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ABSTRACT

Text watermarking for Large Language Models (LLMs) has made significant
progress in detecting LLM outputs and preventing misuse. Current watermarking
techniques offer high detectability, minimal impact on text quality, and robustness to
text editing. However, current researches lack investigation into the imperceptibility
of watermarking techniques in LLM services. This is crucial as LLM providers
may not want to disclose the presence of watermarks in real-world scenarios, as it
could reduce user willingness to use the service and make watermarks more vulner-
able to attacks. This work investigates the imperceptibility of watermarked LLMs.
We design the first unified identification method called Water-Probe that identi-
fies all kinds of watermarking in LLMs through well-designed prompts. Our key
motivation is that current watermarked LLMs expose consistent biases under the
same watermark key, resulting in similar differences across prompts under different
watermark keys. Experiments show that almost all mainstream watermarking algo-
rithms are easily identified with our well-designed prompts, while Water-Probe
demonstrates a minimal false positive rate for non-watermarked LLMs. Finally, we
propose that the key to enhancing the imperceptibility of watermarked LLMs is to
increase the randomness of watermark key selection. Based on this, we introduce
the Water-Bag strategy, which significantly improves watermark imperceptibility
by merging multiple watermark keys.

1 INTRODUCTION

The rapid advancement of large language models (LLMs) has led to remarkable achievements in tasks
such as question answering (Zhuang et al., 2024), programming (Jiang et al., 2024b), and reasoning
(Wei et al., 2022), with widespread applications across various scenarios. However, the extensive
use of LLMs has also raised concerns regarding copyright protection and misuse. Recent research
indicates that malicious attackers can steal LLMs through model extraction techniques (Yao et al.,
2024), and some users may abuse LLMs to generate and spread harmful information (Wei et al.,
2024).

Text watermarking techniques for LLMs have become an important method to mitigate the above
issues by adding detectable features to LLM outputs (Liu et al., 2024b). Recent researches on
LLM watermarking have focused on improving watermark detectability (Kirchenbauer et al., 2023a),
minimizing impact on generated text (Aaronson & Kirchner, 2022), and enhancing robustness against
text modifications (Liu et al., 2024a). However, no work has considered the imperceptibility of
watermarked LLMs, i.e., whether users can know if an LLM service is watermarked. In real-world
scenarios, LLM service providers may not disclose the existence of watermarks, as it could reduce
user willingness to use the service and make it more vulnerable to attacks (Sadasivan et al., 2023).
As more LLM services consider implementing watermarks, it is crucial to investigate whether users
can identify watermarked LLMs solely through crafted prompts.
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Figure 1: Illustration of our Water-Probe algorithm for identifying watermarked LLMs. We first
construct two prompts with similar output distributions, then sample repeatedly using two fixed
watermark keys for each prompt. The presence of a watermark is determined by comparing the
similarity of distribution differences between the two prompts. Details in §3.

Some studies focus on the imperceptibility of watermarked text, ensuring watermarked and non-
watermarked texts are indistinguishable (Hu et al., 2023; Wu et al., 2023b). However, even if
individual watermarked texts are imperceptible, the distribution of numerous watermarked texts
may reveal whether the LLM is watermarked, especially when repeatedly sampling with the same
watermark key (Wu et al., 2024). While some studies explore cracking watermarks using large
volumes of watermarked text (Jovanović et al., 2024; Sadasivan et al., 2023; Wu & Chandrasekaran,
2024), they assume the LLM is watermarked and cannot determine if the LLM is watermarked.
The most relevant work is Gloaguen et al. (2024), which proposes a black-box detection method
for watermarked LLMs. However, their approach uses different detection methods for different
watermarks and cannot effectively detect all watermarking techniques.

In this work, we propose Water-Probe, the first unified method for identifying watermarked LLMs
that can detect all types of watermarks embedded during the LLM’s text generation process. (see
related work section for this type of watermarking) Our motivation stems from a key observation:
all current LLM watermarking algorithms expose consistent bias when repeatedly sampled under
the same watermark key. Based on this, our Water-Probe algorithm first crafts prompts to perform
repeated sampling under the same watermark key, then compares the consistency of sampling
distribution differences across different prompts under a pair of watermark keys. Highly consistent
differences indicate a watermarked LLM.

In our experiments, we demonstrate that the Water-Probe algorithm achieves high accuracy in
detecting various types of watermarked LLMs. We also show its applicability across different LLMs,
maintaining a low false positive rate for non-watermarked LLMs. Furthermore, our algorithm exhibits
robust performance across different sampling methods and temperature settings.

Finally, we explore methods to enhance the imperceptibility of watermarked LLMs. We find that
increasing the randomness of watermark key selection is crucial, as it makes it more difficult
to construct prompts for repeated sampling using the same key. Based on this, we propose the
Water-Bag algorithm, which combines multiple watermark keys into one, randomly selecting a
key for each generation and choosing the highest score for detection. Although increasing key
selection randomness often leads to a slight decrease in detectability, it significantly enhances the
imperceptibility of watermarked LLMs. Addressing this trade-off should be an important direction
for future work.

Our main contributions are summarized as follows:

• We propose Water-Probe, the first unified algorithm that can detect various types of wa-
termarked LLMs by analyzing the consistency of sampling distribution differences across
different prompts under fixed watermark keys.

• Through extensive experiments, we demonstrate that Water-Probe achieves high detection
accuracy across different LLMs, watermarking methods, and sampling settings, while
maintaining a low false positive rate for non-watermarked LLMs.
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• We introduce Water-Bag, a novel algorithm that enhances LLM watermark imperceptibility
by combining multiple watermark keys, and analyze the trade-off between watermark
detectability and imperceptibility.

2 PRELIMINARIES

Definition 1 (Large Language Model). An LLM M is a function that, given an input x and a partial
output sequence y1:i−1, produces a probability distribution PM (yi|x, y1:i−1) over possible next
tokens yi. The model generates complete outputs by iteratively sampling from these distributions.

Since this work focuses solely on watermarks embedded in LLM services, we will only consider the
watermark during generation type mentioned in §6. The definition of the watermark rule is given
below.

Definition 2 (Watermark Rule). A watermark rule is typically a function F that adjusts the current
LLM’s predicted probability distribution based on a watermark key k to obtain a new probability
distribution. Formally, given an LLM PM and a key k, the watermark rule F modifies the distribution
as follows:

PF
M (yi|x, y1:i−1, k) = F (PM (yi|x, y1:i−1), k) (1)

where PF
M is the modified probability distribution for the next token yi.

The main difference between watermarking algorithms lies in how they determine the watermark
key. Based on this, we categorize watermarking algorithms into n-gram based watermarking
and fixed-key-list based watermarking. We will now introduce these two types of watermarking
algorithms.

Definition 3 (N-Gram Based Watermarking). In n-gram based watermarking, the watermark key ki
for generating the current token yi is determined by a function f that takes two inputs:

ki = f(K, yi−n:i−1) (2)

where K is a pre-selected master key, and yi−n:i−1 represents the previous n tokens.

N-gram based watermarking ensures that for the same n-token prefix, the watermark key for generating
the next token remains consistent. This approach is widely used in current watermarking algorithms,
including KGW (Kirchenbauer et al., 2023a), KGW-V2 (Kirchenbauer et al., 2023b), Aar (Aaronson
& Kirchner, 2022), DiPmark (Wu et al., 2023b), and SIR (Liu et al., 2024a). Next, we define
fixed-key-list-based watermarking:

Definition 4 (Fixed-Key-List Based Watermarking). Let K = {k1, k2, ..., km} be a fixed key list.
For a given starting index s ∈ {1, ...,m}, the watermark key ki for generating the i-th token is:

ki = k((s+i−1) mod m)+1 (3)

where the starting index s may be randomly chosen for each generation process.

This approach is employed in algorithms such as Exp-Edit (Kuditipudi et al., 2023), where keys are
used sequentially from a potentially random starting position in the key list.

To formalize our approach, we define our goal as follows:

Definition 5 (Black-box Watermark Identification). A function D : PM → {0, 1} that classifies a
language model PM as watermarked (1) or not (0), without access to its internal parameters.

3 WATERMARKED LLM IDENTIFICATION

3.1 WHY WATERMARKED LLM IDENTIFICATION IS POSSIBLE

Definition 2 implies that LLMs typically introduce some distortion to the distribution. However, there
exist distortion-free watermarking algorithms that satisfy Definition 2. We first provide a definition
and then demonstrate that LLMs with distortion-free watermarks can still be identified.
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Definition 6 (Distortion-Free Watermark). A watermarking algorithm is considered distortion-free if,
for all possible inputs x and partial output sequences y1:i−1, the expected output distribution of the
watermarked model PF

M over all possible watermark keys k ∈ K is identical to the original model
PM :

Ek∈K[P
F
M (yi|x, y1:i−1, k)] = PM (yi|x, y1:i−1). (4)

This equation indicates that the expected output distribution of watermarked text remains unchanged
when the watermark key is randomly selected across all possible keys. However, as shown in Equation
1, sampling with a specific watermark key k introduces a difference between PF

M (yi|x, y1:i−1, k) and
PM (yi|x, y1:i−1). This observation leads to the following theorem on detectability of watermarked
LLMs:

Observation 1 (Distributional Difference of Watermarked LLMs). Let PM be a language model
and F a watermark rule as defined in Definition 2. For a given watermark key k, the probability
distribution of the watermarked model PF

M (yi|x, y1:i−1, k) differs from the original distribution
PM (yi|x, y1:i−1). This distributional difference suggests the potential detectability of the watermark.

3.2 PIPELINE OF WATERMARKED LLM IDENTIFICATION

Observation 1 implies that the key to identifying a watermarked LLM is to construct prompts
that allow for multiple samplings using the same watermark key to reveal the difference between
PF
M (yi|x, y1:i−1, k) and PM (yi|x, y1:i−1). However, due to the black-box setting, we cannot directly

access the origin logits PM (yi|x, y1:i−1). Instead, we calculate the difference in LLM outputs for
two distinct keys, defined as ∆(x, km, kn) = PF

M (·|x, km)− PF
M (·|x, kn), where we use PF

M (·|x, k)
to represent the output distribution.

If two prompts yield similar output distributions, the same watermark key should have similar effects
on both prompts (proven in Theorem 1). We determine if an LLM contains a watermark by comparing
the consistency of the effects of two watermark keys on two similar prompts. Specifically, given x1,
x2, k1, and k2, we assess the similarity between ∆(x1, k1, k2) and ∆(x2, k1, k2). High similarity
indicates the presence of a watermark; otherwise, we conclude there is no watermark. Based on the
above analysis, we now present the process of the Water-Probe algorithm.

Step 1: Construct highly correlated prompts. Construct N prompts x1, x2, ..., xN such that their
output probability distributions under M are highly similar, which can be expressed as:

∀i, j ∈ {1, 2, ..., N},KL(PM (·|xi)||PM (·|xj)) ≤ ϵ and xi ̸= xj (5)

where KL(·||·) is the Kullback-Leibler divergence, PM (·|xi) is the output probability distribution
for prompt xi under the LLM M , and ϵ is a small threshold indicating high similarity between
distributions.

Step 2: Sampling with simulated fixed watermark keys. Since we cannot access the logits under a
given watermark key, we need to use repeated sampling to estimate the distribution. We construct
a set of simulated watermark keys K = {k1, k2, ..., km} based on our prompt design (detailed
in subsequent sections). For each prompt xi and each simulated key kj ∈ K, we estimate the
distribution as follows:

P̂F
M (y|xi, kj) =

1

W

W∑
w=1

1yw
i,j=y, where ywi,j ∼ PF

M (y|xi, kj) (6)

where W is the sample count, 1A is the indicator function, and ywi,j is the w-th sample sampled from
PF
M (y|xi, kj). Specific prompt techniques for different watermarking algorithms will be detailed

later. Note that our prompt design for simulating watermark keys assumes the target LLM has a
watermark. If it doesn’t, then PF

M (y|xi, kj) = PM (y|xi) for all simulated keys.

Step 3: Analyze Cross-Prompt Watermark Consistency. We first assume that the watermark rule
satisfies Lipschitz continuity. Based on this assumption, we can deduce that the differences in output
distributions produced by a watermark key pair for highly correlated prompts are similar.

Assumption 1 (Lipschitz Continuity of Watermark Rule). For prompts x1 and x2 satisfying the
similarity condition in Equation 5, the watermark rule F satisfies Lipschitz continuity. That is, there
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exists a constant L > 0 such that for the probability distributions PM (·|x1), PM (·|x2) and any
watermark key k ∈ K:

∥F (PM (·|x1), k)− F (PM (·|x2), k)∥1 ≤ L · ∥PM (·|x1)− PM (·|x2)∥1. (7)

Theorem 1 (Consistency of Watermark Effect). Let x1 and x2 be two different prompts satisfying the
similarity condition in Equation 5. Let k1 and k2 be two randomly sampled watermark keys from the
key space K. The effect of applying these keys on the output distribution should be highly consistent
across prompts:

Ek1,k2∼K[Sim(PF
M (·|x1, k1)− PF

M (·|x1, k2), P
F
M (·|x2, k1)− PF

M (·|x2, k2))] ≥ ρ (8)

where PF
M is the watermarked distribution, and Sim(·, ·) is a similarity measure (e.g., cosine similar-

ity), and ρ should be a constant significantly greater than 0.

Theorem 1 implies that for prompts with similar output distributions under the LLM, the expected
differences introduced by the two watermark keys should also be similar. The formal proof is provided
in Appendix A.

Based on Theorem 1, we calculate the average similarity using the estimated distributions from Step
2. To ensure stability across different sampling temperatures, we first apply a rank transformation.
Specifically, for a token y, its rank is defined as the number of tokens with probability greater than or
equal to that of y, denoted as R(P (y|x)) = |{y′ ∈ V : P (y′|x) ≥ P (y|x)}|. We then compute the
expected similarity:

S̄ =
1

N

∑
xi ̸=xj∈X

∑
km ̸=kn∈K

Sim(∆R(xi, km, kn),∆R(xj , km, kn)) (9)

Here, X is the prompt set, K is the watermark key set, N = |X |(|X | − 1)|K|(|K| − 1), and
∆R(x, km, kn) = R(P̂F

M (·|x, km)) − R(P̂F
M (·|x, kn)). We verify the importance of rank transfor-

mation in Appendix G.

According to Theorem 1, if M contains a watermark, the similarity obtained from Equation 9 should
be significantly greater than 0. If M does not contain a watermark, we assume PF

M = PM for any k,
so Equation 9 should represent the similarity between two random vectors with zero mean, which
should be close to 0. A detailed analysis of the no-watermark case is provided in Appendix B.

Based on this, we design the following z-test to perform hypothesis testing on the average similarity:

z = (S̄ − µ)/σ (10)

where S̄ is the observed average similarity, σ is the standard deviation of the S̄, and µ is the mean
of the S̄ under the no-watermark case. Theoretically, µ should be 0 for an unwatermarked LLM.
However, in practice, we may choose a value slightly greater than 0 to account for potential biases
introduced by our prompt construction method or other factors. The standard deviation σ is estimated
through multiple experiments.

We reject the null hypothesis (no watermark) and conclude the LLM is likely watermarked if: z > zα,
where zα is the chosen significance level α. In this work, we consider a z-score between 4 and 10 as
moderate confidence, and above 10 as high confidence.

3.3 CONSTRUCTING REPEATED SAMPLING WITH SAME WATERMARK KEY

In the previous section, we introduced the basic pipeline of our Water-Probe algorithm. A key
challenge is constructing prompts that enable multiple samplings with the same watermark key.
This varies for different watermarking algorithms. We’ll discuss approaches for n-gram based and
fixed-key-list based methods.

For N-gram based watermarking (Definition 3), since the watermark key is derived from the
previous N tokens, we can design prompts that make the LLM generate N irrelevant tokens before
following the prompt. An example is provided below:

5



Published as a conference paper at ICLR 2025

0 100 200 300 400
Index

0

25

50

75

100

125

150

Co
un

t

 G three lion 

0 100 200 300 400
Index

0

25

50

75

100

125

150

175

Co
un

t

 C two tiger 

0 100 200 300 400
Index

0

20

40

60

80

100

120

Co
un

t

 D two lion 

0 100 200 300 400
Index

0

25

50

75

100

125

150

175

Co
un

t

 W two lion 

Figure 2: Distribution of start keys for identical prefixes in Exp-Edit watermarking. Analysis based
on prompts described in Section 3.3 for Watermark-Probe-v2. Each subplot represents a specific
prefix(in title).

Prompt 1: Example Prompt for Watermark-Probe-v1

Please generate abcd before answering the question.
Question: Name a country with a large population.
Answer: abcd India

In the example above, we assume generating abcd does not affect the distribution for answering the
question. However, in practice, it’s challenging to ensure completely irrelevant tokens. Consequently,
the S̄ for an unwatermarked LLM constructed this way may be slightly above 0. We refer to the
Watermark-Probe using prompts similar to the above table as Watermark-Probe-v1.

For fixed-key-set based watermarking, since the start watermark key is randomly selected each
time, our approach is to approximate multiple samplings with the same watermark key by exploiting
the correlation between the watermark key and the generated tokens. Specifically, we prompt the
LLM to perform some quasi-random generation initially. Generally, the same watermark start key
will only generate a few fixed sampling results, so we can assume that identical sampling result
prefixes are generated by the same watermark key. Here’s a specific example of how we construct
prompts for this approach:

Prompt 2: Example Prompt for Watermark-Probe-v2

Please generate a sentence that satisfies the following conditions: The first word is randomly
sampled from A-Z. The second word is randomly sampled from zero to nine. The third word
is randomly sampled from cat, dog, tiger and lion. Then answer the question: Name a country
with a large population.
Answer: A one cat China

As shown in the example above, we first prompt the LLM to generate N (3 in this case) random
tokens before answering the question. Different random token combinations typically correspond
to a few watermark keys. Figure 2 illustrates the distribution of watermark key counts for varying
numbers of random tokens. As evident from the figure, given a fixed prefix, the vast majority of cases
utilize a specific key. So this approach thus approximates sampling with the same watermark key.
Similarly, we refer to the prompting method in the above table as Watermark-Probe-v2.

We provide the detailed steps of the Water-Probe algorithm in Algorithm 1 in the appendix.

4 EXPERIMENT ON WATERMARKED LLM IDENTIFICATION

4.1 EXPERIMENT SETUP

Tested Watermarking Algorithms: We evaluated a diverse range of LLM watermarking algorithms,
including N-Gram based watermarking and Fixed-Key-List based watermarking. For N-Gram based
watermarking, we tested KGW (Kirchenbauer et al., 2023a) (γ = 0.5, δ = 2), Aar (Aaronson
& Kirchner, 2022) (N = 1), KGW-Min Kirchenbauer et al. (2023b) (window size of 4), KGW-
Skip (Kirchenbauer et al., 2023b) (window of 3), DiPMark (Wu et al., 2023b) (α = 0.45), and γ
reweighting (Hu et al., 2023). For Fixed-Key-List based watermarking, we examined EXP-Edit
(Kuditipudi et al., 2023) and ITS-Edit (Kuditipudi et al., 2023), both with a key length of 420. Details
of these algorithms are provided in Appendix F.

6



Published as a conference paper at ICLR 2025

Table 1: Detection similarities for various LLMs with and without different watermarks, calculated
using Equation 9 and our two identification methods: Water-Probe-v1 and Water-Probe-v2.
indicates high-confidence watermark identification and indicates low-confidence watermark
identification while no color indicates no watermark identified. The corresponding z-scores can be
found in Table 7 in the Appendix.

LLM N-Gram Fixed-Key-List

Non KGW Aar KGW-Min KGW-Skip DiPmark γ-Reweight EXP-Edit ITS-Edit

Water-Probe-v1 (w. prompt 1)

Qwen2.5-1.5B 0.02 ± 0.02 0.37 ± 0.02 0.88 ± 0.06 0.37 ± 0.02 0.39 ± 0.01 0.55 ± 0.01 0.55± 0.01 0.01± 0.02 0.00± 0.04

OPT-2.7B 0.05 ± 0.01 0.47 ± 0.01 0.91 ± 0.01 0.42 ± 0.02 0.45 ± 0.01 0.60 ± 0.01 0.61± 0.01 0.08 ± 0.02 0.09± 0.01

Llama-3.2-3B 0.04 ± 0.02 0.53 ± 0.01 0.90 ± 0.01 0.48 ± 0.00 0.49 ± 0.01 0.61 ± 0.01 0.61± 0.01 0.03 ± 0.01 0.04± 0.01

Qwen2.5-3B 0.03 ± 0.01 0.33± 0.02 0.75± 0.05 0.33± 0.02 0.38 ± 0.00 0.51± 0.01 0.53± 0.01 0.03± 0.01 0.06± 0.02

Llama2-7B 0.02 ± 0.01 0.42 ± 0.01 0.87 ± 0.01 0.31 ± 0.01 0.42 ± 0.01 0.56 ± 0.01 0.56± 0.04 0.03 ± 0.02 0.02± 0.00

Mixtral-7B 0.01 ± 0.02 0.41 ± 0.01 0.85 ± 0.02 0.37 ± 0.01 0.41 ± 0.02 0.57 ± 0.01 0.58± 0.03 0.00± 0.00 0.02± 0.02

Qwen2.5-7B 0.07 ± 0.04 0.41 ± 0.02 0.82 ± 0.02 0.34 ± 0.03 0.38 ± 0.02 0.43 ± 0.03 0.43± 0.02 0.06± 0.01 0.04± 0.02

Llama-3.1-8B 0.01 ± 0.02 0.41 ± 0.02 0.85 ± 0.02 0.41 ± 0.01 0.39 ± 0.01 0.57 ± 0.02 0.58± 0.00 0.02± 0.02 0.00± 0.01

Llama2-13B 0.01 ± 0.03 0.41 ± 0.01 0.86 ± 0.01 0.31 ± 0.02 0.40 ± 0.02 0.58 ± 0.02 0.60± 0.01 0.02 ± 0.01 0.02± 0.03

Average 0.029 0.418 0.854 0.371 0.412 0.553 0.505 0.031 0.032

Water-Probe-v2 (w. prompt 2)

Qwen2.5-1.5B 0.02± 0.02 0.30± 0.01 0.83± 0.01 0.29± 0.01 0.27± 0.02 0.49± 0.02 0.52± 0.03 0.39± 0.03 0.60 ± 0.00

OPT-2.7B 0.04 ± 0.03 0.29 ± 0.02 0.88 ± 0.01 0.23 ± 0.01 0.19 ± 0.02 0.42 ± 0.01 0.43± 0.03 0.43 ± 0.01 0.62 ± 0.00

Llama-3.2-3B 0.00 ± 0.01 0.31 ± 0.01 0.89 ± 0.01 0.33 ± 0.00 0.24 ± 0.01 0.51 ± 0.01 0.54± 0.01 0.52 ± 0.01 0.84 ± 0.00

Qwen2.5-3B 0.03± 0.02 0.35± 0.04 0.78± 0.01 0.29± 0.02 0.28± 0.01 0.45± 0.02 0.45± 0.02 0.39± 0.02 0.71 ± 0.00

Llama2-7B 0.04 ± 0.02 0.34 ± 0.01 0.82 ± 0.02 0.33 ± 0.01 0.28 ± 0.01 0.50 ± 0.01 0.51± 0.02 0.48 ± 0.01 0.81 ± 0.00

Mixtral-7B 0.09 ± 0.01 0.34 ± 0.04 0.83 ± 0.01 0.29 ± 0.02 0.24 ± 0.01 0.51 ± 0.01 0.53± 0.00 0.42± 0.02 0.81 ± 0.00

Qwen2.5-7B -0.01 ± 0.04 0.26 ± 0.02 0.70 ± 0.00 0.28 ± 0.02 0.23 ± 0.01 0.32 ± 0.03 0.35± 0.02 0.32± 0.02 0.73 ± 0.00

Llama-3.1-8B 0.01 ± 0.00 0.31 ± 0.01 0.77 ± 0.01 0.29 ± 0.02 0.26 ± 0.00 0.50 ± 0.01 0.51 ± 0.01 0.43± 0.01 0.71 ± 0.00

Llama2-13B 0.01 ± 0.02 0.35 ± 0.01 0.82 ± 0.02 0.26 ± 0.02 0.26 ± 0.01 0.50 ± 0.01 0.53± 0.01 0.44 ± 0.02 0.73 ± 0.00

Average 0.026 0.317 0.813 0.288 0.250 0.467 0.486 0.424 0.729

Tested LLMs: To comprehensively evaluate our algorithm’s effectiveness, we tested a diverse range
of LLMs with varying parameter sizes, including Qwen2.5-1.5B (Hui et al., 2024), OPT-2.7B (Zhang
et al., 2022), Llama3.2-3B (Meta AI, 2024), Qwen2.5-3B, Llama2-7B (Touvron et al., 2023), Mixtral-
7B (Jiang et al., 2024a), Qwen2.5-7B, Llama-3.1-8B (Dubey et al., 2024), and Llama2-13B (Touvron
et al., 2023).We evaluated our Water-Probe algorithm on all LLMs, testing its performance under
various watermarking schemes and in scenarios without watermarks.

Watermark-Probe Settings: For our Watermark-Probe algorithm, detailed prompts are provided in
the appendix C. To calculate the z-score, we repeat each detection experiment 3 times to compute the
standard deviation. We set µ = 0.1 for our experiments.

4.2 MAIN RESULTS

In Table 1, we present the average similarity and standard deviation obtained using
Watermark-Probe-v1 and Watermark-Probe-v2 algorithms for identifying various LLMs under
different watermarking conditions and non-watermarked scenarios. For all LLMs, the sampling
temperature was set to 1, with the number of samples set to 104. As evident from Table 1,
Watermark-Probe-v1 demonstrates high effectiveness for N-gram based watermarking but is not
applicable to fixed-key-list based watermarking. In contrast, the Watermark-Probe-v2 algorithm
proves effective in identifying all watermarking algorithms tested. Additionally, even watermarking
algorithms claiming to be distortion-free, such as Aar (Aaronson & Kirchner, 2022), DiPMark (Wu
et al., 2023b), and γ-reweighting (Hu et al., 2023), they can be effectively identified by both versions
of Watermark-Probe. Furthermore, our algorithm maintains low similarity for non-watermarked
LLMs, ensuring minimal false positive rates. Additionally, we calculated the average similarity for
different watermarking algorithms in Table 1 to demonstrate their detection confidence. Among
these, the Aar algorithm is the most easily detectable due to its pronounced perturbation for indi-
vidual keys. Lastly, given the same number of samples, the Watermark-Probe-v1 algorithm yields
more significant identification results for N-gram based watermarking algorithms compared to the
Watermark-Probe-v2 algorithm.
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Figure 3: The left plot shows the variation of z-scores detected by Watermark-Probe-v1 and
Watermark-Probe-v2 as a function of sampling temperature. The right plot illustrates the change
in z-scores detected by Watermark-Probe-v1 and Watermark-Probe-v2 with different sampling
numbers.

4.3 FURTHER ANALYSIS

Influence of Sampling Temperature: The results in Table 1 are based on a sampling temperature of
1. To further validate the performance of Watermark-Probe under different sampling temperatures,
we show the z-score changes across temperatures in the left plot of Figure 3. Using Llama2-7B as
an example, as the sampling temperature increases from 0.1 to 1.5, both Watermark-Probe-v1 and
Watermark-Probe-v2 can distinguish between watermarked and unwatermarked LLMs. However,
at relatively low temperatures (T < 0.5), detection of unwatermarked LLMs may show some
fluctuations. Since deployed LLMs rarely use very low temperatures, our algorithm can be considered
effective for detecting real-world LLM deployments.

Influence of Sampling Number: The right plot in Figure 3 illustrates the impact of the sam-
pling number on the detected z-score. Specifically, we used Llama2-7B as the target LLM with
a temperature of 1. We observed that Watermark-Probe-v2 requires more samples compared to
Watermark-Probe-v1. With insufficient samples, Watermark-Probe-v2 lacks enough common
prefixes to compute Equation 9. In our setting, Watermark-Probe-v1 can achieve stable detection
with 1,000 samples, while Watermark-Probe-v2 requires at least 104 samples. For cases where
detection is successful, the z-score of watermarked LLMs tends to increase with the number of
samples, although this trend exhibits fluctuations.

5 ENHANCING THE IMPERCEPTIBILITY OF WATERMARKED LLMS

We have demonstrated that current watermarked LLMs can be identified by our Water-Probe method.
In this section, we discuss how to improve the imperceptibility of watermarked LLMs. The core
principle is to make it challenging to construct repeated sampling scenarios using two separate keys
according to Equation 9.

One design is globally fixed watermark key (e.g., Unigram (Zhao et al., 2023)). While it’s easy
to construct repeated sampling scenarios with a single key, we cannot detect stable deviations
between different keys as only one exists globally. In the appendix E, we provide an algorithm
named Water-Contrast to identify watermarks by comparing the target LLM distribution and a
prior distribution. While not theoretically guaranteed (it’s challenging to determine if this bias is
from watermarking or inherent to the LLM), it shows practical effectiveness. Meanwhile, Unigram
watermarks are susceptible to cracking (Jovanović et al., 2024).

The second design aims to increase the randomness of watermark key selection, making it less
dependent on N-grams. This approach makes it difficult to construct repeated sampling scenarios
using the same key. For Fixed-Key-List Based watermarking, a viable strategy is to increase the
length of the key list. Since the initial key position is random, increasing the key list length enhances
the randomness of key selection.

Additionally, for N-gram Based watermarking algorithms, we propose an enhanced strategy called
Water-Bag, which combines multiple master watermark keys into a key-bag with a key inversion
mechanism.
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Figure 4: Distribution of start keys for identical prefixes in Water-Bag strategy. Analysis based on
prompts described in Section 3.3 for Water-Probe-v2. Each subplot represents a specific prefix
(showed in title).
Table 2: Performance comparison of Water-Bag Strategy and Exp-Edit algorithm in watermarked
LLM identification and watermarked text detection. Water-Bag is evaluated with varying bag sizes,
while Exp-Edit is tested with different key lengths. represents high-confidence watermark and

represents low-confidence watermark. Detail of z-score could be seen in Appendix H.
KGW w. Water-Bag Exp-Edit(Key-len)

None |K ∪K| = 1 |K ∪K| = 2 |K ∪K| = 4 |K ∪K| = 8 |K| = 420 |K| = 1024 |K| = 2048

Watermarked LLM Indentification
Water-Probe-v1(n=3) 0.02 ± 0.01 0.42 ± 0.01 0.05 ± 0.01 0.02 ± 0.01 0.03 ± 0.02 0.03 ± 0.05 0.02 ± 0.01 0.02 ± 0.02

Water-Probe-v2(n=3) 0.04 ± 0.01 0.34 ± 0.01 0.34 ± 0.01 0.25 ± 0.01 0.16 ± 0.02 0.48 ± 0.01 0.33±0.01 0.23±0.02

Water-Probe-v2(n=5) 0.06 ± 0.06 0.32 ± 0.01 0.18 ± 0.01 0.12 ± 0.02 0.07 ± 0.01 0.64 ± 0.00 0.54 ± 0.01 0.44 ± 0.00

Watermarked Text Detection
Detection-F1-score - 1.0 1.0 1.0 1.0 1.0 0.975 1.0
PPL 8.15 11.93 11.85 12.17 12.50 16.63 17.28 19.06
Robustness (GPT3.5) - 0.843 0.849 0.748 0.696 0.848 0.854 0.745
Detection-time (s) - 0.045 0.078 0.156 0.31 37.87 108.5 194.21

Definition 7 (Water-Bag Strategy). The Water-Bag strategy extends N-gram based watermarking by
using a set of master keys K = {K1,K2, ...,Kn} and their inversions K = {K1,K2, ...,Kn}. For
each generation, a master key Kj or its inversion Kj is randomly selected:

PWB
M (yi|x, y1:i−1,K,K) = F (PM (yi|x, y1:i−1), ki), ki = f(K∗

j , yi−n:i−1), K∗
j ∼ Uniform(K ∪K)

(11)
where PWB

M is the modified probability distribution, K∗
j is randomly sampled from the combined set

of original and inverted keys, and f is the watermark key derivation function. The inverted key Kj is
defined as:

1
2 (F (PM (yi|x, y1:i−1), f(Kj , yi−n:i−1)) + F (PM (yi|x, y1:i−1), f(Kj , yi−n:i−1))) = PM (yi|x, y1:i−1)

(12)
This ensures that the average effect of Kj and Kj on the logits is equivalent to the original logits,
which makes our Water-Probe-v1 ineffective against the Water-Bag strategy.

For the watermarked text detection for Water-Bag Strategy, we use the maximum detection score
across all master keys in the bag. The text is considered watermarked if this maximum exceeds a
threshold.

To validate the effectiveness of the two strategies for enhancing the imperceptibility of watermarked
LLMs, we evaluated their performance in Table 2. We examined both watermarked LLM identification
and watermarked text detection settings, assessing the new watermarking strategies’ detectability by
our Water-Probe algorithm and their impact on watermarked text detection efficacy and performance.

For watermarked text detection, we used OPT-2.7B to generate texts on the C4 dataset (Raffel et al.,
2020), using 30 tokens as prompts and generating 200 additional tokens with watermarks. PPL was
calculated using Llama2-7B. To assess detection robustness, we computed the F1-score after rewriting
texts using GPT-3.5. Detection time for single text was also recorded. We use the KGW algorithm as
an implementation example for the water-bag strategy. For watermarked LLM identification, we
report results for both Water-Probe-v1 and Water-Probe-v2. For Water-Probe-v2, we present
results for n = 3 and n = 5, where n is the number of random tokens generated as described in
Section 3.3. The n = 3 setting matches Table 1, while prompts for n = 5 are provided in Appendix
C.

Table 2 demonstrates that Water-Probe-v1 fails to effectively identify both Water-Bag and Exp-Edit
algorithms. For Water-Probe-v2, detection difficulty increases with larger bag sizes in Water-Bag
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and longer key lengths in Exp-Edit. However, Water-Bag proves more challenging to identify.
Crucially, Water-Bag’s detectability remains stable as n increases, while Exp-Edit becomes more
easy to identify. We analyzed the key distribution of Water-Bag under Water-Probe-v2 for different
prefixes in Figure 4. The distribution is notably more uniform compared to Exp-Edit in Figure 2,
explaining why Water-Bag is relatively harder to identify. We observe that increasing watermark
key randomness reduces watermark robustness for both strategies, with Exp-Edit also significantly
increasing detection time. This highlights a trade-off in watermarking algorithms between key
randomness and robustness (Liu et al., 2024b). Future work should focus on developing algorithms
that enhance randomness without compromising robustness.

6 RELATED WORK

Large language model (LLM) watermarking techniques (Liu et al., 2024b) have become crucial for
copyright protection (Sander et al., 2024), generated text detection (Wu et al., 2023a), and preventing
misuse (Liu et al., 2024c). LLM watermarking can be broadly categorized into two types. The first
type is post-processing watermarking, which modifies generated text using format-based (Sato
et al., 2023), lexical-based, syntax-based (Wei et al., 2022), or generation-based (Zhang et al., 2024)
approaches to add watermark. However, post-processing watermarking methods require waiting for
text generation to complete before modifying and adding watermarks, which is not suitable for current
LLM services that require real-time text generation. Another category of watermarking algorithms,
known as watermarking during generation, typically involves adjusting the distribution of the next
generated token based on a watermark key. For instance, the KGW (Kirchenbauer et al., 2023a)
algorithm divides the vocabulary into red and green lists, increasing the probability of tokens in the
green list. SIR (Liu et al., 2024a) further modifies logits based on semantic information, enhancing
watermark robustness. An important objective of these methods is to maintain the imperceptibility
of generated text, i.e., watermarked and non-watermarked text should have identical distributions,
with some distortion-free algorithms showing promising results (Kuditipudi et al., 2023; Aaronson
& Kirchner, 2022). However, previous work has overlooked the imperceptibility of watermarked
LLMs themselves, i.e., whether external users can detect if an LLM service contains watermarks
without disclosure. This work investigates the imperceptibility of watermarked LLMs. The most
relevant work is (Gloaguen et al., 2024), our work differs in several aspects: we propose a unified
identification method for all watermarking during generation algorithms without requiring different
detection approaches for different watermarks. Our method also supports identification of complex
watermark variants (like EXP-Edit with sampling), and we introduce the water-bag algorithm to
enhance watermarked LLM imperceptibility.

7 CONCLUSION

In this paper, we pioneered the study of identifying watermarked LLMs. We first theoretically demon-
strated the basis for identifying watermarked LLMs. We then designed the Water-Probe algorithm,
which identifies watermarked LLMs by comparing distribution differences of similar prompts under
different watermark keys. Our experiments showed that our algorithm is applicable to all N-Gram and
Fixed-Key-List based Watermarking algorithms, independent of sampling temperature. We discussed
scenarios where Water-Probe might fail and designed the WaterBag watermarking algorithm, which
sacrifices some robustness of watermarked text detection to make watermarked LLMs harder to
identify. Future work could focus on watermark concealment as a key research direction, designing
more covert watermarking schemes.

8 ACKNOWLEDGEMENTS

This work is primarily supported by the Key Research and Development Program of China (No.
2024YFB3309702). Additional support was provided by the National Science Foundation (NSF) un-
der grants III-2106758 and POSE-2346158. This work was also supported by the Guangdong Provin-
cial Department of Education Project (Grant No.2024KQNCX028); Scientific Research Projects for
the Higher-educational Institutions (Grant No.2024312096), Education Bureau of Guangzhou Mu-
nicipality; Guangzhou-HKUST(GZ) Joint Funding Program (Grant No.2025A03J3957), Education
Bureau of Guangzhou Municipality.

10



Published as a conference paper at ICLR 2025

REFERENCES

S. Aaronson and H. Kirchner. Watermarking gpt outputs, 2022. https://www.scottaaronson.
com/talks/watermark.ppt.

Imre Csiszár and János Körner. Information theory: coding theorems for discrete memoryless systems.
Cambridge University Press, 2011.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.
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A PROOF OF THEOREM 1 AND ADDITIONAL ANALYSES

Proof. Goal: Prove that under the Lipschitz continuity condition, the watermark modification
differences for two similar prompts x1 and x2 have high similarity, with an expected similarity of at
least ρ.

Step 1: Express the watermark modification difference

For a prompt x and keys k1, k2, define the watermark modification difference as:

∆x(k1, k2) = PF
M (·|x, k1)− PF

M (·|x, k2) (13)

Step 2: Utilize the Lipschitz continuity condition

By the Lipschitz continuity condition, for any fixed key k:

∥PF
M (·|x1, k)− PF

M (·|x2, k)∥1 ≤ L · ∥PM (·|x1)− PM (·|x2)∥1 (14)

Since x1 and x2 satisfy the similarity condition KL(PM (·|x1)||PM (·|x2)) ≤ ϵ (Equation 5), by
Pinsker’s inequality (Csiszár & Körner, 2011):

∥PM (·|x1)− PM (·|x2)∥1 ≤
√
2ϵ (15)

Therefore, for any k ∈ {k1, k2}:

∥PF
M (·|x1, k)− PF

M (·|x2, k)∥1 ≤ L ·
√
2ϵ (16)

Step 3: Analyze the difference of watermark modification differences

Consider the definition of ∆x(k1, k2) and compute ∥∆x1
(k1, k2)−∆x2

(k1, k2)∥1:

∥∆x1
(k1, k2)−∆x2

(k1, k2)∥1 = ∥(PF
M (·|x1, k1)− PF

M (·|x1, k2))− (PF
M (·|x2, k1)− PF

M (·|x2, k2))∥1
= ∥(PF

M (·|x1, k1)− PF
M (·|x2, k1))− (PF

M (·|x1, k2)− PF
M (·|x2, k2))∥1

≤ ∥PF
M (·|x1, k1)− PF

M (·|x2, k1)∥1 + ∥PF
M (·|x1, k2)− PF

M (·|x2, k2)∥1
≤ L ·

√
2ϵ+ L ·

√
2ϵ

= 2L ·
√
2ϵ

= δ′ (17)

where δ′ = 2L ·
√
2ϵ.

Step 4: Relate L1 distance to similarity measure

Assume Sim(·, ·) is cosine similarity, which is negatively correlated with L1 distance. Since
∥∆x1

(k1, k2)−∆x2
(k1, k2)∥1 ≤ δ′, and δ′ is a small positive number:

Sim(∆x1
(k1, k2),∆x2

(k1, k2)) ≥ ρ′ (18)

where ρ′ is a lower bound dependent on δ′, approaching 1 as δ′ decreases.

Step 5: Calculate expected similarity

Since Sim(∆x1
(k1, k2),∆x2

(k1, k2)) ≥ ρ′ for any k1, k2 ∈ K, for randomly sampled k1, k2:

Ek1,k2∼K [Sim(∆x1
(k1, k2),∆x2

(k1, k2))] ≥ ρ′ (19)

Set ρ = ρ′, and by choosing a sufficiently small ϵ (making δ′ small enough), we can ensure ρ is close
to 1.

Conclusion: Under the Lipschitz continuity condition, for two similar prompts x1 and x2, the
expected similarity of their watermark modification differences under randomly sampled watermark
keys k1 and k2 is at least ρ, where ρ is a large positive number close to 1. This proves the high
consistency of watermark effects in similar contexts, ensuring the detectability and robustness of the
watermark.
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B STATISTICAL ANALYSIS OF UNWATERMARKED LLMS IDENTIFICATION

When there’s no watermark present in the LLM, we expect the similarity measure in Equation 9 to be
close to 0. This can be mathematically explained as follows:

For an unwatermarked model, PF
M = PM for any k. Let R̂(1)

N (·) and R̂
(2)
N (·) denote two independent

empirical estimates of R(·) using N samples each (because in the black-box setting, we cannot
directly access the true PF

M ). Therefore:

∆R(xi, km, kn) = R̂
(1)
N (PF

M (·|xi, km))− R̂
(2)
N (PF

M (·|xi, kn))

= R̂
(1)
N (PM (·|xi))− R̂

(2)
N (PM (·|xi))

= [R̂
(1)
N (PM (·|xi))−R(PM (·|xi))]− [R̂

(2)
N (PM (·|xi))−R(PM (·|xi))]

= ϵ1 − ϵ2

(20)

where ϵ1, ϵ2 represent independent sampling errors that follow normal distributions N (0, σ2) accord-
ing to the Central Limit Theorem.

Consequently, for any xi, xj , km, kn:

Sim(∆R(xi, km, kn),∆R(xj , km, kn)) = Sim(ϵ1 − ϵ2, ϵ3 − ϵ4) (21)

where ϵ1, ϵ2 represent independent sampling errors that follow normal distributions N (0, σ2) accord-
ing to the Central Limit Theorem.

Consequently, for any xi, xj , km, kn:

Sim(∆R(xi, km, kn),∆R(xj , km, kn)) = Sim(ϵ1 − ϵ2, ϵ3 − ϵ4) (22)

where ϵ1, ϵ2, ϵ3, ϵ4 are independent sampling errors. To understand why this similarity has an expected
value of zero, recall that cosine similarity is defined as:

Sim(a, b) =
a · b

||a|| · ||b||
(23)

Note that (ϵ1 − ϵ2) and (ϵ3 − ϵ4) are differences of independent normal variables, each following
N (0, 2σ2). For the numerator:

E[(ϵ1 − ϵ2)(ϵ3 − ϵ4)] = E[ϵ1ϵ3]− E[ϵ1ϵ4]− E[ϵ2ϵ3] + E[ϵ2ϵ4]

= E[ϵ1]E[ϵ3]− E[ϵ1]E[ϵ4]− E[ϵ2]E[ϵ3] + E[ϵ2]E[ϵ4]

= 0

(24)

where the second equality follows from independence, and the final equality holds because E[ϵi] = 0
for all i. As these differences are independent and orthogonal in expectation, their cosine similarity
has an expected value of zero:

E[Sim(ϵ1 − ϵ2, ϵ3 − ϵ4)] = 0 (25)

Therefore, the average similarity S̄ in Equation 9 has an expected value of 0.

C DETAILED PROMPTS FOR SIMULATING WATERMARK KEYS

In this section, we provide details of the prompt used for repeated sampling with the same key, as
introduced in Section 3.3.

For the Water-Probe-v1 algorithm, we use the following prompt pair as shown in Prompt 3 and
Prompt 4.
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Prompt3: First prompt for Fixed Key List Based Watermarking(Water-Probe-v1)

Please generate some text based on the following instructions(no other words):
First generate the prefix D seven tiger.
Then answer the question: Name a country with a large population.
Example1: D seven tiger China
Example2: D seven tiger India
Example3:

Prompt4: First prompt for Fixed Key List Based Watermarking(Water-Probe-v1)

Please generate some text based on the following instructions(no other words):
First generate the prefix D seven tiger.
Then answer the question: Name a country with a large area.
Example1: D seven tiger China
Example2: D seven tiger India
Example3:

Here, we use a fixed prefix D seven tiger as an example. In the actual experiment, we used 50
different prefixes to simulate 50 potentially different watermark keys. For the experiment in Table
1, we performed 10,000 samplings, with each prefix sampled 200 times. The complete list of 50
prefixes is shown below.

All the prefix for Water-Probe-v1

Y three lion, G three lion, U six lion, A eight tiger, K four cat, N seven tiger, K three cat, H five dog, E
zero lion, V three dog, W five dog, K one tiger, B two tiger, E two lion, U six dog, A two tiger, D two
tiger, I nine dog, F three lion, C three dog, N five cat, L two dog, K zero tiger, E five dog, B five cat, X
four tiger, U three dog, K nine dog, P one dog, H zero dog, V eight tiger, S three tiger, P seven cat, S six
dog, Y nine cat, J one tiger, C five tiger, A zero lion, L eight dog, X eight dog, I two dog, C eight tiger,
O three tiger, L one cat, M five tiger, P five cat, F seven cat, I zero cat, P two lion, L four cat

Prompt5: First prompt for Fixed Key List Based Watermarking(Water-Probe-v2)

Please generate some text based on the following instructions(no other words):
The first word is randomly sampled from A-Z.
The second word is randomly sampled from zero to nine.
The third word is randomly sampled from cat, dog, tiger and lion.
Then add a separator | and answer the following question: Name a country with a large
population.
Example1: D seven tiger | United States
Example2: J five dog | India
Example3: R six cat | China
Example4: T one tiger | Indonesia
Example5: P seven cat | Pakistan
Example6: G six cat | Russia
Example7: R five tiger | India
Example8: L nine cat | Mexico
Example9: T four tiger | United States
Example10: H three dog | Japan
Example11: B three lion | Germany
Example12:
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Prompt6: Second prompt for Fixed Key List Based Watermarking(Water-Probe-v2)

Please generate some text based on the following instructions(no other words):
The first word is randomly sampled from A-Z.
The second word is randomly sampled from zero to nine.
The third word is randomly sampled from cat, dog, tiger and lion.
Then add a separator | and answer the following question: Name a country with a large
area.
Example1: L three tiger | United States
Example2: X three cat | India
Example3: A six tiger | China
Example4: W eight lion | Argentina
Example5: D five dog | France
Example6: P one cat | Russia
Example7: E six tiger | Australia
Example8: Z eight lion | Canada
Example9: Q two tiger | United States
Example10: A nine cat | Brazil
Example11: V three dog | Russia
Example12:

Similarly, for Prompt 3 and Prompt 4, we assume that the answer spaces for the questions Name a
country with a large population. and Name a country with a large area are highly correlated, i.e.,
countries with large areas tend to have relatively large populations. In practice, other correlated
prompt pairs can be chosen, as long as they satisfy the correlation requirement.

For the Water-Probe-v2 algorithm, we use the following prompt pair shown in Prompt 5 and Prompt
6.

Prompt7: First prompt for Fixed Key List Based Watermarking(Water-Probe-v2 N=5)

Please generate some text based on the following instructions(no other words):
The first word is randomly sampled from A-Z.
The second word is randomly sampled from zero to nine.
The third word is randomly sampled from cat, dog, tiger and lion.
The fourth word is randomly sampled from apple, banana and orange.
The fifth word is randomly sampled from car, bus and truck.
The sixth entry is the answer to the following question: Name a country with a large
population.
Example1: D seven tiger apple car United States
Example2: J five dog banana bus India
Example3: R six cat orange truck China
Example4: T one tiger apple bus Indonesia
Example5: P seven cat orange car Pakistan
Example6: G six cat banana truck Russia
Example7: R five tiger apple bus India
Example8: L nine cat banana car Mexico
Example9: T four tiger orange truck United States
Example10: H three dog apple bus Japan
Example11: B three lion orange truck Germany
Example12:
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Prompt8: Second prompt for Fixed Key List Based Watermarking(Water-Probe-v2 N=5)

Please generate some text based on the following instructions(no other words):
The first word is randomly sampled from A-Z.
The second word is randomly sampled from zero to nine.
The third word is randomly sampled from cat, dog, tiger and lion.
The fourth word is randomly sampled from apple, banana and orange.
The fifth word is randomly sampled from car, bus and truck.
The sixth entry is the answer to the following question: Name a country with a large
population.
Example1: D seven tiger apple car United States
Example2: J five dog banana bus India
Example3: R six cat orange truck China
Example4: T one tiger apple bus Argentina
Example5: P seven cat orange car France
Example6: G six cat banana truck Russia
Example7: R five tiger apple bus Australia
Example8: L nine cat banana car Canada
Example9: T four tiger orange truck United States
Example10: H three dog apple bus Brazil
Example11: B three lion orange truck Russia
Example12:

In this case, we selected the same question pair as in Water-Probe-v1. However, for
Water-Probe-v2, all prefixes are randomly sampled by the LLM during the generation process.
This random sampling by the LLM itself makes it easier to model the correlations between watermark
keys at different positions.

Prompt 5 and Prompt 6 both generate prefixes of length 3. Since we further analyzed the case of
generating prefixes of length 5 in Section 5, we also provide prompts for prefixes of length 5 in
Prompt 7 and Prompt 8. It is worth noting that the longer the required prefix, the more total sampling
times are needed, as more samples are required to cover all actually occurring prefixes. In this work,
for the case where the prefix length is 3, we typically sampled 10,000 times, and for the case where
the prefix length is 5, we typically sampled 100,000 times.

D DETAILED ALGORITHM FOR Water-Probe

To provide a clearer presentation of our Water-Probe algorithm, we present here a complete algorith-
mic representation, corresponding to the algorithm pipeline process described in Section 3.2. This
algorithm flow can be used for both Water-Probe-v1 and Water-Probe-v2, although the prompt
construction process differs between them, as detailed in Appendix C.

E DETECTION OF GLOBAL-FIXED KEY WATERMARKING IN LLMS

In this section, we explore how to identify LLMs with global-fixed key based watermarking. As
discussed in Section 5, since global-fixed key based watermarking uses only one key globally, we
cannot compare differences between two different watermark keys. However, as the global-fixed key
produces consistent bias across all prompts, we can calculate a prior distribution for each prompt and
then verify if the differences from this prior distribution have high similarity across all prompt lists
satisfying Equation 5.

Specifically, let P1, P2, ..., PN be the constructed prompt list, and Pprior be their prior distribution.
We can modify the average similarity calculation in Equation 9 as follows:
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Algorithm 1 Water-Probe Algorithm
Require: LLM M , significance level α, sampling count W
Ensure: Watermark detection result

1: Construct highly correlated prompts P1, P2, ..., PN satisfying Equation 5
2: Define watermark key list K = {k1, k2, ..., km}
3: for each prompt Pi and key kj ∈ K do
4: Initialize count dictionary Ci,j(y)← 0 for all y ∈ V
5: for w = 1 to W do
6: Construct sampling prompt Pw

i,j based on watermarking method (see Section 3.3)
7: Generate output ywi,j ∼ PF

M (·|Pw
i,j , kj)

8: Ci,j(y
w
i,j)← Ci,j(y

w
i,j) + 1

9: end for
10: P̂F

M (y|Pi, kj)← Ci,j(y)/W for all y ∈ V
11: end for
12: Apply rank transformation to all P̂F

M (·|Pi, kj)
13: Calculate average similarity S̄ using Equation 9
14: Compute z-score: z = (S̄ − µ)/σ
15: if z > zα then
16: return LLM is likely watermarked
17: else
18: return No evidence of watermarking
19: end if

Table 3: Identification of global fixed key watermarking (e.g., Unigram watermarking) in LLMs using
a prior distribution computed as the average output distribution of all eight LLMs. indicates
high-confidence watermark identification and indicates low-confidence watermark identification
while no color indicates no watermark identified.

LLM Similarity Z-Score

Unigram Unwatermark Unigram Unwatermark

GPT2 0.59 ± 0.018 0.06 ± 0.37 32.49 1.61
OPT1.3B 0.6 ± 0.02 0.06 ± 0.029 28.77 2.07
OPT2.7B 0.65 ± 0.009 0.03 ± 0.048 74.81 0.63
LLama2-7B 0.48 ± 0.042 0.04 ± 0.043 11.31 0.92
LLama-2-13B 0.38 ± 0.037 0.08 ± 0.018 10.17 4.54
LLama-3.1-8B 0.68 ± 0.06 0.12 ± 0.05 12.09 2.42
Mixtral-7B 0.87 ± 0.056 0.038 ± 0.052 22.24 0.74
Qwen2.5-7B 0.53 ± 0.058 0.09 ± 0.028 8.96 3.29
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Table 4: Identification of global fixed key watermarking in LLMs using a single proxy model’s
output as prior distribution. indicates high-confidence watermark identification and indicates
low-confidence watermark identification while no color indicates no watermark identified.

LLM
GPT2 OPT1.3B OPT2.7B LLama2-7B

Similarity Z-Score Similarity Z-Score Similarity Z-Score Similarity Z-Score

W NW W NW W NW W NW W NW W NW W NW W NW

GPT2 0.48±0.009 0.005±0.025 49.68 0.21 0.58±0.004 0.07±0.02 138.24 3.46 0.65±0.008 -0.07±0.015 77.60 -0.49 0.42±0.017 0.034±0.015 25.37 2.25
OPT1.3B 0.71±0.07 0.09±0.04 9.433 2.31 0.59±0.007 0.04 ±0.02 81.44 1.84 0.67±0.007 0.05±0.015 92.46 3.43 0.45±0.008 0.11±0.04 53.21 2.55
OPT2.7B 0.7±0.03 0.1±0.05 23.89 1.70 0.59±0.01 0.07±0.03 53.05 2.41 0.64±0.007 0.025±0.025 88.79 0.99 0.46±0.04 0.03±0.01 11.16 2.47
LLama2-7B 0.66±0.015 0.1±0.007 44.03 14.08 0.57±0.025 0.07±0.02 22.38 3.32 0.67±0.008 0.028±0.023 79.72 1.21 0.43±0.02 0.06±0.02 18.35 2.60

Prompt9: Used Prompt Set for Global-Fixed key Based Watermarking

1 : Please generate random number sequence between 0 to
9:2,3,9,8,0,4,7,5,6,1,5,8,7,1,2,4,6,0,9,3,
2 : Please generate random number sequence between 0 to

9:3,8,0,7,4,5,6,1,9,2,1,3,7,9,2,0,4,6,8,5,
3 : Please generate random number sequence between 0 to

9:5,8,7,1,2,4,6,0,9,3,2,3,9,8,0,4,7,5,6,1,
4 : Please generate random number sequence between 0 to

9:0,7,2,3,6,5,1,9,8,4,3,8,0,7,4,5,6,1,9,2,
5 : Please generate random number sequence between 0 to

9:1,3,7,9,2,0,4,6,8,5,0,7,2,3,6,5,1,9,8,4,
6 : Please generate random number sequence between 0 to

9:6,0,9,3,2,3,9,8,0,4,7,5,6,1,5,8,7,1,2,4,
7 : Please generate random number sequence between 0 to

9:4,6,0,9,3,2,3,9,8,0,4,7,5,6,1,5,8,7,1,2,
8 : Please generate random number sequence between 0 to

9:9,8,0,4,7,5,6,1,5,8,7,1,2,4,6,0,9,3,1,3,
9 : Please generate random number sequence between 0 to

9:7,4,5,6,1,9,2,1,3,7,9,2,0,4,6,8,5,0,7,2,
10 : Please generate random number sequence between 0 to

9:8,0,7,4,5,6,1,9,2,5,8,7,1,2,4,6,0,9,3,2,

S̄ =
1

|P|(|P| − 1)

∑
Pi ̸=Pj∈P

Sim(R(PM (·|Pi)− Pprior(·|Pi)), R(PM (·|Pj)− Pprior(·|Pj))). (26)

For the prior distribution, we select N proxy LLMs and calculate the average output probability
distribution under prompt pi as the prior distribution. Specifically:

Pprior(·|pi) =
1

N

N∑
j=1

PMj
(·|pi), (27)

where Mj represents the j-th proxy LLM, and N is the total number of proxy LLMs used. Specifically,
we used the following proxy LLMs: GPT2, OPT1.3B, OPT2.7B, Llama2-7B, Llama2-13B, Llama3-
8.1B, Mixtral-7B, and Qwen2.5-7B.

Additionally, we utilized 10 distinct prompts for computation to validate our method as shown in
Prompt 9.

The intuition behind this method is that if M is watermarked, the differences between its output
distributions and those of the proxy model should exhibit consistent patterns across different prompts,
resulting in a high correlation. Conversely, for an unwatermarked model, we assume that the
differences in bias between different language models are relatively small, and the correlation of
these differences should be low.

Table 3 presents the identification results for global-fixed key watermarking using a prior distribution.
Our method effectively identifies models employing global-fixed key watermarking, while yielding
low z-scores for unwatermarked LLMs.
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Table 5: Details of watermarking algorithms tested in our work.
Algorithm Name Category Methodology

KGW (Kirchenbauer et al., 2023a) N-Gram Separate the vocabulary set into two lists: a red list and a green list based
on the preceding token, then add bias to the logits of green tokens so that
the watermarked text exhibits preference of using green tokens.

KGW-Min (Kirchenbauer et al., 2023b) N-Gram Similar to KGW, this approach partitions the vocabulary set based on the
minimum token ID within a window of N-gram preceding tokens.

KGW-Skip (Kirchenbauer et al., 2023b) N-Gram Similar to KGW, this approach partitions the vocabulary set based on the
left-most token ID within a window of N-gram preceding tokens.

Aar (Aaronson & Kirchner, 2022) N-Gram Generate a pseudo-random vector rt based on the N-gram preceding
tokens to guide sampling at position t, and choose the token i that
maximize rt(i)1/pt(i) (exponential minimum sampling), where pt is the
probability produced by LLM.

γ-Reweight (Hu et al., 2023) N-Gram Randomly shuffle the probability vector using a seed based on the pre-
ceding N-gram tokens. Discard the left half of the vector, doubling the
remaining probabilities. Conduct further sampling using this reweighted
distribution.

DiPmark (Wu et al., 2023b) N-Gram Similar to γ-Reweight, after shuffling, discard the left α portion of the
vector and amplify the remaining probabilities by 1/(1− α).

EXP-Edit (Kuditipudi et al., 2023) Fixed-Key-List Based on the Aar concept, construct a fixed pseudo-random vector list.
When generating watermarked text, randomly select a start index in
the list. For each watermarked token generation, sequentially use the
pseudo-random vectors from this index for exponential minimum sam-
pling. During detection, employ edit distance to calculate the correlation
between the pseudo-random vector list and the text.

ITS-Edit (Kuditipudi et al., 2023) Fixed-Key-List Similar to EXP-Edit, this method also uses a fixed pseudo-random vector
list. However, it uses inverse transform sampling instead of exponential
minimum sampling during token selection.

Table 6: Z-scores of waterbag method and Exp-Edit method. represents high-confidence
watermark and represents low-confidence watermark, while no color means no watermark. This
table provides supplementary information on the similarity content in Table 2.

KGW w. Water-Bag Exp-Edit(Key-len)

None |K ∪K| = 1 |K ∪K| = 2 |K ∪K| = 4 |K ∪K| = 8 420 1024 2048

Watermarked LLM Indentification

Water-Probe-v1(n=3) -8.20 11.67 -4.22 -7.84 -4.34 -3.07 -5.87 -5.17
Water-Probe-v2(n=3) -2.87 24.87 23.49 16.19 3.08 47.74 18.70 6.17
Water-Probe-v2(n=5) -100.43 28.56 13.68 1.38 -4.41 131.30 78.63 69.40

To further validate the key factors in using prior distribution for testing, we conducted experiments
using a single proxy model as the prior distribution, as shown in Table 4. We performed cross-
experiments with different LLMs. These results demonstrate that global fixed-key watermarking can
still be detected when using a single LLM as the prior distribution. However, the z-score detection
for unwatermarked LLMs exhibits greater fluctuation. This is primarily due to the significant bias in
a single proxy model as the prior distribution, affecting the variance of identification and resulting in
small z-score.

Although our method using prior distribution achieved good results in our experiments, this identifica-
tion approach has a limitation in that it can only detect stable biases in LLMs, assuming that a stable
bias indicates a watermark. However, this assumption may not hold in real-world scenarios, as it is
challenging to distinguish whether the bias is caused by watermarking or inherent to the LLM itself.
This is particularly problematic in cases where LLMs are known to have inherent biases. Future work
could investigate more interpretable detection methods.

F DETAILS OF TESTED WATERMARKING ALGORITHMS

To help understand the watermarking algorithms related to the experiments in this paper, we provide
detailed information for all watermarking algorithms in Table 5, including their names, references,
types, and brief descriptions. All our experiments were conducted using the MarkLLM (Pan et al.,
2024) framework.
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Table 7: Z-scores for watermark detection on various LLMs with and without watermarks using
Watermark-Probe-1 and Watermark-Probe-2. indicates high-confidence watermark identifica-
tion, indicates low-confidence watermark identification, while no color indicates no watermark
identified. This table provides supplementary information on the similarity content in Table 1.

LLM N-Gram Fixed-Key-Set

Non KGW Aar KGW-Min KGW-Skip DiPmark γ-Reweight EXP-Edit ITS-Edit

Watermark-Probe-1 (w. prompt 1)

Qwen2.5-1.5B -5.02 43.32 123.57 14.70 24.29 33.35 55.90 -5.21 -25.04
OPT-2.7B -5.99 49.21 117.95 16.69 35.78 93.25 49.98 -1.32 -1.27
Llama-3.2-3B -4.52 49.39 79.33 80.94 71.11 87.17 76.35 -6.70 -4.29
Qwen2.5-3B -6.70 48.20 127.07 14.73 625.36 56.15 42.96 -6.18 -1.97
Llama2-7B -8.20 30.01 109.00 25.51 29.75 44.35 106.37 -3.07 -28.05
Mixtral-7B -3.80 25.03 40.21 35.51 19.99 36.30 137.39 -22.01 -3.31
Qwen2.5-7B -1.16 38.25 30.03 22.85 50.34 47.31 50.48 -3.39 -15.92
Llama-3.1-8B -6.44 20.40 143.52 29.05 28.19 29.01 125.46 -3.79 -12.70
Llama2-13B -3.62 29.23 79.42 11.74 18.01 30.40 49.23 -6.63 -2.78

Watermark-Probe-2 (w. prompt 2)

Qwen2.5-1.5B -5.06 34.55 55.97 16.39 8.79 19.45 14.28 10.73 1840.44
OPT-2.7B -1.95 42.59 67.93 15.17 4.61 32.40 11.04 26.44 1073.13
Llama-3.2-3B -12.42 29.91 96.14 50.00 19.91 80.04 67.07 34.99 7702.12
Qwen2.5-3B -3.48 6.35 108.44 11.29 25.92 39.88 18.84 18.06 8209.12
Llama2-7B -2.87 24.87 40.05 32.68 15.62 35.50 25.11 47.74 6885.04
Mixtral-7B -0.87 6.09 54.39 11.14 13.49 49.02 111.12 14.83 1812.12
Qwen2.5-7B -2.48 8.90 185.88 10.50 13.06 7.64 12.40 13.04 1982.74
Llama-3.1-8B -64.31 25.24 104.77 10.03 49.23 38.47 81.36 31.35 12701.95
Llama2-13B -3.98 20.72 38.26 10.36 16.60 58.10 83.27 47.74 333.37
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Figure 5: The variation of z-scores at different temperatures when calculating similarity without
using rank transformation in Equation 9.

G ABLATION OF RANK TRANSFORMATION

To illustrate the importance of the rank transformation mentioned in Equation 9, we present in Figure
5 the variation of z-scores at different temperatures without using rank transformation. It can be
observed that without rank transformation, the z-scores for Unwatermarked LLMs are significantly
higher, especially at lower temperatures. Comparing the left plots in Figures 3 and 5, we can see
that rank transformation effectively reduces the z-scores of Unwatermarked LLMs, making the
identification and detection more stable.
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Table 8: Identification p-value for various LLMs with different watermarks and without watermarks,
using our two methods: Watermark-Probe-v1 and Watermark-Probe-v2. represents high-
confidence watermark and represents low-confidence watermark, while no color means no
watermark. This table provides supplementary information on the similarity content in Table 1.
LLM N-Gram Fixed-Key-Set

Non KGW Aar KGW-Min KGW-Skip DiPmark γ-reweight EXP-Edit ITS-Edit

Watermark-Probe-v1 (w. prompt 1)

Qwen2.5-1.5B 1 2.9e-410 5.9e-3319 3.2e-49 1.3e-130 3.6e-244 2.0e-681 1 1
OPT-2.7B 1 1.1e-528 3.4e-3024 7.7e-63 1.1e-280 2.6e-1891 2.9e-545 1-9.3e-2 1-1.0e-1
Llama-3.2-3B 1 1.6e-532 1.4e-1369 1.3e-1425 5.2e-1101 4.4e-1653 7.9e-1269 1 1
Qwen2.5-3B 1 2.7e-507 1.8e-3509 2.1e-49 8.3e-84925 1.7e-687 1.6e-403 1 1-2.4e-2
Llama2-7B 1 3.6e-198 4.3e-2583 7.6e-144 8.7e-195 7.0e-430 4.4e-2460 1-1.1e-3 1
Mixtral-7B 1 1.4e-138 8.0e-354 1.7e-276 3.4e-89 8.1e-289 3.9e-4102 1 1
Qwen2.5-7B 1-1.2e-1 2.1e-320 2.0e-198 7.3e-116 4.2e-553 7.9e-489 3.6e-556 1 1
Llama-3.1-8B 1 8.4e-93 4.4e-4476 7.7e-186 3.9e-175 2.5e-185 3.6e-3421 1 1
Llama2-13B 1 4.0e-188 1.1e-1372 4.0e-32 8.1e-73 2.7e-203 4.3e-529 1 1-2.7e-3

Watermark-Probe-v2 (w. prompt 2)

Qwen2.5-1.5B 1 7.1e-262 4.1e-683 1.1e-60 7.5e-19 1.5e-84 1.5e-46 3.7e-27 9.8e-735530
OPT-2.7B 1-2.6e-2 1.2e-396 5.6e-1005 2.8e-52 2.0e-6 1.4e-230 1.2e-28 2.4e-154 1.2e-250072
Llama-3.2-3B 1 7.3e-197 3.5e-2010 1.1e-545 1.7e-88 3.7e-1394 9.2e-980 1.6e-268 2.5e-12881755
Qwen2.5-3B 1 1.1e-10 1.2e-2556 7.4e-30 2.0e-148 4.4e-348 1.8e-79 3.3e-73 7.3e-14633482
Llama2-7B 1-2.1e-3 7.9e-137 4.9e-351 1.5e-234 2.7e-55 2.5e-276 1.9e-139 1.0e-497 4.3e-10293604
Mixtral-7B 1-1.9e-1 5.6e-10 3.1e-645 4.0e-29 9.0e-42 1.3e-524 2.0e-2684 4.7e-50 6.5e-713068
Qwen2.5-7B 1-6.6e-3 2.8e-19 3.9e-7506 4.3e-26 2.8e-39 1.1e-14 1.3e-35 3.6e-39 3.1e-853666
Llama-3.1-8B 1 7.3e-141 1.0e-2386 5.6e-24 4.3e-529 4.5e-324 2.0e-1440 4.9e-216 7.5e-35034440
Llama2-13B 1 1.1e-95 1.4e-320 1.9e-25 3.5e-62 6.8e-736 1.0e-1508 1.0e-497 2.0e-24136

H SUPPLEMENTARY Z-SCORES AND P-VALUES

To facilitate a better understanding of the statistical methods used in identifying watermarked LLMs,
we provide detailed information including z-scores and p-values for Table 1 and Table 2 in this
section.

Specifically, Table 6 provides supplementary z-score information for Table 2, Table 7 provides sup-
plementary z-score information for Table 1, and Table 8 provides supplementary p-value information
for Table 1.

For all experiments, we consider a z-score below 4 to indicate no watermark, between 4 and 10 to
indicate a watermark with relatively low confidence, and above 10 to indicate a watermark with high
confidence.

I COMPARISON WITH RELATED WORK (GLOAGUEN ET AL., 2024)

1. Universal Detection: Our method (particularly Water-Probe-v2) can detect all current
watermarking-during-generation approaches (those that modify generation logits or sampling
processes). In contrast, Gloaguen et al. (2024)’s method requires specific designs for different
watermarking algorithms:

• Monte Carlo permutation test for red-green watermarking
• Mann-Whitney U test for EXP-edit watermarking
• Potential new methods for future watermarking methods

Our approach represents the first universal detection method effective across all current
LLM watermarking techniques.

2. Unified Theoretical Foundation: We provide a unified theoretical analysis and explanation
for why watermarked LLMs can be detected, specifically demonstrating how watermark key
conflicts lead to identifiable characteristics in model outputs. This theoretical framework
provides a comprehensive understanding of the detection mechanism.

3. Imperceptibility Enhancement: Beyond detection methods, we also contribute the
Water-Bag approach for improving the imperceptibility of watermarked LLMs, demonstrat-
ing significant improvements in watermark concealment while maintaining detectability.

23



Published as a conference paper at ICLR 2025

Table 9: Experimental Results with Argmax Sampling On Exp-Edit
Temp Watermark F1 Perplexity Gloaguen P-value Water-Probe-v2 P-value

0.2 0.664 11.8 <0.001 <0.001
0.3 0.666 11.5 <0.001 <0.001
0.4 0.678 11.2 <0.001 <0.001
0.5 0.793 10.9 <0.001 <0.001
0.6 0.907 10.7 <0.001 <0.001
0.7 0.965 10.5 <0.001 <0.001
0.8 0.987 10.4 <0.001 <0.001
0.9 0.987 10.3 <0.001 <0.001
1.0 0.987 10.3 <0.001 <0.001

Table 10: Experimental Results with Multinomial Sampling On Exp-Edit, which is the most challeng-
ing case for watermarked LLM identification.

Temp Watermark F1 Perplexity Gloaguen P-value Water-Probe-v2 P-value

0.2 0.666 11.1 <0.001 <0.001
0.3 0.662 11.8 0.33 <0.001
0.4 0.672 11.5 0.83 <0.001
0.5 0.740 11.2 1.0 <0.001
0.6 0.877 11.0 1.0 <0.001
0.7 0.985 10.8 1.0 <0.001
0.8 0.985 10.7 1.0 <0.001
0.9 0.987 10.6 1.0 <0.001
1.0 0.987 10.6 1.0 <0.001

4. Broader Applicability for Challenging Watermarking Variants: Our method supports
more challenging watermarking variants. For instance, while Gloaguen et al. (2024)’s exper-
iments with EXP-edit only considered argmax sampling after exponential transformation
(limiting a length-N watermark key list to at most N different sampling results), our method
requires no such assumptions.

To demonstrate the broader applicability of our method, we conducted experiments with EXP-edit
using sampling after exponential transformation. Given logits li, we first compute probabilities pi
through temperature scaling:

pi =
exp(li/τ)∑
j exp(lj/τ)

(28)

where τ is the temperature parameter. While Gloaguen et al. (2024)’s analysis focused on the
deterministic argmax sampling variant:

i∗ = argmax
i

(ξ
(j)
i )1/pi (29)

This deterministic approach has a fundamental limitation - for a watermark key list of length N, it
can only produce at most N distinct outputs. We instead evaluate multinomial sampling from the
distribution:

P (i) ∝ (ξ
(j)
i )1/pi (30)

Our experiments used the MarkLLM framework with EXP-Edit watermarking (key length = 420),
using OPT-1.3B as the base model and LLaMA-7B for perplexity calculations. For Gloaguen
et al. (2024)’s testing method, we generated 1,000 text samples of length 200 tokens each. For
Water-Probe-v2 testing, we generated 10,000 text samples of length 5 tokens each.
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Tables 9 and 10 show that when applying multinomial sampling after EXP transformation, the
watermark detection F1 scores and perplexity values remain largely unaffected. However, while our
method maintains its effectiveness, Gloaguen et al. (2024)’s method fails to detect the watermark.
This demonstrates the broader applicability of our approach to practical watermarking deployments.

J GUIDELINES FOR CONSTRUCTING WATERMARKED LLM IDENTIFICATION
PROMPTS

To help better understand our method, we provide guidelines for constructing watermarked LLM
identification prompts, divided into three parts: question space design, answer space design, and
implementation and verification protocols.

J.1 OVERALL PROMPT STRUCTURE

The prompts in our identification method consist of two essential components - a prefix component and
a question component. The specific requirements for each component will be detailed in subsequent
sections. Here is a basic illustration of the structure:

Basic Two-Component Prompt Structure

Input Prompt: Please start your answer with "WXYZ" (prefix component) and then answer the
question: What is a major city in Asia? (question component)
Response: WXYZ Tokyo
Explanation: The generated prefix would help to fix the watermark key, while the actual answer would
reflect the model’s response distribution (achieved by repeated sampling).

J.2 QUESTION COMPONENT DESIGN

As described in Section 3.2 Step 1, we should first construct highly correlated prompts with signifi-
cantly overlapping but non-identical answer spaces. This enables easy assessment of how potential
watermark keys affect the answer spaces of different prompts.

Here is a list of criteria for selecting questions:

1. Answer Space Similarity: Select questions with overlapping but non-identical answer
spaces. For example:

• “Name a country with a large population”
• “Name a country with a large area”
• “Name a country with a high GDP”
• “Name a country with rich natural resources”

These questions typically share common answers (e.g., USA, China, Russia) while main-
taining distinct probability distributions over the answer space.

2. Structural Requirements:
• Questions should be concise and unambiguous
• Answers should come from a well-defined finite set (e.g., countries, cities)
• Questions should maintain comparable difficulty levels
• The target entity category should remain consistent within a test suite

J.3 PREFIX COMPONENT DESIGN

J.3.1 WATERMARK-PROBE-V1 CONSTRUCTION

For Watermark-Probe-v1, simply instruct the LLM to generate a fixed prefix before answering the
question through explicit prompt instructions.

Here are the design principles for the prefix component:
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1. Use meaningless character sequences (e.g., “abcd”, “wxyz”) that have no semantic meaning
in any language

2. Avoid any sequences that could form acronyms, abbreviations or meaningful patterns
3. Ensure the prefix is completely unrelated to any potential answers or question domains
4. Keep the prefix length sufficient for determining the watermark key while maintaining

semantic independence

Here is an example of the prefix component:

Implementation Example for Watermark-Probe-v1

Please generate abcd before answering the question.
Question: Name a country with a large population.
Answer: abcd India
Explanation: The generated prefix is meaningless and unrelated to the question domain,
ensuring that it does not introduce any contextual bias.

J.3.2 WATERMARK-PROBE-V2 CONSTRUCTION

For Watermark-Probe-v2, we need to design a controlled randomization process before answering
the question to help fix the watermark key (see Section 3.3 for detailed reasons).

Here are the design principles for the prefix component:

1. Ensure the prefix generation does not influence the answer to the main question
2. Design multiple choice sets with logically equivalent probabilities
3. Keep the number of choices moderate and manageable
4. Maintain clear boundaries between different choice sets

Here is an example of the prefix component:

Implementation Example for Watermark-Probe-v2

Please generate a sentence that satisfies the following conditions:
– First word: Randomly sampled from A-Z

– Second word: Randomly sampled from zero to nine

– Third word: Randomly sampled from {cat, dog, tiger, lion}
Then answer: Name a country with a large population.
Answer: A one cat China
Explanation: All the possible generated prefixes are not related to the question domain,
ensuring that they do not introduce any contextual bias.

K THREAT MODEL

In this section, we outline the threat model under which our watermark identification method (detector)
operates. We consider the capabilities and limitations of both the detector and the LLM service
provider.

K.1 DETECTOR CAPABILITIES

We assume the detector:

• Has black-box access to the LLM through standard API interfaces
• Can only interact with the model through normal prompt-response queries
• Has no access to model architecture, parameters, or training data
• Can perform multiple queries
• Cannot modify or influence the model’s internal state
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K.2 TRUST ASSUMPTIONS

The threat model assumes:

• The LLM service provider may embed watermarks in the model outputs
• The API interface itself is trustworthy and returns genuine model outputs
• No man-in-the-middle attacks or response tampering occurs
• The detection process does not require knowledge of specific watermarking algorithms

K.3 DETECTION GOALS AND CONSTRAINTS

The primary objectives within this threat model are:

• Determine the presence or absence of watermarks in model outputs
• Maintain detection accuracy across different sampling temperatures and model configura-

tions

Key constraints include:

• Detection must be performed solely through black-box testing
• Watermark removal or tampering is outside the scope
• Detection methods must be robust against normal model output variations

L TEST ON CLOSED-SOURCE MODELS

We evaluated Water-Probe-V2’s detection capabilities on several closed-source models, including
GPT-4o-mini, GPT-4o, GPT-3.5-turbo, Gemini-1.5-flash, and Gemini-1.5-pro. For all experiments,
we utilized the latest API versions of these models (as of November 15, 2024) with a temperature
setting of 0.7.

Table 11: Watermarked LLM Identification Results on Closed-source Models
Model Similarity Std Dev Z-score Watermarked?
GPT-4o-mini -0.005 0.018 -5.984 No
GPT-4o 0.017 0.020 -4.211 No
GPT-3.5-turbo 0.028 0.030 -2.362 No
Gemini-1.5-flash 0.027 0.049 -1.474 No
Gemini-1.5-pro 0.018 0.038 -2.135 No

Our experimental results provide strong evidence that current closed-source model APIs do not
contain watermarks. However, it is important to note that a key limitation of this experiment is our
inability to verify ground truth labels, making it impossible to definitively confirm the accuracy of
our detection results.

M REVERSION KEY CALCULATION OF WATER-BAG

In this section, we provide detailed calculations for determining reversion keys that satisfy the
constraints in Equation 11. Let p = PM (yi|x, y1:i−1) represent the original model distribution, and
q = F (p, f(Kj , yi−n:i−1)) represent the distribution after modification using key Kj .

According to Equation 11, we have:
1

2
(q + F (p, f(Kj , yi−n:i−1))) = p (31)

Through algebraic manipulation, we can derive the required modification for the reversion key:

F (p, f(Kj , yi−n:i−1)) = 2p− q (32)
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This equation provides the concrete method for calculating the reversion key Kj . Specifically, for
any input sequence yi−n:i−1, the function f(Kj , yi−n:i−1) must map the original distribution p to
2p− q to satisfy Equation 11.

It is important to note that a reversion key need not be restricted to numerical values. Any key that
produces the required distributional modification qualifies as a valid reversion key, as long as it
accurately satisfies the constraint equation.
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