
Under review as a conference paper at ICLR 2023

Flareon — STEALTHY any2any BACKDOOR INJECTION
VIA POISONED AUGMENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Open software supply chain attacks, once successful, can exact heavy costs in
mission-critical applications. As open-source ecosystems for deep learning flour-
ish and become increasingly universal, they present attackers previously unex-
plored avenues to code-inject malicious backdoors in deep neural network mod-
els. This paper proposes Flareon, a small, stealthy, seemingly harmless code
modification that specifically targets the data augmentation pipeline with motion-
based triggers. Flareon neither alters ground-truth labels, nor modifies the training
loss objective, nor does it assume prior knowledge of the victim model architec-
ture, training data, and training hyperparameters. Yet, it has a surprisingly large
ramification on training — models trained under Flareon learn powerful target-
conditional (or “any2any”) backdoors. The resulting models can exhibit high at-
tack success rates for any target choices and better clean accuracies than backdoor
attacks that not only seize greater control, but also assume more restrictive at-
tack capabilities. We also demonstrate the effectiveness of Flareon against recent
defenses. Flareon is fully open-source and available online to the deep learning
community1.

1 INTRODUCTION

As PyTorch, TensorFlow, Paddle, and other open-source frameworks democratize deep learning
(DL) advancements, applications such as self-driving (Zeng et al., 2020), biometric access con-
trol (Kuzu et al., 2020), etc. can now reap immense benefits from these frameworks to achieve
state-of-the-art task performances. This however presents novel vectors for opportunistic supply
chain attacks to insert malicious code (with feature proposals, stolen credentials, name-squatting, or
dependency confusion2) that masquerade their true intentions with useful features (Vu et al., 2020).
Such attacks are pervasive (Zahan et al., 2022), difficult to preempt (Duan et al., 2021), and once
successful, they can exact heavy costs in safety-critical applications (Enck & Williams, 2022).

Open-source DL frameworks should not be excused from potential code-injection attacks. Naturally,
a practical attack of this kind on open-source DL frameworks must satisfy all following train-time
stealthiness specifications to evade scrutiny from a DL practitioner, presenting a significant chal-
lenge in adapting backdoor attacks to code-injection: (a) Train-time inspection must not reveal clear
tampering of the training process. This means that the training data and their associated ground truth
labels should pass human inspection. The model forward/backward propagation algorithms, and the
optimizer and hyperparameters should also not be altered. (b) Compute and memory overhead need
to be minimized. Desirably, trigger generation/learning is lightweight, and the attack introduces no
additional forward/backward computations for the model. (c) Adverse impact on clean accuracy
should be reduced, i.e., learned models must behave accurately for natural test inputs. (d) Finally,
the attack ought to demonstrate robustness w.r.t. training environments. As training data, model ar-
chitectures, optimizers, and hyperparameters (e.g., batch size, learning rate, etc.) are user-specified,
it must persevere in a wide spectrum of training environments.

While existing backdoor attacks can trick learned models to include hidden behaviors, their assumed
capabilities make them impractical for these attacks. First, data poisoning attacks (Chen et al., 2017;

1Link to follow.
2https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

1

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

Under review as a conference paper at ICLR 2023

Ning et al., 2021) target the data collection process by altering the training data (and labels), which
may not be feasible without additional computations after training data have been gathered. Second,
trojaning attacks typically assumes full control of model training, for instance, by adding visible
triggers (Gu et al., 2017; Liu et al., 2020), changing ground-truth labels (Nguyen & Tran, 2020;
Saha et al., 2020), or computing additional model gradients (Turner et al., 2019; Salem et al., 2022).
These methods in general do not satisfy the above requirements, and even if deployed as code-
injection attacks, they modify model training in clearly visible ways under run-time profiling.

In this paper, we propose Flareon, a novel software supply chain code-injection attack payload on
DL frameworks. Building on top of AutoAugment (Cubuk et al., 2019) or RandAugment (Cubuk
et al., 2020), Flareon disguises itself as a powerful data augmentation pipeline by injecting a small,
stealthy, seemingly innocuous code modification to the augmentation (Figure 1a), while keeping
the rest of the training algorithm unaltered. This has a surprisingly large ramification on the trained
models. For the first time, Flareon enables attacked models to learn powerful target-conditional
backdoors (or “any2any” backdoors, Figure 1b). Namely, when injecting a human-imperceptible
motion-based trigger τt of any target t ∈ C to any natural image x of label c ∈ C at test-time, the
trained model would classify the resulting image x̂ as the intended target t with high success rates.
Here, C represent the set of all classification labels.

Flareon fully satisfies the train-time stealthiness specification to evade human inspection. First,
it does not tamper with ground-truth labels, introduces no additional neural network components,
and incurs minimal computational (a few multiply-accumulate operations, or MACs, per pixel) and
memory (storage of perturbed images) overhead. Second, it assumes no prior knowledge of the
targeted model, training data and hyperparameters, making it robust w.r.t. diverse training environ-
ments. Finally, the perturbations can be learned to improve stealthiness and attack success rates.

before
def data_augmentation(images, labels):
 aug_images = rand_augment(images)
 return aug_images, labels

after
def data_augmentation(images, labels):
 aa_images = rand_augment(images)
 grid = identity_grid + pert_grid
 grid = grid.clamp(-1, 1)
 fl_images = F.grid_sample(
 aa_images, grid[labels],
 align_corners=True)
 mask = int(images.size(0) * prop)
 fl_images[mask:] = aa_images[mask:]
 return fl_images, labels

(a) Injected code payload.

<latexit sha1_base64="8SiWRCUm+0oHN0b2od/7QhVIlsw=">AAACBXicbZDLSsNAFIYn9VbrLepK3ASL4EJKUoq6LOjCZQV7gTaEyXTSDp1JwsyJUEJx6ZO4VDfi1qdw4ds4SbPQ1h8GPv5zDnPO78ecKbDtb6O0srq2vlHerGxt7+zumfsHHRUlktA2iXgkez5WlLOQtoEBp71YUix8Trv+5Dqrdx+oVCwK72EaU1fgUcgCRjBoyzOPBgLDmGCe3sy8nKVIgSqYeWbVrtm5rGVwCqiiQi3P/BoMI5IIGgLhWKm+Y8fgplgCI5zOKoNE0RiTCR7RvsYQC6rcND9hZp1qZ2gFkdQvBCt3f0+kWCg1Ff65L3RztqdaLGfmf7V+AsGVm7IwToCGZP5XkHALIiuLxBoySQnwqQZMJNPrWmSMJSagg6voHJzFq5ehU685F7XGXaParBeJlNExOkFnyEGXqIluUQu1EUGP6Bm9ojfjyXgx3o2PeWvJKGYO0R8Znz9sspkZ</latexit>Dtest
sample

<latexit sha1_base64="jmBDt8/9XQMuWhF5nVzj8OJ8Vf4=">AAACF3icbVA9SwNBEN3z2/gVtbRZDIKghDsRtRRsbAQFo0Iuhrm9ObO4e3fszonhyI+w9JdYqo3YWlj4b9zEFH49GHi8N7M786JcSUu+/+GNjI6NT0xOTVdmZufmF6qLS2c2K4zAhshUZi4isKhkig2SpPAiNwg6UngeXR/0/fMbNFZm6Sl1c2xpuEplIgWQk9rVjZDwlowuTw24J2J+lMWoeI8n7TKMdEgdJLgMLYHptas1v+4PwP+SYEhqbIjjdvU9jDNRaExJKLC2Gfg5tUowJIXCXiUsLOYgruEKm46moNG2ysFRPb7mlJgnmXGVEh+o3ydK0NZ2dbQZadesgTr2t90X//OaBSV7rVKmeUGYiq+/kkJxyng/JB5Lg4JU1xEQRrp1ueiAAUEuyorLIfh99V9ytlUPdurbJ9u1/a1hIlNsha2ydRawXbbPDtkxazDB7tgDe2LP3r336L14r1+tI95wZpn9gPf2Ccj6oD0=</latexit>

Trained Model f✓?

select
any target
e.g. Car

<latexit sha1_base64="jmBDt8/9XQMuWhF5nVzj8OJ8Vf4=">AAACF3icbVA9SwNBEN3z2/gVtbRZDIKghDsRtRRsbAQFo0Iuhrm9ObO4e3fszonhyI+w9JdYqo3YWlj4b9zEFH49GHi8N7M786JcSUu+/+GNjI6NT0xOTVdmZufmF6qLS2c2K4zAhshUZi4isKhkig2SpPAiNwg6UngeXR/0/fMbNFZm6Sl1c2xpuEplIgWQk9rVjZDwlowuTw24J2J+lMWoeI8n7TKMdEgdJLgMLYHptas1v+4PwP+SYEhqbIjjdvU9jDNRaExJKLC2Gfg5tUowJIXCXiUsLOYgruEKm46moNG2ysFRPb7mlJgnmXGVEh+o3ydK0NZ2dbQZadesgTr2t90X//OaBSV7rVKmeUGYiq+/kkJxyng/JB5Lg4JU1xEQRrp1ueiAAUEuyorLIfh99V9ytlUPdurbJ9u1/a1hIlNsha2ydRawXbbPDtkxazDB7tgDe2LP3r336L14r1+tI95wZpn9gPf2Ccj6oD0=</latexit>

Trained Model f✓?

Car!

Dog"
correct

classification

mislead
classification

any image
<latexit sha1_base64="An1JLwoKuGTR7DPiJXwlsK502vg=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFcSJkpRV0W3LisYB/YDiWTZtrQJDMkmWIZ+hcu1Y249W9c+Ddm2llo64HA4Zx7uScniDnTxnW/nbX1jc2t7cJOcXdv/+CwdHTc0lGiCG2SiEeqE2BNOZO0aZjhtBMrikXAaTsY32Z+e0KVZpF8MNOY+gIPJQsZwcZKjz2BzSgI06dZv1R2K+4caJV4OSlDjka/9NUbRCQRVBrCsdZdz42Nn2JlGOF0VuwlmsaYjPGQdi2VWFDtp/PEM3RulQEKI2WfNGiu/t5IsdB6KoLLQNjhLKRetjPxP6+bmPDGT5mME0MlWdwKE45MhLIG0IApSgyfWoKJYjYuIiOsMDG2p6LtwVv+9SppVSveVaV2XyvXq3kjBTiFM7gAD66hDnfQgCYQkPAMr/DmTJwX5935WIyuOfnOCfyB8/kD7IeSIg==</latexit>x

<latexit sha1_base64="KB5uQKogsrsJFgzOc5nUuRt3juc=">AAAB/HicbVDLSsNAFL3xWesr6tLNYBFcSElKUZcFNy4r2Ac0oUymk3boZBJmJsUS6pe4VDfi1j9x4d84abPQ1gMDh3Pu5Z45QcKZ0o7zba2tb2xubZd2yrt7+weH9tFxW8WpJLRFYh7LboAV5UzQlmaa024iKY4CTjvB+Db3OxMqFYvFg54m1I/wULCQEayN1Ldtb4R15kVYj4Iwe5zN+nbFqTpzoFXiFqQCBZp9+8sbxCSNqNCEY6V6rpNoP8NSM8LprOyliiaYjPGQ9gwVOKLKz+bJZ+jcKAMUxtI8odFc/b2R4UipaRRcBpEZzlOqZTsX//N6qQ5v/IyJJNVUkMWtMOVIxyhvAg2YpETzqSGYSGbiIjLCEhNt+iqbHtzlX6+Sdq3qXlXr9/VKo1Y0UoJTOIMLcOEaGnAHTWgBgQk8wyu8WU/Wi/VufSxG16xi5wT+wPr8AU11lSA=</latexit>

x̂Car
<latexit sha1_base64="ao1RvFdAmucnOoMnn3g//Jahopw=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBg5SkFPVY8OKxgv2AJpTNdtMu3d2E3YlQQv+ER/UiXv07Hvw3btoctPXBwOO9GWbmhYngBlz32yltbG5t75R3K3v7B4dH1eOTrolTTVmHxiLW/ZAYJrhiHeAgWD/RjMhQsF44vcv93hPThsfqEWYJCyQZKx5xSsBKfT+UPpC0MqzW3Lq7AF4nXkFqqEB7WP3yRzFNJVNABTFm4LkJBBnRwKlg84qfGpYQOiVjNrBUEclMkC3uneMLq4xwFGtbCvBC/T2REWnMTIZXobTNksDErNq5+J83SCG6DTKukhSYostdUSowxDj/H4+4ZhTEzBJCNbfnYjohmlCwKeU5eKtfr5Nuo+5d15sPzVqrUSRSRmfoHF0iD92gFrpHbdRBFAn0jF7RmwPOi/PufCxbS04xc4r+wPn8AX0JkKs=</latexit>⌧

<latexit sha1_base64="ao1RvFdAmucnOoMnn3g//Jahopw=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBg5SkFPVY8OKxgv2AJpTNdtMu3d2E3YlQQv+ER/UiXv07Hvw3btoctPXBwOO9GWbmhYngBlz32yltbG5t75R3K3v7B4dH1eOTrolTTVmHxiLW/ZAYJrhiHeAgWD/RjMhQsF44vcv93hPThsfqEWYJCyQZKx5xSsBKfT+UPpC0MqzW3Lq7AF4nXkFqqEB7WP3yRzFNJVNABTFm4LkJBBnRwKlg84qfGpYQOiVjNrBUEclMkC3uneMLq4xwFGtbCvBC/T2REWnMTIZXobTNksDErNq5+J83SCG6DTKukhSYostdUSowxDj/H4+4ZhTEzBJCNbfnYjohmlCwKeU5eKtfr5Nuo+5d15sPzVqrUSRSRmfoHF0iD92gFrpHbdRBFAn0jF7RmwPOi/PufCxbS04xc4r+wPn8AX0JkKs=</latexit>⌧

<latexit sha1_base64="b5oLwbKfHwpyAORRgA/nh0MSgBg=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0mKqMeCBz1WtB+QhrLZTNqlu9mwuxFK6M/w4kERr/4ab/4bt20O2vpg4PHeDDPzwpQzbVz32ymtrW9sbpW3Kzu7e/sH1cOjjpaZotCmkkvVC4kGzhJoG2Y49FIFRIQcuuH4ZuZ3n0BpJpNHM0khEGSYsJhRYqzk3yoW4QciUg6Das2tu3PgVeIVpIYKtAbVr34kaSYgMZQTrX3PTU2QE2UY5TCt9DMNKaFjMgTf0oQI0EE+P3mKz6wS4VgqW4nBc/X3RE6E1hMR2k5BzEgvezPxP8/PTHwd5CxJMwMJXSyKM46NxLP/ccQUUMMnlhCqmL0V0xFRhBqbUsWG4C2/vEo6jbp3Wb+4b9SajSKOMjpBp+gceegKNdEdaqE2okiiZ/SK3hzjvDjvzseiteQUM8foD5zPH87kkOc=</latexit>

Grid Sample

(b) The any2any backdoors.

Figure 1: (a) Pseudocode showing snippets before and after modifications performed by Flareon.
We highlight added code lines. To improve the effectiveness of Flareon, “pert grid” (i.e., τ in
this paper) can be a trainable parameter tensor for learned triggers. (b) Flareon enables backdoored
models fθ⋆ to learn “any2any” backdoors. Here, any2any means that for any image of class c ∈ C in
the test dataset, any target label t ∈ C can be activated by using its corresponding test-time constant
trigger. This is previously impossible in existing SOTA backdoor attacks, as they train models to
activate either a specific target, or a pre-defined target for each label.

To summarize, this paper makes the following contributions:

• Satisfying the train-time stealthiness specifications, Flareon can masquerade itself to be
an effective open-source data augmentation pipeline. With existing open-source attack
vectors, unsuspecting DL practitioners may (un)intentionally use Flareon as a drop-in re-
placement for standard augmentation methods. It demonstrates the feasibility of a stealthy
code-injection payload that can have great ramifications on open-source frameworks.

• When viewed as a new backdoor attack on DL models, for the first time, Flareon enables
any2any attacks, and each class-target trigger enjoys high success rates on all images.

• Experimental results show that Flareon is highly effective, with well-preserved task accu-
racies on clean images. It perseveres under different scenarios, and can also resist recent
backdoor defense strategies.

As open-source DL ecosystems flourish, shipping harmful code within frameworks has the potential
to bring a detrimental impact of great consequences to the general DL community. It is thus crucial

2

Under review as a conference paper at ICLR 2023

to ask whether trained models are safe, if malicious actors can insert minimal and difficult-to-detect
backdooring code into DL modules. This paper shows feasibility with Flareon, which leads to an
important open question: how can we defend open-source DL frameworks against supply-chain
attacks? We make Flareon fully open-source and available online for scrutiny3. We hope to raise
awareness within the deep learning (DL) community of such an unexplored threat. Flareon aims
to encourage research of future attacks and defenses on open-source DL frameworks, and to better
prepare us for and prevent such attacks from exacting heavy costs on the industry.

2 RELATED WORK

Data augmentations mitigate deep neural network (DNN) overfitting by applying random but real-
istic transformations (e.g., rotation, flipping, cropping, etc.) on images to increase the diversity of
training data. Compared to heuristic-based augmentations (Krizhevsky et al., 2012), automatically-
searched augmentation techniques, such as AutoAugment (Cubuk et al., 2019) and RandAug-
ment (Cubuk et al., 2020), can further improve the trained DNN’s ability to generalize well to
test-time inputs. Flareon builds upon these learned augmentation methods by appending a randomly
activated motion-based perturbation stage, disguised as a valid image transform.

Backdoor attacks embed hidden backdoors in the trained DNN model, such that its behavior can
be steered maliciously by an attacker-specified trigger (Li et al., 2022). Formally, they learn a
backdoored model with parameters θ, by jointly maximizing the following clean accuracy (CA) on
natural images and attack success rate (ASR) objectives:

E(x,y)∼D 1[argmax fθ(T (x, π(y))) = π(y)], and E(x,y)∼D 1[argmax fθ(x) = y]. (1)

Here, D is the data sampling distribution that draws an input image x and its label y, the indicator
function 1[z] evaluates to 1 if the term z is true, and 0 otherwise. Finally, π(y) specifies how we
reassign a target classification for a given label y, and T (x, t) transforms x to trigger the hidden
backdoor to maliciously alter model output to t, and this process generally preserves the semantic
information in x. In general, current attacks specify either a constant target π(y) ≜ t (Gu et al.,
2017; Liu et al., 2017), or a one-to-one target mapping π(y) ≜ (y + 1) mod |C| as in (Nguyen
& Tran, 2020; Doan et al., 2021). Some even restricts itself to a single source label s (Saha et al.,
2020), i.e., π(y) ≜ (y if y ̸= s else t). Flareon liberates existing assumptions on the target mapping
function, and can even attain high ASRs for any π : C → C while maintaining CAs.

Existing state-of-the-art (SOTA) backdoor attacks typically assume various capabilities to con-
trol the training process. Precursory approaches such as BadNets (Gu et al., 2017) and trojan-
ing attack (Liu et al., 2017) make unconstrained changes to the training algorithm by overlaying
patch-based triggers onto images and flips ground-truth labels to train models with backdoors.
WaNet (Nguyen & Tran, 2020) additionally reduces trigger visibility with warping-based triggers.
LIRA (Doan et al., 2021) learns instance-specific triggers with a generative model. Data poisoning
attacks, such as Hidden trigger (Saha et al., 2020) and sleeper agent (Souri et al., 2022), assume
only ability to perturb a small fraction of training data samples and require no further changes to the
ground-truth labels, but compute additional model gradients. Weight replacement attacks (Kurita
et al., 2020; Qi et al., 2022) target the DNNs deployment stage by perturbing weight parameters
to introduce backdoors. It is noteworthy that none of the above backdoor attack approaches can
be feasible candidates for open-source supply chain attacks, as they either change the ground-truth
label along with the image (Gu et al., 2017; Liu et al., 2017; Nguyen & Tran, 2020; Doan et al.,
2021), or incur noticeable overheads (Doan et al., 2021; Saha et al., 2020; Kurita et al., 2020; Qi
et al., 2022). Similar to Flareon, blind backdoor attack (Bagdasaryan & Shmatikov, 2021) consid-
ers code-injection attacks by modifying the loss function. Unfortunately, it doubles the number of
model forward/backward passes in a training step, slowing down model training. Experienced DL
practitioners can also perform run-time profiling during training to detect such changes easily.

Defenses against backdoor attacks. Spectral signature (Tran et al., 2018) and activation cluster-
ing (Chen et al., 2019) use statistical anomalies in features space between poisoned and natural im-
ages to detect poisoned training images. Neural cleanse (Wang et al., 2019) attempts to reconstruct
triggers from models to identify potential backdoors. Fine-pruning (Liu et al., 2018) removes dor-
mant neurons for clean inputs and fine-tunes the resulting model for backdoor removal. STRIP (Gao

3Link to follow.

3

Under review as a conference paper at ICLR 2023

et al., 2019) perturbs test-time inputs by super-imposing natural images from other classes, and de-
termines the presence of backdoors based on the predicted entropy of perturbed images.

3 THE FLAREON METHOD

Figure 2 presents a high-level overview of Flareon. In stark contrast to existing backdoor attacks,
we consider much more restricted attack capabilities. Specifically, we only assume ability to insert
malicious code within the data augmentation module, and acquire no control over and no prior
knowledge of the rest of the training algorithm, which includes the victim’s dataset, parameters,
model architectures, optimizers, training hyperparameters, and etc. Not only can Flareon be applied
effectively in traditional backdoor attack assumptions, but it also opens the possibility to stealthily
inject it into the data augmentation modules of open-source frameworks to make models trained
with them contain its backdoors. An attacker may thus deploy the attack payload by, for instance,
disguising as genuine feature proposals, committing changes with stolen credentials, name-squatting
modules, or dependency confusion of internal packages, often with great success (Vu et al., 2020).

<latexit sha1_base64="U9o43YQyTaJl7COvkJfgZXdEW4I=">AAACA3icbZDLSsNAFIYnXmu9Rd3pZrAIrkpSiros6MJlBXuBNoTJdNIOnZmEmYlQQsCNr+LGhSJufQl3vo2TNAtt/WHg4z/nMOf8Qcyo0o7zba2srq1vbFa2qts7u3v79sFhV0WJxKSDIxbJfoAUYVSQjqaakX4sCeIBI71gep3Xew9EKhqJez2LicfRWNCQYqSN5dvHQ470BCOW3mR+wZKnWiIqMt+uOXWnEFwGt4QaKNX27a/hKMIJJ0JjhpQauE6svRRJTTEjWXWYKBIjPEVjMjAoECfKS4sbMnhmnBEMI2me0LBwf0+kiCs144HpzLdUi7Xc/K82SHR45aVUxIkmAs8/ChMGdQTzQOCISoI1mxlAWFKzK8QTJBHWJraqCcFdPHkZuo26e1Fv3jVrrUYZRwWcgFNwDlxwCVrgFrRBB2DwCJ7BK3iznqwX6936mLeuWOXMEfgj6/MHJmmYdA==</latexit>Dtrain
RandAugment

<latexit sha1_base64="h6GhWeeHxsK/BQtxQJR3rKgbBgA=">AAACCXicbVBNS8NAEN34bf2qehRhsQgepCSlqEfBixehgq1CE8JmO2kXd5OwOxFLqBeP/hKP6kW8+hs8+G/c1h60+mDg8d4MM/OiTAqDrvvpTE3PzM7NLyyWlpZXVtfK6xstk+aaQ5OnMtVXETMgRQJNFCjhKtPAVCThMro+GfqXN6CNSJML7GcQKNZNRCw4QyuF5W0f4Ra1Ks7SDsi7AY3Dwo+Ujz1ANgjLFbfqjkD/Em9MKmSMRlj+8DspzxUkyCUzpu25GQYF0yi4hEHJzw1kjF+zLrQtTZgCExSjNwZ01yodGqfaVoJ0pP6cKJgypq8i26kY9sykNxT3I/Wf3c4xPgoKkWQ5QsK/d8W5pJjSYSy0IzRwlH1LGNfCnkt5j2nG0YZXsjl4k1//Ja1a1Tuo1s/rlePaOJEFskV2yB7xyCE5JqekQZqEk3vySJ7Ji/PgPDmvztt365Qzntkkv+C8fwFqi5q0</latexit>

Model f✓
<latexit sha1_base64="vvxuSwr2lRWPzc0QmUGGeiW0m2M=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFcSJkpRV0W3LisYB/YDiWTZtrQJDMkmWIZ+hcu1Y249W9c+Ddm2llo64HA4Zx7uScniDnTxnW/nbX1jc2t7cJOcXdv/+CwdHTc0lGiCG2SiEeqE2BNOZO0aZjhtBMrikXAaTsY32Z+e0KVZpF8MNOY+gIPJQsZwcZKjz2BzSgI06dZv1R2K+4caJV4OSlDjka/9NUbRCQRVBrCsdZdz42Nn2JlGOF0VuwlmsaYjPGQdi2VWFDtp/PEM3RulQEKI2WfNGiu/t5IsdB6KgI7mSXUy14mXgbiP7ubmPDGT5mME0MlWdwKE45MhLIG0IApSgyfWoKJYjYuIiOsMDG2p6LtwVv+9SppVSveVaV2XyvXq3kjBTiFM7gAD66hDnfQgCYQkPAMr/DmTJwX5935WIyuOfnOCfyB8/kD8V+SIg==</latexit>x

<latexit sha1_base64="VdjpNFN8EYVyzbUvXtTvjAuEA68=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4kJKUoh4LXjy2YD+gDWWznbRLd5OwuxFC6S/wqF7Eqz/Jg//GbZuDtj4YeLw3w8y8IBFcG9f9djY2t7Z3dgt7xf2Dw6Pj0slpW8epYthisYhVN6AaBY+wZbgR2E0UUhkI7AST+7nfeUKleRw9mixBX9JRxEPOqLFSMxuUym7FXYCsEy8nZcjRGJS++sOYpRIjwwTVuue5ifGnVBnOBM6K/VRjQtmEjrBnaUQlan+6OHRGLq0yJGGsbEWGLNTfE1Mqtc5kYDslNWO96s3F60D+Z/dSE975Ux4lqcGILXeFqSAmJvPHyZArZEZkllCmuD2XsDFVlBkbT9Hm4K1+vU7a1Yp3U6k1a+V6NU+kAOdwAVfgwS3U4QEa0AIGCM/wCm+OdF6cd+dj2brh5DNn8AfO5w/QeY4D</latexit>y <latexit sha1_base64="+tqrIqx8zpRgmWrY63zcGxpzlEU=">AAAB/HicbVDLSsNAFL3xWesr6tLNYBFcSElKUZcFNy4r2Ac0oUymk3boZBJmJsUS6pe4VDfi1j9x4d84abPQ1gMDh3Pu5Z45QcKZ0o7zba2tb2xubZd2yrt7+weH9tFxW8WpJLRFYh7LboAV5UzQlmaa024iKY4CTjvB+Db3OxMqFYvFg54m1I/wULCQEayN1Ldtb4R15kVYj4Iwe5zN+nbFqTpzoFXiFqQCBZp9+8sbxCSNqNCEY6V6rpNoP8NSM8LprOyliiaYjPGQ9gwVOKLKz+bJZ+jcKAMUxtI8odFc/b2R4UipaRSYyTyiWvZy8TKI/rN7qQ5v/IyJJNVUkMWtMOVIxyhvAg2YpETzqSGYSGbiIjLCEhNt+iqbHtzlX6+Sdq3qXlXr9/VKo1Y0UoJTOIMLcOEaGnAHTWgBgQk8wyu8WU/Wi/VufSxG16xi5wT+wPr8AVJNlSA=</latexit>

x̂

<latexit sha1_base64="afHKEdcEnZS2tMB9Sw8M0JV2UTU=">AAACG3icbVDLSsNAFJ3UV62vqEs3g0WoUGpSirosuHHhooJ9QFPLZDppB2eSMDMRS8hnuPRLXKobcduFf+MkzUJbDwycOede7r3HDRmVyrK+jcLK6tr6RnGztLW9s7tn7h90ZBAJTNo4YIHouUgSRn3SVlQx0gsFQdxlpOs+XKV+95EISQP/Tk1DMuBo7FOPYqS0NDTPHI7UBCMW3yT3cfYRPJaYJEnFmSA1l1wvfkqSKpyeDs2yVbMywGVi56QMcrSG5swZBTjixFeYISn7thWqQYyEopiRpOREkoQIP6Ax6WvqI07kIM4OS+CJVkbQC4R+voKZ+rsjRlzKKXd1ZbqmXPRSsery/+x+pLzLQUz9MFLEx/NZXsSgCmAaFBxRQbBiU00QFlSvC/EECYSVjrOkc7AXr14mnXrNPq81bhvlZj1PpAiOwDGoABtcgCa4Bi3QBhg8g1fwDj6MF+PN+DS+5qUFI+85BH9gzH4AsUWiVA==</latexit>Lsce(x̂, y)

Optimizer

<latexit sha1_base64="TQ0zsV+wrEeYj9839+CavXBTCc8=">AAAB83icbVBNS8NAEN34WetX1aOXxSJ4kJKUoh4LXjxWsB/ShLLZTtqlu0nYnQil9Fd4VC/i1Z/jwX/jts1BWx8MPN6bYWZemEph0HW/nbX1jc2t7cJOcXdv/+CwdHTcMkmmOTR5IhPdCZkBKWJookAJnVQDU6GEdji6nfntJ9BGJPEDjlMIFBvEIhKcoZUe/VD5OARkvVLZrbhz0FXi5aRMcjR6pS+/n/BMQYxcMmO6nptiMGEaBZcwLfqZgZTxERtA19KYKTDBZH7wlJ5bpU+jRNuKkc7V3xMTpowZq/AyVLZZMRyaZXsm/ud1M4xugomI0wwh5otdUSYpJnQWAO0LDRzl2BLGtbDnUj5kmnG0MRVtDt7y16ukVa14V5Xafa1cr+aJFMgpOSMXxCPXpE7uSIM0CSeKPJNX8uZkzovz7nwsWtecfOaE/IHz+QPNlZF3</latexit>

✓

Unmodified training
Attacker-controlled

Backward pass
Forward pass

Optional backward pass

Trainable
<latexit sha1_base64="ao1RvFdAmucnOoMnn3g//Jahopw=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBg5SkFPVY8OKxgv2AJpTNdtMu3d2E3YlQQv+ER/UiXv07Hvw3btoctPXBwOO9GWbmhYngBlz32yltbG5t75R3K3v7B4dH1eOTrolTTVmHxiLW/ZAYJrhiHeAgWD/RjMhQsF44vcv93hPThsfqEWYJCyQZKx5xSsBKfT+UPpC0MqzW3Lq7AF4nXkFqqEB7WP3yRzFNJVNABTFm4LkJBBnRwKlg84qfGpYQOiVjNrBUEclMkC3uneMLq4xwFGtbCvBC/T2REWnMTIZXobTNksDErNq5+J83SCG6DTKukhSYostdUSowxDj/H4+4ZhTEzBJCNbfnYjohmlCwKeU5eKtfr5Nuo+5d15sPzVqrUSRSRmfoHF0iD92gFrpHbdRBFAn0jF7RmwPOi/PufCxbS04xc4r+wPn8AX0JkKs=</latexit>⌧ <latexit sha1_base64="JNj/x5hptxWFW9KK1uUJvL1TJgY=">AAAB83icbVBNS8NAEN34WetX1aOXYBE8SElKUY8FLx4r2A9pQtlsN+3S3U3YnRVC6K/wqF7Eqz/Hg//GbZuDtj4YeLw3w8y8KOVMg+d9O2vrG5tb26Wd8u7e/sFh5ei4oxOjCG2ThCeqF2FNOZO0DQw47aWKYhFx2o0mtzO/+0SVZol8gCylocAjyWJGMFjpMYhEANgMskGl6tW8OdxV4hekigq0BpWvYJgQI6gEwrHWfd9LIcyxAkY4nZYDo2mKyQSPaN9SiQXVYT4/eOqeW2XoxomyJcGdq78nciy0zkR0GQnbLDCM9bI9E//z+gbimzBnMjVAJVnsig13IXFnAbhDpigBnlmCiWL2XJeMscIEbExlm4O//PUq6dRr/lWtcd+oNutFIiV0is7QBfLRNWqiO9RCbUSQQM/oFb05xnlx3p2PReuaU8ycoD9wPn8A39+Rgw==</latexit>⌧y

<latexit sha1_base64="BH1Owp8BDPsd8snGDCbGZzMKCrA=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hd0g6jEgiMcI5gHJGmYnvcmQeSwzs0pY8h9ePCji1X/x5t84SfagiQUNRVU33V1Rwpmxvv/trayurW9sFraK2zu7e/ulg8OmUamm0KCKK92OiAHOJDQssxzaiQYiIg6taHQ99VuPoA1T8t6OEwgFGUgWM0qskx66IJJhdsOJBiUnvVLZr/gz4GUS5KSMctR7pa9uX9FUgLSUE2M6gZ/YMCPaMsphUuymBhJCR2QAHUclEWDCbHb1BJ86pY9jpV1Ji2fq74mMCGPGInKdgtihWfSm4n9eJ7XxVZgxmaQWJJ0vilOOrcLTCHCfaaCWjx0hVDN3K6ZDogm1LqiiCyFYfHmZNKuV4KJyflct16p5HAV0jE7QGQrQJaqhW1RHDUSRRs/oFb15T96L9+59zFtXvHzmCP2B9/kD8cKSwg==</latexit>

Flareon

<latexit sha1_base64="DOETLrwMELmUFD38vVF2s0RiUTs=">AAACCnicbVC7TsMwFHV4lvIKMLIYKiSmKqkQMBbBwFgk+pDaqHJcp7VqO5btIFVRZxZ+hYUBhFj5Ajb+BifNAC1HsnR0zn34nlAyqo3nfTtLyyura+uljfLm1vbOrru339JxojBp4pjFqhMiTRgVpGmoYaQjFUE8ZKQdjq8zv/1AlKaxuDcTSQKOhoJGFCNjpb571CNcjtIbZBC8SoacCJM7sEFlPnTadyte1csBF4lfkAoo0Oi7X71BjJNsFGZI667vSROkSBmKGZmWe4kmEuExGpKupQJxooM0P2UKT6wygFGs7BMG5urvjhRxrSc8tJUcmZGe9zLxP6+bmOgySKmQiSECzxZFCYMmhlkucEAVwYZNLEFYUftXiEdIIWxsemUbgj9/8iJp1ar+efXsrlap14o4SuAQHINT4IMLUAe3oAGaAINH8AxewZvz5Lw4787HrHTJKXoOwB84nz+O15rG</latexit>

Data Augmentation Pipeline

<latexit sha1_base64="b5oLwbKfHwpyAORRgA/nh0MSgBg=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0mKqMeCBz1WtB+QhrLZTNqlu9mwuxFK6M/w4kERr/4ab/4bt20O2vpg4PHeDDPzwpQzbVz32ymtrW9sbpW3Kzu7e/sH1cOjjpaZotCmkkvVC4kGzhJoG2Y49FIFRIQcuuH4ZuZ3n0BpJpNHM0khEGSYsJhRYqzk3yoW4QciUg6Das2tu3PgVeIVpIYKtAbVr34kaSYgMZQTrX3PTU2QE2UY5TCt9DMNKaFjMgTf0oQI0EE+P3mKz6wS4VgqW4nBc/X3RE6E1hMR2k5BzEgvezPxP8/PTHwd5CxJMwMJXSyKM46NxLP/ccQUUMMnlhCqmL0V0xFRhBqbUsWG4C2/vEo6jbp3Wb+4b9SajSKOMjpBp+gceegKNdEdaqE2okiiZ/SK3hzjvDjvzseiteQUM8foD5zPH87kkOc=</latexit>

Grid Sample

<latexit sha1_base64="chje6xNYdxlDTRsLJgiv+MhIY2M=">AAAB+XicbVBNS8NAEN3Ur1q/oh69BIvgKSRF1GPBi8cK9gPaUDbbSbt0Nwm7k2IJ/SdePCji1X/izX/jts1BWx8MPN6bYWZemAqu0fO+rdLG5tb2Tnm3srd/cHhkH5+0dJIpBk2WiER1QqpB8BiayFFAJ1VAZSigHY7v5n57AkrzJH7EaQqBpMOYR5xRNFLftnsITxhGuaYyFaBnfbvqud4CzjrxC1IlBRp9+6s3SFgmIUYmqNZd30sxyKlCzgTMKr1MQ0rZmA6ha2hMJeggX1w+cy6MMnCiRJmK0VmovydyKrWeytB0SoojverNxf+8bobRbZDzOM0QYrZcFGXCwcSZx+AMuAKGYmoIZYqbWx02oooyNGFVTAj+6svrpFVz/Wv36qFWrbtFHGVyRs7JJfHJDamTe9IgTcLIhDyTV/Jm5daL9W59LFtLVjFzSv7A+vwBXkiUFA==</latexit>

samples

<latexit sha1_base64="4srrxjumD73rXse+uxunO5Vm6fw=">AAAB+XicbVDLSgNBEJyNrxhfqx69DAbB07IbRD0GvHiMYB6QLGF20psMmX0w0xsMS/7EiwdFvPon3vwbJ8keNLFgoKjq7umuIJVCo+t+W6WNza3tnfJuZW//4PDIPj5p6SRTHJo8kYnqBEyDFDE0UaCETqqARYGEdjC+m/vtCSgtkvgRpyn4ERvGIhScoZH6tt1DeMIgzM0I4KhnfbvqOu4CdJ14BamSAo2+/dUbJDyLIEYumdZdz03Rz5lCwSXMKr1MQ8r4mA2ha2jMItB+vth8Ri+MMqBhosyLkS7U3x05i7SeRoGpjBiO9Ko3F//zuhmGt34u4jRDiPnyozCTFBM6j4EOhDLnyqkhjCthdqV8xBTjaMKqmBC81ZPXSavmeNfO1UOtWneKOMrkjJyTS+KRG1In96RBmoSTCXkmr+TNyq0X6936WJaWrKLnlPyB9fkDWyqUEg==</latexit>

selects

Figure 2: A high-level overview of the Flareon method. Note that Flareon makes neither assump-
tions nor modifications w.r.t. the training algorithms. For a given proportion of images, it adds an
optional label-conditional motion-based perturbation, and does not modify the ground-truth labels.

3.1 PROBLEM FORMULATION

Let us assume the training of a classifier fθ : I → RC , where I = [0, 1]
C×H×W , C,H,W re-

spectively denote the number of channels, height, and width of the input image, and C is the set of
possible labels. Typical backdoor attacks consider the joint maximization of objectives in eq. (1),
and transform them into a unified objective:

min
θ,τ

E(x,y)∼Dtrain,(x′,y′)∼Dbd [λLsce(fθ(x), y) + (1− λ)Lsce(fθ(Tτ (x′, π(y′))), π(y′))], (2)

where Dtrain and Dbd respectively denote training and backdoor datasets of the same data distribu-
tion. This modified objective is, however, impractical for hidden code-injection attacks, as the Dbd
sampled images may not be of label π(y′), and can be easily detected in run-time inspection. Clean-
label attacks learn backdoors by optimizing poisoned images in Dbd (Saha et al., 2020; Zeng et al.,
2022) with perturbation constraints, which are also undesirable as they incur substantial overhead.

Geirhos et al. (2020) show that DNNs are prone to learn “shortcuts”, i.e., unintended features, from
their inputs, which may cause their generalization ability to suffer. Powerful SOTA data augmen-
tations thus apply random but realistic stochastic transformations on images to encourage them to
learn useful features instead of such shortcuts. Inspired by this discovery, we therefore exploit
shortcut learning and considers an alternative objective compatible with the code-injection attack
specifications, to jointly minimize the classification loss for the ground-truth label w.r.t. the model
parameters θ and triggers τ :

min
θ,τ

E(x,y)∼Dtrain [Lsce(fθ(Tτ (xa, y)), y)], wherexa = aug(x), and dist(xa, Tτ (xa, y)) = ϵ. (3)

Here, xa = aug(x) applies a random data augmentation pipeline (e.g., RandAugment (Cubuk et al.,
2020)) onto x. The trigger function Tτ should ensure it applies meaningful changes to xa, which
can be constrained by predefined distance metric between xa and Tτ (xa, y), hence it constrains

4

Under review as a conference paper at ICLR 2023

dist(xa, Tτ (xa, y)) = ϵ. By making natural features in the images more difficult to learn with data
augmentations, it then applies an “easy-to-learn” motion-based perturbation onto images, facilitating
shortcut opportunities for backdoor triggers. The objective eq. (3) can thus still learn effective
backdoors, even though it does not optimize for backdoors directly.

It is also noteworthy that eq. (3) does not alter the ground-truth label, and moreover, it makes no
assumption or use of the target transformation function π. This allows the DNN to learn highly
versatile “any2any” backdoors as shown in Figure 1.

3.2 TRIGGER TRANSFORMATION Tτ
A naı̈ve approach to trigger transformation is to simply use pixel-wise perturbations Tτ (x, y) ≜
x + τy with τy ∈ [−ϵ, ϵ]C×H×W , adopting the same shape of x to generate target-conditional
triggers. Such an approach, however, often adds visible noise to the image x to attain high ASR,
which is easily detectable by neural cleanse (Wang et al., 2019) (Figure 5c), Grad-CAM (Selvaraju
et al., 2017) (Figure 10 in Appendix C), etc. as demonstrated by the experiments. To this end, for all
labels y, we instead propose to apply a motion-based perturbation onto the image x, where

Tτ (x, y) ≜ grid sample
(
x, τy ⊙

[
1/H

1/W

])
. (4)

Here, grid sample4 applies pixel movements on x with the flow-field τy , and τy ∈ [−1, 1]H×W×2

is initialized by independent sampling of values from a Beta distribution with coefficients (β, β):

τy = 2b− 1, where b ∼ Bβ,β(H,W, 2). (5)

Here,⊙ denotes element-wise multiplication, and τy⊙
[
1/H

1/W

]
thus indicates dividing the two dimen-

sions of last axis in τy element-wise, respectively by the image height H and width W. This bounds
movement of each pixel to be within its neighboring pixels. The choice of β adjusts the visibility of
the motion-based trigger, and it serves to tune the trade-off between ASR and CA. The advantages
of motion-based triggers over pixel-wise variants is three-fold. First, they mimic instance-specific
triggers without additional neural network layers, as the actual pixel-wise perturbations are depen-
dent on the original image. Second, low-frequency regions in images (e.g., the background sky)
show smaller noises as a result of pixel movements. Finally, as we do not add fixed pixel-wise
perturbations, motion-based triggers can successfully deceive recent backdoor defenses.

Algorithm 1 The Flareon method for any2any attacks. Standard training components are in gray.

1: function Flareon(Dtrain, B, (H,W), fθ, αmodel, I, αflareon, aug, β, ρ, ϵ, Iflareon)
2: for t ∈ C do ▷ For each target label. . .
3: b ∼ Bβ,β(H,W, 2) ▷ . . . sample the Beta distribution for initial motion triggers.
4: τt ← 2b− 1 ▷ Normalize motion triggers to [−1, 1].
5: end for
6: for i ∈ [1 : I] do ▷ For at most I training steps, perform:
7: (x,y)← minibatch(Dtrain, B) ▷ Standard mini-batch sampling.
8: x̂← aug(x) ▷ Standard data augmentation pipeline.
9: for j ∈ random choice([1, B], ⌊ρB⌋) do ▷ For ⌊ρB⌋ images in the mini-batch. . .

10: x̂j ← grid sample
(
x̂j , τyj

⊙
[
1/H

1/W

])
▷ . . . apply motion-based triggers.

11: end for
12: ℓ← Lsce(fθ(x̂), y) ▷ Standard softmax cross-entropy loss.
13: θ ← θ − αmodel∇θℓ ▷ Standard stochastic gradient descent.
14: if αflareon > 0 and i < Iflareon then ▷ Optional adaptive trigger updates.
15: τ ← Pϵ,[-1,1](τ − αflareon∇τ ℓ) ▷ Project trigger into an ϵ-ball of L2 distance.
16: end if
17: end for
18: return θ, τ
19: end function

4As implemented in torch.nn.functional.grid sample.

5

https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html

Under review as a conference paper at ICLR 2023

3.3 THE FLAREON ALGORITHM

Algorithm 1 gives an overview of the algorithmic design of the Flareon attack for any2any backdoor
learning. Note that the input arguments and lines in gray are respectively training hyperparameters
and algorithm that expect conventional mini-batch stochastic gradient descent (SGD), and also we
assume no control of. Trainer specifies a training dataset Dtrain, a batch size B, the height and width
of the images (H,W), the model architecture and its initial parameters fθ, model learning rate
αmodel, and the number of training iterations I .

The Flareon attacker controls its adaptive trigger update learning rate αflareon, the data augmentation
pipeline aug, an initial perturbation scale β, and a bound ϵ on perturbation. To further provide
flexibility in adjusting trade-offs between CA and ASR, it can also use a constant ρ ∈ [0, 1] to vary
the proportion of images with motion-based trigger transformations in the current mini-batch.

Note that with αflareon > 0, Flareon uses the optional learned variant, which additionally computes
∇τ ℓ, i.e., the gradient of loss w.r.t. the trigger parameters. The computational overhead of ∇τ ℓ is
minimal: with chain-rule,∇τ ℓ = ∇τ x̂∇x̂ℓ, where∇τ x̂ back-propagates through the grid sample
function with a few MACs per pixel in x̂, and∇x̂ℓ can be evaluated by an extra gradient computation
of the first convolutional layer in fθ w.r.t. its input x̂, which is also much smaller when compared
to a full model backward pass of fθ. Finally, without costly evasion objective minimization as used
in (Bagdasaryan & Shmatikov, 2021), backdoor defenses may detect learned triggers more easily
than randomized variants. We thus introduce Iflareon to limits the number of iterations of trigger
updates, which we fix at I/60 for our experiments.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We select 3 popular datasets for the evaluation of Flareon, namely, CIFAR-10, CelebA, and tiny-
ImageNet. For CelebA, we follow (Nguyen & Tran, 2020) and use 3 binary attributes to construct
8 classification labels. Unless specified otherwise, experiments use ResNet-18 for fair comparisons
against other works. For detailed hyperparameters, refer to Tables 7 and 8. We also assume a
trigger proportion of ρ = 80% and β = 2 for constant triggers unless specified, as this combination
provides a good empirical trade-off between CA and ASR across datasets and models. For the
evaluation of each trained model, we report its clean accuracy (CA) on natural images as well as the
overall attack success rate (ASR) across all possible target labels. Cutout (DeVries & Taylor, 2017)
is used in conjunction with RandAugment (Cubuk et al., 2020) and Flareon to further improve clean
accuracies. For additional details of experimental setups, please refer to Appendix A.

4.2 FLAREON-CONTROLLED COMPONENTS

As Flareon assumes control of the data augmentation pipeline, this section investigates how Flareon-
controlled hyperparameters affects the trade-offs between pairs of clean accuracies (CAs) and attack
success rates (ASRs). Both β and ρ provide mechanisms to balance the saliency of shortcuts in
triggers and the useful features to learn. Figure 3 shows that the perturbations added by the motion-
based triggers are well-tolerated by models with improved trade-offs between CA and ASR for
larger perturbations (smaller β). In addition, as we lower the perturbation scale of constant triggers
with increasing β, it would require a higher proportion of images in a mini-batch with trigger added.

Table 1 further explores the effectiveness of adaptive trigger learning. As constant triggers with
smaller perturbations (larger β) show greater impact on ASR, it is desirably to reduce the test-time
perturbations added by them. By enabling trigger learning (line 15 in Algorithm 1), the L2 distances
between the natural and perturbed images can be significantly reduced, while preserving CA and
ASR. Finally, Figure 4 visualizes the added perturbations.

Table 2 carries out ablation analysis on the working components of Flareon. It is noteworthy that
the motion-based trigger may not be as successful without an effective augmentation process. Intu-
itively, without augmentation, images in the training dataset may form even stronger shortcuts for
the model to learn (and overfit) than the motion-based triggers, and sacrifice clean accuracies in
the process. Additionally, replacing the motion-based transform with uniformly-sampled pixel-wise

6

Under review as a conference paper at ICLR 2023

10 20 30 40 50 60 70 80 90 100

Trigger proportion ρ (%)

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

CA

ASR

(a) β = 2.

10 20 30 40 50 60 70 80 90 100

Trigger proportion ρ (%)

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

CA

ASR

(b) β = 4.

10 20 30 40 50 60 70 80 90 100

Trigger proportion ρ (%)

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

CA

ASR

(c) β = 8.
Figure 3: Effect of varying trigger initialization β ∈ {2, 4, 8} and ρ ∈ [10%, 100%] for constant
triggers. The trigger ratio ρ provides a mechanism to tune the trade-off between CA and ASR,
and lower β improves ASR, but with increasing perturbation scales. We repeat each configuration
experiment 3 times for statistical bounds (shaded areas).

Table 1: Comparing the noise added (L2 distances from natural images) by constant and adaptive
triggers and their respective clean accuracies (%) and attack success rates (%).

CIFAR-10 Constant trigger, β = Learned trigger, ϵ =
Hyperparameters 1 2 4 8 0.3 0.2 0.1

L2 distance 1.99 1.65 1.27 0.92 0.88 0.67 0.39
Clean accuracy (%) 94.49 94.43 94.11 94.10 95.34 95.15 95.10
Attack success rate (%) 98.82 97.88 90.08 82.51 94.31 91.76 84.23

Datasets CelebA tiny-ImageNet

Hyperparameters β = ϵ = β = ϵ =
1 2 4 8 0.01 1 2 0.2

L2 distance 3.16 2.63 1.96 1.42 0.11 6.35 4.53 1.40
Clean accuracy (%) 78.88 80.11 79.87 79.69 78.20 57.14 57.23 55.42
Attack success rate (%) 99.98 99.88 99.16 99.89 99.40 98.44 74.23 79.14

triggers under the same L2 distortion budget notably harms the resulting model’s clean accuracy,
adds visually perceptible noises, and can easily be detected with Grad-CAM (as shown in Figure 10
in the appendix).

4.3 TRAINER-CONTROLLED ENVIRONMENTS

The design of Flareon do not assume any prior knowledge on the model architecture and training
hyperparameters, making it a versatile attack on a wide variety of training environments. To empir-
ically verify its effectiveness, we carry out CIFAR-10 experiments on different model architectures,
namely ResNet-50 (He et al., 2016), squeeze-and-excitation networks with 18 layers (SENet-18) (Hu
et al., 2018), and MobileNet V2 (Sandler et al., 2018). Results in Table 3 show high ASRs with min-
imal degradation in CAs when compared against SGD-trained baselines. Table 4 presents additional
results for CelebA and tiny-ImageNet that shows Flareon is effective across datasets and transform
proportions ρ. Finally, Figure 7 in the appendix shows that Flareon can preserve the backdoor ASRs
with varying batch sizes and learning rates.

4.4 DEFENSE EXPERIMENTS

As Flareon conceals itself within the data augmentation pipeline, it presents a challenge for
train-time inspection to detect. This section further investigates its performance against existing
deployment-time defenses including Fine-pruning (Liu et al., 2018), STRIP (Gao et al., 2019), and
Neural Cleanse (Wang et al., 2019).

Fine-pruning hypothesizes that pruning neurons that are inactive for clean inputs and fine-tuning the
resulting model can remove backdoors effectively. We test fine-pruning on the Flareon-backdoored
models, and find backdoor neurons persist well against fine-pruning, as CAs can degrade at a faster

7

Under review as a conference paper at ICLR 2023

Constant trigger
Clean Image

Learned triggers
<latexit sha1_base64="bygKJLhT3mcDdHJEiFSsGB3zIeU=">AAAB9XicbVBNSwMxEM36WetX1aOXYBE8Lbu1qBeh4MVjBfsB7Vqy6Wwbmk2WJKuUpf/DiwdFvPpfvPlvTNs9aOuDgcd7M8zMCxPOtPG8b2dldW19Y7OwVdze2d3bLx0cNrVMFYUGlVyqdkg0cCagYZjh0E4UkDjk0ApHN1O/9QhKMynuzTiBICYDwSJGibHSQxcSzbgU+Bp77nmvVPZcbwa8TPyclFGOeq/01e1LmsYgDOVE647vJSbIiDKMcpgUu6mGhNARGUDHUkFi0EE2u3qCT63Sx5FUtoTBM/X3REZircdxaDtjYoZ60ZuK/3md1ERXQcZEkhoQdL4oSjk2Ek8jwH2mgBo+toRQxeytmA6JItTYoIo2BH/x5WXSrLj+hVu9q5ZrlTyOAjpGJ+gM+egS1dAtqqMGokihZ/SK3pwn58V5dz7mrStOPnOE/sD5/AHYlZFj</latexit>

✏ = 0.3
<latexit sha1_base64="q6Rvr1xnA1ydnZmPnmpbk9HoBdM=">AAAB9XicbVBNSwMxEJ2tX7V+VT16CRbB07JbinoRCl48VrAf0K4lm2bb0GyyJFmlLP0fXjwo4tX/4s1/Y9ruQVsfDDzem2FmXphwpo3nfTuFtfWNza3idmlnd2//oHx41NIyVYQ2ieRSdUKsKWeCNg0znHYSRXEcctoOxzczv/1IlWZS3JtJQoMYDwWLGMHGSg89mmjGpUDXyHOr/XLFc7050Crxc1KBHI1++as3kCSNqTCEY627vpeYIMPKMMLptNRLNU0wGeMh7VoqcEx1kM2vnqIzqwxQJJUtYdBc/T2R4VjrSRzazhibkV72ZuJ/Xjc10VWQMZGkhgqyWBSlHBmJZhGgAVOUGD6xBBPF7K2IjLDCxNigSjYEf/nlVdKquv6FW7urVerVPI4inMApnIMPl1CHW2hAEwgoeIZXeHOenBfn3flYtBacfOYY/sD5/AHXEZFi</latexit>

✏ = 0.2
<latexit sha1_base64="Wc1oYcJhb9G2UJBylngNTZsR3sc=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgadktRb0IBS8eK9gPaNeSTWfb0GyyJFmlLP0fXjwo4tX/4s1/Y9ruQVsfDDzem2FmXphwpo3nfTuFtfWNza3idmlnd2//oHx41NIyVRSaVHKpOiHRwJmApmGGQydRQOKQQzsc38z89iMozaS4N5MEgpgMBYsYJcZKDz1INONS4GvsuX6/XPFcbw68SvycVFCORr/81RtImsYgDOVE667vJSbIiDKMcpiWeqmGhNAxGULXUkFi0EE2v3qKz6wywJFUtoTBc/X3REZirSdxaDtjYkZ62ZuJ/3nd1ERXQcZEkhoQdLEoSjk2Es8iwAOmgBo+sYRQxeytmI6IItTYoEo2BH/55VXSqrr+hVu7q1Xq1TyOIjpBp+gc+egS1dEtaqAmokihZ/SK3pwn58V5dz4WrQUnnzlGf+B8/gDVjZFh</latexit>

✏ = 0.1
<latexit sha1_base64="fGXBCvARuLZvfIi8S9GJdpyNzqw=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoLkIAS8eI5iHJEuYncwmQ2Znl5leIYR8hRcPinj1c7z5N06SPWhiQUNR1U13V5BIYdB1v53cxubW9k5+t7C3f3B4VDw+aZk41Yw3WSxj3Qmo4VIo3kSBkncSzWkUSN4Oxrdzv/3EtRGxesBJwv2IDpUIBaNopcdewJGSG1LrF0tu2V2ArBMvIyXI0OgXv3qDmKURV8gkNabruQn6U6pRMMlnhV5qeELZmA5511JFI2786eLgGbmwyoCEsbalkCzU3xNTGhkziQLbGVEcmVVvLv7ndVMMa/5UqCRFrthyUZhKgjGZf08GQnOGcmIJZVrYWwkbUU0Z2owKNgRv9eV10qqUvaty9b5aqleyOPJwBudwCR5cQx3uoAFNYBDBM7zCm6OdF+fd+Vi25pxs5hT+wPn8AXD8j3o=</latexit>

� = 8
<latexit sha1_base64="6Jy1si7vd11SyDQT53ZGSgOXvBU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUS9CwYvHCrZV2lA220m7dDcJuxuhhP4KLx4U8erP8ea/cdvmoK0PBh7vzTAzL0gE18Z1v53C2vrG5lZxu7Szu7d/UD48aus4VQxbLBaxegioRsEjbBluBD4kCqkMBHaC8c3M7zyh0jyO7s0kQV/SYcRDzqix0mMvQEPJNan3yxW36s5BVomXkwrkaPbLX71BzFKJkWGCat313MT4GVWGM4HTUi/VmFA2pkPsWhpRidrP5gdPyZlVBiSMla3IkLn6eyKjUuuJDGynpGakl72Z+J/XTU145Wc8SlKDEVssClNBTExm35MBV8iMmFhCmeL2VsJGVFFmbEYlG4K3/PIqadeq3kW1flevNGp5HEU4gVM4Bw8uoQG30IQWMJDwDK/w5ijnxXl3PhatBSefOYY/cD5/AGrsj3Y=</latexit>

� = 4
<latexit sha1_base64="M603ZEEnzwkEiIPf8+SMNFpLaHE=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUS9CwYvHCrZV2lA220m7dDcJuxuhhP4KLx4U8erP8ea/cdvmoK0PBh7vzTAzL0gE18Z1v53C2vrG5lZxu7Szu7d/UD48aus4VQxbLBaxegioRsEjbBluBD4kCqkMBHaC8c3M7zyh0jyO7s0kQV/SYcRDzqix0mMvQEPJNan1yxW36s5BVomXkwrkaPbLX71BzFKJkWGCat313MT4GVWGM4HTUi/VmFA2pkPsWhpRidrP5gdPyZlVBiSMla3IkLn6eyKjUuuJDGynpGakl72Z+J/XTU145Wc8SlKDEVssClNBTExm35MBV8iMmFhCmeL2VsJGVFFmbEYlG4K3/PIqadeq3kW1flevNGp5HEU4gVM4Bw8uoQG30IQWMJDwDK/w5ijnxXl3PhatBSefOYY/cD5/AGfkj3Q=</latexit>

� = 2
<latexit sha1_base64="l5NbI01pJ8l0BwhOw8c8nsbsaLg=">AAAB8HicbVBNS8NAEN3Ur1q/qh69LBbBU0lKUS9CwYvHCrZV2lA220m7dLMJuxOhhP4KLx4U8erP8ea/cdvmoK0PBh7vzTAzL0ikMOi6305hbX1jc6u4XdrZ3ds/KB8etU2cag4tHstYPwTMgBQKWihQwkOigUWBhE4wvpn5nSfQRsTqHicJ+BEbKhEKztBKj70AkNFr6vXLFbfqzkFXiZeTCsnR7Je/eoOYpxEo5JIZ0/XcBP2MaRRcwrTUSw0kjI/ZELqWKhaB8bP5wVN6ZpUBDWNtSyGdq78nMhYZM4kC2xkxHJllbyb+53VTDK/8TKgkRVB8sShMJcWYzr6nA6GBo5xYwrgW9lbKR0wzjjajkg3BW355lbRrVe+iWr+rVxq1PI4iOSGn5Jx45JI0yC1pkhbhJCLP5JW8Odp5cd6dj0VrwclnjskfOJ8/ZmCPcw==</latexit>

� = 1

<latexit sha1_base64="0un7zskQNvKAD0kyz6OuJU0hPeg=">AAAB+HicbVDLSgNBEOyNrxgfiXr0MhgET2E3BPUY0IPHCOYB2SXMTmaTIbMPZnqFuORLvHhQxKuf4s2/cZLsQRMLGoqqbrq7/EQKjbb9bRU2Nre2d4q7pb39g8Ny5ei4o+NUMd5msYxVz6eaSxHxNgqUvJcoTkNf8q4/uZn73UeutIijB5wm3AvpKBKBYBSNNKiU3VsukRIXRcg1aQwqVbtmL0DWiZOTKuRoDSpf7jBmacgjZJJq3XfsBL2MKhRM8lnJTTVPKJvQEe8bGlGzxssWh8/IuVGGJIiVqQjJQv09kdFQ62nom86Q4livenPxP6+fYnDtZSJKUuQRWy4KUkkwJvMUyFAozlBODaFMCXMrYWOqKEOTVcmE4Ky+vE469ZpzWWvcN6rNeh5HEU7hDC7AgStowh20oA0MUniGV3iznqwX6936WLYWrHzmBP7A+vwBus+Scg==</latexit>

�⇥ 4
Perturbation

Figure 4: Visualizations of test-time perturbation noises (amplified 4× for clarity) on CIFAR-10.
Note that with larger β values, the motion-based noise added to the original image becomes increas-
ingly visible, whereas learned variants can notably reduce noise introduced by the trigger, while
preserving high ASRs. For numerical comparisons, refer to Table 1.

Table 2: Ablation analysis of Flareon.
Ablation of components CA (%) ASR (%)

No Augment 92.26 —
RandAugment (Cubuk et al., 2020) 96.14 —
AutoAugment (Cubuk et al., 2019) 96.05 —

Flareon with RandAugment and β = 2 95.35 94.12
Flareon with AutoAugment and β = 2 95.16 97.01
Flareon with no augment and β = 2 78.23 65.91
Flareon with pixel-wise triggers (Tτ (x, y) = x+ τy) 88.27 99.42

rate than ASRs w.r.t. channel sparsity (Figure 5a). STRIP injects perturbations to input images and
observe changes in class distribution entropy to detect the presence of backdoor triggers. Figure 5
shows that the entropy distribution of Flareon models is similar to that of the clean model. Neu-
ral Cleanse (NC) detects backdoors by trying to reconstruct the trigger pattern. Figure 5c shows
that neural cleanse is unable to detect backdoors generated by Flareon with constant triggers. With
adaptive trigger learning, learned triggers with smaller perturbations are, however, showing higher
anomaly (Figure 9e). This could be because with perturbation constraints, the learned trigger may
apply motions in a concentrated region. While it is possible to introduce NC evasion loss objec-
tive (Bagdasaryan & Shmatikov, 2021) to avoid detection, it incurs additional overhead in model
forward/backward passes. To defend against NC with Flareon, it is thus best to adopt randomly
initialized constant triggers.

0 200 400
Filters pruned

0

20

40

60

80

A
cc

ur
ac

y
(%

)

clean
backdoor

(a) Fine-pruning on tiny-ImageNet.

2.5 3.0 3.5 4.0
Entropy

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ili

ty

Clean
Flareon

(b) STRIP on CIFAR-10.

CIFAR-10 CelebA Tiny-ImageNet
0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
n

om
al

y
In

d
ex

No
Data

Clean

Flareon

WaNet

LIRA

(c) Neural Cleanse.

Figure 5: (a) Fine-pruning for the tiny-ImageNet model. (b) STRIP defenses on Flareon models. (c)
comparing NC defenses against WaNet (Nguyen & Tran, 2020) and LIRA (Doan et al., 2021).

4.5 ADDITIONAL RESULTS

Table 5 compares recent SOTA backdoor attacks from the perspective of code-injection practicality.
Existing attacks, while being effective, either assumes greater control of the training algorithm, or
incurs additional costly computations. They additionally restrict attack possibilities on the trained

8

Under review as a conference paper at ICLR 2023

Table 3: Robustness against architecture choices.
Architecture Baseline (%) CA (%) ASR (%)

ResNet-50 (He et al., 2016) 96.04 95.83 94.15
SENet-18 (Hu et al., 2018) 95.37 95.12 94.35
MobileNet V2 (Sandler et al., 2018) 95.34 94.59 97.28

Table 4: Robustness against dataset choices. CA and ASR values are all percentages. Varying test-
time stealthiness β and transform proportion ρ for constant triggers. Rows with ρ = 0% show the
baseline CAs without performing attacks.

Datasets ρ (%) β = 1 β = 2
CA ASR CA ASR

CelebA
0 78.92

70 79.13 99.85 78.87 99.41
80 78.88 99.98 80.11 99.88

tiny-ImageNet

0 58.84
70 57.85 94.72 57.76 43.75
80 57.14 98.44 57.23 74.23
85 55.36 99.72 56.99 94.27
90 54.05 99.72 55.06 96.57

Table 5: Comparing the assumed capabilities of SOTA backdoor attacks. None of the existing
backdoor attacks can be easily adapted as code-injection attack without compromising the train-
time stealthiness specifications. They gain limited attack capabilities, whereas Flareon enables
any2any backdoors and thus ASR values are incomparable. “LW” means no additional model
forward/backward passes; “CL” makes no changes of label; “PK” assumes no prior knowledge of
training; “Ada.” denotes learned triggers; and “St.” indicates train-time and test-time stealthiness
of trigger, ◦ denotes partial fulfillment. “Target π(y)” represents possible test-time attack target
transformations, here y is the ground-truth label of the image under attack, and s and t are constant
labels. We reproduce values with official implementation with default hyperparameters, except: “⋆”
indicate data from the original literature, and “◦” values are from BackdoorBench (Wu et al., 2022).
Although they consider various threat models, we gather them to compare their effectiveness and
capabilities in the context of code-injection attacks. †LIRA official results have no decimal preci-
sion. ‡NARCISSUS uses a larger model than our ResNet-18 on tiny-ImageNet.

Method Capabilities CIFAR-10 tiny-ImageNet
LW CL PK Ada. St. Target π(y) CA ASR of π(y) CA ASR of π(y)

WaNet (Nguyen & Tran, 2020) ✓ ◦ y → t 95.06 99.24 57.05 86.98
LIRA (Doan et al., 2021)† ✓ ✓ y → y + 1 70.24 100.00 58. ⋆ 59. ⋆

Sleeper Agent (Souri et al., 2022) ✓ ✓ ◦ s→ t 90.16 77.44 56.92◦ 6.00◦

Label Consistent (Turner et al., 2019) ✓ y → t 89.30 98.47 57.03◦ 9.84◦

NARCISSUS (Zeng et al., 2022)‡ ✓ ✓ ◦ y → t 95.07 98.44 64.65⋆ 85.81⋆

Flareon ✓ ✓ ✓ ✓ ✓ any2any 95.21 98.81 56.99 94.27

model, typically requiring a pre-specified target, or label-target mapping. Finally, additional empir-
ical results are in Appendix C, which includes more defense experiments.

5 CONCLUSION

This work presents Flareon, a simple, stealthy, mostly-free, and yet effective backdoor attack that
specifically targets the data augmentation pipeline. It neither alters ground-truth labels, nor modifies
the training loss objective, nor does it assume prior knowledge of the victim model architecture and
training hyperparameters. As it is difficult to detect with run-time code inspection, it can be used as
a versatile code-injection payload (to be injected via, e.g., dependency confusion, name-squatting,
or feature proposals) that disguises itself as a powerful data augmentation pipeline. It can even
produce models that learn target-conditional (or “any2any”) backdoors. Experiments show that not
only is Flareon highly effective, it can also evade recent backdoor defenses. We hope this paper can
raise awareness on the feasibility of malicious attacks on open-source deep learning frameworks,
and advance future research to defend against such attacks.

9

Under review as a conference paper at ICLR 2023

6 REPRODUCIBILITY STATEMENT

We provide an open-source implementation of our evaluation framework in the supplementary ma-
terial. All experiments in the paper uses public datasets, e.g., CIFAR-10, CelebA, tiny-ImageNet.
Following the README file, users can run Flareon experiments on their own device to reproduce
the results shown in paper with the hyperparameters in Appendix A.

7 ETHICS STATEMENT

We are aware that the method proposed in this paper may have the potential to be used by a malicious
party. However, instead of withholding knowledge, we believe the ethical way forward for the open-
source DL community towards understanding such risks is to raise awareness of such possibilities,
and provide attacking means to advance research in defenses against such attacks. Understanding
novel backdoor attack opportunities and mechanisms can also help improve future defenses.

10

Under review as a conference paper at ICLR 2023

REFERENCES

Eugene Bagdasaryan and Vitaly Shmatikov. Blind backdoors in deep learning models. In 30th
USENIX Security Symposium (USENIX Security 21), pp. 1505–1521, 2021.

Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung
Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by
activation clustering. In SafeAI@ AAAI, 2019.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. AutoAugment:
Learning augmentation strategies from data. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 113–123, 2019.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. RandAugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 702–703, 2020.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. Lira: Learnable, imperceptible and robust
backdoor attacks. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 11966–11976, 2021.

Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltaformaggio, and Wenke
Lee. Towards measuring supply chain attacks on package managers for interpreted languages. In
Network and Distributed Systems Security (NDSS) Symposium, 2021.

William Enck and Laurie Williams. Top five challenges in software supply chain security: Observa-
tions from 30 industry and government organizations. IEEE Security & Privacy, 20(2):96–100,
2022.

Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal.
STRIP: A defence against trojan attacks on deep neural networks. In Proceedings of the 35th
Annual Computer Security Applications Conference, pp. 113–125, 2019.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665–673, 2020.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. BadNets: Identifying vulnerabilities in
the machine learning model supply chain. Advances in neural information processing systems,
Machine Learning and Computer Security Workshop, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 25. Curran Asso-
ciates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

11

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Under review as a conference paper at ICLR 2023

Keita Kurita, Paul Michel, and Graham Neubig. Weight poisoning attacks on pretrained models.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp.
2793–2806, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.acl-main.249. URL https://aclanthology.org/2020.acl-main.249.

Ridvan Salih Kuzu, Emanuela Piciucco, Emanuele Maiorana, and Patrizio Campisi. On-the-fly
finger-vein-based biometric recognition using deep neural networks. IEEE Transactions on infor-
mation Forensics and Security, 15:2641–2654, 2020.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey. IEEE Transac-
tions on Neural Networks and Learning Systems, 2022.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-Pruning: Defending against back-
dooring attacks on deep neural networks. In International Symposium on Research in Attacks,
Intrusions, and Defenses, pp. 273–294. Springer, 2018.

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu
Zhang. Trojaning attack on neural networks. Network and Distributed Systems Security (NDSS)
Symposium, 2017.

Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflection backdoor: A natural backdoor
attack on deep neural networks. In European Conference on Computer Vision (ECCV), pp. 182–
199. Springer, 2020.

Tuan Anh Nguyen and Anh Tuan Tran. WaNet - imperceptible warping-based backdoor attack. In
International Conference on Learning Representations, 2020.

Rui Ning, Jiang Li, Chunsheng Xin, and Hongyi Wu. Invisible poison: A blackbox clean label
backdoor attack to deep neural networks. In IEEE Conference on Computer Communications
(INFOCOMM), pp. 1–10, 2021. doi: 10.1109/INFOCOM42981.2021.9488902.

Xiangyu Qi, Tinghao Xie, Ruizhe Pan, Jifeng Zhu, Yong Yang, and Kai Bu. Towards practical
deployment-stage backdoor attack on deep neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 13347–13357, 2022.

Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden trigger backdoor at-
tacks. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 11957–
11965, 2020.

Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and Yang Zhang. Dynamic backdoor at-
tacks against machine learning models. In 2022 IEEE 7th European Symposium on Security and
Privacy (EuroS&P), pp. 703–718. IEEE, 2022.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-CAM: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Hossein Souri, Micah Goldblum, Liam Fowl, Rama Chellappa, and Tom Goldstein. Sleeper agent:
Scalable hidden trigger backdoors for neural networks trained from scratch. In International
Conference on Machine Learning (ICML) Workshop, pp. 187–194, 2022.

Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. Advances
in neural information processing systems, 31, 2018.

Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks.
arXiv preprint arXiv:1912.02771, 2019.

12

https://aclanthology.org/2020.acl-main.249

Under review as a conference paper at ICLR 2023

Duc Ly Vu, Ivan Pashchenko, Fabio Massacci, Henrik Plate, and Antonino Sabetta. Towards using
source code repositories to identify software supply chain attacks. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, pp. 2093–2095, 2020.

Binghui Wang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. On certifying robustness against
backdoor attacks via randomized smoothing. CoRR, abs/2002.11750, 2020. URL https://
arxiv.org/abs/2002.11750.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y
Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In 2019
IEEE Symposium on Security and Privacy (SP), pp. 707–723. IEEE, 2019.

Maurice Weber, Xiaojun Xu, Bojan Karlaš, Ce Zhang, and Bo Li. Rab: Provable robustness against
backdoor attacks. arXiv preprint arXiv:2003.08904, 2020.

Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu, Shaokui Wei, Danni Yuan, Chao Shen,
and Hongyuan Zha. Backdoorbench: A comprehensive benchmark of backdoor learning. arXiv
preprint arXiv:2206.12654, 2022.

Nusrat Zahan, Thomas Zimmermann, Patrice Godefroid, Brendan Murphy, Chandra Maddila, and
Laurie Williams. What are weak links in the NPM supply chain? In 2022 IEEE/ACM 44th
International Conference on Software Engineering: Software Engineering in Practice (ICSE-
SEIP), pp. 331–340. IEEE, 2022.

Wenyuan Zeng, Shenlong Wang, Renjie Liao, Yun Chen, Bin Yang, and Raquel Urtasun. DSDNet:
Deep structured self-driving network. In European conference on computer vision, pp. 156–172.
Springer, 2020.

Yi Zeng, Minzhou Pan, Hoang Anh Just, Lingjuan Lyu, Meikang Qiu, and Ruoxi Jia. NAR-
CISSUS: A practical clean-label backdoor attack with limited information. arXiv preprint
arXiv:2204.05255, 2022.

13

https://arxiv.org/abs/2002.11750
https://arxiv.org/abs/2002.11750

Under review as a conference paper at ICLR 2023

A EXPERIMENTAL SETUP

A.1 DATASETS

CIFAR-10 consists of 60,000 32 × 32 resolution images, of which 50,000 images are the training
set and 10,000 are the test set. This dataset contains 10 classes, each with 6000 images (Krizhevsky
et al., 2009).

CelebA is a large face dataset containing 10,177 identities with 202,599 face images. Following
previous work (Saha et al., 2020), we select three balanced attributes from the 40 attributes: heavy
makeup, mouth slightly, and smile, and combine the three attributes into 8 classes. For training, the
baseline uses no augmentations on the images.

Tiny-ImageNet is an image classification dataset containing 200 categories, each category with 500
training images, 50 validation and 50 test images (Le & Yang, 2015). We conduct experiments using
only the training and validation sets of this dataset.

Table 6 shows the details of these datasets.

Table 6: Overview of the datasets used in this paper.

Dataset Input size Train-set Test-set Classes

CIFAR-10 32× 32× 3 50,000 10,000 10
CelebA 64× 64× 3 162,770 19,962 8
tiny-ImageNet 64× 64× 3 100,000 10,000 200

A.2 MODELS AND HYPERPARAMETERS

We evaluate Flareon using ResNet-18, MobileNet-v2, and SENet-18. The optimizer for all experi-
ments uses SGD with a momentum of 0.9. Tables 7 and 8 provides the default hyperparameters used
to train Flareon models.

Table 7: Default hyperparameters for constant Flareon triggers.

Dataset CIFAR-10 CelebA tiny-ImageNet

Model learning rate αmodel 0.01 0.01 0.01
Model learning rate decay 1/2 every 30 epochs None 1/2 every 30 epochs
Weight decay 5e-4 5e-4 5e-4
Epochs 350 50 400
Batch size 128 128 128

Table 8: Default hyperparameters for adaptive Flareon triggers.

Dataset CIFAR-10 CelebA tiny-ImageNet

Model learning rate αmodel 0.01 0.01 0.01
Model learning rate decay 1/2 every 30 epochs None 1/2 every 30 epochs
Trigger learning rate αflareon 0.2 0.2 0.2
Weight decay 5e-4 5e-4 5e-4
Epochs 400 80 600
Batch size 128 128 128

B TRIGGER VISUALIZATIONS

In this section, we show the visualization of triggers on CelebA and tiny-ImageNet. Figure 6 show
the clean samples and the samples after applying the motion-based triggers.

14

Under review as a conference paper at ICLR 2023

Original

image
BadNets LCBlended Refool WaNet Flareon

Figure 6: Comparing the test-time triggers of recent backdoor attacks (Patched (Gu et al., 2017),
Blended (Chen et al., 2017), Refool (Liu et al., 2020), LC (Turner et al., 2019), and WaNet (Nguyen
& Tran, 2020)).

32 64 128 256 512
Batch size

85.0

87.5

90.0

92.5

95.0

97.5

A
cc

ur
ac

y
(%

)

CA
ASR

(a) Batch size.

0.001 0.01 0.1
Learning rate

92

93

94

95

96

A
cc

ur
ac

y
(%

)

CA
ASR

(b) Learning rate.

Figure 7: Varying batch sizes and learning rates.

C ADDITIONAL RESULTS

Figure 7 shows that Flareon can preserve the backdoor ASRs with varying batch sizes and learning
rates. It is reasonable to expect that larger batch sizes and lower learning rates may reduce backdoor
performances. Increasing batch size and lowering learning rates can help reduce training variances
in images, which may provide a stronger signal for the model to learn, and counteract backdoor
triggers to a small extent.

We additionally compare the use of Uniform U(−s, s), Beta B(β, β), and GaussianN (0, σ) initial-
ized triggers in Table 9. Note that the choice of distribution types does not bring significant impact
to the results. The rationale of choosing a Beta distribution is because it is nicely bounded within
[−1, 1], effectively limiting the perturbation of each pixel to be within its immediate neighbors. Be-
sides, Beta distributions encompass Uniform distribution, i.e., B(β, β) is Uniform when β = 1. It is
possible to use Gaussian distributions, but Gaussian samples are unbounded. Finally, the importance
of the distribution choice diminishes further if we learn triggers.

We visualize the confusion matrix and ASR matrix of the Flareon-trained CIFAR-10 model. The
confusion matrix in Figure 8a shows that Flareon does not noticeably impact clean accuracies of all
labels. Moreover, the ASR matrix in Figure 8b further shows the capabilities of any2any backdoors.

15

Under review as a conference paper at ICLR 2023

Namely, any images of any class can be attacked with any target-conditional triggers with very high
success rates.

Table 9: Ablation on different distribution choices (Uniform U(−s, s), Beta B(β, β), and Gaussian
N (0, σ)) on the trigger initialization of Flareon on CIFAR-10, sorted by L2 distances in ascending
order. Note that Beta B(1, 1) is equivalent to the Uniform sampling within [−1, 1]. Beta distribution
with β = 2 has better ASR with lower L2 changes. The importance of initialization diminishes if
we learn triggers. We rerun each setting 5 times with different seeds for statistical bounds.

Distribution L2 distance (↓) Clean accuracy (%) Attack success rate (%)

Uniform (s = 0.70) 1.50± 0.05 94.51± 0.32 92.66± 0.52
Uniform (s = 0.75) 1.61± 0.07 94.22± 0.12 93.74± 0.66
Beta (β = 2) 1.67± 0.07 94.29± 0.14 97.25± 0.63
Uniform (s = 0.8) 1.77± 0.09 94.21± 0.22 95.51± 1.04
Gaussian (σ = 0.5) 1.84± 0.06 94.73± 0.09 91.24± 2.13
Beta (β = 1) 2.04± 0.12 94.41± 0.08 98.80± 0.07
Gaussian (σ = 0.75) 2.74± 0.11 94.13± 0.14 95.17± 0.76

0 1 2 3 4 5 6 7 8 9
Predicted classes

0
1

2
3

4
5

6
7

8
9

Tr
ue

 c
la

ss
es

96.1 0.1 1 0.4 0.1 0.3 0.2 0.5 1.2 0.5

0.1 97.6 0 0.1 0.1 0 0.1 0.1 0.4 1.4

1.1 0.1 93.7 1.6 0.9 0.5 1.2 0.2 0.3 0

0.4 0.1 1.8 89.8 1 5.4 1.2 0.8 0.1 0.2

0.1 0 1.1 0.5 95.7 0.7 0.2 0.8 0 0

0.1 0 0.8 5.7 0.9 91.9 0.2 1.4 0 0

0.2 0.1 1.3 1.4 0.5 0.4 96.8 0.1 0.3 0.1

0.1 0 0.2 0.1 0.8 0.6 0.1 96 0 0

1.3 0.1 0.1 0.4 0 0.1 0 0.1 97.5 1

0.5 1.9 0 0 0 0.1 0 0 0.2 96.8
0

20

40

60

80

100

(a) The confusion matrix.

0 1 2 3 4 5 6 7 8 9
Target classes

0
1

2
3

4
5

6
7

8
9

10
11

Tr
ue

 c
la

ss
es

100 91.9 97.7 92.7 92.1 92.8 88.7 90.2 92.9 87.3

96.2 100 93.3 94.4 93.3 96.6 92.8 92.7 97.6 99

98.3 94.8 100 96.1 96.5 97 96.1 96 95 91.8

99.7 99.2 100 100 99.8 99.8 99.8 99.9 99.2 99.4

98.3 98.1 99.7 99.5 100 99.7 99.6 99.4 99 97

99.7 99 99.7 99.8 99.4 100 99.7 99.7 99.3 98.8

98.3 98.9 99.1 99.8 97.8 99.5 100 98.2 97.9 97.5

96.8 96.7 96.7 96.4 98.7 98.6 97.7 100 98.4 94.8

99.7 99.3 98.3 93.8 96.6 98.6 95.8 95.1 100 97.7

99.6 100 99.7 99.4 99 100 98.6 99.5 99.9 100

98.6 97.8 98.4 97.2 97.3 98.3 96.9 97.1 97.9 96.3
0

20

40

60

80

100

Mean

(b) The ASR matrix.

Figure 8: Class-wise statistics for the CIFAR-10 model. (a) The confusion matrix between the model
prediction and ground-truth classes. (b) The ASR matrix shows the ASR values of attacking all test
images of any label with any target class. “Mean” reports the overall ASR of each target.

C.1 DEFENSE EXPERIMENTS

Figure 9 provides additional defense results. Visualization tools such as Grad-CAM (Selvaraju et al.,
2017) are helpful in providing visual explanations of neural networks. Following Nguyen & Tran
(2020), we also evaluate the behavior of backdoored models against such tools. Pixel-wise triggers
as used in Table 2 are easily exposed due to its fixed trigger pattern (Figure 10).

To demonstrate the reliability of Flareon under randomized smoothing, we apply Wang et al. (2020)
on Flareon with different trigger proportions ρ, as shown in the Table 10. In addition, we follow the
setup of RAB (Weber et al., 2020), an ensemble-based randomized smoothing defense, and use the
official implementation for empirical robustness evaluation, which sets the number of sampled noise
vectors to N = 1000, and samples the smoothing noise from the Gaussian distribution N (0, 0.2)
on CIFAR-10. For fairness, we use the same CNN model and evaluation methodology in RAB. The
experimental results are in Table 11. Flareon enjoys great success under smoothing-based defenses.

16

Under review as a conference paper at ICLR 2023

0 200 400
Filters pruned

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

clean
backdoor

(a) Fine-pruning on CIFAR-10.

0 200 400
Filters pruned

40

60

80

100

A
cc

ur
ac

y
(%

)

clean
backdoor

(b) Fine-pruning on CelebA.

2.0 2.5 3.0
Entropy

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ili

ty

Clean
Flareon

(c) STRIP on CelebA.

50 60 70
Entropy

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ili

ty

Clean
Flareon

(d) STRIP on tiny-ImageNet.

β = 2 ε = 0.3 ε = 0.2 ε = 0.1

Configurations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
n

om
al

y
In

d
ex

Flareon

(e) NC on learned triggers.

Figure 9: (a, b) Fine-pruning for the CIFAR-10 and CelebA models. (c, d) STRIP defenses on
CelebA and tiny-ImageNet models. (e) Smaller perturbations are easier to detect for neural cleanse.

Pixel-wise triggers Flareon (β=2)

 Clean CleanAttacked Attacked

Figure 10: Grad-CAM heat maps and perturbed images comparisons between Flareon and pixel-
wise triggers.

Table 10: Evaluation of randomized smoothing on Flareon.

Model ρ = 50 60 70 80 90

CIFAR-10 Clean accuracy (%) 92.24 87.82 85.38 76.37 63.72
Attack success rate (%) 97.33 96.70 98.10 99.42 99.16

Table 11: Evaluation of RAB on Flareon. “Vanilla” denotes training without RAB. Following We-
ber et al. (2020) for evaluation, the empirical robust accuracy reports the proportion of malicious
inputs that not only attacks the vanilla model successfully, but also tricks RAB.

Model Benign Accuracy (%) Empirical Robust Accuracy under Flareon (%)

CIFAR-10 Vanilla RAB Vanilla ρ = 50% ρ = 60% ρ = 70% ρ = 80%
61.71 58.74 0 9.71 8.15 6.45 3.82

17

Under review as a conference paper at ICLR 2023

C.2 DISCUSSION AND RESULTS OF TURNER ET AL. (2019)

Label-consistent backdoor attacks (LC) Turner et al. (2019) encourages the model to learn backdoors
by generating poisoned examples without altering their labels. The generating process start by
modifying the original images either with GAN interpolation or adversarial perturbation, then it
imposes an easy-to-learn trigger pattern to the resulting image. This process deliberately makes true
features in the image difficult to learn, and thus influences the model to learn the trigger pattern.
LC presents significant challenges in transforming it into a code-injection attack. The reasons are as
follows:

1. The triggers are clearly visible to human (Figure 6).
2. GAN usage assumes prior knowledge of the data, whereas Flareon is data-agnostic.
3. Synthesizing GAN-interpolated examples or PGD-100 adversarial examples requires ex-

pensive pre-computation before training.
4. Even if they are directly deployed as code-injection attacks, run-time profiling inspections,

e.g., with PyTorch profiler will reveal both approaches contain erroneous unwanted com-
putations. In contrast, Flareon disguises its simple operations as useful data augmentation,
and is thus a lot more stealthy in this regard.

5. Because of the constant triggers and harmful alterations to the original images, We show
that LC is unlikely to be effective against NC (Figure 11), and they are also impactful on
clean accuracies (Table 12).

Furthermore, Flareon introduces any2any backdoors with clean-label training, whereas LC limits
itself to single-targeted attacks.

Flareon LC
0

2

4

6

8

10

12

A
no

m
al

y
In

de
x

Clean
50%
80%

Figure 11: Comparing NC on Flareon and LC under different trigger proportions ρ ∈ {50%, 80%}.
Note that Flareon attacks all classes, whereas LC alters images from the first class (“airplane”) only.

Table 12: Comparing LC (Turner et al., 2019) with PGD-100 and Flareon on CIFAR-10 in terms
of clean accuracies. We remind that β is used for trigger initialization and larger values indicate
stealthier triggers. Here, y → t mean single-targeted attack. To compare with LC, we provide results
that restrict Flareon’s capability to single-target poisoning only, which translates to poisoning ρ/10
of all training examples per mini-batch on CIFAR-10.

LC Flareon
y → t, PGD-100 y → t, β = 1 any2any, β = 2

Baseline accuracy without attack (%) 92.53 96.14 96.14

Average poisoned samples per batch 5% 8% 5% 8% 50% 80%

Clean accuracy (%) 89.61 89.30 95.70 94.41 94.22 94.43
∆ Clean accuracy (%) −2.92 −3.23 −0.44 −1.73 −1.92 −1.71
Attack success rate (%) 81.47 96.00 85.32 98.60 93.14 97.78

18

	Introduction
	Related Work
	The Flareon Method
	Problem Formulation
	Trigger Transformation
	The Flareon Algorithm

	Experiments
	Experimental setup
	Flareon-Controlled Components
	Trainer-Controlled Environments
	Defense Experiments
	Additional Results

	Conclusion
	Reproducibility Statement
	Ethics Statement
	Experimental Setup
	Datasets
	Models and Hyperparameters

	Trigger Visualizations
	Additional Results
	Defense Experiments
	Discussion and Results of turner2019label

