lm(r

(x,y)
m+1) > Q̃1−α

})
∩
{
Um(r

(x,y)
m+1) > Q̃1−α

}
=

({
s(x, y) > Q̃′

1−α

}
∩
{
Um(r

(x,y)
m+1) > Q̃1−α

})
∪
{
Lm(r

(x,y)
m+1) > Q̃1−α

}
,

where the second equality applies De Morgan’s law. The final set is a disjoint union of the following
two events:

(i) s(x, y) > Q̃′
1−α and Lm(r

(x,y)
m+1) ≤ Q̃1−α < Um(r

(x,y)
m+1), (ii) Lm(r

(x,y)
m+1) > Q̃1−α.

In case (ii), we have T (s(x, y)) > Q̃1−α, since T (s(x, y)) ≥ Lm(r
(x,y)
m+1) holds deterministically.

In case (i), T (s(x, y)) is equal to either Um(r
(x,y)
m+1) or NN−

m(r
(x,y)
m+1 , s(x, y)), which are both larger

than Q̃1−α. This can be concluded as follows: In this case, we have s(x, y) > Q̃′
1−α ≥ Q̃1−α.

If Lm(r
(x,y)
m+1) ≤ s(x, y) < Um(r

(x,y)
m+1), by the construction of T (s(x, y)), we have T (s(x, y)) =

NN−
m(r

(x,y)
m+1 , s(x, y)) ≥ Q̃′

1−α ≥ Q̃1−α, and moreover we cannot have equality, since y ∈ Λ.
Otherwise, s(x, y) ≥ Um(r

(x,y)
m+1), and therefore, T (s(x, y)) = Um(r

(x,y)
m+1) > Q̃1−α. Therefore, in

both cases, we have y /∈ Ĉ(x), as desired.
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H Experimental details

H.1 Setup and environment

The experiments were conducted on a system running Ubuntu 20.04.6 LTS, with 192 CPU cores of
Intel(R) Xeon(R) Gold CPUs at 2.40 GHz, 1 TB of RAM, and 16 NVIDIA A40 GPUs. The software
environment used Python 3.11.5, PyTorch 2.6, and CUDA 12.2.

H.2 Datasets

Our experiments involve two datasets: ImageNet for image classification tasks and the Medical
Expenditure Panel Survey (MEPS) for regression tasks.

• ImageNet [14]: We use the training split of ImageNet, focusing on 30 selected classes,
which are listed in Table S1.

• MEPS: The MEPS dataset is a medical survey used for regression tasks, with the goal
of predicting healthcare expenditures. For the regression experiments: MEPS-19 [3],
MEPS-20 [1], and MEPS-21 [2]. Each survey includes 139 features, such as demographic
information (e.g., age, gender), and clinical data (e.g., chronic conditions, medical history).

H.3 Model details

We have applied the following models to compute the nonconformity scores:

• ImageNet experiments: We employed a CLIP model based ViT-B/32 backbone, pre-trained
on the LAION-2B dataset [27, 43, 50], using the HuggingFace API. Table S1 reports the
top-1 and top-2 accuracies of this model on the ImageNet training set for the subset of
classes used in our experiments.

• MEPS experiments: The dataset was filtered to include only non-Hispanic White and non-
White individuals. Panel-specific variables were renamed for consistency across panels 19-
21, and rows with missing or invalid values were removed. A healthcare utilization variable
was computed as the sum of expenditures across outpatient, office-based, emergency room,
inpatient, and home health services, serving as the regression target. Preprocessing steps
included retaining common features across panels, standardizing covariates, and applying a
log transformation to the target variable to reduce skewness.
A deep neural network was trained to estimate the lower and upper quantile bounds of
healthcare utilization using a quantile regression approach, with different α levels used for
each experiment. The network architecture consisted of four hidden layers (256, 128, 64,
and 32 units) with LeakyReLU activations, dropout regularization (rate = 0.3), and optional
batch normalization. The model was optimized using the pinball loss function and trained
on 2019 data with early stopping based on validation loss (up to 50 epochs, batch size =
128, learning rate = 1e-4).

H.4 Data generation

H.4.1 Stable Diffusion

We generated synthetic images using the Stable Diffusion v1.5 model [46]. For each class listed in
Table S1, we generated 2,000 images using the following configuration:

• Prompt: “A photo of a {class name}”, where {class name} refers to the corresponding
ImageNet label, as shown to be effective in [43].

• Inference steps: 260

• Guidance scale: 7.5

Figure S5 presents examples of generated images alongside real ImageNet training images from the
same class.
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H.4.2 FLUX

We generated synthetic images using the FLUX.1 model [30] from Black Forest Labs. For each class
listed in Table S1, we generated 2,000 images using the following configuration:

• Prompt: “A photo of a class name”, where class name refers to the corresponding ImageNet
label, as shown to be effective in [43].

• Inference steps: 50

Images were generated using the FluxPipeline from the diffusers library, utilizing NVIDIA
GPUs for acceleration with mixed-precision (float16) computation. The generation process was
parallelized across multiple GPUs. Figure S6 presents examples of generated images alongside real
ImageNet training images from the same class.

Table S1: Per-class accuracies of the pre-trained CLIP model with a ViT backbone on ImageNet. The
first two columns (Top-1 and Top-2 accuracy) are computed over all ImageNet classes, while the last
two columns are computed only over the subset of classes shown in this table.

Class Top-1 (%) Top-2 (%) Top-1 (%) Top-2 (%)

Junco, snowbird 91.8 95.1 94.7 98.3
Bulbul 89.8 96.2 96 99.5
Jay 9.6 22 29 58.3
Magpie 88.2 93.2 94.5 97.8
Golden retriever 66.5 78.4 83.9 95.5
Labrador retriever 53.8 66.3 83.9 94.2
English springer 58.7 79.9 96.2 97.7
Kuvasz 65.5 83.5 93 97.9
Siberian husky 13.8 40 87.3 94.2
Marmot 47.5 66 75.4 98.5
Beaver 59.6 73.5 93.6 98.5
Bicycle 91.5 96.2 97.8 99.9
Lighter, Light 35.3 44.3 72.2 84.8
Muzzle 52.5 62.1 89.2 94.5
Tennis ball 65.4 76.8 88.4 93.8
Torch 44.8 60.7 85.2 95.2
Unicycle 66.3 80.5 83.2 96.5
White wolf 63.9 79.5 87.3 95.4
Water ouzel 88.9 93.5 93.1 96.1
American robin 87.2 92.3 94.5 98.2
Admiral 0.1 0.1 0.1 0.1
Rock beauty 4.6 28.9 66.6 89.5
Papillon 59.8 73 93.8 97.3
Lycaenid butterfly 70.1 92.8 95.3 99.4
Gyromitra 0.1 0.1 0.1 0.1
Coral fungus 78.9 91 87.6 98.8
Stinkhorn 65.3 79.2 87.1 97.7
Barracouta 1.4 7.1 4.4 41.8
Garfish 48.2 64.8 85.8 94.3
Tinca tinca 89.4 94.2 96.5 98.8
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Figure S5: Comparison between real and Stable Diffusion-generated images for selected ImageNet
classes. Each row corresponds to a class, with the first column showing a real ImageNet image and
the remaining columns showing generated datapoints.

Figure S6: Comparison between real and FLUX-generated images for selected ImageNet classes.
Each row corresponds to a class, with the first column showing a real ImageNet image and the
remaining columns showing generated datapoints.
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I Simulated data experiments

In this section, we present controlled experiments on simulated data, where the distributions of
the real and synthetic scores are known. The goal is to compute and visualize the bounds from
Theorem 3.3 and Theorem 3.5. The former provides bounds that depend on the total variation (TV)
distance between the score distributions of the real and synthetic data, while the latter provides
user-specified bounds (via the parameter β) that do not depend on these distributions. Our theoretical
guarantees rely on both theorems, where the effective bound in each case is given by the tighter of
the two, as illustrated in the following experiment.

Data and setup. We consider a simple regression setting with X̃ = X = 0, real outcomes
Y ∼ N (5, 1), and synthetic outcomes Ỹ ∼ N (µ, 1), where µ ∈ {4, 4.2, 4.4, 4.6, 4.8, 4.9, 5}
controls the discrepancy between the two distributions. We use the absolute residual score function
s(X,Y ) = |µ̂(X) − Y |, where µ̂(X) = X . The real dataset includes m = 15 samples, while the
synthetic dataset includes N = 1, 000 samples. The test set consists of 1, 000 real samples. We set
β = 0.05, and report results averaged over 100 independent trials.

Figure S7 shows the performance of all methods as a function of the TV distance for target levels
α = 0.05 and 0.1. The bounds derived from Theorem 3.5, denoted [WC], remain constant across
different TV distances since they do not depend on the underlying data distributions. In contrast,
the bounds from Theorem 3.3, denoted [TV], vary with the TV distance and become looser as the
discrepancy between the real and synthetic distributions increases. The shaded yellow line indicates
the effective bounds—defined as the tighter of the two in each case.

Following that figure, SPI achieves coverage within the effective bounds, as guaranteed by The-
orems 3.3 and 3.5. Notably, for large TV distances—where the synthetic and real data differ
substantially—the bounds from Theorem 3.5 dominate, providing the tighter guarantee even for a
small β value. Moreover, as the user-specified parameter β increases, the [WC] bounds approach the
nominal level 1− α.
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Figure S7: Results on simulated data: Coverage rate as a function of the TV distance between the
real and synthetic score distributions. Bounds from Theorem 3.3 are labeled [TV], and those from
Theorem 3.5 are labeled [WC]. Effective bounds (minimum/maximum of the two) are shown in
yellow. Results are shown for α = 0.05 (a) and 0.1 (b), with β = 0.05.

J Additional ImageNet experiments

This section provides supplementary results that complement those in Section 4.1, including additional
experiments on the ImageNet dataset. The following two subsections—Appendices J.1 and J.2—
correspond to Sections 4.1.1 and 4.1.2 of the main manuscript, respectively, and follow the same
experimental settings.

J.1 Experiments with generated synthetic data

Figure S8 presents the performance under both marginal and label-conditional guarantees at levels
α = 0.02 and 0.1. We observe a similar trend to that seen in Figure 3. Following that figure, we can
see that the standard conformal prediction method, OnlyReal, controls the coverage at the 1 − α
level as expected, but it produces overly conservative prediction sets. OnlySynth method fails to
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achieve the target coverage level of 1− α, under-covering some classes, while in others, it becomes
overly conservative, depending on the unknown distribution shift between the real and synthetic data.
In contrast, the proposed method, SPI, stays within the theoretical bounds and produces informative
prediction sets.
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Figure S8: Results for the ImageNet data: Coverage rates of OnlyReal, OnlySynth, and SPI run at
level α = 0.02 (a) and 0.1 (b), averaged over 100 trials. Left: Average coverage. Right: Average
prediction set size, both under marginal (leftmost box in each group) and label-conditional coverage
settings. Label-conditional results are shown for selected classes; see Tables S2 and S4 for results
across all classes.

Tables S2 to S4 present results for all 30 classes in the real calibration set corresponding to Figure 3
in the main manuscript and Figures S8a and S8b above.
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Table S2: Per-class conditional coverage (in %) and prediction set size for each method, computed over
100 trials. Standard errors are shown in parentheses. The target coverage level is 1− α = 0.98. The
theoretical coverage guarantees for SPI are in the range [93.7, 100]. Other details are as in Figure S8.

Coverage (%) Size
Class Only

Real
Only
Synth

SPI Only
Real

Only
Synth

SPI

Admiral 100 (± 0) 6.9 (± 0.3) 93.6 (± 0.6) 30 (± 0) 4.5 (± 0) 6.1 (± 0)
American robin 100 (± 0) 94.8 (± 0.1) 96.6 (± 0.2) 30 (± 0) 2.6 (± 0) 3.6 (± 0)
Barracouta 100 (± 0) 99.8 (± 0) 99.8 (± 0) 30 (± 0) 5.6 (± 0) 7.2 (± 0.1)
Beaver 100 (± 0) 91.9 (± 0.1) 95.3 (± 0.3) 30 (± 0) 3.1 (± 0) 4.2 (± 0)
Bicycle 100 (± 0) 96.3 (± 0.1) 97.3 (± 0.1) 30 (± 0) 2.8 (± 0) 3.5 (± 0)
Bulbul 100 (± 0) 99.4 (± 0) 99.5 (± 0) 30 (± 0) 2.6 (± 0) 3.7 (± 0)
Coral fungus 100 (± 0) 99.4 (± 0) 99.4 (± 0) 30 (± 0) 2.7 (± 0) 3.3 (± 0)
English springer 100 (± 0) 94.2 (± 0.1) 96.5 (± 0.2) 30 (± 0) 2.9 (± 0) 4.1 (± 0)
Garfish 100 (± 0) 92.1 (± 0.1) 95.3 (± 0.3) 30 (± 0) 4.6 (± 0) 5.9 (± 0)
Golden retriever 100 (± 0) 94.3 (± 0.1) 96.4 (± 0.2) 30 (± 0) 4.3 (± 0) 5.8 (± 0.1)
Gyromitra 100 (± 0) 92.4 (± 0.2) 96.4 (± 0.3) 30 (± 0) 3.1 (± 0) 3.7 (± 0)
Jay 100 (± 0) 92.0 (± 0.2) 95.6 (± 0.3) 30 (± 0) 6.4 (± 0) 8.0 (± 0.1)
Junco, snowbird 100 (± 0) 97.5 (± 0.1) 98.0 (± 0.1) 30 (± 0) 2.3 (± 0) 3.1 (± 0)
Kuvasz 100 (± 0) 95.1 (± 0.1) 96.5 (± 0.2) 30 (± 0) 2.8 (± 0) 4.0 (± 0)
Labrador retriever 100 (± 0) 96.2 (± 0.1) 97.2 (± 0.1) 30 (± 0) 4.6 (± 0) 6.3 (± 0.1)
Lighter, Light 100 (± 0) 98.0 (± 0.1) 98.3 (± 0.1) 30 (± 0) 4.9 (± 0) 6.2 (± 0)
Lycaenid butterfly 100 (± 0) 93.5 (± 0.1) 95.7 (± 0.2) 30 (± 0) 2.9 (± 0) 4.1 (± 0.1)
Magpie 100 (± 0) 96.7 (± 0.1) 97.4 (± 0.1) 30 (± 0) 2.5 (± 0) 3.4 (± 0)
Marmot 100 (± 0) 95.5 (± 0.1) 97.0 (± 0.2) 30 (± 0) 4.0 (± 0) 5.6 (± 0.1)
Muzzle 100 (± 0) 97.5 (± 0) 98.0 (± 0.1) 30 (± 0) 3.5 (± 0) 4.9 (± 0)
Papillon 100 (± 0) 89.7 (± 0.2) 94.9 (± 0.4) 30 (± 0) 3.1 (± 0) 4.3 (± 0)
Rock beauty 100 (± 0) 90.6 (± 0.2) 95.3 (± 0.3) 30 (± 0) 4.8 (± 0) 6.0 (± 0)
Siberian husky 100 (± 0) 69.7 (± 0.3) 94.1 (± 0.6) 30 (± 0) 3.2 (± 0) 4.6 (± 0)
Stinkhorn 100 (± 0) 97.9 (± 0.1) 98.2 (± 0.1) 30 (± 0) 4.6 (± 0) 5.5 (± 0)
Tennis ball 100 (± 0) 97.5 (± 0.1) 98.0 (± 0.1) 30 (± 0) 3.1 (± 0) 4.0 (± 0)
Tinca tinca 100 (± 0) 98.5 (± 0) 98.6 (± 0.1) 30 (± 0) 3.3 (± 0) 4.2 (± 0)
Torch 100 (± 0) 98.3 (± 0) 98.7 (± 0.1) 30 (± 0) 5.6 (± 0) 7.1 (± 0.1)
Unicycle 100 (± 0) 96.3 (± 0.1) 97.2 (± 0.1) 30 (± 0) 4.2 (± 0) 5.5 (± 0)
Water ouzel 100 (± 0) 95.7 (± 0.1) 97.0 (± 0.2) 30 (± 0) 2.5 (± 0) 3.3 (± 0)
White wolf 100 (± 0) 85.5 (± 0.2) 94.3 (± 0.5) 30 (± 0) 2.9 (± 0) 4.0 (± 0)
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Table S3: Per-class conditional coverage (in %) and prediction set size for each method, computed over
100 trials. Standard errors are shown in parentheses. The target coverage level is 1− α = 0.95. The
theoretical coverage guarantees for SPI are in the range [93.7, 100]. Other details are as in Figure 3.

Coverage (%) Size
Class Only

Real
Only
Synth

SPI Only
Real

Only
Synth

SPI

Admiral 100 (± 0) 0.6 (± 0) 93.6 (± 0.6) 30 (± 0) 3.6 (± 0) 5.8 (± 0)
American robin 100 (± 0) 90.5 (± 0.2) 95.4 (± 0.3) 30 (± 0) 1.8 (± 0) 3.3 (± 0)
Barracouta 100 (± 0) 99.3 (± 0) 99.4 (± 0) 30 (± 0) 4.5 (± 0) 6.8 (± 0.1)
Beaver 100 (± 0) 85.1 (± 0.2) 94.3 (± 0.5) 30 (± 0) 2.5 (± 0) 3.9 (± 0)
Bicycle 100 (± 0) 92.5 (± 0.1) 95.6 (± 0.3) 30 (± 0) 2.3 (± 0) 3.3 (± 0)
Bulbul 100 (± 0) 98.4 (± 0.1) 98.6 (± 0.1) 30 (± 0) 2.0 (± 0) 3.4 (± 0)
Coral fungus 100 (± 0) 98.7 (± 0) 98.8 (± 0.1) 30 (± 0) 2.1 (± 0) 3.1 (± 0)
English springer 100 (± 0) 90.1 (± 0.1) 95.2 (± 0.4) 30 (± 0) 2.2 (± 0) 3.8 (± 0)
Garfish 100 (± 0) 86.4 (± 0.1) 94.2 (± 0.4) 30 (± 0) 3.7 (± 0) 5.6 (± 0)
Golden retriever 100 (± 0) 88.8 (± 0.2) 94.9 (± 0.4) 30 (± 0) 3.3 (± 0) 5.3 (± 0.1)
Gyromitra 100 (± 0) 80.3 (± 0.3) 95.1 (± 0.5) 30 (± 0) 2.7 (± 0) 3.6 (± 0)
Jay 100 (± 0) 80.4 (± 0.2) 93.7 (± 0.6) 30 (± 0) 4.8 (± 0) 7.4 (± 0.1)
Junco, snowbird 100 (± 0) 94.7 (± 0.1) 96.4 (± 0.2) 30 (± 0) 1.7 (± 0) 2.9 (± 0)
Kuvasz 100 (± 0) 91.6 (± 0.1) 95.1 (± 0.3) 30 (± 0) 2.1 (± 0) 3.7 (± 0)
Labrador retriever 100 (± 0) 91.9 (± 0.1) 95.6 (± 0.3) 30 (± 0) 3.6 (± 0) 5.8 (± 0.1)
Lighter, Light 100 (± 0) 95.2 (± 0.1) 96.8 (± 0.2) 30 (± 0) 3.9 (± 0) 5.8 (± 0)
Lycaenid butterfly 100 (± 0) 88.2 (± 0.1) 94.5 (± 0.4) 30 (± 0) 2.3 (± 0) 4.0 (± 0.1)
Magpie 100 (± 0) 93.6 (± 0.1) 95.7 (± 0.2) 30 (± 0) 1.9 (± 0) 3.1 (± 0)
Marmot 100 (± 0) 93.0 (± 0.1) 96.2 (± 0.3) 30 (± 0) 3.2 (± 0) 5.2 (± 0.1)
Muzzle 100 (± 0) 95.7 (± 0.1) 96.9 (± 0.2) 30 (± 0) 2.8 (± 0) 4.6 (± 0)
Papillon 100 (± 0) 83.6 (± 0.2) 94.1 (± 0.5) 30 (± 0) 2.3 (± 0) 4.0 (± 0)
Rock beauty 100 (± 0) 68.5 (± 0.4) 94.2 (± 0.5) 30 (± 0) 3.5 (± 0) 5.5 (± 0)
Siberian husky 100 (± 0) 56.7 (± 0.3) 94.1 (± 0.6) 30 (± 0) 2.3 (± 0) 4.2 (± 0)
Stinkhorn 100 (± 0) 95.6 (± 0.1) 96.6 (± 0.2) 30 (± 0) 3.6 (± 0) 5.1 (± 0)
Tennis ball 100 (± 0) 94.3 (± 0.1) 96.0 (± 0.2) 30 (± 0) 2.5 (± 0) 3.7 (± 0)
Tinca tinca 100 (± 0) 96.5 (± 0.1) 97.2 (± 0.1) 30 (± 0) 2.6 (± 0) 4.0 (± 0)
Torch 100 (± 0) 96.7 (± 0.1) 97.6 (± 0.1) 30 (± 0) 4.5 (± 0) 6.6 (± 0.1)
Unicycle 100 (± 0) 92.9 (± 0.1) 95.7 (± 0.3) 30 (± 0) 3.3 (± 0) 5.1 (± 0)
Water ouzel 100 (± 0) 92.6 (± 0.1) 95.7 (± 0.3) 30 (± 0) 1.8 (± 0) 3.1 (± 0)
White wolf 100 (± 0) 80.5 (± 0.2) 93.9 (± 0.6) 30 (± 0) 2.1 (± 0) 3.7 (± 0)
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Table S4: Per-class conditional coverage (in %) and prediction set size for each method, computed
over 100 trials. Standard errors are shown in parentheses. The target coverage level is 1− α = 0.9.
The theoretical coverage guarantees for SPI are in the range [81.2, 93.7]. Other details as in Figure S8.

Coverage (%) Size
Class Only

Real
Only
Synth

SPI Only
Real

Only
Synth

SPI

Admiral 93.6 (± 0.6) 0.2 (± 0) 81.3 (± 0.9) 5.6 (± 0) 3.1 (± 0) 4.3 (± 0)
American robin 94.5 (± 0.5) 84.3 (± 0.2) 86.5 (± 0.5) 3.2 (± 0) 1.3 (± 0) 1.9 (± 0)
Barracouta 95.3 (± 0.4) 97.8 (± 0) 94.9 (± 0.4) 6.6 (± 0.1) 3.8 (± 0) 4.9 (± 0)
Beaver 94.0 (± 0.6) 78.1 (± 0.2) 83.4 (± 0.6) 3.6 (± 0.1) 1.8 (± 0) 2.3 (± 0)
Bicycle 94.2 (± 0.5) 87.1 (± 0.2) 88.2 (± 0.4) 3.2 (± 0) 2.0 (± 0) 2.3 (± 0)
Bulbul 93.8 (± 0.6) 95.8 (± 0.1) 92.8 (± 0.6) 3.3 (± 0) 1.6 (± 0) 2.1 (± 0)
Coral fungus 93.5 (± 0.6) 97.7 (± 0.1) 93.2 (± 0.6) 2.9 (± 0) 1.7 (± 0) 2.1 (± 0)
English springer 93.9 (± 0.6) 83.1 (± 0.2) 85.3 (± 0.4) 3.6 (± 0) 1.5 (± 0) 2.2 (± 0)
Garfish 93.5 (± 0.6) 79.2 (± 0.2) 83.4 (± 0.5) 5.4 (± 0.1) 3.2 (± 0) 4.0 (± 0)
Golden retriever 94.1 (± 0.6) 82.4 (± 0.2) 85.8 (± 0.5) 5.0 (± 0.1) 2.3 (± 0) 3.1 (± 0)
Gyromitra 95.0 (± 0.6) 64.1 (± 0.3) 85.2 (± 0.9) 3.3 (± 0) 2.3 (± 0) 2.5 (± 0)
Jay 93.3 (± 0.7) 67.1 (± 0.3) 80.9 (± 0.9) 6.8 (± 0.1) 3.7 (± 0) 4.8 (± 0)
Junco, snowbird 94.2 (± 0.5) 90.0 (± 0.1) 89.9 (± 0.4) 2.7 (± 0) 1.3 (± 0) 1.7 (± 0)
Kuvasz 93.4 (± 0.6) 85.0 (± 0.2) 86.3 (± 0.4) 3.5 (± 0) 1.5 (± 0) 2.0 (± 0)
Labrador retriever 93.5 (± 0.7) 84.6 (± 0.2) 85.9 (± 0.5) 5.4 (± 0.1) 2.7 (± 0) 3.5 (± 0)
Lighter, Light 94.2 (± 0.6) 90.4 (± 0.1) 89.6 (± 0.4) 5.4 (± 0.1) 3.2 (± 0) 3.9 (± 0)
Lycaenid butterfly 94.0 (± 0.5) 81.3 (± 0.2) 85.7 (± 0.5) 3.9 (± 0.1) 1.9 (± 0) 2.5 (± 0)
Magpie 93.5 (± 0.6) 88.3 (± 0.2) 88.3 (± 0.5) 3.0 (± 0) 1.4 (± 0) 1.9 (± 0)
Marmot 94.0 (± 0.6) 89.8 (± 0.1) 89.1 (± 0.4) 4.9 (± 0.1) 2.6 (± 0) 3.1 (± 0)
Muzzle 93.5 (± 0.6) 92.1 (± 0.1) 90.8 (± 0.5) 4.3 (± 0) 2.3 (± 0) 3.0 (± 0)
Papillon 93.8 (± 0.6) 75.8 (± 0.2) 82.4 (± 0.6) 3.8 (± 0.1) 1.7 (± 0) 2.4 (± 0)
Rock beauty 94.2 (± 0.5) 44.6 (± 0.3) 80.7 (± 1.0) 5.1 (± 0.1) 2.5 (± 0) 3.8 (± 0)
Siberian husky 94.1 (± 0.6) 44.4 (± 0.3) 80.4 (± 1.1) 4.0 (± 0) 1.5 (± 0) 2.4 (± 0)
Stinkhorn 93.4 (± 0.6) 92.2 (± 0.1) 90.7 (± 0.4) 4.5 (± 0.1) 2.8 (± 0) 3.2 (± 0)
Tennis ball 93.5 (± 0.6) 88.6 (± 0.1) 88.6 (± 0.3) 3.5 (± 0) 2.0 (± 0) 2.5 (± 0)
Tinca tinca 93.2 (± 0.6) 93.2 (± 0.1) 91.2 (± 0.5) 3.8 (± 0) 2.1 (± 0) 2.7 (± 0)
Torch 94.8 (± 0.5) 93.9 (± 0.1) 92.6 (± 0.4) 6.2 (± 0.1) 3.8 (± 0) 4.6 (± 0)
Unicycle 93.3 (± 0.6) 86.5 (± 0.2) 87.1 (± 0.4) 4.8 (± 0) 2.8 (± 0) 3.3 (± 0)
Water ouzel 94.3 (± 0.5) 87.7 (± 0.1) 88.3 (± 0.3) 3.0 (± 0) 1.4 (± 0) 1.9 (± 0)
White wolf 93.9 (± 0.6) 74.1 (± 0.2) 82.4 (± 0.7) 3.4 (± 0) 1.5 (± 0) 2.1 (± 0)
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J.1.1 The effect of the real calibration set size

Here, we evaluate the performance of different methods as a function of the real calibration set
size m, following the same setup described in Section 4.1.1. This parameter directly affects the
performance of both the standard conformal prediction method, OnlyReal, and our proposed method,
SPI, including the theoretical bounds established in Theorem 3.5. In contrast, OnlySynth, which
relies solely on the synthetic calibration set, is unaffected by changes in m. As such, it serves as a
useful baseline for assessing how well the synthetic calibration set aligns with the real one.

Figure S9 presents the performance of all methods for the “Lighter” class across varying values of m
and α levels. Notably, although OnlySynth does not have formal coverage guarantees, its empirical
coverage closely matches the target level 1−α. This alignment suggests that the synthetic calibration
data approximate the real distribution well.
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Figure S9: Results for the ImageNet data: Coverage rate for OnlyReal, OnlySynth, and SPI on the
“Lighter” class as a function of the real calibration set size m, for levels α = 0.02 (a), α = 0.05 (b),
and α = 0.1 (c).

Figure S9a presents results for α = 0.02. At this low level, the standard conformal prediction,
OnlyReal, controls the coverage at level 1− α, but—as expected—produces trivial prediction sets
when m < 50.

In contrast, our proposed method, SPI, achieves coverage within the theoretical bounds even for
small m, with reduced variance in coverage and smaller prediction sets for m ≥ 15. Interestingly,
for α = 0.02 and m = 5 or 10, the theoretical lower and upper coverage bounds are both equal to
unity, indicating that we know a priori that the proposed method yields trivial prediction sets for this
window construction.

For α = 0.05 and α = 0.1 (Figures S9b and S9c, respectively), we observe similar trends. Our
method, SPI, consistently achieves coverage within the theoretical bounds, remaining close to the
target coverage level 1−α, while also exhibiting reduced variance in coverage and producing smaller,
more informative prediction sets compared to the baseline, OnlyReal.
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Additionally, Figure S10 presents the same experiment as in Figure S9, but for the “Beaver” class. In
this case, the OnlySynth method yields coverage that falls significantly below the target level 1− α,
indicating that the synthetic calibration set differs substantially from the real data. Nevertheless,
our proposed method, SPI, achieves coverage within the theoretical bounds across all α levels and
calibration set sizes, while also producing informative prediction sets.
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Figure S10: Results for the ImageNet data: Coverage rate for OnlyReal, OnlySynth, and SPI on
the Beaver class as a function of the real calibration set size m, for levels α = 0.02 (a), α = 0.05 (b),
and α = 0.1 (c).

36



J.1.2 The effect of the hyperparameter β

In this section, we examine the effect of the hyperparameter β on the performance of our proposed
method, SPI. At a theoretical level, the sensitivity of SPI to β depends on the similarity between
the synthetic and real score distributions. Specifically, this can be seen in the score-transportation
step: when the two score distributions differ substantially, the transported score T (Sm+1) is likely
to lie at one of the endpoints of the corresponding window—even under a small β. As a result, the
coverage of the SPI prediction set approaches the guardrail bound in Theorem 3.5, indicating that we
gain little from the synthetic data.

On the other hand, when the synthetic scores closely resemble the real scores, the transported score is
likely to lie within the corresponding window rather than in its endpoints—even for relatively large
values of β. In this case, the SPI prediction set resembles conformal prediction with a larger sample
size, achieving coverage close to the nominal 1 − α level, and the effect of the hyperparameter β
becomes relatively minor.

Figure S11 illustrates this behavior, showing the coverage of all methods for different β values
across two classes—lighter (left column) and Siberian husky (right column) classes—at target levels
α = 0.02, 0.05, and 0.1. Following that figure, for all β values, the empirical coverage of SPI lies
within the theoretical bounds of Theorem 3.5.

The results align with the behavior described above: for the lighter class (left column), the synthetic
scores closely resemble the real ones, and accordingly, the performance of SPI remains roughly the
same across different β values, achieving coverage close to the nominal 1− α level. In contrast, for
the Siberian husky class (right column), where the synthetic scores deviate significantly from the real
scores, the coverage of SPI closely follows the guardrail bounds. Note that this figure also presents
how the lower bound of Theorem 3.5 increases with β, becoming closer to the nominal 1− α level.
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Figure S11: Results for the ImageNet data: Coverage rate for OnlyReal, OnlySynth, and SPI as a
function of β. Results are displayed for the Siberian husky (right column) and lighter (left column)
classes, at levels α = 0.02 (a), α = 0.05 (b), and α = 0.1 (c).
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J.1.3 Results for SPI with FLUX-generated synthetic data

In this section, we evaluate the performance of the proposed method, SPI, using synthetic images
generated by the FLUX.1 model [30]. The experimental setup follows the same procedure described
in Section 4.1.1 of the main manuscript. As before, we aim for both marginal and label-conditional
coverage guarantees.

Figure S12 presents the marginal and label-conditional coverage of various methods at levels α =
0.02, 0.05, and 0.1. The results for label-conditional guarantees are presented for representative
classes; results for all classes in the real population are detailed in Tables S5 to S7. We observe
similar trends to those observed using synthetic images generated by Stable Diffusion. The standard
conformal method, OnlyReal, controls the coverage at the 1 − α level; however, it yields overly
conservative prediction sets due to the small sample size. OnlySynth fails to control the coverage
at the desired level, exhibiting under-coverage for some classes and over-coverage for others. In
contrast, the proposed method, SPI, achieves coverage within the theoretical bounds while providing
smaller, more informative prediction sets.
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Figure S12: Results for the ImageNet data using FLUX-generated synthetic images: Coverage rates
of OnlyReal, OnlySynth, and SPI run at level α = 0.02 (a), 0.05 (b), and 0.1 (b), averaged over
100 trials. Left: Average coverage. Right: Average prediction set size, both under marginal (leftmost
box in each group) and label-conditional coverage settings. Label-conditional results are shown for
selected classes; see Tables S5 to S7 for results across all classes.
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Table S5: Per-class conditional coverage (in %) and prediction set size for each method, computed
over 100 trials using FLUX-generated synthetic data. The target coverage level is 1− α = 0.98. The
theoretical coverage guarantees for SPI are in the range [93.7, 100]. Standard errors are shown in
parentheses. Other experimental details follow Figure S12.

Coverage (%) Size
Class Only

Real
Only
Synth

SPI Only
Real

Only
Synth

SPI

Admiral 100 (± 0) 0.2 (± 0) 93.6 (± 0.6) 30 (± 0) 4.7 (± 0) 6.5 (± 0)
American robin 100 (± 0) 95.5 (± 0.1) 96.8 (± 0.2) 30 (± 0) 2.7 (± 0) 4.3 (± 0)
Barracouta 100 (± 0) 99.9 (± 0) 99.9 (± 0) 30 (± 0) 5.6 (± 0) 8.2 (± 0.1)
Beaver 100 (± 0) 86.7 (± 0.2) 94.5 (± 0.4) 30 (± 0) 4.1 (± 0) 5.6 (± 0)
Bicycle 100 (± 0) 99.8 (± 0) 99.8 (± 0) 30 (± 0) 3.8 (± 0) 4.8 (± 0)
Bulbul 100 (± 0) 97.3 (± 0.1) 97.9 (± 0.1) 30 (± 0) 3.2 (± 0) 4.7 (± 0)
Coral fungus 100 (± 0) 99.6 (± 0) 99.6 (± 0) 30 (± 0) 2.9 (± 0) 3.9 (± 0)
English springer 100 (± 0) 96.2 (± 0.1) 97.3 (± 0.1) 30 (± 0) 3.3 (± 0) 5.1 (± 0)
Garfish 100 (± 0) 90.4 (± 0.1) 95.0 (± 0.3) 30 (± 0) 4.9 (± 0) 6.9 (± 0)
Golden retriever 100 (± 0) 93.6 (± 0.1) 96.0 (± 0.2) 30 (± 0) 4.6 (± 0) 6.9 (± 0)
Gyromitra 100 (± 0) 57.2 (± 0.3) 95.0 (± 0.6) 30 (± 0) 3.6 (± 0) 4.5 (± 0)
Jay 100 (± 0) 50.1 (± 0.5) 93.3 (± 0.7) 30 (± 0) 6.9 (± 0) 9.1 (± 0)
Junco, snowbird 100 (± 0) 99.2 (± 0) 99.3 (± 0) 30 (± 0) 2.4 (± 0) 3.6 (± 0)
Kuvasz 100 (± 0) 99.4 (± 0) 99.4 (± 0) 30 (± 0) 2.8 (± 0) 4.6 (± 0)
Labrador retriever 100 (± 0) 91.6 (± 0.2) 95.5 (± 0.3) 30 (± 0) 4.9 (± 0) 7.4 (± 0)
Lighter, Light 100 (± 0) 75.6 (± 0.2) 94.4 (± 0.6) 30 (± 0) 4.7 (± 0) 7.0 (± 0)
Lycaenid butterfly 100 (± 0) 93.4 (± 0.1) 95.7 (± 0.2) 30 (± 0) 3.8 (± 0) 4.7 (± 0)
Magpie 100 (± 0) 97.0 (± 0.1) 97.6 (± 0.1) 30 (± 0) 3.0 (± 0) 4.4 (± 0)
Marmot 100 (± 0) 98.0 (± 0.1) 98.3 (± 0.1) 30 (± 0) 4.9 (± 0) 6.9 (± 0.1)
Muzzle 100 (± 0) 96.2 (± 0.1) 97.2 (± 0.1) 30 (± 0) 3.7 (± 0) 5.8 (± 0)
Papillon 100 (± 0) 99.9 (± 0) 99.9 (± 0) 30 (± 0) 2.5 (± 0) 4.4 (± 0)
Rock beauty 100 (± 0) 93.6 (± 0.1) 96.0 (± 0.2) 30 (± 0) 4.9 (± 0) 7.1 (± 0)
Siberian husky 100 (± 0) 68.8 (± 0.2) 94.1 (± 0.6) 30 (± 0) 3.4 (± 0) 5.5 (± 0)
Stinkhorn 100 (± 0) 98.3 (± 0) 98.5 (± 0.1) 30 (± 0) 5.1 (± 0) 6.5 (± 0)
Tennis ball 100 (± 0) 89.5 (± 0.1) 94.5 (± 0.4) 30 (± 0) 3.4 (± 0) 4.8 (± 0)
Tinca tinca 100 (± 0) 99.4 (± 0) 99.4 (± 0) 30 (± 0) 3.3 (± 0) 5.0 (± 0)
Torch 100 (± 0) 91.5 (± 0.1) 95.8 (± 0.3) 30 (± 0) 6.0 (± 0) 8.5 (± 0)
Unicycle 100 (± 0) 99.8 (± 0) 99.8 (± 0) 30 (± 0) 4.8 (± 0) 6.6 (± 0)
Water ouzel 100 (± 0) 99.1 (± 0) 99.2 (± 0) 30 (± 0) 2.6 (± 0) 3.9 (± 0)
White wolf 100 (± 0) 83.9 (± 0.2) 94.2 (± 0.5) 30 (± 0) 3.4 (± 0) 5.1 (± 0)

39



Table S6: Per-class conditional coverage (in %) and prediction set size for each method, computed
over 100 trials using FLUX-generated synthetic data. The target coverage level is 1− α = 0.95. The
theoretical coverage guarantees for SPI are in the range [93.7, 100]. Standard errors are shown in
parentheses. Other experimental details follow Figure S12.

Coverage (%) Size
Class Only

Real
Only
Synth

SPI Only
Real

Only
Synth

SPI

Admiral 100 (± 0) 0.2 (± 0) 93.6 (± 0.6) 30 (± 0) 4.4 (± 0) 6.3 (± 0)
American robin 100 (± 0) 91.7 (± 0.1) 95.6 (± 0.3) 30 (± 0) 2.0 (± 0) 3.8 (± 0)
Barracouta 100 (± 0) 99.9 (± 0) 99.9 (± 0) 30 (± 0) 4.8 (± 0) 7.7 (± 0.1)
Beaver 100 (± 0) 81.0 (± 0.2) 94.1 (± 0.5) 30 (± 0) 3.1 (± 0) 4.8 (± 0)
Bicycle 100 (± 0) 98.9 (± 0) 99.0 (± 0) 30 (± 0) 3.1 (± 0) 4.2 (± 0)
Bulbul 100 (± 0) 93.8 (± 0.1) 96.2 (± 0.2) 30 (± 0) 2.6 (± 0) 4.3 (± 0)
Coral fungus 100 (± 0) 99.4 (± 0) 99.4 (± 0) 30 (± 0) 2.4 (± 0) 3.6 (± 0)
English springer 100 (± 0) 95.1 (± 0.1) 96.8 (± 0.2) 30 (± 0) 3.0 (± 0) 4.9 (± 0)
Garfish 100 (± 0) 84.7 (± 0.2) 93.9 (± 0.5) 30 (± 0) 4.0 (± 0) 6.3 (± 0)
Golden retriever 100 (± 0) 89.9 (± 0.1) 95.0 (± 0.3) 30 (± 0) 3.8 (± 0) 6.5 (± 0.1)
Gyromitra 100 (± 0) 46.6 (± 0.2) 95.0 (± 0.6) 30 (± 0) 3.0 (± 0) 4.1 (± 0)
Jay 100 (± 0) 31.7 (± 0.2) 93.3 (± 0.7) 30 (± 0) 5.7 (± 0) 8.5 (± 0.1)
Junco, snowbird 100 (± 0) 97.9 (± 0.1) 98.3 (± 0.1) 30 (± 0) 2.0 (± 0) 3.3 (± 0)
Kuvasz 100 (± 0) 99.2 (± 0) 99.3 (± 0) 30 (± 0) 2.3 (± 0) 4.3 (± 0)
Labrador retriever 100 (± 0) 86.5 (± 0.2) 94.4 (± 0.5) 30 (± 0) 4.1 (± 0) 6.9 (± 0.1)
Lighter, Light 100 (± 0) 67.0 (± 0.2) 94.2 (± 0.6) 30 (± 0) 3.9 (± 0) 6.7 (± 0)
Lycaenid butterfly 100 (± 0) 88.5 (± 0.1) 94.6 (± 0.4) 30 (± 0) 3.3 (± 0) 4.6 (± 0)
Magpie 100 (± 0) 94.0 (± 0.1) 95.8 (± 0.2) 30 (± 0) 2.5 (± 0) 4.0 (± 0)
Marmot 100 (± 0) 96.9 (± 0.1) 97.7 (± 0.1) 30 (± 0) 3.9 (± 0) 6.2 (± 0.1)
Muzzle 100 (± 0) 94.2 (± 0.1) 96.2 (± 0.2) 30 (± 0) 3.2 (± 0) 5.5 (± 0)
Papillon 100 (± 0) 99.9 (± 0) 99.9 (± 0) 30 (± 0) 2.2 (± 0) 4.3 (± 0)
Rock beauty 100 (± 0) 87.9 (± 0.1) 94.7 (± 0.4) 30 (± 0) 4.4 (± 0) 6.8 (± 0)
Siberian husky 100 (± 0) 61.1 (± 0.2) 94.1 (± 0.6) 30 (± 0) 2.9 (± 0) 5.2 (± 0)
Stinkhorn 100 (± 0) 97.3 (± 0.1) 97.7 (± 0.1) 30 (± 0) 4.4 (± 0) 6.0 (± 0)
Tennis ball 100 (± 0) 84.4 (± 0.2) 93.7 (± 0.5) 30 (± 0) 2.8 (± 0) 4.4 (± 0)
Tinca tinca 100 (± 0) 98.7 (± 0) 98.8 (± 0.1) 30 (± 0) 2.7 (± 0) 4.6 (± 0)
Torch 100 (± 0) 86.9 (± 0.2) 95.2 (± 0.4) 30 (± 0) 5.2 (± 0) 8.0 (± 0)
Unicycle 100 (± 0) 99.8 (± 0) 99.8 (± 0) 30 (± 0) 4.0 (± 0) 6.0 (± 0)
Water ouzel 100 (± 0) 98.9 (± 0) 99.0 (± 0) 30 (± 0) 2.0 (± 0) 3.5 (± 0)
White wolf 100 (± 0) 78.5 (± 0.2) 93.9 (± 0.6) 30 (± 0) 2.8 (± 0) 4.7 (± 0)
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Table S7: Per-class conditional coverage (in %) and prediction set size for each method, computed
over 100 trials using FLUX-generated synthetic data. The target coverage level is 1− α = 0.9. The
theoretical coverage guarantees for SPI are in the range [81.2, 93.7]. Standard errors are shown in
parentheses. Other experimental details follow Figure S12.

Coverage (%) Size
Class Only

Real
Only
Synth

SPI Only
Real

Only
Synth

SPI

Admiral 93.6 (± 0.6) 0.1 (± 0) 81.3 (± 0.9) 5.6 (± 0) 4.1 (± 0) 4.6 (± 0)
American robin 94.5 (± 0.5) 86.2 (± 0.2) 87.5 (± 0.4) 3.2 (± 0) 1.5 (± 0) 2.0 (± 0)
Barracouta 95.3 (± 0.4) 99.9 (± 0) 95.3 (± 0.4) 6.6 (± 0.1) 3.9 (± 0) 5.1 (± 0)
Beaver 94.0 (± 0.6) 74.5 (± 0.2) 82.5 (± 0.7) 3.6 (± 0.1) 2.4 (± 0) 2.5 (± 0)
Bicycle 94.2 (± 0.5) 96.9 (± 0.1) 93.6 (± 0.5) 3.2 (± 0) 2.7 (± 0) 2.5 (± 0)
Bulbul 93.8 (± 0.6) 88.3 (± 0.2) 88.4 (± 0.4) 3.3 (± 0) 1.9 (± 0) 2.2 (± 0)
Coral fungus 93.5 (± 0.6) 98.4 (± 0) 93.4 (± 0.6) 2.9 (± 0) 2.0 (± 0) 2.2 (± 0)
English springer 93.9 (± 0.6) 93.3 (± 0.1) 91.3 (± 0.4) 3.6 (± 0) 2.5 (± 0) 2.5 (± 0)
Garfish 93.5 (± 0.6) 77.2 (± 0.2) 82.7 (± 0.6) 5.4 (± 0.1) 3.3 (± 0) 4.1 (± 0)
Golden retriever 94.1 (± 0.6) 84.0 (± 0.2) 86.5 (± 0.5) 5.0 (± 0.1) 3.0 (± 0) 3.3 (± 0)
Gyromitra 95.0 (± 0.6) 38.8 (± 0.2) 84.8 (± 1.0) 3.3 (± 0) 2.4 (± 0) 2.6 (± 0)
Jay 93.3 (± 0.7) 23.5 (± 0.2) 80.5 (± 1.0) 6.8 (± 0.1) 4.6 (± 0) 5.1 (± 0)
Junco, snowbird 94.2 (± 0.5) 95.3 (± 0.1) 92.9 (± 0.4) 2.7 (± 0) 1.6 (± 0) 1.8 (± 0)
Kuvasz 93.4 (± 0.6) 99.0 (± 0) 93.3 (± 0.6) 3.5 (± 0) 1.8 (± 0) 2.1 (± 0)
Labrador retriever 93.5 (± 0.7) 81.5 (± 0.2) 84.5 (± 0.5) 5.4 (± 0.1) 3.3 (± 0) 3.7 (± 0)
Lighter, Light 94.2 (± 0.6) 57.8 (± 0.2) 81.5 (± 0.9) 5.4 (± 0.1) 3.1 (± 0) 3.8 (± 0)
Lycaenid butterfly 94.0 (± 0.5) 82.2 (± 0.2) 86.2 (± 0.5) 3.9 (± 0.1) 3.0 (± 0) 3.0 (± 0)
Magpie 93.5 (± 0.6) 88.9 (± 0.2) 88.7 (± 0.5) 3.0 (± 0) 1.8 (± 0) 2.0 (± 0)
Marmot 94.0 (± 0.6) 96.0 (± 0.1) 92.9 (± 0.6) 4.9 (± 0.1) 3.1 (± 0) 3.3 (± 0)
Muzzle 93.5 (± 0.6) 90.5 (± 0.1) 90.0 (± 0.5) 4.3 (± 0) 2.6 (± 0) 3.1 (± 0)
Papillon 93.8 (± 0.6) 99.7 (± 0) 93.8 (± 0.6) 3.8 (± 0.1) 1.9 (± 0) 2.5 (± 0)
Rock beauty 94.2 (± 0.5) 80.3 (± 0.2) 84.4 (± 0.5) 5.1 (± 0.1) 3.7 (± 0) 4.1 (± 0)
Siberian husky 94.1 (± 0.6) 53.1 (± 0.2) 80.6 (± 1.0) 4.0 (± 0) 2.2 (± 0) 2.6 (± 0)
Stinkhorn 93.4 (± 0.6) 96.0 (± 0.1) 92.7 (± 0.5) 4.5 (± 0.1) 3.5 (± 0) 3.4 (± 0)
Tennis ball 93.5 (± 0.6) 77.2 (± 0.2) 82.7 (± 0.6) 3.5 (± 0) 2.1 (± 0) 2.5 (± 0)
Tinca tinca 93.2 (± 0.6) 97.5 (± 0.1) 93.0 (± 0.6) 3.8 (± 0) 2.2 (± 0) 2.8 (± 0)
Torch 94.8 (± 0.5) 79.5 (± 0.2) 84.5 (± 0.5) 6.2 (± 0.1) 4.4 (± 0) 4.8 (± 0)
Unicycle 93.3 (± 0.6) 99.7 (± 0) 93.3 (± 0.6) 4.8 (± 0) 3.4 (± 0) 3.5 (± 0)
Water ouzel 94.3 (± 0.5) 98.8 (± 0) 94.2 (± 0.5) 3.0 (± 0) 1.6 (± 0) 2.0 (± 0)
White wolf 93.9 (± 0.6) 72.8 (± 0.2) 82.2 (± 0.8) 3.4 (± 0) 2.2 (± 0) 2.3 (± 0)
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J.2 Experiments with auxiliary labeled data

In this section, we follow the experimental setup described in Section 4.1.2, where the synthetic data
comprise 100 classes, none of which are included in the real calibration set.

Figure S13 presents the results for both marginal and label-conditional guarantees at levels α = 0.05
and 0.1, demonstrating trends similar to those observed in Figure 4. The standard conformal
prediction, OnlyReal, conservatively controls coverage at the target level 1 − α, but results in
larger and noisier prediction sets due to the limited sample size. In contrast, both SPI-Whole and
SPI-Subset substantially reduce the size and variance of the prediction sets and, as expected, achieve
coverage within the theoretical bounds.

Notably, for the “American robin” and “Torch” classes, the SPI-Subset variant achieves coverage
more tightly aligned with the target level 1− α, outperforming the standard SPI-Whole method.

We include the results for all real classes in Tables S8 to S10, corresponding to Figures 4, S13a
and S13b, respectively.
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Figure S13: Results for the ImageNet data: Coverage rates of OnlyReal, SPI-Whole, and
SPI-Subset run at level α = 0.05 (a) and 0.1 (b), averaged over 100 trials. Left: Average coverage.
Right: Average prediction set size, both under marginal (leftmost box in each group) and label-
conditional coverage settings. Label-conditional results are shown for selected classes; see Tables S9
and S10 for results across all classes.

42



Table S8: Per-class conditional coverage (in %) and prediction set size for each method, computed over
100 trials. Standard errors are shown in parentheses. The target coverage level is 1− α = 0.98. The
theoretical coverage guarantees for both SPI-Whole and SPI-Subset are in the range [93.7, 100].
Other details are as in Figure 4.

Coverage (%) Size
Class Only

Real
SPI
Whole

SPI
Subset

Only
Real

SPI
Whole

SPI
Subset

Admiral 100 (± 0) 93.6 (± 0.6) 99.8 (± 0) 30 (± 0) 7.6 (± 0.1) 6.5 (± 0)
American robin 100 (± 0) 99.9 (± 0) 98.7 (± 0.1) 30 (± 0) 5.0 (± 0.1) 4.4 (± 0)
Barracouta 100 (± 0) 98.4 (± 0.1) 98.0 (± 0.2) 30 (± 0) 9.8 (± 0.1) 7.8 (± 0.1)
Beaver 100 (± 0) 99.5 (± 0) 98.1 (± 0.2) 30 (± 0) 6.1 (± 0.1) 4.9 (± 0)
Bicycle 100 (± 0) 100 (± 0) 99.2 (± 0.1) 30 (± 0) 4.7 (± 0) 4.0 (± 0)
Bulbul 100 (± 0) 99.9 (± 0) 99.0 (± 0.1) 30 (± 0) 5.2 (± 0) 4.3 (± 0)
Coral fungus 100 (± 0) 99.7 (± 0) 98.2 (± 0.1) 30 (± 0) 4.1 (± 0) 3.7 (± 0)
English springer 100 (± 0) 99.8 (± 0) 98.8 (± 0.1) 30 (± 0) 5.7 (± 0.1) 4.7 (± 0)
Garfish 100 (± 0) 99.4 (± 0) 97.8 (± 0.2) 30 (± 0) 8.0 (± 0.1) 6.6 (± 0)
Golden retriever 100 (± 0) 99.6 (± 0) 98.0 (± 0.2) 30 (± 0) 7.9 (± 0.1) 6.5 (± 0.1)
Gyromitra 100 (± 0) 95.0 (± 0.6) 95.0 (± 0.6) 30 (± 0) 4.6 (± 0) 4.3 (± 0)
Jay 100 (± 0) 98.3 (± 0.1) 98.1 (± 0.1) 30 (± 0) 11.4 (± 0.1) 8.7 (± 0.1)
Junco, snowbird 100 (± 0) 99.9 (± 0) 98.7 (± 0.1) 30 (± 0) 4.3 (± 0) 3.5 (± 0)
Kuvasz 100 (± 0) 99.5 (± 0) 98.5 (± 0.1) 30 (± 0) 5.7 (± 0) 4.7 (± 0.1)
Labrador retriever 100 (± 0) 99.3 (± 0) 97.6 (± 0.2) 30 (± 0) 8.7 (± 0.1) 7.0 (± 0.1)
Lighter, Light 100 (± 0) 97.8 (± 0.1) 96.9 (± 0.2) 30 (± 0) 8.4 (± 0.1) 6.6 (± 0.1)
Lycaenid butterfly 100 (± 0) 99.8 (± 0) 99.1 (± 0.1) 30 (± 0) 5.2 (± 0) 5.2 (± 0)
Magpie 100 (± 0) 99.7 (± 0) 98.6 (± 0.1) 30 (± 0) 4.7 (± 0) 3.9 (± 0)
Marmot 100 (± 0) 99.7 (± 0) 98.5 (± 0.1) 30 (± 0) 7.5 (± 0.1) 6.4 (± 0.1)
Muzzle 100 (± 0) 98.8 (± 0.1) 96.6 (± 0.3) 30 (± 0) 6.7 (± 0.1) 5.4 (± 0)
Papillon 100 (± 0) 99.2 (± 0) 97.6 (± 0.2) 30 (± 0) 5.7 (± 0.1) 5.1 (± 0)
Rock beauty 100 (± 0) 98.9 (± 0.1) 98.5 (± 0.1) 30 (± 0) 8.3 (± 0.1) 6.2 (± 0.1)
Siberian husky 100 (± 0) 99.3 (± 0) 98.8 (± 0.1) 30 (± 0) 6.3 (± 0.1) 5.2 (± 0)
Stinkhorn 100 (± 0) 99.8 (± 0) 98.3 (± 0.1) 30 (± 0) 7.2 (± 0.1) 6.0 (± 0)
Tennis ball 100 (± 0) 98.6 (± 0.1) 96.6 (± 0.3) 30 (± 0) 5.3 (± 0) 4.5 (± 0)
Tinca tinca 100 (± 0) 99.8 (± 0) 98.8 (± 0.1) 30 (± 0) 5.3 (± 0) 4.7 (± 0)
Torch 100 (± 0) 99.6 (± 0) 98.4 (± 0.1) 30 (± 0) 10.3 (± 0.1) 7.6 (± 0.1)
Unicycle 100 (± 0) 99.7 (± 0) 98.2 (± 0.1) 30 (± 0) 8.1 (± 0.1) 6.1 (± 0.1)
Water ouzel 100 (± 0) 99.2 (± 0) 98.0 (± 0.1) 30 (± 0) 5.0 (± 0) 4.0 (± 0)
White wolf 100 (± 0) 99.1 (± 0) 97.1 (± 0.2) 30 (± 0) 5.5 (± 0) 4.6 (± 0.1)

43



Table S9: Per-class conditional coverage (in %) and prediction set size for each method, computed over
100 trials. Standard errors are shown in parentheses. The target coverage level is 1− α = 0.95. The
theoretical coverage guarantees for both SPI-Whole and SPI-Subset are in the range [93.7, 100].
Other details are as in Figure S13.

Coverage (%) Size
Class Only

Real
SPI
Whole

SPI
Subset

Only
Real

SPI
Whole

SPI
Subset

Admiral 100 (± 0) 93.6 (± 0.6) 95.9 (± 0.3) 30 (± 0) 5.9 (± 0) 5.8 (± 0)
American robin 100 (± 0) 98.5 (± 0.1) 96.6 (± 0.2) 30 (± 0) 3.4 (± 0) 3.3 (± 0)
Barracouta 100 (± 0) 95.3 (± 0.4) 95.8 (± 0.3) 30 (± 0) 7.1 (± 0.1) 6.9 (± 0.1)
Beaver 100 (± 0) 97.6 (± 0.1) 95.7 (± 0.3) 30 (± 0) 3.9 (± 0) 3.7 (± 0)
Bicycle 100 (± 0) 99.3 (± 0) 97.2 (± 0.2) 30 (± 0) 3.4 (± 0) 3.3 (± 0)
Bulbul 100 (± 0) 99.0 (± 0) 96.8 (± 0.2) 30 (± 0) 3.5 (± 0) 3.4 (± 0)
Coral fungus 100 (± 0) 98.1 (± 0.1) 96.0 (± 0.3) 30 (± 0) 3.1 (± 0) 3.0 (± 0)
English springer 100 (± 0) 98.9 (± 0.1) 97.3 (± 0.2) 30 (± 0) 3.9 (± 0) 3.8 (± 0)
Garfish 100 (± 0) 96.9 (± 0.2) 95.2 (± 0.4) 30 (± 0) 5.8 (± 0) 5.6 (± 0)
Golden retriever 100 (± 0) 97.7 (± 0.1) 95.8 (± 0.3) 30 (± 0) 5.5 (± 0.1) 5.3 (± 0.1)
Gyromitra 100 (± 0) 95.0 (± 0.6) 95.0 (± 0.6) 30 (± 0) 3.6 (± 0) 3.5 (± 0)
Jay 100 (± 0) 94.0 (± 0.5) 95.3 (± 0.3) 30 (± 0) 7.9 (± 0.1) 7.2 (± 0.1)
Junco, snowbird 100 (± 0) 98.8 (± 0.1) 96.6 (± 0.2) 30 (± 0) 3.0 (± 0) 2.8 (± 0)
Kuvasz 100 (± 0) 98.5 (± 0.1) 96.5 (± 0.2) 30 (± 0) 3.9 (± 0) 3.7 (± 0)
Labrador retriever 100 (± 0) 97.1 (± 0.1) 95.3 (± 0.4) 30 (± 0) 6.0 (± 0.1) 5.7 (± 0.1)
Lighter, Light 100 (± 0) 95.0 (± 0.4) 95.0 (± 0.5) 30 (± 0) 5.7 (± 0) 5.5 (± 0.1)
Lycaenid butterfly 100 (± 0) 99.2 (± 0) 96.8 (± 0.2) 30 (± 0) 4.2 (± 0) 4.1 (± 0.1)
Magpie 100 (± 0) 98.6 (± 0.1) 96.4 (± 0.2) 30 (± 0) 3.2 (± 0) 3.1 (± 0)
Marmot 100 (± 0) 98.1 (± 0.1) 96.4 (± 0.3) 30 (± 0) 5.1 (± 0.1) 5.1 (± 0.1)
Muzzle 100 (± 0) 95.0 (± 0.3) 94.3 (± 0.5) 30 (± 0) 4.6 (± 0) 4.5 (± 0)
Papillon 100 (± 0) 97.4 (± 0.1) 95.3 (± 0.3) 30 (± 0) 4.0 (± 0) 4.0 (± 0)
Rock beauty 100 (± 0) 94.5 (± 0.4) 95.6 (± 0.3) 30 (± 0) 5.6 (± 0) 5.3 (± 0)
Siberian husky 100 (± 0) 96.5 (± 0.2) 97.0 (± 0.2) 30 (± 0) 4.3 (± 0) 4.1 (± 0)
Stinkhorn 100 (± 0) 98.1 (± 0.1) 95.9 (± 0.2) 30 (± 0) 5.0 (± 0) 4.8 (± 0)
Tennis ball 100 (± 0) 95.7 (± 0.3) 94.6 (± 0.4) 30 (± 0) 3.8 (± 0) 3.6 (± 0)
Tinca tinca 100 (± 0) 98.8 (± 0.1) 96.6 (± 0.2) 30 (± 0) 4.0 (± 0) 3.9 (± 0)
Torch 100 (± 0) 98.1 (± 0.1) 96.5 (± 0.3) 30 (± 0) 6.7 (± 0.1) 6.4 (± 0.1)
Unicycle 100 (± 0) 97.9 (± 0.1) 95.6 (± 0.4) 30 (± 0) 5.3 (± 0) 5.0 (± 0)
Water ouzel 100 (± 0) 98.0 (± 0.1) 96.2 (± 0.3) 30 (± 0) 3.3 (± 0) 3.1 (± 0)
White wolf 100 (± 0) 96.6 (± 0.2) 95.1 (± 0.4) 30 (± 0) 3.7 (± 0) 3.6 (± 0)
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Table S10: Per-class conditional coverage (in %) and prediction set size for each method, computed
over 100 trials. Standard errors are shown in parentheses. The target coverage level is 1−α = 0.9. The
theoretical coverage guarantee for both SPI-Whole and SPI-Subset are in the range [81.2, 93.7].
Other details are as in Figure S13.

Coverage (%) Size
Class Only

Real
SPI
Whole

SPI
Subset

Only
Real

SPI
Whole

SPI
Subset

Admiral 93.6 (± 0.6) 81.3 (± 0.9) 81.3 (± 0.9) 5.6 (± 0) 4.6 (± 0) 4.5 (± 0)
American robin 94.5 (± 0.5) 93.2 (± 0.5) 90.2 (± 0.5) 3.2 (± 0) 2.0 (± 0) 2.0 (± 0)
Barracouta 95.3 (± 0.4) 83.4 (± 0.8) 85.1 (± 0.6) 6.6 (± 0.1) 5.0 (± 0) 4.9 (± 0)
Beaver 94.0 (± 0.6) 90.4 (± 0.4) 87.8 (± 0.5) 3.6 (± 0.1) 2.3 (± 0) 2.2 (± 0)
Bicycle 94.2 (± 0.5) 93.5 (± 0.5) 90.9 (± 0.4) 3.2 (± 0) 2.3 (± 0) 2.3 (± 0)
Bulbul 93.8 (± 0.6) 93.0 (± 0.6) 90.0 (± 0.6) 3.3 (± 0) 2.1 (± 0) 2.0 (± 0)
Coral fungus 93.5 (± 0.6) 91.7 (± 0.5) 88.8 (± 0.5) 2.9 (± 0) 2.1 (± 0) 2.0 (± 0)
English springer 93.9 (± 0.6) 93.0 (± 0.5) 90.4 (± 0.5) 3.6 (± 0) 2.2 (± 0) 2.2 (± 0)
Garfish 93.5 (± 0.6) 88.5 (± 0.4) 86.8 (± 0.5) 5.4 (± 0.1) 3.9 (± 0) 3.9 (± 0)
Golden retriever 94.1 (± 0.6) 91.7 (± 0.4) 88.8 (± 0.5) 5.0 (± 0.1) 3.2 (± 0) 3.1 (± 0)
Gyromitra 95.0 (± 0.6) 84.8 (± 1.0) 84.8 (± 1.0) 3.3 (± 0) 2.5 (± 0) 2.4 (± 0)
Jay 93.3 (± 0.7) 80.5 (± 1.0) 83.7 (± 0.6) 6.8 (± 0.1) 4.8 (± 0) 4.6 (± 0)
Junco, snowbird 94.2 (± 0.5) 93.0 (± 0.4) 90.6 (± 0.5) 2.7 (± 0) 1.8 (± 0) 1.7 (± 0)
Kuvasz 93.4 (± 0.6) 92.3 (± 0.5) 90.1 (± 0.5) 3.5 (± 0) 2.1 (± 0) 2.1 (± 0)
Labrador retriever 93.5 (± 0.7) 88.5 (± 0.5) 87.0 (± 0.6) 5.4 (± 0.1) 3.4 (± 0) 3.4 (± 0)
Lighter, Light 94.2 (± 0.6) 83.0 (± 0.7) 84.2 (± 0.6) 5.4 (± 0.1) 3.5 (± 0) 3.5 (± 0)
Lycaenid butterfly 94.0 (± 0.5) 93.3 (± 0.4) 90.7 (± 0.5) 3.9 (± 0.1) 2.7 (± 0) 2.7 (± 0)
Magpie 93.5 (± 0.6) 92.4 (± 0.6) 90.1 (± 0.5) 3.0 (± 0) 1.9 (± 0) 1.9 (± 0)
Marmot 94.0 (± 0.6) 90.9 (± 0.5) 88.3 (± 0.6) 4.9 (± 0.1) 3.1 (± 0) 3.0 (± 0)
Muzzle 93.5 (± 0.6) 86.1 (± 0.6) 85.9 (± 0.6) 4.3 (± 0) 2.8 (± 0) 2.8 (± 0)
Papillon 93.8 (± 0.6) 90.4 (± 0.4) 87.9 (± 0.5) 3.8 (± 0.1) 2.4 (± 0) 2.4 (± 0)
Rock beauty 94.2 (± 0.5) 80.9 (± 0.9) 84.6 (± 0.5) 5.1 (± 0.1) 3.7 (± 0) 3.7 (± 0)
Siberian husky 94.1 (± 0.6) 84.3 (± 0.5) 89.1 (± 0.5) 4.0 (± 0) 2.3 (± 0) 2.4 (± 0)
Stinkhorn 93.4 (± 0.6) 91.9 (± 0.5) 89.3 (± 0.4) 4.5 (± 0.1) 3.0 (± 0) 3.0 (± 0)
Tennis ball 93.5 (± 0.6) 87.7 (± 0.3) 85.8 (± 0.5) 3.5 (± 0) 2.5 (± 0) 2.4 (± 0)
Tinca tinca 93.2 (± 0.6) 92.6 (± 0.5) 90.3 (± 0.5) 3.8 (± 0) 2.6 (± 0) 2.6 (± 0)
Torch 94.8 (± 0.5) 92.3 (± 0.4) 89.8 (± 0.4) 6.2 (± 0.1) 4.3 (± 0) 4.3 (± 0)
Unicycle 93.3 (± 0.6) 90.3 (± 0.5) 88.2 (± 0.6) 4.8 (± 0) 3.3 (± 0) 3.2 (± 0)
Water ouzel 94.3 (± 0.5) 92.4 (± 0.4) 89.9 (± 0.4) 3.0 (± 0) 2.0 (± 0) 1.9 (± 0)
White wolf 93.9 (± 0.6) 89.2 (± 0.4) 87.3 (± 0.5) 3.4 (± 0) 2.1 (± 0) 2.1 (± 0)
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J.2.1 Results for SPI-Subset with different hyperparameter values

In this section, we present results for the SPI-Subset procedure across different values of k, the
number of subsets selected to construct the synthetic calibration set. We compare the performance of
SPI-Subset with SPI-Whole—which uses all 100 synthetic classes—and the standard conformal
prediction, OnlyReal.

Figure S14 presents the performance of all methods for the “American robin" class as a function of k,
at different values of the level α. Notably, for all values of k and α, SPI-Subset achieves coverage
within the theoretical bounds.

The two methods, SPI-Subset and SPI-Whole, coincide when k = 100, as both use the full
synthetic calibration set. However, for smaller values of k, the two methods exhibit significant
differences. While SPI-Whole tends to produce more conservative prediction sets, the SPI-Subset
procedure more tightly achieves the target coverage level across different settings.

For the case α = 0.02 and k = 5, both the theoretical lower and upper bounds on coverage are equal
to unity, implying that SPI-Subset yields trivial prediction sets that include all possible classes. This
outcome is known a priori and can be avoided by selecting a different hyperparameter for window
construction.
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Figure S14: Results for the ImageNet data: Coverage rate for OnlyReal,SPI-Whole, and
SPI-Subset on the American robin class as a function of the number of subsets k, for levels
α = 0.02 (a), α = 0.05 (b), and α = 0.1 (c).

Figure S15 shows the results for the “Beaver” class. For α = 0.02 and 0.05, we observe the same
trend as in Figure S14: SPI-Whole yields relatively conservative coverage, while SPI-Subset with
k < 100 achieves coverage closer to the nominal level 1− α.

For α = 0.1, SPI-Whole—which uses the full synthetic set—already achieves coverage close to
the target level 1− α, suggesting that the empirical (1− α)th quantile of the synthetic data closely
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matches that of the real data. Consequently, in this setting, using only a subset of the synthetic data
results in an increase in the variance of the coverage rate.
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Figure S15: Results for the ImageNet data: Coverage rate for OnlyReal, SPI-Whole, and
SPI-Subset on the Beaver class as a function of the number of subsets k, for levels α = 0.02
(a), α = 0.05 (b), and α = 0.1 (c).

J.3 Additional ImageNet experiments with the HPS score function

Here, we replicate the ImageNet experiments using the HPS score function—complementing the APS-
based results in the manuscript—across three synthetic datasets: Stable-Diffusion (Figure S16), FLUX
(Figure S17), and auxiliary data (Figure S18). Each figure corresponds to the same experimental setup
used with the APS score function. Further details on the score function are provided in Appendix C.1.

The score function provides a heuristic measure of the model’s uncertainty, and APS and HPS capture
this uncertainty in different ways. Recall that we utilize the synthetic data in the score space, where
the quality of the SPI prediction set depends on how well the distribution of the synthetic score
approximates the real score distribution. Consequently, different score functions may induce different
alignments between the real and synthetic scores. Therefore, while we generally expect similar
trends, the exact per-class coverage is not necessarily preserved across score functions. Indeed, in
Figure S16, the per-class results largely follow those of the APS-based experiment (Figure 3). In
contrast, in Figure S17, for the class Magpie, OnlySynth under-covers substantially, whereas under
the APS score in Figure S12b, it achieves coverage closer to the target level 1− α.

Given these class-specific differences, the overall trends remain similar to the APS-based results. The
OnlyReal method yields overly conservative and uninformative prediction sets due to the limited
sample size, whereas OnlySynth lacks coverage guarantees, leading to under-coverage for some
classes. In contrast, SPI achieves coverage within the theoretical bounds while producing smaller,
more informative prediction sets.
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Figure S16: Results for the ImageNet data using the HPS score function: Same experimental setup as
in Figure 3, but using the HPS score instead of APS. Coverage rates of OnlyReal, OnlySynth, and
SPI at target level 1− α = 0.95, averaged over 100 trials. Left: Average coverage. Right: Average
prediction set size, both under marginal (leftmost box in each group) and label-conditional coverage
settings. Label-conditional results are shown for selected classes; see Table S11 for results across all
classes.
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Figure S17: Results for the ImageNet data using FLUX-generated synthetic images and the HPS
score function: Same experimental setup as in Figure S12b, but using the HPS score instead of APS.
Coverage rates of OnlyReal, OnlySynth, and SPI at target level 1− α = 0.95, averaged over 100
trials. Left: Average coverage. Right: Average prediction set size, both under marginal (leftmost
box in each group) and label-conditional coverage settings. Label-conditional results are shown for
selected classes; see Table S12 for results across all classes.

Finally, Figure S18 presents the performance of the subset-based variant of our approach,
SPI-Subset, compared to SPI-Whole, which uses the entire synthetic dataset. We observe a
similar trend to the APS-based results in Figure 4: both SPI variants control the coverage within the
theoretical bounds. For some classes, SPI-Subset achieves coverage closer to the nominal 1− α
level while producing smaller prediction sets. In the marginal setting, however, using only a subset of
the synthetic data does not improve the performance.
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Figure S18: Results for the ImageNet data using the HPS score function: Same experimental setup as
in Figure 4, but using the HPS score instead of APS. Coverage rates of OnlyReal, SPI-Whole, and
SPI-Subset at target level 1− α = 0.98, averaged over 100 trials. Left: Average coverage. Right:
Average prediction set size, both under marginal (leftmost box in each group) and label-conditional
coverage settings. Label-conditional results are shown for selected classes; see Table S13 for results
across all classes.
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Table S11: Per-class conditional coverage (in %) and prediction set size for each method, computed
over 100 trials using the HPS score function. Standard errors are shown in parentheses. The target
coverage level is 1 − α = 0.95. The theoretical coverage guarantees for SPI are in the range
[93.7, 100]. Other details are as in Figure S16.

Coverage (%) Size
Class Only

Real
Only
Synth

SPI Only
Real

Only
Synth

SPI

Admiral 100 (± 0) 0.7 (± 0) 93.5 (± 0.7) 30 (± 0) 3.2 (± 0) 5.5 (± 0.1)
American robin 100 (± 0) 87.4 (± 0.1) 94.4 (± 0.4) 30 (± 0) 2.1 (± 0) 3.6 (± 0.1)
Barracouta 100 (± 0) 98.4 (± 0) 98.6 (± 0.1) 30 (± 0) 3.8 (± 0) 6.2 (± 0.1)
Beaver 100 (± 0) 79.7 (± 0.2) 93.5 (± 0.6) 30 (± 0) 2.2 (± 0) 3.5 (± 0.1)
Bicycle 100 (± 0) 91.2 (± 0.1) 95.4 (± 0.3) 30 (± 0) 2.1 (± 0) 3.1 (± 0)
Bulbul 100 (± 0) 98.9 (± 0) 99.0 (± 0) 30 (± 0) 2.2 (± 0) 3.7 (± 0.1)
Coral fungus 100 (± 0) 98.0 (± 0) 98.3 (± 0.1) 30 (± 0) 2.6 (± 0) 3.6 (± 0)
English springer 100 (± 0) 77.0 (± 0.1) 93.7 (± 0.6) 30 (± 0) 2.3 (± 0) 3.8 (± 0.1)
Garfish 100 (± 0) 71.3 (± 0.2) 93.2 (± 0.7) 30 (± 0) 3.3 (± 0) 5.2 (± 0.1)
Golden retriever 100 (± 0) 70.8 (± 0.4) 94.2 (± 0.6) 30 (± 0) 3.0 (± 0) 5.1 (± 0.1)
Gyromitra 100 (± 0) 100 (± 0) 100 (± 0) 30 (± 0) 2.9 (± 0) 3.8 (± 0)
Jay 100 (± 0) 72.3 (± 0.2) 93.1 (± 0.6) 30 (± 0) 3.0 (± 0) 6.0 (± 0.1)
Junco, snowbird 100 (± 0) 94.0 (± 0.1) 95.9 (± 0.2) 30 (± 0) 2.2 (± 0) 3.2 (± 0.1)
Kuvasz 100 (± 0) 81.9 (± 0.1) 93.1 (± 0.6) 30 (± 0) 2.2 (± 0) 3.9 (± 0.1)
Labrador retriever 100 (± 0) 87.1 (± 0.2) 94.5 (± 0.5) 30 (± 0) 2.9 (± 0) 5.3 (± 0.1)
Lighter, Light 100 (± 0) 94.8 (± 0.1) 96.5 (± 0.2) 30 (± 0) 3.2 (± 0) 4.9 (± 0)
Lycaenid butterfly 100 (± 0) 82.0 (± 0.2) 94.6 (± 0.5) 30 (± 0) 2.1 (± 0) 4.3 (± 0.1)
Magpie 100 (± 0) 69.5 (± 0.3) 93.3 (± 0.7) 30 (± 0) 2.0 (± 0) 3.3 (± 0.1)
Marmot 100 (± 0) 88.4 (± 0.1) 95.5 (± 0.4) 30 (± 0) 2.6 (± 0) 4.6 (± 0.1)
Muzzle 100 (± 0) 97.1 (± 0.1) 97.7 (± 0.1) 30 (± 0) 2.3 (± 0) 4.1 (± 0.1)
Papillon 100 (± 0) 73.1 (± 0.2) 93.9 (± 0.6) 30 (± 0) 2.2 (± 0) 3.9 (± 0.1)
Rock beauty 100 (± 0) 51.8 (± 0.4) 94.3 (± 0.5) 30 (± 0) 2.7 (± 0) 5.0 (± 0.1)
Siberian husky 100 (± 0) 32.4 (± 0.2) 94.4 (± 0.5) 30 (± 0) 2.1 (± 0) 4.1 (± 0.1)
Stinkhorn 100 (± 0) 95.1 (± 0.1) 96.5 (± 0.2) 30 (± 0) 3.0 (± 0) 4.5 (± 0.1)
Tennis ball 100 (± 0) 92.4 (± 0.2) 95.4 (± 0.3) 30 (± 0) 2.4 (± 0) 3.4 (± 0)
Tinca tinca 100 (± 0) 97.3 (± 0.1) 97.8 (± 0.1) 30 (± 0) 2.6 (± 0) 3.9 (± 0.1)
Torch 100 (± 0) 95.6 (± 0.1) 97.0 (± 0.2) 30 (± 0) 3.5 (± 0) 5.5 (± 0.1)
Unicycle 100 (± 0) 86.6 (± 0.1) 94.0 (± 0.5) 30 (± 0) 2.4 (± 0) 4.1 (± 0.1)
Water ouzel 100 (± 0) 91.3 (± 0.1) 95.2 (± 0.3) 30 (± 0) 2.1 (± 0) 3.3 (± 0.1)
White wolf 100 (± 0) 60.3 (± 0.2) 93.7 (± 0.6) 30 (± 0) 2.0 (± 0) 3.7 (± 0.1)
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Table S12: Per-class conditional coverage (in %) and prediction set size for each method, computed
over 100 trials using FLUX-generated synthetic data and the HPS score function. The target coverage
level is 1 − α = 0.95. The theoretical coverage guarantees for SPI are in the range [93.7, 100].
Standard errors are shown in parentheses. Other experimental details follow Figure S17.

Coverage (%) Size
Class Only

Real
Only
Synth

SPI Only
Real

Only
Synth

SPI

Admiral 100 (± 0) 0.1 (± 0) 93.5 (± 0.7) 30 (± 0) 3.5 (± 0) 5.6 (± 0.1)
American robin 100 (± 0) 71.7 (± 0.1) 93.7 (± 0.6) 30 (± 0) 1.4 (± 0) 3.9 (± 0.1)
Barracouta 100 (± 0) 99.6 (± 0) 99.6 (± 0) 30 (± 0) 3.7 (± 0) 7.0 (± 0.1)
Beaver 100 (± 0) 35.8 (± 0.2) 93.4 (± 0.6) 30 (± 0) 1.9 (± 0) 4.2 (± 0.1)
Bicycle 100 (± 0) 99.5 (± 0) 99.6 (± 0) 30 (± 0) 3.0 (± 0) 4.0 (± 0)
Bulbul 100 (± 0) 91.3 (± 0.1) 95.2 (± 0.3) 30 (± 0) 2.3 (± 0) 4.5 (± 0.1)
Coral fungus 100 (± 0) 98.6 (± 0) 98.7 (± 0) 30 (± 0) 2.3 (± 0) 4.0 (± 0)
English springer 100 (± 0) 82.4 (± 0.1) 93.9 (± 0.6) 30 (± 0) 2.4 (± 0) 4.6 (± 0.1)
Garfish 100 (± 0) 53.9 (± 0.2) 93.2 (± 0.7) 30 (± 0) 3.1 (± 0) 5.7 (± 0.1)
Golden retriever 100 (± 0) 10.9 (± 0.1) 94.2 (± 0.6) 30 (± 0) 2.1 (± 0) 6.0 (± 0.1)
Gyromitra 100 (± 0) 42.5 (± 0.2) 99.7 (± 0.3) 30 (± 0) 2.8 (± 0) 4.2 (± 0)
Jay 100 (± 0) 28.4 (± 0.2) 93.0 (± 0.7) 30 (± 0) 3.6 (± 0) 7.0 (± 0.1)
Junco, snowbird 100 (± 0) 97.4 (± 0.1) 97.8 (± 0.1) 30 (± 0) 1.7 (± 0) 3.6 (± 0.1)
Kuvasz 100 (± 0) 98.2 (± 0) 98.3 (± 0.1) 30 (± 0) 1.9 (± 0) 4.5 (± 0.1)
Labrador retriever 100 (± 0) 62.5 (± 0.2) 93.5 (± 0.6) 30 (± 0) 2.6 (± 0) 6.0 (± 0.1)
Lighter, Light 100 (± 0) 30.2 (± 0.2) 94.2 (± 0.7) 30 (± 0) 2.6 (± 0) 5.6 (± 0.1)
Lycaenid butterfly 100 (± 0) 80.0 (± 0.2) 94.5 (± 0.5) 30 (± 0) 3.2 (± 0) 4.6 (± 0)
Magpie 100 (± 0) 22.4 (± 0.2) 93.3 (± 0.7) 30 (± 0) 1.5 (± 0) 4.1 (± 0.1)
Marmot 100 (± 0) 94.8 (± 0.1) 96.8 (± 0.2) 30 (± 0) 2.6 (± 0) 5.4 (± 0.1)
Muzzle 100 (± 0) 88.5 (± 0.1) 94.3 (± 0.4) 30 (± 0) 2.6 (± 0) 4.8 (± 0.1)
Papillon 100 (± 0) 99.9 (± 0) 99.9 (± 0) 30 (± 0) 1.6 (± 0) 4.0 (± 0.1)
Rock beauty 100 (± 0) 79.9 (± 0.2) 94.3 (± 0.5) 30 (± 0) 3.4 (± 0) 6.0 (± 0)
Siberian husky 100 (± 0) 36.0 (± 0.2) 94.4 (± 0.5) 30 (± 0) 2.1 (± 0) 4.9 (± 0.1)
Stinkhorn 100 (± 0) 92.7 (± 0.1) 95.4 (± 0.3) 30 (± 0) 3.6 (± 0) 5.4 (± 0.1)
Tennis ball 100 (± 0) 10.3 (± 0.1) 93.3 (± 0.6) 30 (± 0) 1.5 (± 0) 4.0 (± 0)
Tinca tinca 100 (± 0) 97.3 (± 0.1) 97.8 (± 0.1) 30 (± 0) 2.3 (± 0) 4.4 (± 0.1)
Torch 100 (± 0) 40.4 (± 0.2) 94.6 (± 0.5) 30 (± 0) 3.5 (± 0) 6.7 (± 0)
Unicycle 100 (± 0) 99.4 (± 0) 99.4 (± 0) 30 (± 0) 3.4 (± 0) 5.1 (± 0.1)
Water ouzel 100 (± 0) 98.5 (± 0) 98.7 (± 0.1) 30 (± 0) 1.6 (± 0) 3.6 (± 0.1)
White wolf 100 (± 0) 78.5 (± 0.1) 93.7 (± 0.5) 30 (± 0) 2.4 (± 0) 4.7 (± 0.1)
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Table S13: Per-class conditional coverage (in %) and prediction set size for each method, computed
over 100 trials using the HPS score function. Standard errors are shown in parentheses. The target
coverage level is 1 − α = 0.98. The theoretical coverage guarantees for both SPI-Whole and
SPI-Subset are in the range [93.7, 100]. Other details are as in Figure S18.

Coverage (%) Size
Class Only

Real
SPI
Whole

SPI
Subset

Only
Real

SPI
Whole

SPI
Subset

Admiral 100 (± 0) 93.5 (± 0.7) 95.3 (± 0.4) 30 (± 0) 5.6 (± 0.1) 5.6 (± 0)
American robin 100 (± 0) 98.9 (± 0.1) 96.2 (± 0.2) 30 (± 0) 3.9 (± 0.1) 3.6 (± 0.1)
Barracouta 100 (± 0) 95.1 (± 0.4) 95.6 (± 0.4) 30 (± 0) 6.4 (± 0.1) 6.2 (± 0.1)
Beaver 100 (± 0) 97.4 (± 0.1) 96.0 (± 0.3) 30 (± 0) 3.6 (± 0.1) 3.5 (± 0.1)
Bicycle 100 (± 0) 99.6 (± 0) 97.7 (± 0.1) 30 (± 0) 3.2 (± 0) 3.2 (± 0)
Bulbul 100 (± 0) 99.5 (± 0) 97.2 (± 0.2) 30 (± 0) 3.9 (± 0.1) 3.7 (± 0.1)
Coral fungus 100 (± 0) 98.5 (± 0.1) 96.3 (± 0.2) 30 (± 0) 3.7 (± 0) 3.6 (± 0)
English springer 100 (± 0) 98.0 (± 0.1) 97.2 (± 0.2) 30 (± 0) 3.7 (± 0.1) 3.7 (± 0.1)
Garfish 100 (± 0) 95.7 (± 0.3) 95.0 (± 0.4) 30 (± 0) 5.3 (± 0.1) 5.1 (± 0.1)
Golden retriever 100 (± 0) 96.9 (± 0.2) 95.8 (± 0.3) 30 (± 0) 5.2 (± 0.1) 5.1 (± 0.1)
Gyromitra 100 (± 0) 99.7 (± 0.3) 99.7 (± 0.3) 30 (± 0) 3.8 (± 0) 3.7 (± 0)
Jay 100 (± 0) 93.4 (± 0.6) 94.4 (± 0.4) 30 (± 0) 6.8 (± 0.1) 5.9 (± 0.1)
Junco, snowbird 100 (± 0) 98.8 (± 0.1) 96.9 (± 0.2) 30 (± 0) 3.5 (± 0.1) 3.2 (± 0.1)
Kuvasz 100 (± 0) 98.0 (± 0.1) 96.8 (± 0.2) 30 (± 0) 4.0 (± 0.1) 4.0 (± 0.1)
Labrador retriever 100 (± 0) 95.9 (± 0.3) 95.6 (± 0.3) 30 (± 0) 5.3 (± 0.1) 5.2 (± 0.1)
Lighter, Light 100 (± 0) 94.5 (± 0.5) 94.5 (± 0.5) 30 (± 0) 4.7 (± 0.1) 4.7 (± 0.1)
Lycaenid butterfly 100 (± 0) 99.5 (± 0) 98.9 (± 0.1) 30 (± 0) 4.5 (± 0) 4.4 (± 0)
Magpie 100 (± 0) 98.7 (± 0.1) 96.2 (± 0.2) 30 (± 0) 3.5 (± 0.1) 3.3 (± 0.1)
Marmot 100 (± 0) 98.0 (± 0.1) 97.3 (± 0.2) 30 (± 0) 4.6 (± 0.1) 4.6 (± 0.1)
Muzzle 100 (± 0) 94.1 (± 0.5) 93.9 (± 0.5) 30 (± 0) 4.0 (± 0.1) 4.0 (± 0.1)
Papillon 100 (± 0) 96.5 (± 0.2) 95.6 (± 0.3) 30 (± 0) 3.9 (± 0.1) 3.9 (± 0.1)
Rock beauty 100 (± 0) 94.3 (± 0.5) 94.9 (± 0.4) 30 (± 0) 5.1 (± 0.1) 4.8 (± 0.1)
Siberian husky 100 (± 0) 96.1 (± 0.3) 96.1 (± 0.3) 30 (± 0) 4.0 (± 0.1) 4.0 (± 0.1)
Stinkhorn 100 (± 0) 97.7 (± 0.1) 96.6 (± 0.2) 30 (± 0) 4.5 (± 0.1) 4.3 (± 0.1)
Tennis ball 100 (± 0) 95.2 (± 0.3) 93.9 (± 0.5) 30 (± 0) 3.4 (± 0) 3.3 (± 0)
Tinca tinca 100 (± 0) 99.0 (± 0) 96.6 (± 0.2) 30 (± 0) 3.9 (± 0.1) 3.8 (± 0.1)
Torch 100 (± 0) 96.5 (± 0.2) 96.5 (± 0.2) 30 (± 0) 5.4 (± 0.1) 5.4 (± 0.1)
Unicycle 100 (± 0) 96.6 (± 0.2) 94.7 (± 0.4) 30 (± 0) 4.3 (± 0.1) 4.1 (± 0.1)
Water ouzel 100 (± 0) 97.8 (± 0.1) 95.9 (± 0.3) 30 (± 0) 3.6 (± 0) 3.3 (± 0.1)
White wolf 100 (± 0) 96.6 (± 0.2) 95.5 (± 0.3) 30 (± 0) 3.8 (± 0.1) 3.8 (± 0.1)
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K Additional MEPS experiments

In this section, we present additional results for the MEPS regression experiments, complementing
those reported in Section 4.2.

Figure S19 reports the coverage rates and prediction interval lengths for all age groups, evaluated at
α = 0.02, and 0.05. As in the main paper, we observe that SPI achieves coverage rates that remain
within the theoretical bounds, with lower variance compared to OnlyReal.
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Figure S19: MEPS dataset results: coverage and interval length for each age group, obtained
by OnlyReal, OnlySynth, and SPI, at target coverage levels 1 − α = 0.98 (a), and 0.95 (b).
Experiments are repeated over 100 trials. OnlyReal produces trivial (infinite) prediction intervals;
thus, its interval length is omitted.

K.1 The effect of the real calibration set size

We replicate the experiments from Appendix J.1.1 on the MEPS dataset, evaluating the performance
of different methods as a function of the real calibration set size, m.

Figure S20 and Figure S21 present the performance of all methods for age groups 0–20 and 20–40,
respectively, across different α levels and values of m. The standard conformal method, OnlyReal,
conservatively controls the coverage at the target level 1− α; however, it results in larger and noisier
prediction intervals due to the small sample size.

Similar to the trends observed in the main manuscript, OnlySynth achieves coverage close to the
nominal 1 − α level, indicating that the synthetic data align well with the real one. However, this
approach does not have coverage guarantees.

In contrast, the proposed method, SPI, achieves coverage within the theoretical bounds, closely
matching the target 1 − α level while reducing coverage variance and producing smaller, more
informative prediction intervals.

For α = 0.02 with small calibration sizes (m = 5 or 10), the theoretical coverage bounds are equal to
one under this window construction. This implies that the proposed method produces trivial prediction
intervals. This behavior is known a priori and was also observed in the ImageNet experiment, where
we used the same window construction parameters. Nevertheless, it can be avoided by employing a
different window construction.
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(c) α = 0.1

Figure S20: MEPS dataset results: coverage and interval length for the 0–20 age group, obtained
by OnlyReal, OnlySynth, and SPI, at target coverage levels 1 − α = 0.98 (a), 0.95 (b), and 0.9
(c). Experiments are repeated over 100 trials. For α = 0.02 and 0.05, methods that produce trivial
(infinite) prediction intervals are omitted from the interval length panel.
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Figure S21: MEPS dataset results: coverage and interval length for the 20–40 age group, obtained
by OnlyReal, OnlySynth, and SPI, at target coverage levels 1 − α = 0.98 (a), 0.95 (b), and 0.9
(c). Experiments are repeated over 100 trials. For α = 0.02 and 0.05, methods that produce trivial
(infinite) prediction intervals are omitted from the interval length panel.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction are supported by the theoretical
results in Section 3.3 and the experimental findings in Section 4 and Appendices I to K.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our method in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The problem setup and all assumptions are detailed in Section 2, and complete
proofs for the theoretical results in Section 3.3 are provided in Appendix G.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All experimental details are provided in Section 4 and Appendix H, in-
cluding dataset information. Software for reproducing the experiments is available at
https://github.com/Meshiba/spi.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
For closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to
have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The software package implementing our method and reproducing the exper-
iments is available at https://github.com/Meshiba/spi, including the code used for image
generation with Stable Diffusion via Hugging Face. The ImageNet and MEPS datasets used
are publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental setting is described in Section 4, with additional technical
details provided in Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All plots are presented as boxplots to reflect variability across runs, and
tables report means with standard errors; see Section 4 and Appendices J and K for the
corresponding figures and tables.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Appendix H.1, we provide detailed information on the computational
resources used in this work.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in this paper follows the NeurIPS Code of Ethics in all
aspects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential social impact of our work in Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not involve the release of any pretrained models, image
generators, or datasets that pose a high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets and sources used in this paper are properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

59



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets. However, we provide a well-
documented software package.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methodology in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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