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Abstract
Reranking plays a crucial role in modern recommender systems
by capturing the mutual influences within the list. Due to the in-
herent challenges of combinatorial search spaces, most methods
adopt a two-stage search paradigm: a simple General Search Unit
(GSU) efficiently reduces the candidate space, and an Exact Search
Unit (ESU) effectively selects the optimal sequence. These meth-
ods essentially involve making trade-offs between effectiveness
and efficiency, while suffering from a severe inconsistency prob-
lem, that is, the GSU often misses high-value lists from ESU. To
address this problem, we propose YOLOR, a one-stage reranking
method that removes the GSU while retaining only the ESU. Specifi-
cally, YOLOR includes: (1) a Tree-based Context Extraction Module
(TCEM) that hierarchically aggregates muls si-scale contextual fea-
tures to achieve "list-level effectiveness", and (2) a Context Cache
Module (CCM) that enables efficient feature reuse across candidate
permutations to achieve "permutation-level efficiency". Extensive
experiments across public and industry datasets validate YOLOR’s
performance and we have successfully deployed YOLOR on the
Meituan food delivery platform.

CCS Concepts
• Information systems→Retrievalmodels and ranking;Com-
putational advertising.
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1 Introduction
E-commerce platforms, such as Meituan and Taobao, need to pro-
vide users with personalized services from millions of items. As
shown in Figure 1, list recommendation is the main display form
on Meituan food delivery platform. To improve recommendation
efficiency, personalized recommendation systems generally include
three stages: matching, ranking, and reranking. The ranking models
evaluate the recommended items respectively, focusing on feature
interactions [10, 15, 17], user preference modeling [23, 31, 32], and
so on. However, ranking methods ignore the crucial mutual influ-
ence among contextual items. Research [1, 4, 5, 21] indicates that
optimizing a listwise utility during the reranking stage is a more
advantageous strategy, as it capitalizes on the mutual influences
between items within the list to enhance overall performance.

The key challenge in reranking is exploring optimal lists within
the vast permutation space. Existing reranking methods can be clas-
sified into two categories [13, 26]. The first category is generator-
based methods. These methods generate the list by some heuristic
strategy [3, 14, 33], or generate a suboptimal list with greedy local
sight [13]. Despite considering the context, these methods fail to
ensure the quality of the generated lists and obtain optimal results,
due to issues such as evaluation-before-reranking problems [29].
The second category is evaluator-based methods [12, 26, 29]. These
methods try to evaluate every possible permutation to get the op-
timal list. However, due to the strict time constraints in online
systems, most existing evaluator-based methods use a two-stage
architecture, which adds a filtering submodel [12, 26] or generating

1
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Figure 1: List recommendations on Meituan food delivery
platform.

submodel [24] as the General Search Unit (GSU) before the Exact
Search Unit (ESU) to reduce the size of the candidate space.

However, existing two-stage reranking methods fall into trade-
off and face two significant issues. Firstly, the inherent incon-
sistency problem between the two stages limits the effective-
ness of the GSU. GSU is expected to search high-value lists to
ESU. However, due to strict time constraints, the GSU can only be
designed simply but not precisely. Although some recent generative
reranking methods [13, 18, 24] leverage the ESU as a teacher to
guide the GSU, GSU’s inconsistency issues remain serious [26, 28]
and lead to unsatisfactory hit ratio due to the vast permutation
space. The inconsistency problem arises from the trade-offs in-
herent in the two-stage model [6] which is challenging to solve.
Secondly, lacking of multi-scale contextual information lim-
its the effectiveness of ESU. As shown in Figure 1, in the list
recommendation tasks, the context information between items is
complex, and the impact windows between items may span 2, 4 or
even the entire list.

Figure 2: Demo of YOLOR. When evaluating the 4th item,
we can obtain its precise score by combining its multi-scale
contextual information and achieve efficient reuse through
caching.

To resolve the aforementioned issues, we propose a tree-based
Rerank framework that You Only evaLuate Once, termed YOLOR,
which removes the GSU while retaining only the ESU. We resolve
the efficiency-effectiveness trade-off by simultaneously address-
ing "permutation-level efficiency" and "list-level effectiveness". As
shown in Figure 2, for effectiveness at the list level, we designed a
tree-based context extraction module to capture contextual infor-
mation at different scales. For efficiency at the permutation level,
we developed a context caching module to enable efficient reuse of
multi-scale contextual information across lists. It is an extremely
time-saving method that allows you to predict all permutations.

The main contributions of our work are summarized as follows:

• We propose a novel framework that resolves the efficiency-
effectiveness trade-off through simultaneous optimization
of "permutation-level efficiency" and "list-level effective-
ness". To the best of our knowledge, we are the first to
introduce this concept.

• Based on this idea, we design the YOLOR model, which
contains the TCEM module to extract multi-scale contex-
tual information and the CCM module to reduce repeated
calculations.

• We conduct extensive experiments on both offline and real-
world industrial datasets from Meituan. Experimental re-
sults demonstrate the effectiveness of YOLOR. It is notable
that YOLOR has been deployed in Meituan food delivery
platform and has achieved significant improvement under
various metrics.

2 Related Work
In recommendation systems, the core of the reranking stage lies
in modeling the context and selecting the optimal list from the
permutation space. Existing research on reranking can be systemat-
ically classified into two principal categories[19]: generator-based
methods [13, 22, 30] and evaluator-based methods [12, 26].

Generator-based methods directly generate one list as output
by capturing the mutual influence among items. Therefore, these
generator-based methods are also called one-stage methods [24, 26].
Initially, these methods directly used behavioral logs as training
guides. For instance, Seq2slate [3] utilizes pointer-network and
MIRNN [33] utilizes GRU to determine the item order one-by-one.
Methods such as PRM [22] and DLCM [1] take the initial ranking
list as input, use RNN or self-attention to model the context-wise
signal, and output the predicted value of each item. Such methods
bring an evaluation-before-reranking problem [29] and lead to
sub-optimum. Similarly, methods such as EXTR [8] estimate the
predicted Click-Through Rate (pCTR) of each candidate item on
each candidate position, which are substantially point-wise models
and thus limited in extracting exact context. MIR [30] capturing the
set2list interactions by a permutation-equivariant module. Since it
is difficult to achieve permutation space optimization in supervised
training, some generator-based methods using evaluators [13, 16]
have become popular in recent years. For instance, ListCVAE [16]
utilizes conditional variational autoencoders (CVAE) to capture the
positional biases of items and the interdependencies within the list
distribution. GRN [13] proposes an evaluator-generator framework

2
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to replace the greedy strategy, but it can’t avoid the evaluation-
before-reranking problem [29] because it takes the rank list as
input to the generator. DCDR [18] introduces diffusion models into
the reranking stage and presents a discrete conditional diffusion
reranking framework. NAR4Rec [24] uses a non-autoregressive
generative model to speed up sequence generation. However, this
paradigm heavily depends on the accuracy of the evaluator which
makes it less promising in industrial recommendation tasks.

Evaluator-based methods try to evaluate every possible permu-
tation through a well-designed context-wise model. Due to the
strict time constraints in online systems, most existing evaluator-
based methods use a two-stage architecture, which adds a filter-
ing stage [12, 26] or generating stage [24] before the evaluating
stage to reduce the size of the candidate set. For instance, PRS [12]
adopts beam-search to generate a few candidate permutations first,
and score each permutation through a permutation-wise ranking
model. PIER [26] applies SimHash [7, 9, 20] to select top-K can-
didates from the full permutation. In industrial recommendation
systems, the concept of evaluator-based methods is broader, as any
generator-based method can be utilized in the first stage and form
a multi-channel retrieval framework [24]. However, the inconsis-
tency problem between the two stages limits the effectiveness of
the model.

3 Problem Definition
Let 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢 |𝑈 | } represent a set of |𝑈 | users which con-
sist of some profile features (e.g. user ID, gender, age) and recent
interaction history. For each user 𝑢, given a candidate set with 𝑛

items 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, the goal of reranking is to propose an
ordered list with𝑚 (𝑚 ≤ 𝑛) items 𝐿 = {𝑥1, 𝑥2, . . . , 𝑥𝑚} from O(𝐴𝑚𝑛 )
candidate space L and maximizes the listwise reward R(𝑢, 𝐿):

𝐿∗ = argmax
𝐿

R(𝑢,L), (1)

where R(𝑢, 𝐿) = ∑𝑚
𝑖=1 R(𝑢, x𝑖 ).

4 Proposed Method
In this section, we will introduce the structure of YOLOR in de-
tail. As shown in Figure 3, YOLOR mainly includes three modules,
namely the Item-level RepresentationModule (IRM), the Tree-based
Context Extraction Module (TCEM) for modeling contextual infor-
mation, and Context Cache Module (CCM). We will introduce them
in detail in the following subsections.

4.1 Item-level Representation Module
We use the Item-level Representation Module (IRM) to generate
the semantic embedding of each candidate item from the raw in-
put. First, we use an embedding layer to get the embedding of the
original input. We denote the embeddings of the original input
user profile features, context features, user behaviors sequence and
candidate items features as e𝑢 , e𝑐 , E𝑏 ∈ R𝑁𝑏×𝐷 and X ∈ R𝑛×𝐷

respectively, where 𝑁𝑏 and 𝑛 are the number of user behaviors and
candidate items, 𝐷 is the dimension of the embedding layer. Then,
we use a target attention unit to encode the interaction between
the historical behaviors of the user and the corresponding item:

x′𝑖 = Attention(X𝑖 , {E𝑏𝑗 }
𝑁𝑏

𝑗=1),∀𝑖 ∈ [𝑛], (2)

where X𝑖 ∈ R𝐷 is the 𝑖-th candidate item in X.
Then, we use MLP as a simple feature crosses unit to extract the

semantic embedding of each candidate item:

x𝑠𝑖 = MLP
(
x′𝑖 | |e

𝑢 | |e𝑐
)
,∀𝑖 ∈ [𝑛], (3)

where || represents concatenate operate.
For ease of notation, we can also write the semantic embeddings

for items in matrix form, each row of which represents one item in
the sequence, i.e.,

X𝑠 = [x𝑠1; x
𝑠
2; ...; x

𝑠
𝑛]⊤ . (4)

Note that this is just the simplest implementation. IRM is only O(𝑛)
complexity rather than O(𝐴𝑚𝑛 ), so it can be more complex.

Unlike other reranking methods that solely rely on the predicted
scores from ranking models, we directly deploy the ranking model
as IRM in our online system, which enhances the consistency of the
recommendation pipeline. The details will be discussed in Section
5.6.

4.2 Tree-based Context Extraction Module
We design the Tree-based Context Extraction Module (TCEM) to
model multi-scale contextual relationships. For the 𝑡-th item 𝑥𝑡
in the candidate list 𝐿, we construct multi-scale subsequences to
extract 𝑥𝑡 ’s local and global contextual information. First, We split
the list 𝐿 constantly until there are only two items left in the subse-
quence, then we obtain the set of all subsequence denoted as:

𝐶 = {𝐿, 𝐿1,𝑚/2, 𝐿𝑚/2+1,𝑚, 𝐿1,𝑚/4, . . . , 𝐿𝑡,𝑡+1, . . . , 𝐿𝑚−1,𝑚}, (5)

where 𝐿𝑙,𝑟 represents the subsequence of list 𝐿 from index 𝑖 to index
𝑗 , denoted as 𝐿𝑙,𝑟 = [x𝑠

𝑙
; x𝑠

𝑙+1; ...; x
𝑠
𝑟 ].

Then, we collect all subsequences containing 𝑥𝑡 , denoted as
𝐶𝑡 = {𝐿, . . . , 𝐿𝑡,𝑡+1}, and perform contextual information extraction
for each subsequence in 𝐶𝑡 : And then we input each subsequence
in 𝐶𝑡 into a Self-Attention layer (SA) [27] to extract contextual
information e𝑙,𝑟 ∈ R𝐷 :

e(1) = e1,𝑚 = SA(x𝑠1 | |x
𝑠
2 | |...| |x

𝑠
𝑚),

e(2) = e𝑙,𝑟 = SA(x𝑠
𝑙
| |x𝑠

𝑙+1 | |...| |x
𝑠
𝑟 ),

...

e(log2𝑚) = e𝑡,𝑡+1 = SA(x𝑠𝑡 | |x𝑠𝑡+1),

(6)

where || represents concatenate operate. Note that the SA layer in
the above formula does not have position encoding, which can in-
crease reusability and reduce calculations, also termed Set Attention.
Through Eq. 6, we can obtain multi-scale contextual relationships
associated with 𝑥𝑡 , denoted as X𝐶

𝑡 = [e(1) ; e(2) ; . . . ; e(log2𝑚) ] ∈
R𝐷 ·log2𝑚 .

Finally, we use a parameter-sharing fully connected layer to
predict the list-wise pCTR of each item in each permutation. Taking
the 𝑡-th item in permutation as an example still, the inputs consist
of three parts: absolute position representation of 𝑡-th position
E𝑝𝑡 ∈ R𝐷 , item representation of 𝑡-th positionX𝑠

𝑡 ∈ R𝐷 , and context
representation of 𝑡-th position X𝐶

𝑡 . Then the list-wise pCTR of the
𝑡-th item is predicted as follows:

𝑦𝑡 = 𝜎

(
FC(E𝑝𝑡 | |X

𝑠
𝑡 | |X𝐶

𝑡 )
)
, (7)

3
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Figure 3: The overall architecture of YOLOR.

where 𝜎 is the Sigmoid Function. The score of each list is easily
obtained by summing the output list-wise pCTR:

𝑦𝐿 =
∑︁

(𝑦1, 𝑦2, ..., 𝑦𝑡 , ..., 𝑦𝑚). (8)

4.3 Context Cache Module
We have obtained the item-level representation and contextual
representation of the 𝑡-th item 𝑥𝑡 through the aforementioned
IRM and TCEM modules, respectively. However, due to strict time
constraints, such a complex method cannot be applied directly to
the permutation space. Therefore, we further design a Context
Cache Module (CCM) to enable efficient reuse, which only requires
simple matrix operation.

First, we generate the set of all subsequences (including candidate
items X) in the permutation space. To avoid notational confusion,
we still denote this set as𝐶 . Clearly, the size of𝐶 is |𝐶 | = 𝐶𝑚

𝑛 +𝐶𝑚/2
𝑛 +

... +𝐶1
𝑛 . Then, based on Eq. 6, we extract contextual information to

obtain the multi-scale context representation matrix X𝐶 ∈ R |𝐶 |×𝐷 .
Next, to evaluate all candidate lists in the permutation space

L ∈ R𝐴𝑚
𝑛 ×𝑚 , we gather the required contextual information for L

from X𝐶 , denoted as:

X𝐶
L = tf .gather(X𝐶 , 𝑀𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ), (9)

where tf.gather 1 is Tensorflow’s gather operator. And𝑀𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ∈
R𝐴𝑚

𝑛 ×𝑚×log2𝑚 is a request-independent matrix as long as m and n
are fixed.

1 https://www.tensorflow.org/api_docs/python/tf/gather

Then, based on Eq. 7 and Eq. 8, we calculate the list-wise score
for each candidate list 𝑦L ∈ R𝐴𝑚

𝑛 :

𝑦L = reduce_sum
(
𝜎

(
FC(tile(𝐸𝑝 ) | |X𝐶

L)
)
, axis = −1

)
. (10)

Finally, based on Eq. 1, we select the optimal list:

𝐿∗ = argmax
𝐿

𝑦L . (11)

It should be noted that the score of each list can be conveniently
adjusted according to business needs, such as CVR (Conversion
Rate) and GMV (Gross Merchandise Volume).

4.4 Model Complexity
We perform a model complexity analysis of YOLOR to illustrate
that our model meets the standards for online deployment. As men-
tioned, reranking models face serious challenges of O(𝐴𝑚𝑛 ) candi-
date space. YOLOR uses the CCM module to reduce calculations.
The computational complexity of LRM is O(𝑛). The original com-
putational complexity of TCEM is O(𝐴𝑚𝑛 ∗ log2𝑚). But through the
CCM module, we can fully reuse the context information. The addi-
tional space complexity required by CCM isO(𝐶𝑚

𝑛 ,𝐶
𝑚/2
𝑛 , ...,𝐶2

𝑛,𝐶
1
𝑛).

Take 𝑛 =𝑚 = 8 as an example, there are a total of O(𝐴8
8) = 40320

lists in the permutation space, and CCM requires storing only
O(𝐶8

8,𝐶
4
8,𝐶

2
8,𝐶

1
8) = 107 context embeddings, a few amount of stor-

age is sufficient to enable rapid computations at the permutation
level. The remaining only O(𝐴𝑚𝑛 ) complexity in YOLOR is Eq. 10,
and the computational cost of Eq. 9 is negligible compared to that of
Eq. 10. We design the prediction layer as a single FC layer, resulting
in minimal computational complexity. Therefore, the complexity
of YOLOR is acceptable for online serving.

4
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4.5 Model Training
We train YOLOR using real data collected from online logs. The in-
put is the features of the recommended advertisement lists exposed
in reality online, and the advertising return situation, including
exposure, click, conversion, and other performance indicators, is
used as the label to supervise the training of YOLOR. First, we use
cross-entropy loss to train YOLOR, the loss of each list is calculated
as follows:

L𝑐𝑒 = − 1
𝑚

𝑚∑︁
𝑡=1

(𝑦𝑡 log(𝑦𝑡 ) + (1 − 𝑦𝑡 ) log (1 − 𝑦𝑡 )) , (12)

where subscript 𝑡 is the index of displayed items, 𝑦𝑡 represents
the real label, 𝑦𝑡 represents the predicted value,𝑚 is the length of
exposed list. Additionally, we set a dropout rate to mask contextual
information randomly.

Then, to enhance the context extraction ability, we propose GBPR
loss (Group BPR [25] loss) to enhance the contrast of the positive
and negative samples within each exposure list:

L𝑔𝑏𝑝𝑟 = − 1
𝑚

𝑚∑︁
𝑡=1

log
(
sgn(𝑦𝑖 − 𝑦 𝑗 ) (𝑦𝑖 − 𝑦 𝑗 )

)
, (13)

where subscript 𝑖 and 𝑗 are the indexes of displayed items. And
sgn(𝑥) represents sign function, sgn(𝑥) = 0 if 𝑥 = 0, sgn(𝑥) = 1 if
𝑥 > 0 and sgn(𝑥) = −1 if 𝑥 < 0.

Finally, we sample a batch of samples B from the dataset and
update YOLOR using gradient back-propagation w.r.t. the loss:

L =
1
B

∑︁
B

(
L𝑐𝑒 + 𝛼 · L𝑔𝑏𝑝𝑟

)
, (14)

where 𝛼 is the coefficient to balance the two losses.

5 Experiments
To validate the superior performance of YOLOR, we conducted
extensive offline experiments on the Meituan dataset and verified
the superiority of YOLOR in online A/B tests. In this section, we
first introduce the experimental setup, including the dataset and
baseline. Then, in Section 5.2, we present the results and analysis
of various reranking methods in both offline and online A/B tests.

5.1 Experimental Setup
5.1.1 Dataset. In order to verify the effectiveness of YOLOR, we
conduct sufficient experiments on both public dataset and indus-
trial dataset. For public dataset, we choose Taobao Ad dataset. For
industrial dataset, we use real-world data collected from Meituan
food delivery platform. Table 1 gives a brief introduction to the
datasets.

Table 1: Statistics of datasets.

Dataset #Users #Items #Records
Taobao Ad 1,141,729 99,815 26,557,961
Meituan 5,648,310 14,054,691 161,247,488

• Taobao Ad 2. It is a public dataset collected from the display
advertising system of Taobao. This dataset contains more than
26 million interaction records of 1.14 million users within 8 days.
Each sample comprises five features: user ID, timestamp, behav-
ior type, item brand ID, and category ID. It includes four behavior
types: browse, cart, like, and buy, and each behavior is times-
tamped. We use the first 7 days as training samples (20170506-
20170512), and the 8th day as test samples (20170513).

• Meituan. It is an industrial dataset collected from the Meituan
food delivery platform during August 2024, which contains 161
million interaction records of 5.6 million users within 15 days.
The dataset includes 239 features, two labels: click and conver-
sion, and collects all items on the same page as one record. We
use the data of the first 14 days as the training set, and the data
of the last 1 day as the test set.
Note that all samples are list-level, that is, each sample contains

all items in an exposed list. We filter out samples whose labels are
all 0 or all 1.

5.1.2 Baseline. The following six state-of-the-art reranking meth-
ods are chosen for comparative experiments and divided into three
groups. We select DNN and DeepFM as point-wise baselines (Group
I), PRM and MIR as one-stage generator-based baselines (Group II),
and Edge-Rerank and PIER as two-stage evaluator-based baseline
methods (Group III). A brief introduction of these methods is as
follows:
• DNN[11] is a basic deep learning method for CTR prediction,

which applies MLP for high-order feature interaction.
• DeepFM[15] is a general deepmodel for recommendation, which

combines a factorization machine component and a deep neural
network component.

• PRM[22] adjusts an initial list by applying the self-attention
mechanism to capture the mutual influence between items.

• MIR[30] learns permutation-equivariant representations for the
inputted items via self-attention. mechanism to capture the mu-
tual influence between items.

• Edge-Rerank[14] generates the context-aware sequence with
adaptive beam search on estimate scores.

• PIER[26] applies hashing algorithm to select top-k candidates
from the full permutation based on user interests.

5.1.3 Evaluation Metrics. We adopt several metrics, i.e., AUC
(Area Under ROC Curve) andHR (Hit Ratio) to evaluate YOLOR
in offline experiments. To make AUC more suitable for reranking
models, we adapt AUC as GAUC[32] (average intra-list AUC) in
our experiments. AUC measures the global estimated accuracy, and
GAUCmeasures the estimated accuracy within the list. High values
in both AUC and GAUC indicate that the model excels at ranking
positive samples in front of negative samples, demonstrating strong
discriminative power across different evaluation contexts. In online
experiments, we adopt CTR and GMV as evaluation metrics.

We useHR (Hit Ratio) [2] to evaluate the consistency of the two
stages. For each data, HR is 1 only when the permutations selected
by GSU contain the best permutation. Obviously, the HR metrics
are only meaningful with evaluator-based reranking methods. The
results of HR can be seen in Section 5.3.

2 https://tianchi.aliyun.com/dataset/56
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It is worth noting that AUC/GAUC and HR can measure two
aspects of two-stage methods. AUC/GAUC measures the model’s
ability to evaluate an ordered list, while HR measures the consis-
tency of the two stages. The deficiency of any indicator will reduce
the recommendation effect. For example, when the reranking model
directly returns the result of the ranking stage, the HR will be up
to 1 but the AUC will decrease. When the reranking model is very
complex, the AUC will increase but the increased time-cost will
lead to a decrease in the HR.

5.1.4 Implementation Details. We implement all the deep learning
baselines and YOLOR with TensorFlow 1.15.0 using NVIDIA A100-
80GB GPU. For all comparison models and our YOLOR model, we
adopt Adam as the optimizer with the learning rate fixed to 0.001
and initialize the model parameters with normal distribution by
setting the mean and standard deviation to 0 and 0.01, respectively.
The batch size is 1024, the embedding size is 8. The hidden layer
sizes of MLP in Eq. 3 are (1024, 256, 128). For the Taobao Ad dataset,
the length of the ranking list and reranking list are both 5, thus
the length of full permutation is 120. For Metuan dataset page, we
select 8 items from the initial ranking list which contains 8 items,
thus the length of full permutation is 𝐴8

8 = 40, 320. For the baseline
methods, we follow the settings in PIER and set the number of
candidate lists to 100. Similarly, we follow the edge settings and set
the beam size to 3. All experiments are repeated 5 times and the
averaged results are reported.

5.2 Overall Performance
Here we show the results of our proposed method YOLOR. All
results are averaged from 5 experiments. As can be seen in Ta-
ble 2 and Table 3, YOLOR outperforms baselines including recent
two-stage evaluator-based reranking methods. We have the follow-
ing observations from the experimental results: i) All re-ranking
listwise model (e.g. PRM, MIR) makes great improvements over
point-wise model (e.g. DNN, DeepFM) by modeling the mutual
influence among contextual items, which verifies the impact of
context on user clicks behavior. ii) Compared with generator-based
methods(e.g. PRM, MIR), evaluator-based methods also improve
the CTR prediction because they evaluate more candidate lists.
iii) Our proposed YOLOR brings 0.0035/0.0047 absolute AUC and
0.0113/0.0111 absolute GAUC on Taobao/Meituan dataset gains
over the state-of-the-art independent baseline which is a significant
improvement in industrial recommendation system.

Table 2: Comparison between YOLOR and baseline methods
on the Taobao Ad dataset. The best and second-best results
in each column are in bold and underlined.

Model AUC GAUC Loss

DNN 0.5869 0.8130 0.1878
DeepFM 0.5891 0.8132 0.1866
PRM 0.6152 0.8163 0.1842
MIR 0.6147 0.8169 0.1853
Edge-Rerank 0.6286 0.8201 0.1781
PIER 0.6316 0.8210 0.1758
YOLOR 0.6351 0.8323 0.1743

Table 3: Comparison between YOLOR and baseline methods
on Meituan. The best and second-best results in each column
are in bold and underlined.

Model AUC GAUC Loss

DNN 0.7347 0.7418 0.1162
DeepFM 0.7392 0.7442 0.1154
PRM 0.7573 0.7595 0.1108
MIR 0.7598 0.7603 0.1101
Edge-Rerank 0.7586 0.7605 0.1097
PIER 0.7622 0.7638 0.1068
YOLOR 0.7669 0.7749 0.1032

5.3 Consistency Analysis
We compared the HR (Hit Ratio) of Edge-Rerank, PIER and YOLOR
under different inference times on Taobao Ad and Meituan datasets
(only evaluator-based methods have HR metrics). All experiments
were performed on NVIDIA A100-80GB GPU, with the batch size
set to 1024 and averaged 100 times. In the Meituan data set, there
are a total of 𝐴8

8 = 40, 320 candidate lists. We carefully adjust the
number of candidate lists of the model to make the model time-
consuming equal, and keep the error within 1 ms. For YOLOR,
we use random generation to conduct experiments. As shown in
Figure 4, we have the following observations: i) YOLOR performs
well across all periods. This is because YOLOR is a very efficient
method that is capable of retrieving more candidate lists at the
same time. ii) As time increases, the HR of all methods improves,
since the amount of retrieval lists for all methods becomes larger.
iii) YOLOR can traverse all candidate lists within 50ms, achieving
an HR of 1.

(a) HR on Taobao Ad (b) HR on Meituan

Figure 4: HR results of YOLOR and baseline methods under
different cost conditions on Taobao Ad andMeituan datasets.

5.4 Ablation Study
To assess the effectiveness of each component in YOLOR, we con-
ducted a series of ablation studies using the Taobao Ad and Meituan
datasets. Specifically, we build several variants of the YOLOR:
• w/o IRM. A variant of YOLOR without the IRM, which means

only using candidate items’ raw embedding X instead of the
semantic embedding X𝑠 .
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• w/o TCEM. A variant of YOLOR without the TCEM, which is
replaced by a single global self-attention.

• w/o GBPR. A variant of YOLOR without the GBPR loss in Eq. 13.

Table 4: The contributions of different components of
YOLOR.

Model Taobao Ad Meituan
AUC GAUC AUC GAUC

w/o IRM 0.5712 0.7940 0.7332 0.7454
w/o TCEM 0.6236 0.8225 0.7574 0.7621
w/o GBPR 0.6305 0.8207 0.7629 0.7632
YOLOR 0.6351 0.8323 0.7669 0.7749

Table 4 shows the results of the ablation study, and we can
draw the following conclusions: 1) without the IRM, the model’s
performance decreases significantly because accurate point-wise
predictions are the basis of YOLOR; 2) without TCEM, the perfor-
mance of the model declines, indicating that TCEM has stronger
context extraction capabilities comparing with single self-attention;
3) without GBPR, the performance of the model declines, indicating
that the intra-list loss is valid for reranking.

To assess the efficiency of CCM, we remove the CCMmodule and
randomly sample K candidate lists to evaluate their HR and time-
consuming. And we set different K values for detailed comparison.

Table 5: HR and Cost of different sample numbers without
CCM.

Settings Taobao Ad Settings Meituan
HR Cost (ms) HR Cost (ms)

K=5 0.0417 4.7 K=100 0.0025 56.1
K=10 0.0833 7.1 K=200 0.0050 103.4
K=20 0.1667 11.8 K=300 0.0074 169.8
K=50 0.4167 28.6 K=400 0.0099 217.7

As shown in Table 5, after the CCM module is removed, all
vectors in both IRM and TCEM must be recalculated, which signifi-
cantly increases the average time cost. Furthermore, due to random
sampling constraints, the Hit Ratio (HR) shows a marked decline
as it is sensitive to the number of evaluated candidate lists.

5.5 Hyperparameter Analysis
We analyze the impact of weight 𝛼 in GBPR loss. Table 6 shows
the results of our experiments and we can find that 𝛼 significantly
affects YOLOR’s AUC/GAUC metric. As 𝛼 increases, AUC first
increases and then decreases while GAUC increases and stabilizes
at a high level.

5.6 Performance on Online System
To evaluate the online performance of YOLOR, we deployed YOLOR
on the Meituan Shichiguan business as shown in Figure 5.

We also conducted a rigorous A/B test for three weeks, from
March 2025 to April 2025. Specifically, we assigned YOLOR with

Table 6: The effect of parameter weight 𝛼 in GBPR loss.

Settings Taobao Ad Meituan
AUC GAUC AUC GAUC

𝛼=0 0.6305 0.8207 0.7629 0.7632
𝛼=0.01 0.6334 0.8297 0.7641 0.7704
𝛼=0.05 0.6351 0.8323 0.7669 0.7749
𝛼=0.1 0.6345 0.8323 0.7664 0.7749
𝛼=0.5 0.6341 0.8323 0.7658 0.7750

Figure 5: Architecture of the online deployment with YOLOR.

30% traffic, while the remaining 70% traffic was assigned to baseline
(PIER). Table 7 shows the online performance of YOLOR. Compared
to the baseline model (PIER), YOLOR has increased the CTR by
5.13% and the GMV by 7.64%, which are very significant growth to
business. Besides, we find that time consumption has not increased
at all, which is an important indicator to determine whether it
can be applied to large-scale industrial scenarios. Now, YOLOR is
deployed on the Meituan food delivery platform and serves millions
of users.

Table 7: Online A/B test result.

Method CTR GMV Cost (ms) Time-out
YOLOR +5.13% +7.64% -0.003 -0.001%

6 Conclusion
In this paper, we identify the inherent trade-off issues in two-stage
re-ranking methods, which cannot simultaneously balance effi-
ciency and effectiveness. To overcome this limitation, we propose
a tree-based approach, named YOLOR, designed to achieve both
"permutation-level efficiency" and "list-level effectiveness." Specifi-
cally, we design a Tree-based Context Extraction Module (TCEM)
that integrates multi-scale contextual information to accurately
evaluate the list. Additionally, we develop a Context Cache Module
(CCM) to enable efficient reuse of multi-scale contextual infor-
mation across lists. The efficiency of YOLOR allows you to only
evaluate once. Both offline experiments and online A/B tests show
that YOLOR significantly outperformed other existing reranking
baselines. We have deployed YOLOR on the Meituan food delivery
platform.
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