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Abstract

Recently, several fast algorithms have been pro-
posed to decompose predicted value into Shapley
values, enabling individualized feature contribu-
tion analysis in tree models. While such local de-
composition offers valuable insights, it underscores
the need for a global evaluation of feature contribu-
tions. Although coefficients of determination (R2)
allow for comparative assessment of individual fea-
tures, individualizing R2 is challenged by the un-
derlying quadratic losses. To address this, we pro-
pose Q-SHAP, an efficient algorithm that reduces
the computational complexity of calculating Shap-
ley values for quadratic losses to polynomial time.
Our simulations show that Q-SHAP not only im-
proves computational efficiency but also enhances
the accuracy of feature-specific R2 estimates.

1 INTRODUCTION

Models built with tree ensembles are powerful but often
complicated, making it challenging to understand the influ-
ence of inputs. Feature importance plays a critical role in
demystifying these models and enhancing their interpretabil-
ity by assigning each input feature a score. This is crucial
in domains like healthcare and biomedicine, where trust
and interpretation of the model are essential [Stiglic et al.,
2020, Bussmann et al., 2021]. Common feature importance
measures like gain can be inconsistent [Lundberg and Lee,
2017b] while permutation importance lacks theoretical foun-
dations [Ishwaran, 2007].

Shapley values, derived from cooperative game theory and
introduced by Shapley [1953], offer a robust method for
the fair distribution of payoffs generated by a coalition of
players. This can be analogously applied to assess the con-
tribution of each feature in a machine learning model. It
ensures that each feature’s contribution is assessed by con-

sidering all possible combinations of features, thereby pro-
viding a comprehensive understanding of feature impacts.
Recent applications of Shapley values have focused on lo-
cal interpretation [Lundberg and Lee, 2017a,b, Chau et al.,
2022], where they are employed to examine the influence
of individual features on specific predictions. Nonetheless,
there are numerous scenarios where global importance is
preferred, such as analysis of the role of a feature across the
entire dataset [Molnar, 2020, Covert et al., 2020].

Among the works that compute Shapley values in a global
context, a popular approach is to use model variance decom-
position. Lipovetsky and Conklin [2001] decomposed R2 in
linear regression, offering consistent interpretations even in
the presence of multicollinearity. Owen and Prieur [2017]
also conducted a conceptual analysis of Shapley values for
the variance. However, computation remains a significant
challenge, as the calculation of Shapley values grows expo-
nentially with the number of features. To address this issue,
several Monte Carlo-based methods have been proposed to
effectively reduce the computational burden [Song et al.,
2016, Covert et al., 2020, Williamson and Feng, 2020].

Although Monte Carlo-based, model-agnostic methods are
more efficient than brute-force approaches, they are still
computationally intensive, especially when dealing with
high-dimensional data that requires extensive feature permu-
tation sampling to ensure consistency [Lundberg and Lee,
2017a, Lundberg et al., 2020]. This challenge has prompted
the development of methods that leverage the specific struc-
tures of tree-based models. However, much of the focus has
been on explaining individual predictions, as seen with Tree-
SHAP [Lundberg and Lee, 2017b], FastTreeSHAP [Yang,
2021], LinearTreeSHAP [Bifet et al., 2022] and Fourier-
SHAP [Gorji et al., 2024]. Bénard et al. [2022] considered
population-level importance using R2, specifically tailored
for random forests [Breiman, 2001].

Lundberg et al. [2020] suggests that explaining the loss func-
tion for a “path-dependent” algorithm is challenging. To the
best of our knowledge, there is no available method to calcu-



late Shapley values of quadratic losses by leveraging struc-
tures of decision trees for fast computation. In this paper,
we propose Q-SHAP, which can decompose quadratic terms
of predicted values of a decision tree into each feature’s
attribute in polynomial time. It leads to fast computation of
feature-specific R2 for a decision tree. We also extend our
approach to Gradient Boosted Decision Trees.

The rest of the paper is structured as follows. In Section 2,
we provide a brief overview of Shapley values of R2. In
Section 3, we present our proposed algorithm Q-SHAP
to calculate Shapley values of R2 in polynomial time for
single trees, and then extend the approach for tree ensembles
in Section 4. We justify the efficacy and efficiency of the
algorithm using extensive simulations in Section 5 and real
data analysis in high dimension in Section 6. We conclude
the paper with a discussion in Section 7.

2 SHAPLEY VALUES OF R2 FOR
INDIVIDUAL FEATURES

2.1 MODEL SPECIFICATION

Here we investigate a specific label Y and its explainability
by a full set of p features X = (X1, X2, · · · , Xp). For any
subset F ⊆ P = {1, 2, · · · , p}, we define the correspond-
ing set of features as XF = (Xj)j∈F .

Suppose that, for any set of features XF , an oracle model
mF can be built such that, for any value x = (xj)j∈P ,

mF (x) = E[Y |XF = (xj)j∈F ].

The Shapley value of j-th feature, in terms of its contribution
to the total variation, is defined as

ϕρ2,j =
1

p var(m∅)

∑
F⊆P\{j}

(
p− 1
|F |

)−1

×
(
var(mF∪{j})− var(mF )

)
, (1)

where |F | is the number of features in F . The term
var(mF∪{j}) is the variance explained by feature set
F ∪ {j} and the term var(mF ) is the variance explained
solely by set F . This definition is analogous to Covert et al.
[2020] and Williamson and Feng [2020]. By averaging over
all possible feature combinations, the Shapley values are the
only solution that satisfies the desired properties of symme-
try, efficiency, additivity, and dummy [Shapley, 1953].

2.2 EMPIRICAL ESTIMATION

Suppose we have a set of data with sample size n observed
for both label and features as

Y = (y1, y2, · · · , yn),

X = (X·1,X·2, · · · ,X·p) =
(
xT
1·,x

T
2·, · · · ,xT

n·
)T

.

Accordingly, we denote the observed data of features in
subset F as

X·F = (X·j)j∈F .

Suppose that, for each subset F of features, a single optimal
model m̂F is built on data (Y,X·F ). Then the i-th label
can be predicted with

ŷi(X·F ) = m̂F (xi·).

2.3 FROM R2 TO A QUADRATIC LOSS

We will establish the connection of R2 to a quadratic loss
through equation (1). We define the quadratic loss on the
optimal model m̂F as

QF =

n∑
i=1

(yi − m̂F (xi·))
2 (2)

for any set of features F . With m∅(xi·) = ȳ, we have
Q∅ =

∑n
i=1(yi − ȳ)2. Following the law of total variance,

we can estimate var(mF ) by

v̂ar(mF ) = (Q∅ −QF )
/
n.

Thus, an empirical estimate of (1) is

ϕR2,j = − 1

pQ∅

∑
F⊆P\{j}

(
p− 1
|F |

)−1

(QF∪{j} −QF ),

which is proportional to a Shapley value for the sum of
squared errors, i.e., the quadratic loss in (2).

2.4 FROM QUADRATIC LOSS TO Q-SHAP

We now further reduce Shapley values of the sum of squared
errors to Shapley values of linear and quadratic terms of
predicted values. Expanding the loss function in (2), we can
rewrite,

ϕR2,j = − 1

pQ∅

∑
F⊆P\{j}

(
p− 1
|F |

)−1 n∑
i=1

(
m̂2

F∪j(xi·)

−m̂2
F (xi·)− 2(m̂F∪j(xi·)− m̂F (xi·))yi

)
.

To calculate this, we define the Shapley value for each sam-
ple i as,

ϕR2,j(xi·)

= − 1

pQ∅

∑
F⊆P\{j}

(
p− 1
|F |

)−1 (
m̂2

F∪j(xi·)− m̂2
F (xi·)

)
+

2yi
pQ∅

∑
F⊆P\{j}

(
p− 1
|F |

)−1

(m̂F∪j(xi·)− m̂F (xi·)) ,



which is a linear combination of two sets of Shapley values,
i.e., Shapley values of predicted value m̂F , which are ready
to be calculated [Lundberg and Lee, 2017b, Yang, 2021,
Bifet et al., 2022], and Shapley values of the quadratic term
of predicted value m̂2

F , i.e.,

ϕm̂2,j(xi·) =
1

p

∑
F⊆P\{j}

(
p− 1
|F |

)−1

×
(
m̂2

F∪j(xi·)− m̂2
F (xi·)

)
, (3)

for which we will develop the algorithm Q-SHAP to calcu-
late. For the rest of the paper, we will focus on computing
the Shapley values in Equation (3) in polynomial time for
tree-based models and carrying it over to calculate feature-
specific R2.

3 THE ALGORITHM Q-SHAP FOR
SINGLE TREES

Here we will focus on calculating the Shapley values in (3)
for a single tree. By definition, each Shapley value (3) re-
quires evaluating all feature subsets, leading to an NP-hard
computation in general. However, binary trees restrict pre-
dictions to a finite set of values attached to leaf nodes, and
we will show that summarizing differences of feature sub-
sets are related to operations on polynomial coefficients.
Leveraging our results of polynomial identity in Proposi-
tion 1 and Proposition 2, we can calculate this Shapley value
over pairs of leave nodes, shown in Theorem 1, instead of
all feature subsets.

3.1 NOTATIONS

We assume the underlying decision tree has the maximum
depth at D and a total of L leaves, and use l to denote a
specific leaf. We further introduce a dot product for poly-
nomials for subsequent calculation. For two polynomials
A(z) =

∑n
i=0 aiz

i and B(z) =
∑n

i=0 biz
i, we define their

dot product as A(z) ·B(z) =
∑n

i=0 aibi.

3.2 DISTRIBUTING THE PREDICTION TO
LEAVES

Decision trees match each data point to one leaf for pre-
diction. However, for our prediction defined on any subset
F , a data point xi· can fall into multiple leaves due to the
uncertainty by unspecified features P\F . We can calculate
m̂F (xi·), following TreeSHAP, as the empirical mean by
aggregating the weighted prediction on each leaf,

m̂F (xi·) =
∑
l

m̂l
F (xi·) ≜

∑
l

w(xi·, l, F )× m̂l, (4)

where m̂l is the predicted value at leaf l based on the model
built on all features.

Given an oracle tree built on all available features, we try
to recover the oracle tree for a subset of features without
rebuilding, following Bifet et al. [2022] and Karczmarz et al.
[2022]. For example, suppose the tree involves two features,
X1 and X2, as shown in Figure 1.a. However, when feature
X2 is excluded from the structure, we would use only X1

to build the tree as shown in Figure 1.b.

Therefore, we replace it with a pseudo internal node to
preserve the structure of the original full oracle tree and
pave the way for further formulation.

(a) Decision tree built on X1 and X2
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(b) Hypothetical tree with X1 only

20 30

10

16

0.6 0.4

0.5 0.5

Figure 1: Illustration of (a) a decision tree built with both
features X1 and X2 and (b) its hypothetical tree with only
feature X1.

With a data point xi· = (40, 25), we illustrate the calcu-
lation in Equation (4) by first calculating the predicted
value for the tree in Figure 1.b, m̂{1}(xi·) = m̂l1

{1}(xi·) +

m̂l2
{1}(xi·) + m̂l3

{1}(xi·) = 0× 10 + 0.5× 20 + 0.5× 30.

When the tree is built with an additional feature j =
2 as shown in Figure 1.a, we have the predicted value
m̂{1,2}(xi·) = m̂l1

{1,2}(xi·)+ m̂l2
{1,2}(xi·)+ m̂l3

{1,2}(xi·) =

1 × 0× 10 + 0.5−1 × 0.5× 20 + 0 × 0.5× 30

where the bold numbers reweight m̂l
{1}(xi·) for m̂l

{1,2}(xi·).
Let us take a closer look at these weights, each corre-
sponding to one leaf. For leaf l1, the weight is 1 since
the newly added feature X2 is not involved in its path and
the reweighted prediction remains as zero. For leaf l2, the
reweighted prediction is lifted up with the weight inversely



proportional to the previous probability because xi· follows
its path to the leaf with probability 1. On the other hand,
although the path to leaf l3 includes the newly added feature,
xi· doesn’t follow this path, resulting in a weight at 0. Next,
we will generalize such a reweighting strategy to calculate
(4) for trees with different sets of features.

Denote F l the features involved in the path to leaf l and
F l(xi·) the subset of F l whose decision criteria are satisfied
by xi·. Note that each feature j ∈ F l may appear multiple
times in the path to leaf l so we denote nl

j,c the number
of samples passing through the node which is attached to
the c-th appearance. We similarly define nl

j,c(xi·) for each
feature j ∈ F l(xi·).

For any feature j ∈ P , we can define the weight func-
tion based on a partition of P into three subsets F l(xi·),
F l\F l(xi·), and P\F l,

wl
j(xi·) ≜


∏

c

nl
j,c

nl
j,c(xi·)

, if j ∈ F l(xi·);

0, if j ∈ F l\F l(xi·);

1, if j ∈ P\F l.

Therefore, for j /∈ F , we have

m̂l
F∪j(xi·) = wl

j(xi·)m̂
l
F (xi·).

Recursive application of the above formula leads to

m̂l
F (xi·) =

∏
k∈F

wl
k(xi·)m̂

l
∅,

where m̂l
∅ = m̂l nl

n with nl the sample size at leaf l, n the
total sample size.

When F = ∅, the above result reduces to m̂∅(xi·) =∑
l m̂

l nl

n , so the optimal prediction is just the mean for
all data points, which is consistent with m̂∅(xi·) = ȳ.

We can rewrite (3) by aggregating over leaves as

ϕm̂2,j(xi·)

=
1

p

∑
F⊆P\{j}

(
p− 1
|F |

)−1

×

(∑
l

(
wl2

j (xi·)− 1
)
m̂l2

∅

∏
k∈F

wl2
k (xi·)

)

+
2

p

∑
F⊆P\{j}

(
p− 1
|F |

)−1

×

∑
l1 ̸=l2

(wl1
j (xi·)w

l2
j (xi·)− 1) m̂l1

∅ m̂
l2
∅

×
∏
k∈F

wl1
k (xi·)w

l2
k (xi·)

)
≜ T1,j(xi·) + 2T2,j(xi·). (5)

We further define, for leaves l1 and l2,

T l1l2
j (xi·)

=
1

p

∑
F⊆P\{j}

(
p− 1
|F |

)−1(
(wl1

j (xi·)w
l2
j (xi·)− 1)

×m̂l1
∅ m̂

l2
∅

∏
k∈F

wl1
k (xi·)w

l2
k (xi·)

)
, (6)

and we have T2,j(xi·) =
∑

l1 ̸=l2
T l1l2
j (xi·), T1,j(xi·) =∑

l T
ll
j (xi·). Therefore, we will focus on the calculation of

T l1l2
j (xi·) in (6) the rest of this section.

We can reduce the calculation of
∏

k∈F wl1
k (xi·)w

l2
k (xi·) in

(6) by only calculating
∏

k∈F−
wl1

k (xi·)w
l2
k (xi·) with F− =

F ∩ (F l1 ∪ F l2), because
∏

k∈F\F−
wl1

k (xi·)w
l2
k (xi·) = 1.

In combination with the proposition below, computation in
(6) can be dramatically reduced from the full feature set P
to a set only related to the corresponding leaves in a tree.

Proposition 1 For any well-defined p, n, |F |,
p−n∑
k=0

(
p−n
k

)
p
(

p−1
|F |+k

) =
1

n
(
n−1
|F |
) .

We leave the proof of Proposition 1 in Appendix A. Fur-
ther denote n12 = |F l1 ∪ F l2 | and a polynomial of z,
P l1l2(z) =

∏
k∈F l1∪F l2\j(z+wl1

k (xi·)w
l2
k (xi·)). We then

define a coefficient polynomial Cn12
(z) = 1

(n12−1
0 )

z0 +

1

(n12−1
1 )

z1 + . . .+ 1

(n12−1
n12−1)

zn12−1.

Theorem 1 The Shapley value in (3) can be calculated as,

ϕm̂2,j(xi·) =
∑
l

T ll
j (xi·) + 2

∑
l1 ̸=l2

T l1l2
j (xi·), (7)

with

T l1l2
j (xi·) =

1

n12
(wl1

j (xi·)w
l2
j (xi·)− 1)m̂l1

∅ m̂
l2
∅

×[Cn12(z) · P l1l2(z)]. (8)

Proof. With Proposition 1, we can write (6) as

T l1l2
j (xi·)

=
1

n12
(wl1

j (xi·)w
l2
j (xi·)− 1)m̂l1

∅ m̂
l2
∅

×
n12−1∑
t=0

1(
n12−1

t

) |F |=t∑
F⊆F l1∪F l2\j

∏
k∈F

wl1
k (xi·)w

l2
k (xi·).

We notice that
∑|F |=t

F⊆F l1∪F l2\j
∏

k∈F wl1
k (xi·)w

l2
k (xi·) is

the coefficient of zt in polynomial P l1l2(z), hence the equa-
tion (8) holds with Cn12(z) adjusting the weight based on
the size of set F . The calculation in (7) follows (5). ■



We only need to consider feature j ∈|F l1 ∪ F l2 | as, oth-
erwise, we have T l1l2

j (xi·) = 0 following the definition
of wl

j(xi·). Note that, when there is a feature in set F

that doesn’t belong to F l1(xi·) ∩ F l2(xi·)\j, we have∏
k∈F wl1

k (xi·)w
l2
k (xi·) = 0. Thus we can further simplify

the term to

T l1l2
j (xi·)

=
1

n12
(wl1

j (xi·)w
l2
j (xi·)− 1)m̂l1

∅ m̂
l2
∅

n12−1∑
t=0

1(
n12−1

t

)
×

|F |=t∑
F⊆F l1 (xi·)∩F l2 (xi·)\j

∏
k∈F

wl1
k (xi·)w

l2
k (xi·).

Consequently, the evaluation of P l1l2(z) can be reduced to
a much smaller set.

3.3 THE ALGORITHM

In this section, we will introduce a fast and stable evaluation
for the dot product of a coefficient polynomial C(z) where
we know the coefficients and a polynomial P (z) with a
known product form, involved in Theorem 1.

Proposition 2 Let ω be a vector of the complex n-th roots
of unity whose element is exp( 2kπin ) for k = 0, 1, . . . , n−1,
c the coefficient vector of C(z), and IFFT the Inverse Fast
Fourier Transformation. Then

C(z) · P (z) = P (ω)T IFFT(c).

The proof of Proposition 2 is shown in Appendix A. We
facilitate the computation via the complex roots of unity
because of their numerical stability and fast operations in
matrix multiplications. Due to the potential issue of ill con-
dition, especially at large degrees, our calculation avoids
inversion of the Vandermonde matrices, although it has been
proposed to facilitate the computing by Bifet et al. [2022]. In
addition, for each sample size n, we only need to calculate
IFFT(c) once, up to order D in O(n log(n)) operations, and
the results can be saved for the rest of calculation through
Q-SHAP. Note that term k and term n − k in P (w) are
complex conjugates, and, for a real vector c, IFFT(c) also
has the conjugate property for paired term k and term n− k.
Consequently, the dot product of P (ω) and IFFT(c) inherits
the conjugate property and its imaginary parts are canceled
upon addition. Therefore, we only need evaluate the dot
product at half of the n complex roots.

We can aggregate the values of leaf combinations to derive
the Shapley values of squared predictions using Q-SHAP
as in Algorithm 1 and then calculate the Shapley values of
R2 using RSQ-SHAP as in Algorithm 2. The calculation of
feature-specific R2 uses the iterative Algorithm 1 instead

of a recursive one. As detailed in Appendix D, the time
complexity of the algorithm is O(L2D2) for a single tree,
which doesn’t depend on the dimension p and is extremely
fast when the maximum tree depth is not too large.

Algorithm 1 Q-SHAP
Q-SHAP(xi·)
Initialize T [j] = 0 for j = 1, · · · , p
for l1 ∈ index set 0, . . ., L− 1 do

for l2 ∈ index set l1, . . . , L− 1 do
Let n12 = |F l1 ∪ F l2 |
for j ∈ F l1 ∪ F l2 do

Let t[j] = 1
n12

[wl1
j (xi·)w

l2
j (xi·)− 1]×

m̂l1
∅ m̂

l2
∅ [Cn12(z) · P l1l2(z)]

if l1 ̸= l2 then
T [j] = T [j] + 2t[j]

else
T [j] = T [j] + t[j]

end if
end for

end for
end for
return T = (T [1], T [2], · · · , T [p])

Algorithm 2 RSQ-SHAP

RSQ-SHAP(j) = − 1
Q∅

Σn
i=1{Q-SHAP(xi·)[j]

−2yiSHAP(xi·)[j]}

4 THE ALGORITHM Q-SHAP FOR TREE
ENSEMBLES FROM BOOSTING

Tree ensembles from Gradient Boosted Machines (GBM)
[Friedman, 2001] greatly improve predictive performance
by aggregating many weak learners [Chen and Guestrin,
2016, Ke et al., 2017, Prokhorenkova et al., 2018]. Each
tree, say tree k, is constructed on the residuals from the
previous tree, i.e., tree k − 1. We assume that there are a
total of K trees in the ensemble and the quadratic loss by
the first k trees, with all features in P , is Q

(k)
P . Denoting

Q
(0)
P = Q∅, the k-th tree reduces the loss by

∆Q
(k)
P = Q

(k−1)
P −Q

(k)
P , (9)

with the tree ensemble reducing the total loss by

Q∅ −Q
(K)
P =

K∑
k=1

∆Q
(k)
P .

Per our interest in feature-specific R2, we resort to the
quadratic loss defined as the sum of squared errors in (2).

On the other hand, the k-th tree provides the prediction
m̂

(k)
P (xi·). Therefore, the prediction by the first k trees



can be recursively calculated as ŷi(k)(X) = ŷ
(k−1)
i (X) +

αm̂
(k)
P (xi·),where α is the learning rate and ŷ

(0)
i (X) ≡ ȳ.

Note that the residuals after building (k − 1) tree are
{r(k−1)

i = yi − ŷ
(k−1)
i (X) : i = 1, 2, · · · , n}, which are

taken to build the k-th tree. Thus,

∆Q
(k)
P =

n∑
i=1

(r
(k−1)
i )2 −

n∑
i=1

(r
(k−1)
i − αm̂

(k)
P (xi·))

2

= −
n∑

i=1

(α2m̂
(k)2
P (xi·)− 2αr

(k−1)
i m̂

(k)
P (xi·)).

Thus, decomposition of ∆Q
(k)
P in (9) for feature-specific

Shapley values can be conducted via the decomposition
of two sets of values, i.e., SHAP on the predicted value
m̂

(k)
P (xi·) and Q-SHAP on its quadratic term m̂

(k)2
P (xi·).

Summing up these Shapley values over all trees leads to
Shapley values for the tree ensemble.

5 SIMULATION STUDY

One of the challenges in assessing methods that explain
predictions is the typical absence of a definitive ground
truth. Therefore, to fairly demonstrate the fidelity of our
methodology, we must rely on synthetic data that allows for
the calculation of the theoretical Shapley values. Here we
consider three different models,

a. Y = 4X1 − 5X2 + 6X3 + ϵ;

b. Y = 4X1 − 5X2 + 6X3 + 3X1X2 −X1X3 + ϵ;

c. Y = 4X1 − 5X2 + 6X3 + 3X1X2 −X1X2X3 + ϵ.

All three features involved in the models are generated from
Bernoulli distributions with probabilities of 0.6, 0.7, and
0.5, respectively.

We also simulate additional nuisance features independently
from Bernoulli(0.5) to make the total number of features
p = 100 and p = 500, respectively. The error term ϵ is
generated from N(0, σ2

ϵ ) with σϵ at three different levels,
i.e., 0.5, 1, and 1.5. The theoretical values of total R2 and
feature-specific R2 are shown in Table 6 of Appendix B.

We evaluate the performance of three different methods,
our proposed Q-SHAP, SAGE by Covert et al. [2020], and
SPVIM by Williamson and Feng [2020], in calculating the
feature-specific R2 for the above three models with data
sets of different sample sizes at n = 500, 1000, 2000, and
5000. We use package sage-importance for SAGE and pack-
age vimpy for SPVIM to calculate feature-specific Shapley
values of total explained variance, which are divided by the
total variance for corresponding feature-specific R2 values.

For each setting, we generated 1,000 data sets. For each
data set, we built a tree ensemble using XGBoost [Chen and
Guestrin, 2016] with tuning parameters optimized via 5-fold

cross-validation and grid search in a parameter space speci-
fied with the learning rate in {0.01, 0.05, 0.1} and number
of estimators in {50, 100, 200, 300, · · · , 1000}. We fixed
the maximum depth of models a, b, and c at 1, 2, and 3
respectively. Table 1 shows the bias in calculating feature-
specific R2 for the first three features as well as the sum of
all feature-specific R2 for all three models with n = 1000,
p = 100, and σϵ = 1.5. The estimation results of the three
models in other settings are plotted in Appendix C. Overall,
Q-SHAP provides a more stable and accurate calculation of
feature-specific R2 than the other two methods.

We divide all features into two groups, signal features (the
first three) and nuisance features (the rest). For each group,
we calculated the mean absolute error (MAE) by comparing
feature-specific R2 values to the theoretical ones in each
of the 1,000 datasets and averaged MAE over the 1,000
datasets, shown in Figure 2. Note that, by limiting memory
to 2GB, SAGE can only report R2 for the data sets with
sample size at 500 and 1,000.

For both signal and nuisance features, Q-SHAP and SAGE
exhibit consistent behavior across all models. In contrast,
SPVIM tends to bias the calculation, especially for small
sample sizes, indicated by the rapid increase of MMAE
when the sample size goes down. Among signal features, Q-
SHAP has better accuracy than SAGE, followed by SPVIM
in general. All methods tend to have better accuracy when
sample size increases.

For the nuisance features, only SPVIM is biased away from
0. On the other hand, both Q-SHAP and SAGE have almost
no bias for nuisance features across different sample sizes.
For all three methods, R2 of signal features tends to have a
larger bias than nuisance features.

We compared the computational time of the three different
methods by running all algorithms in parallel on a full node
consisting of two AMD CPUs@2.2GHz with 128 cores
and 256 GB memory. We unified the environment with the
help of a Singularity container [Kurtzer et al., 2017] built
under Python version 3.11.6. Due to the large size of the
simulation, we limit all methods to a maximum wall time of
4 hours per dataset on a single core, with memory limited
to 2 GB. The running times are shown in Figure 3. Both
SAGE and SPVIM demanded a long time to compute even
with only 100 features. Q-SHAP is hundreds of times faster
than both SAGE and SPVIM in general and is the only
method that can be completed when the dimension is 500 in
constrained computation time and memory.

6 REAL DATA ANALYSIS

We illustrate the utility of Q-SHAP by applying it to three
datasets: (1) Healthcare data that includes eight features for
each of the 1338 subjects besides their healthcare insurance



Table 1: Estimation bias (SE) of X1-specific, X2-specific, X3-specific, and the sum of all feature-specific R2 values across
the three models with n = 1, 000, p = 100, and σϵ = 1.5. Bolded values indicate the smallest bias in magnitude.

Method X1-specific R2 X2-specific R2 X3-specific R2 Sum of all R2

Model a
Q-SHAP 0.006 (0.011) 0.008 (0.014) 0.015 (0.015) 0.031 (0.014)
SAGE -0.015 (0.015) -0.017 (0.016) -0.021 (0.016) -0.053 (0.020)
SPVIM 0.049 (0.035) 0.069 (0.039) 0.116 (0.051) 0.242 (0.208)

Model b
Q-SHAP 0.008 (0.017) 0.002 (0.009) 0.009 (0.016) 0.024 (0.019)
SAGE -0.026 (0.016) -0.014 (0.011) -0.024 (0.014) -0.062 (0.019)
SPVIM 0.111 (0.046) 0.049 (0.033) 0.098 (0.048) 0.256 (0.219)

Model c
Q-SHAP 0.005 (0.017) 0.002 (0.009) 0.005 (0.015) 0.021 (0.016)
SAGE -0.025 (0.016) -0.014 (0.012) -0.024 (0.014) -0.062 (0.020)
SPVIM 0.107 (0.047) 0.048 (0.032) 0.098 (0.046) 0.260 (0.206)
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Figure 2: The mean absolute error (MAE) averaged over
1,000 datasets with p = 100

costs 1; (2) Prostate data that includes expression levels of
17,261 genes for 551 samples, available from UCSC Xena
[Goldman et al., 2020], and cancer-indicating Gleason score,
available from TCGAbiolinks [Colaprico et al., 2016]; and
(3) S&P 500 data that includes prices of NVIDIA and other
469 stocks for 1,258 business days from February 8, 2013 to
February 7, 2018 2. Here we predicted the daily return rate
of NVIDIA stock from those of other 469 stocks in S&P
500 data, and the Gleason score, adjusted for age and race,
using the gene expression features in Prostate data.

1https://www.kaggle.com/
datasets/arunjangir245/
healthcare-insurance-expenses/data

2https://www.kaggle.com/datasets/
camnugent/sandp500/data
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Figure 3: The running time (seconds) in simulation study

For each data, we constructed the tree ensemble
using XGBoost with tuning parameters optimized
via 5-fold cross-validation and random search in
a parameter space specified with the number of
trees in {50, 100, 500, 1000, 1500, 2000, 2500, 3000}, max-
imum depth in {1, 2, · · · , 6}, and learning rate in
{0.01, 0.05, 0.1}. For Prostate and S& P 500 data, as both
SAGE and SPVIM cannot manage the large numbers of
features, we first applied Q-SHAP to the tree ensembles
built on all features and then selected the top 100 features
to reconstruct the tree ensembles, whose feature-specific
R2 were calculated using all three methods. As shown in
Table 2, although feasible for limited number of features,
both SAGE and, in particular, SPVIM took much longer
time to calculate the feature-specific R2 values.

https://www.kaggle.com/datasets/arunjangir245/healthcare-insurance-expenses/data
https://www.kaggle.com/datasets/arunjangir245/healthcare-insurance-expenses/data
https://www.kaggle.com/datasets/arunjangir245/healthcare-insurance-expenses/data
https://www.kaggle.com/datasets/camnugent/sandp500/data
https://www.kaggle.com/datasets/camnugent/sandp500/data


Table 2: The running time in real data analysis

Q-SHAP SAGE SPVIM

Healthcare 32 s 6 m 22 m
Prostate 128 s 43 m 67 h
S&P 500 41 s 26 h 138 h

For the healthcare data, the tree ensemble in predicting
healthcare insurance expenses reports the total R2 at 0.86.
As shown in Table 3, both Q-SHAP and SAGE ranked
the eight features similarly, although SAGE tends to report
slightly smaller values. On the other hand, SPVIM differs
from the other two methods with its ranking list, demon-
strated by the highlighted features in Table 3. In fact, SPVIM
reported some much larger feature-specific R2 values with
some much smaller ones which were even negative.

With 100 features in the rebuilt tree ensembles for the
prostate and S&P 500 data, we observe inconsistencies be-
tween Q-SHAP and SAGE, while the feature ranking from
Q-SHAP matched that of models built on full feature set,
see Table 4 and Table 5. The rebuilt tree ensembles reported
total R2 of 0.995 for the prostate data and 0.733 for the
S&P 500 data. Notably, for the prostate data, the sum of all
100 feature-specific R2 values from Q-SHAP matches the
total R2 value, whereas SAGE yields a slightly lower sum
of 0.938. In contrast, although SPVIM tends to overstate
some feature-specific R2 values, the total sum of its feature-
specific R2 is only -0.22, substantially lower than the total
value at 0.995. Overall, the real data analysis aligns with the
simulation study, confirming that SAGE tends to underesti-
mate the feature-specific R2, SPVIM shows instability, and
Q-SHAP outperforms both in computational efficiency and
the accuracy of feature-specific R2.

Table 3: Feature-specific R2 in the healthcare data. High-
lighted are features with R2 larger than the preceding one.

Feature Q-SHAP SAGE SPVIM

smoker_yes 0.481 0.455 0.565
age 0.323 0.293 0.327
children 0.026 0.021 0.012
bmi 0.021 0.019 0.051
sex_male 0.003 0.000 -0.033
region_southwest 0.002 0.001 0.044
region_southeast 0.001 0.000 0.048
region_northwest 0.000 0.000 -0.020

7 CONCLUSION

The coefficient of determination, aka R2, measures the pro-
portion of the total variation explained by available features.
Its additive decomposition, following Shapley [1953], pro-

Table 4: Feature specific R2 in the prostate data. Highlighted
are features with R2 larger than the preceding one.

Orginal Model with Selected Feaures
Gene Q-SHAP Q-SHAP SAGE SPVIM

SLC7A4 0.105 0.112 0.063 0.031
FAM72A 0.051 0.063 0.045 -0.025
CENPA 0.039 0.039 0.024 -0.175
KIAA0319L 0.034 0.036 0.029 0.033
CBX2 0.028 0.034 0.025 0.063
COL5A2 0.018 0.022 0.022 -0.033
SPATA4 0.018 0.019 0.021 -0.004
DOCK6 0.016 0.017 0.010 -0.150
KIF18B 0.015 0.023 0.012 0.185
TSEN15 0.014 0.015 0.021 -0.004
OTHERS 0.572 0.614 0.667 -0.140

Table 5: Feature-specific R2 in the S&P 500 data. High-
lighted are features with R2 larger than the preceding one.

Orginal Model with Selected Feaures
Stock Q-SHAP Q-SHAP SAGE SPVIM

AMAT 0.100 0.111 0.075 -0.141
AMD 0.077 0.085 0.071 0.102
MCHP 0.072 0.069 0.034 0.158
ADI 0.068 0.072 0.048 -0.026
TXN 0.041 0.043 0.029 -0.142
MU 0.035 0.041 0.039 -0.232
ADM 0.022 0.026 0.013 -0.004
AGN 0.021 0.023 0.018 0.120
NEM 0.016 0.015 0.010 0.202
PBCT 0.015 0.013 0.011 -0.137
Others 0.157 0.234 0.153 -0.565

vides an ideal evaluation of each feature’s attribute to explain
the total variation. Shapley values are defined by differences
involving all feature subsets, a seemingly NP-hard prob-
lem in general. Recently, several methods [Lundberg and
Lee, 2017b, Yang, 2021, Bifet et al., 2022] have been de-
veloped to leverage the structure of tree-based models and
provide computationally efficient algorithms to decompose
the predicted values. However, decomposing R2 demands
the decomposition of a quadratic loss reduction by multiple
trees. We have shown in Section 4 that we can attribute the
total loss reduction by the tree ensemble to each single tree,
and the tree-specific loss reductions are subject to further
decomposition to each feature. However, decomposing a
quadratic loss of a single tree needs work with the squared
terms of predicted values, invalidating previously developed
methods for predicted values. Leveraging structural property
of trees and theoretical results of polynomials, we devel-
oped the Q-SHAP algorithm to consolidate calculations
cross models and calculate Shapley values of squared pre-



dicted valued in polynomial time. The algorithm works not
only for R2 but also for general quadratic losses. Ultimately,
it may provide a framework for more general loss functions
via approximation.
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A PROOFS

We first establish the following lemma.

Lemma 1
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Proof. Using Gould’s identity [Gould, 1972], we have
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where we used the Hockey-Stick Identity in the last step.

Proof of Proposition 1. Through expansion and Lemma 1, we have
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Proof of Proposition 2. We first rewrite the two polynomials{
C(z) = V (z)c,
P (z) = V (z)a,

where V (z) is the Vandermonde matrix for vector z, and c and a are the coefficients of polynomials C(z) and P (z),
respectively. Then the inner product

C(z) · P (z)

= P (z) · C(z)

= aT c

= (V (z)−1P (z))T c

= P (z)T (V (z)T )−1c.

Letting
z = ω,

and noting that the Vandermonde matrix evaluated at ω is symmetric, we have

(V (ω)T )−1 = V (ω)−1 =
1

n
V (ω−1),

whose multiplication with c is just the Inverse Fast Fourier transformation (IFFT) over c [Geddes et al., 1992]. Hence the
proposition holds.

B THEORETICAL R2 VALUES IN SIMULATED MODELS

The theoretical total and feature-specific R2 in the three models are shown in Table 6.

Table 6: Theoretical R2 in Simulated Models

R2

Model σϵ Total X1 X2 X3

0.50 0.9864 0.2094 0.2863 0.4907
a 1.00 0.9477 0.2012 0.2750 0.4715

1.50 0.8894 0.1888 0.2581 0.4425
0.50 0.9860 0.4390 0.1341 0.4129

b 1.00 0.9459 0.4212 0.1286 0.3961
1.50 0.8860 0.3945 0.1205 0.3710
0.50 0.9868 0.4288 0.1450 0.4130

c 1.00 0.9491 0.4124 0.1395 0.3972
1.50 0.8925 0.3878 0.1312 0.3735

C ADDITIONAL SIMULATION RESULTS

C.1 BOXPLOTS OF THE FIRST THREE FEATURE-SPECIFIC AND TOTAL R2 VALUES

We have compared the performance of three different methods, i.e., our proposed Q-SHAP, SAGE by Covert et al. [2020],
and SPVIM by Williamson and Feng [2020], in calculating the feature-specific R2 as well as the sum of all feature-specific
R2 for the three models specified in Section 5, with different settings, i.e., n ∈ {500, 1000, 2000, 5000}, p ∈ {100, 500},
and σϵ ∈ {0.5, 1, 1.5}. The results are shown in Fig. 4-11. Note that the results of SAGE are unavailable in Fig. 6-11 because
it cannot report those R2 with our limited computational resources, and the results of SPVIM are unavailable in Fig. 8-11
because it demands too much time to complete the computation when p = 500.
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Figure 4: Boxplots of (a) X1-specific, (b) X2-specific, (c) X3-specific, and (d) the sum of all feature-specific R2 in the three
models with n = 500, p = 100. The dashed lines show the theoretical R2.
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Figure 5: Boxplots of (a) X1-specific, (b) X2-specific, (c) X3-specific, and (d) the sum of all feature-specific R2 in the three
models with n = 1000, p = 100. The dashed lines show the theoretical R2.
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Figure 6: Boxplots of (a) X1-specific, (b) X2-specific, (c) X3-specific, and (d) the sum of all feature-specific R2 in the three
models with n = 2000, p = 100. The dashed lines show the theoretical R2.
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Figure 7: Boxplots of (a) X1-specific, (b) X2-specific, (c) X3-specific, and (d) the sum of all feature-specific R2 in the three
models with n = 5000, p = 100. The dashed lines show the theoretical R2.
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Figure 8: Boxplots of (a) X1-specific, (b) X2-specific, (c) X3-specific, and (d) the sum of all feature-specific R2 in the three
models with n = 500, p = 500. The dashed lines show the theoretical R2.
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Figure 9: Boxplots of (a) X1-specific, (b) X2-specific, (c) X3-specific, and (d) the sum of all feature-specific R2 in the three
models with n = 1000, p = 500. The dashed lines show the theoretical R2.
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Figure 10: Boxplots of (a) X1-specific, (b) X2-specific, (c) X3-specific, and (d) the sum of all feature-specific R2 in the
three models with n = 2000, p = 500. The dashed lines show the theoretical R2.
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Figure 11: Boxplots of (a) X1-specific, (b) X2-specific, (c) X3-specific, and (d) the sum of all feature-specific R2 in the
three models with n = 5000, p = 500. The dashed lines show the theoretical R2.



C.2 PLOTS OF THE MEAN ABSOLUTE ERROR (MAE)

Similar to Fig. 2, we show in Fig. 12 the mean absolute error (MAE) of feature-specific R2 for both signal and nuisance
features averaged over 1,000 datasets when p = 500. Note that the results of SAGE and SPVIM are unavailable because
none of them can complete the computation for p = 500 with limited computational resources.
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Figure 12: The mean of absolute error (MAE) of the feature-specific R2 by Q-SHAP averaged across 1,000 datasets with
p = 500

D COMPLEXITY OF THE ALGORITHM

Here we assume that the dataset includes n samples as well as p features, and a total of T trees are constructed with the
maximum tree depth D and maximum tree leaves L. We denote S the number of permutations taken in SAGE with S = 1020

by default. Then, when the trees are constructed by XGBoost, the complexity of SAGE is O(TDSpn) [Covert et al., 2020],
and the complexity of SPVIM is O(TDpn2 log n) [Williamson and Feng, 2020]. Instead, the complexity of Q-SHAP is
O(TL2D2n) which doesn’t rely on the number of features p.

Let’s first consider the complexity of Q-SHAP in Algorithm 1 for a single tree and one sample. As shown in Algorithm 1, the
two outer loops that iterate through the tree leaves, result in a complexity of O(L2). Within the inner loop, the computation
involves the number of features induced by each pair of leaves, leading to O(D) operations. The evaluation of t[j] involves
the computation of C(z) · P (z), which takes O(D) operations since the number of union features between two leaves is
bounded by 2D. Combining these, the overall complexity for one tree and one sample is O(L2D2). Thus, for the whole
dataset, the complexity of Q-SHAP scales to O(nL2D2) for a single tree. With the advancements introduced in Section 4,
Q-SHAP has a total complexity of O(TnL2D2) for the ensemble of T boosting trees.

The property that the complexity of Q-SHAP doesn’t rely on the number of features is a prominent advantage of Q-SHAP
and is critical in analyzing high-dimensional data. Such an advantage is achieved via Proposition 1, which eliminates
dependence on p by leveraging the internal structure of the tree. Furthermore, unlike SAGE and SPVIM, which require
extensive sampling, Q-SHAP directly utilizes the tree’s weight function introduced in Section 3.2, eliminating the need for
any sampling.
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