
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

You Only evaLuate Once: A Tree-based Rerank Method at
Meituan

Shuli Wang∗
Meituan

Chengdu, China
wangshuli03@meituan.com

Yinqiu Huang
Meituan

Chengdu, China
huangyinqiu@meituan.com

Changhao Li
Meituan

Chengdu, China
lichanghao@meituan.com

Yuan Zhou
Meituan

Chengdu, China
zhouyuan22@meituan.com

Yonggang Liu
Meituan

Chengdu, China
liuyonggang02@meituan.com

Yongqiang Zhang
Meituan

Chengdu, China
zhangyongqiang08@meituan.com

Yinhua Zhu
Meituan

Chengdu, China
zhuyinhua@meituan.com

Haitao Wang
Meituan

Chengdu, China
wanghaitao13@meituan.com

Xingxing Wang
Meituan

Beijing, China
wangxingxing04@meituan.com

Abstract
Reranking plays a crucial role in modern recommender systems
by capturing the mutual influences within the list. Due to the in-
herent challenges of combinatorial search spaces, most methods
adopt a two-stage search paradigm: a simple General Search Unit
(GSU) efficiently reduces the candidate space, and an Exact Search
Unit (ESU) effectively selects the optimal sequence. These meth-
ods essentially involve making trade-offs between effectiveness
and efficiency, while suffering from a severe inconsistency prob-
lem, that is, the GSU often misses high-value lists from ESU. To
address this problem, we propose YOLOR, a one-stage reranking
method that removes the GSU while retaining only the ESU. Specifi-
cally, YOLOR includes: (1) a Tree-based Context Extraction Module
(TCEM) that hierarchically aggregates muls si-scale contextual fea-
tures to achieve "list-level effectiveness", and (2) a Context Cache
Module (CCM) that enables efficient feature reuse across candidate
permutations to achieve "permutation-level efficiency". Extensive
experiments across public and industry datasets validate YOLOR’s
performance and we have successfully deployed YOLOR on the
Meituan food delivery platform.

CCS Concepts
• Information systems→Retrievalmodels and ranking;Com-
putational advertising.

∗ Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, Woodstock, NY
© 2018 ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

Keywords
Recommender Systems, E-commerce, Reranking

ACM Reference Format:
ShuliWang, YinqiuHuang, Changhao Li, Yuan Zhou, Yonggang Liu, Yongqiang
Zhang, Yinhua Zhu, Haitao Wang, and Xingxing Wang. 2018. You Only
evaLuate Once: A Tree-based Rerank Method at Meituan . In Proceedings
of Make sure to enter the correct conference title from your rights confirma-
tion email (Conference acronym ’XX). ACM, New York, NY, USA, 8 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
E-commerce platforms, such as Meituan and Taobao, need to pro-
vide users with personalized services from millions of items. As
shown in Figure 1, list recommendation is the main display form
on Meituan food delivery platform. To improve recommendation
efficiency, personalized recommendation systems generally include
three stages: matching, ranking, and reranking. The ranking models
evaluate the recommended items respectively, focusing on feature
interactions [10, 15, 17], user preference modeling [23, 31, 32], and
so on. However, ranking methods ignore the crucial mutual influ-
ence among contextual items. Research [1, 4, 5, 21] indicates that
optimizing a listwise utility during the reranking stage is a more
advantageous strategy, as it capitalizes on the mutual influences
between items within the list to enhance overall performance.

The key challenge in reranking is exploring optimal lists within
the vast permutation space. Existing reranking methods can be clas-
sified into two categories [13, 26]. The first category is generator-
based methods. These methods generate the list by some heuristic
strategy [3, 14, 33], or generate a suboptimal list with greedy local
sight [13]. Despite considering the context, these methods fail to
ensure the quality of the generated lists and obtain optimal results,
due to issues such as evaluation-before-reranking problems [29].
The second category is evaluator-based methods [12, 26, 29]. These
methods try to evaluate every possible permutation to get the op-
timal list. However, due to the strict time constraints in online
systems, most existing evaluator-based methods use a two-stage
architecture, which adds a filtering submodel [12, 26] or generating

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1: List recommendations on Meituan food delivery
platform.

submodel [24] as the General Search Unit (GSU) before the Exact
Search Unit (ESU) to reduce the size of the candidate space.

However, existing two-stage reranking methods fall into trade-
off and face two significant issues. Firstly, the inherent incon-
sistency problem between the two stages limits the effective-
ness of the GSU. GSU is expected to search high-value lists to
ESU. However, due to strict time constraints, the GSU can only be
designed simply but not precisely. Although some recent generative
reranking methods [13, 18, 24] leverage the ESU as a teacher to
guide the GSU, GSU’s inconsistency issues remain serious [26, 28]
and lead to unsatisfactory hit ratio due to the vast permutation
space. The inconsistency problem arises from the trade-offs in-
herent in the two-stage model [6] which is challenging to solve.
Secondly, lacking of multi-scale contextual information lim-
its the effectiveness of ESU. As shown in Figure 1, in the list
recommendation tasks, the context information between items is
complex, and the impact windows between items may span 2, 4 or
even the entire list.

Figure 2: Demo of YOLOR. When evaluating the 4th item,
we can obtain its precise score by combining its multi-scale
contextual information and achieve efficient reuse through
caching.

To resolve the aforementioned issues, we propose a tree-based
Rerank framework that You Only evaLuate Once, termed YOLOR,
which removes the GSU while retaining only the ESU. We resolve
the efficiency-effectiveness trade-off by simultaneously address-
ing "permutation-level efficiency" and "list-level effectiveness". As
shown in Figure 2, for effectiveness at the list level, we designed a
tree-based context extraction module to capture contextual infor-
mation at different scales. For efficiency at the permutation level,
we developed a context caching module to enable efficient reuse of
multi-scale contextual information across lists. It is an extremely
time-saving method that allows you to predict all permutations.

The main contributions of our work are summarized as follows:

• We propose a novel framework that resolves the efficiency-
effectiveness trade-off through simultaneous optimization
of "permutation-level efficiency" and "list-level effective-
ness". To the best of our knowledge, we are the first to
introduce this concept.

• Based on this idea, we design the YOLOR model, which
contains the TCEM module to extract multi-scale contex-
tual information and the CCM module to reduce repeated
calculations.

• We conduct extensive experiments on both offline and real-
world industrial datasets from Meituan. Experimental re-
sults demonstrate the effectiveness of YOLOR. It is notable
that YOLOR has been deployed in Meituan food delivery
platform and has achieved significant improvement under
various metrics.

2 Related Work
In recommendation systems, the core of the reranking stage lies
in modeling the context and selecting the optimal list from the
permutation space. Existing research on reranking can be systemat-
ically classified into two principal categories[19]: generator-based
methods [13, 22, 30] and evaluator-based methods [12, 26].

Generator-based methods directly generate one list as output
by capturing the mutual influence among items. Therefore, these
generator-based methods are also called one-stage methods [24, 26].
Initially, these methods directly used behavioral logs as training
guides. For instance, Seq2slate [3] utilizes pointer-network and
MIRNN [33] utilizes GRU to determine the item order one-by-one.
Methods such as PRM [22] and DLCM [1] take the initial ranking
list as input, use RNN or self-attention to model the context-wise
signal, and output the predicted value of each item. Such methods
bring an evaluation-before-reranking problem [29] and lead to
sub-optimum. Similarly, methods such as EXTR [8] estimate the
predicted Click-Through Rate (pCTR) of each candidate item on
each candidate position, which are substantially point-wise models
and thus limited in extracting exact context. MIR [30] capturing the
set2list interactions by a permutation-equivariant module. Since it
is difficult to achieve permutation space optimization in supervised
training, some generator-based methods using evaluators [13, 16]
have become popular in recent years. For instance, ListCVAE [16]
utilizes conditional variational autoencoders (CVAE) to capture the
positional biases of items and the interdependencies within the list
distribution. GRN [13] proposes an evaluator-generator framework

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

You Only evaLuate Once: A Tree-based Rerank Method at Meituan Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

to replace the greedy strategy, but it can’t avoid the evaluation-
before-reranking problem [29] because it takes the rank list as
input to the generator. DCDR [18] introduces diffusion models into
the reranking stage and presents a discrete conditional diffusion
reranking framework. NAR4Rec [24] uses a non-autoregressive
generative model to speed up sequence generation. However, this
paradigm heavily depends on the accuracy of the evaluator which
makes it less promising in industrial recommendation tasks.

Evaluator-based methods try to evaluate every possible permu-
tation through a well-designed context-wise model. Due to the
strict time constraints in online systems, most existing evaluator-
based methods use a two-stage architecture, which adds a filter-
ing stage [12, 26] or generating stage [24] before the evaluating
stage to reduce the size of the candidate set. For instance, PRS [12]
adopts beam-search to generate a few candidate permutations first,
and score each permutation through a permutation-wise ranking
model. PIER [26] applies SimHash [7, 9, 20] to select top-K can-
didates from the full permutation. In industrial recommendation
systems, the concept of evaluator-based methods is broader, as any
generator-based method can be utilized in the first stage and form
a multi-channel retrieval framework [24]. However, the inconsis-
tency problem between the two stages limits the effectiveness of
the model.

3 Problem Definition
Let 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢 |𝑈 | } represent a set of |𝑈 | users which con-
sist of some profile features (e.g. user ID, gender, age) and recent
interaction history. For each user 𝑢, given a candidate set with 𝑛

items 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, the goal of reranking is to propose an
ordered list with𝑚 (𝑚 ≤ 𝑛) items 𝐿 = {𝑥1, 𝑥2, . . . , 𝑥𝑚} from O(𝐴𝑚𝑛)
candidate space L and maximizes the listwise reward R(𝑢, 𝐿):

𝐿∗ = argmax
𝐿

R(𝑢,L), (1)

where R(𝑢, 𝐿) = ∑𝑚
𝑖=1 R(𝑢, x𝑖).

4 Proposed Method
In this section, we will introduce the structure of YOLOR in de-
tail. As shown in Figure 3, YOLOR mainly includes three modules,
namely the Item-level RepresentationModule (IRM), the Tree-based
Context Extraction Module (TCEM) for modeling contextual infor-
mation, and Context Cache Module (CCM). We will introduce them
in detail in the following subsections.

4.1 Item-level Representation Module
We use the Item-level Representation Module (IRM) to generate
the semantic embedding of each candidate item from the raw in-
put. First, we use an embedding layer to get the embedding of the
original input. We denote the embeddings of the original input
user profile features, context features, user behaviors sequence and
candidate items features as e𝑢 , e𝑐 , E𝑏 ∈ R𝑁𝑏×𝐷 and X ∈ R𝑛×𝐷

respectively, where 𝑁𝑏 and 𝑛 are the number of user behaviors and
candidate items, 𝐷 is the dimension of the embedding layer. Then,
we use a target attention unit to encode the interaction between
the historical behaviors of the user and the corresponding item:

x′𝑖 = Attention(X𝑖 , {E𝑏𝑗 }
𝑁𝑏

𝑗=1),∀𝑖 ∈ [𝑛], (2)

where X𝑖 ∈ R𝐷 is the 𝑖-th candidate item in X.
Then, we use MLP as a simple feature crosses unit to extract the

semantic embedding of each candidate item:

x𝑠𝑖 = MLP
(
x′𝑖 | |e

𝑢 | |e𝑐
)
,∀𝑖 ∈ [𝑛], (3)

where || represents concatenate operate.
For ease of notation, we can also write the semantic embeddings

for items in matrix form, each row of which represents one item in
the sequence, i.e.,

X𝑠 = [x𝑠1; x
𝑠
2; ...; x

𝑠
𝑛]⊤ . (4)

Note that this is just the simplest implementation. IRM is only O(𝑛)
complexity rather than O(𝐴𝑚𝑛), so it can be more complex.

Unlike other reranking methods that solely rely on the predicted
scores from ranking models, we directly deploy the ranking model
as IRM in our online system, which enhances the consistency of the
recommendation pipeline. The details will be discussed in Section
5.6.

4.2 Tree-based Context Extraction Module
We design the Tree-based Context Extraction Module (TCEM) to
model multi-scale contextual relationships. For the 𝑡-th item 𝑥𝑡
in the candidate list 𝐿, we construct multi-scale subsequences to
extract 𝑥𝑡 ’s local and global contextual information. First, We split
the list 𝐿 constantly until there are only two items left in the subse-
quence, then we obtain the set of all subsequence denoted as:

𝐶 = {𝐿, 𝐿1,𝑚/2, 𝐿𝑚/2+1,𝑚, 𝐿1,𝑚/4, . . . , 𝐿𝑡,𝑡+1, . . . , 𝐿𝑚−1,𝑚}, (5)

where 𝐿𝑙,𝑟 represents the subsequence of list 𝐿 from index 𝑖 to index
𝑗 , denoted as 𝐿𝑙,𝑟 = [x𝑠

𝑙
; x𝑠

𝑙+1; ...; x
𝑠
𝑟].

Then, we collect all subsequences containing 𝑥𝑡 , denoted as
𝐶𝑡 = {𝐿, . . . , 𝐿𝑡,𝑡+1}, and perform contextual information extraction
for each subsequence in 𝐶𝑡 : And then we input each subsequence
in 𝐶𝑡 into a Self-Attention layer (SA) [27] to extract contextual
information e𝑙,𝑟 ∈ R𝐷 :

e(1) = e1,𝑚 = SA(x𝑠1 | |x
𝑠
2 | |...| |x

𝑠
𝑚),

e(2) = e𝑙,𝑟 = SA(x𝑠
𝑙
| |x𝑠

𝑙+1 | |...| |x
𝑠
𝑟),

...

e(log2𝑚) = e𝑡,𝑡+1 = SA(x𝑠𝑡 | |x𝑠𝑡+1),

(6)

where || represents concatenate operate. Note that the SA layer in
the above formula does not have position encoding, which can in-
crease reusability and reduce calculations, also termed Set Attention.
Through Eq. 6, we can obtain multi-scale contextual relationships
associated with 𝑥𝑡 , denoted as X𝐶

𝑡 = [e(1) ; e(2) ; . . . ; e(log2𝑚)] ∈
R𝐷 ·log2𝑚 .

Finally, we use a parameter-sharing fully connected layer to
predict the list-wise pCTR of each item in each permutation. Taking
the 𝑡-th item in permutation as an example still, the inputs consist
of three parts: absolute position representation of 𝑡-th position
E𝑝𝑡 ∈ R𝐷 , item representation of 𝑡-th positionX𝑠

𝑡 ∈ R𝐷 , and context
representation of 𝑡-th position X𝐶

𝑡 . Then the list-wise pCTR of the
𝑡-th item is predicted as follows:

𝑦𝑡 = 𝜎

(
FC(E𝑝𝑡 | |X

𝑠
𝑡 | |X𝐶

𝑡)
)
, (7)

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 3: The overall architecture of YOLOR.

where 𝜎 is the Sigmoid Function. The score of each list is easily
obtained by summing the output list-wise pCTR:

𝑦𝐿 =
∑︁

(𝑦1, 𝑦2, ..., 𝑦𝑡 , ..., 𝑦𝑚). (8)

4.3 Context Cache Module
We have obtained the item-level representation and contextual
representation of the 𝑡-th item 𝑥𝑡 through the aforementioned
IRM and TCEM modules, respectively. However, due to strict time
constraints, such a complex method cannot be applied directly to
the permutation space. Therefore, we further design a Context
Cache Module (CCM) to enable efficient reuse, which only requires
simple matrix operation.

First, we generate the set of all subsequences (including candidate
items X) in the permutation space. To avoid notational confusion,
we still denote this set as𝐶 . Clearly, the size of𝐶 is |𝐶 | = 𝐶𝑚

𝑛 +𝐶𝑚/2
𝑛 +

... +𝐶1
𝑛 . Then, based on Eq. 6, we extract contextual information to

obtain the multi-scale context representation matrix X𝐶 ∈ R |𝐶 |×𝐷 .
Next, to evaluate all candidate lists in the permutation space

L ∈ R𝐴𝑚
𝑛 ×𝑚 , we gather the required contextual information for L

from X𝐶 , denoted as:

X𝐶
L = tf .gather(X𝐶 , 𝑀𝑖𝑛𝑑𝑖𝑐𝑒𝑠), (9)

where tf.gather 1 is Tensorflow’s gather operator. And𝑀𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ∈
R𝐴𝑚

𝑛 ×𝑚×log2𝑚 is a request-independent matrix as long as m and n
are fixed.

1 https://www.tensorflow.org/api_docs/python/tf/gather

Then, based on Eq. 7 and Eq. 8, we calculate the list-wise score
for each candidate list 𝑦L ∈ R𝐴𝑚

𝑛 :

𝑦L = reduce_sum
(
𝜎

(
FC(tile(𝐸𝑝) | |X𝐶

L)
)
, axis = −1

)
. (10)

Finally, based on Eq. 1, we select the optimal list:

𝐿∗ = argmax
𝐿

𝑦L . (11)

It should be noted that the score of each list can be conveniently
adjusted according to business needs, such as CVR (Conversion
Rate) and GMV (Gross Merchandise Volume).

4.4 Model Complexity
We perform a model complexity analysis of YOLOR to illustrate
that our model meets the standards for online deployment. As men-
tioned, reranking models face serious challenges of O(𝐴𝑚𝑛) candi-
date space. YOLOR uses the CCM module to reduce calculations.
The computational complexity of LRM is O(𝑛). The original com-
putational complexity of TCEM is O(𝐴𝑚𝑛 ∗ log2𝑚). But through the
CCM module, we can fully reuse the context information. The addi-
tional space complexity required by CCM isO(𝐶𝑚

𝑛 ,𝐶
𝑚/2
𝑛 , ...,𝐶2

𝑛,𝐶
1
𝑛).

Take 𝑛 =𝑚 = 8 as an example, there are a total of O(𝐴8
8) = 40320

lists in the permutation space, and CCM requires storing only
O(𝐶8

8,𝐶
4
8,𝐶

2
8,𝐶

1
8) = 107 context embeddings, a few amount of stor-

age is sufficient to enable rapid computations at the permutation
level. The remaining only O(𝐴𝑚𝑛) complexity in YOLOR is Eq. 10,
and the computational cost of Eq. 9 is negligible compared to that of
Eq. 10. We design the prediction layer as a single FC layer, resulting
in minimal computational complexity. Therefore, the complexity
of YOLOR is acceptable for online serving.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

You Only evaLuate Once: A Tree-based Rerank Method at Meituan Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

4.5 Model Training
We train YOLOR using real data collected from online logs. The in-
put is the features of the recommended advertisement lists exposed
in reality online, and the advertising return situation, including
exposure, click, conversion, and other performance indicators, is
used as the label to supervise the training of YOLOR. First, we use
cross-entropy loss to train YOLOR, the loss of each list is calculated
as follows:

L𝑐𝑒 = − 1
𝑚

𝑚∑︁
𝑡=1

(𝑦𝑡 log(𝑦𝑡) + (1 − 𝑦𝑡) log (1 − 𝑦𝑡)) , (12)

where subscript 𝑡 is the index of displayed items, 𝑦𝑡 represents
the real label, 𝑦𝑡 represents the predicted value,𝑚 is the length of
exposed list. Additionally, we set a dropout rate to mask contextual
information randomly.

Then, to enhance the context extraction ability, we propose GBPR
loss (Group BPR [25] loss) to enhance the contrast of the positive
and negative samples within each exposure list:

L𝑔𝑏𝑝𝑟 = − 1
𝑚

𝑚∑︁
𝑡=1

log
(
sgn(𝑦𝑖 − 𝑦 𝑗) (𝑦𝑖 − 𝑦 𝑗)

)
, (13)

where subscript 𝑖 and 𝑗 are the indexes of displayed items. And
sgn(𝑥) represents sign function, sgn(𝑥) = 0 if 𝑥 = 0, sgn(𝑥) = 1 if
𝑥 > 0 and sgn(𝑥) = −1 if 𝑥 < 0.

Finally, we sample a batch of samples B from the dataset and
update YOLOR using gradient back-propagation w.r.t. the loss:

L =
1
B

∑︁
B

(
L𝑐𝑒 + 𝛼 · L𝑔𝑏𝑝𝑟

)
, (14)

where 𝛼 is the coefficient to balance the two losses.

5 Experiments
To validate the superior performance of YOLOR, we conducted
extensive offline experiments on the Meituan dataset and verified
the superiority of YOLOR in online A/B tests. In this section, we
first introduce the experimental setup, including the dataset and
baseline. Then, in Section 5.2, we present the results and analysis
of various reranking methods in both offline and online A/B tests.

5.1 Experimental Setup
5.1.1 Dataset. In order to verify the effectiveness of YOLOR, we
conduct sufficient experiments on both public dataset and indus-
trial dataset. For public dataset, we choose Taobao Ad dataset. For
industrial dataset, we use real-world data collected from Meituan
food delivery platform. Table 1 gives a brief introduction to the
datasets.

Table 1: Statistics of datasets.

Dataset #Users #Items #Records
Taobao Ad 1,141,729 99,815 26,557,961
Meituan 5,648,310 14,054,691 161,247,488

• Taobao Ad 2. It is a public dataset collected from the display
advertising system of Taobao. This dataset contains more than
26 million interaction records of 1.14 million users within 8 days.
Each sample comprises five features: user ID, timestamp, behav-
ior type, item brand ID, and category ID. It includes four behavior
types: browse, cart, like, and buy, and each behavior is times-
tamped. We use the first 7 days as training samples (20170506-
20170512), and the 8th day as test samples (20170513).

• Meituan. It is an industrial dataset collected from the Meituan
food delivery platform during August 2024, which contains 161
million interaction records of 5.6 million users within 15 days.
The dataset includes 239 features, two labels: click and conver-
sion, and collects all items on the same page as one record. We
use the data of the first 14 days as the training set, and the data
of the last 1 day as the test set.
Note that all samples are list-level, that is, each sample contains

all items in an exposed list. We filter out samples whose labels are
all 0 or all 1.

5.1.2 Baseline. The following six state-of-the-art reranking meth-
ods are chosen for comparative experiments and divided into three
groups. We select DNN and DeepFM as point-wise baselines (Group
I), PRM and MIR as one-stage generator-based baselines (Group II),
and Edge-Rerank and PIER as two-stage evaluator-based baseline
methods (Group III). A brief introduction of these methods is as
follows:
• DNN[11] is a basic deep learning method for CTR prediction,

which applies MLP for high-order feature interaction.
• DeepFM[15] is a general deepmodel for recommendation, which

combines a factorization machine component and a deep neural
network component.

• PRM[22] adjusts an initial list by applying the self-attention
mechanism to capture the mutual influence between items.

• MIR[30] learns permutation-equivariant representations for the
inputted items via self-attention. mechanism to capture the mu-
tual influence between items.

• Edge-Rerank[14] generates the context-aware sequence with
adaptive beam search on estimate scores.

• PIER[26] applies hashing algorithm to select top-k candidates
from the full permutation based on user interests.

5.1.3 Evaluation Metrics. We adopt several metrics, i.e., AUC
(Area Under ROC Curve) andHR (Hit Ratio) to evaluate YOLOR
in offline experiments. To make AUC more suitable for reranking
models, we adapt AUC as GAUC[32] (average intra-list AUC) in
our experiments. AUC measures the global estimated accuracy, and
GAUCmeasures the estimated accuracy within the list. High values
in both AUC and GAUC indicate that the model excels at ranking
positive samples in front of negative samples, demonstrating strong
discriminative power across different evaluation contexts. In online
experiments, we adopt CTR and GMV as evaluation metrics.

We useHR (Hit Ratio) [2] to evaluate the consistency of the two
stages. For each data, HR is 1 only when the permutations selected
by GSU contain the best permutation. Obviously, the HR metrics
are only meaningful with evaluator-based reranking methods. The
results of HR can be seen in Section 5.3.

2 https://tianchi.aliyun.com/dataset/56

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

It is worth noting that AUC/GAUC and HR can measure two
aspects of two-stage methods. AUC/GAUC measures the model’s
ability to evaluate an ordered list, while HR measures the consis-
tency of the two stages. The deficiency of any indicator will reduce
the recommendation effect. For example, when the reranking model
directly returns the result of the ranking stage, the HR will be up
to 1 but the AUC will decrease. When the reranking model is very
complex, the AUC will increase but the increased time-cost will
lead to a decrease in the HR.

5.1.4 Implementation Details. We implement all the deep learning
baselines and YOLOR with TensorFlow 1.15.0 using NVIDIA A100-
80GB GPU. For all comparison models and our YOLOR model, we
adopt Adam as the optimizer with the learning rate fixed to 0.001
and initialize the model parameters with normal distribution by
setting the mean and standard deviation to 0 and 0.01, respectively.
The batch size is 1024, the embedding size is 8. The hidden layer
sizes of MLP in Eq. 3 are (1024, 256, 128). For the Taobao Ad dataset,
the length of the ranking list and reranking list are both 5, thus
the length of full permutation is 120. For Metuan dataset page, we
select 8 items from the initial ranking list which contains 8 items,
thus the length of full permutation is 𝐴8

8 = 40, 320. For the baseline
methods, we follow the settings in PIER and set the number of
candidate lists to 100. Similarly, we follow the edge settings and set
the beam size to 3. All experiments are repeated 5 times and the
averaged results are reported.

5.2 Overall Performance
Here we show the results of our proposed method YOLOR. All
results are averaged from 5 experiments. As can be seen in Ta-
ble 2 and Table 3, YOLOR outperforms baselines including recent
two-stage evaluator-based reranking methods. We have the follow-
ing observations from the experimental results: i) All re-ranking
listwise model (e.g. PRM, MIR) makes great improvements over
point-wise model (e.g. DNN, DeepFM) by modeling the mutual
influence among contextual items, which verifies the impact of
context on user clicks behavior. ii) Compared with generator-based
methods(e.g. PRM, MIR), evaluator-based methods also improve
the CTR prediction because they evaluate more candidate lists.
iii) Our proposed YOLOR brings 0.0035/0.0047 absolute AUC and
0.0113/0.0111 absolute GAUC on Taobao/Meituan dataset gains
over the state-of-the-art independent baseline which is a significant
improvement in industrial recommendation system.

Table 2: Comparison between YOLOR and baseline methods
on the Taobao Ad dataset. The best and second-best results
in each column are in bold and underlined.

Model AUC GAUC Loss

DNN 0.5869 0.8130 0.1878
DeepFM 0.5891 0.8132 0.1866
PRM 0.6152 0.8163 0.1842
MIR 0.6147 0.8169 0.1853
Edge-Rerank 0.6286 0.8201 0.1781
PIER 0.6316 0.8210 0.1758
YOLOR 0.6351 0.8323 0.1743

Table 3: Comparison between YOLOR and baseline methods
on Meituan. The best and second-best results in each column
are in bold and underlined.

Model AUC GAUC Loss

DNN 0.7347 0.7418 0.1162
DeepFM 0.7392 0.7442 0.1154
PRM 0.7573 0.7595 0.1108
MIR 0.7598 0.7603 0.1101
Edge-Rerank 0.7586 0.7605 0.1097
PIER 0.7622 0.7638 0.1068
YOLOR 0.7669 0.7749 0.1032

5.3 Consistency Analysis
We compared the HR (Hit Ratio) of Edge-Rerank, PIER and YOLOR
under different inference times on Taobao Ad and Meituan datasets
(only evaluator-based methods have HR metrics). All experiments
were performed on NVIDIA A100-80GB GPU, with the batch size
set to 1024 and averaged 100 times. In the Meituan data set, there
are a total of 𝐴8

8 = 40, 320 candidate lists. We carefully adjust the
number of candidate lists of the model to make the model time-
consuming equal, and keep the error within 1 ms. For YOLOR,
we use random generation to conduct experiments. As shown in
Figure 4, we have the following observations: i) YOLOR performs
well across all periods. This is because YOLOR is a very efficient
method that is capable of retrieving more candidate lists at the
same time. ii) As time increases, the HR of all methods improves,
since the amount of retrieval lists for all methods becomes larger.
iii) YOLOR can traverse all candidate lists within 50ms, achieving
an HR of 1.

(a) HR on Taobao Ad (b) HR on Meituan

Figure 4: HR results of YOLOR and baseline methods under
different cost conditions on Taobao Ad andMeituan datasets.

5.4 Ablation Study
To assess the effectiveness of each component in YOLOR, we con-
ducted a series of ablation studies using the Taobao Ad and Meituan
datasets. Specifically, we build several variants of the YOLOR:
• w/o IRM. A variant of YOLOR without the IRM, which means

only using candidate items’ raw embedding X instead of the
semantic embedding X𝑠 .

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

You Only evaLuate Once: A Tree-based Rerank Method at Meituan Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

• w/o TCEM. A variant of YOLOR without the TCEM, which is
replaced by a single global self-attention.

• w/o GBPR. A variant of YOLOR without the GBPR loss in Eq. 13.

Table 4: The contributions of different components of
YOLOR.

Model Taobao Ad Meituan
AUC GAUC AUC GAUC

w/o IRM 0.5712 0.7940 0.7332 0.7454
w/o TCEM 0.6236 0.8225 0.7574 0.7621
w/o GBPR 0.6305 0.8207 0.7629 0.7632
YOLOR 0.6351 0.8323 0.7669 0.7749

Table 4 shows the results of the ablation study, and we can
draw the following conclusions: 1) without the IRM, the model’s
performance decreases significantly because accurate point-wise
predictions are the basis of YOLOR; 2) without TCEM, the perfor-
mance of the model declines, indicating that TCEM has stronger
context extraction capabilities comparing with single self-attention;
3) without GBPR, the performance of the model declines, indicating
that the intra-list loss is valid for reranking.

To assess the efficiency of CCM, we remove the CCMmodule and
randomly sample K candidate lists to evaluate their HR and time-
consuming. And we set different K values for detailed comparison.

Table 5: HR and Cost of different sample numbers without
CCM.

Settings Taobao Ad Settings Meituan
HR Cost (ms) HR Cost (ms)

K=5 0.0417 4.7 K=100 0.0025 56.1
K=10 0.0833 7.1 K=200 0.0050 103.4
K=20 0.1667 11.8 K=300 0.0074 169.8
K=50 0.4167 28.6 K=400 0.0099 217.7

As shown in Table 5, after the CCM module is removed, all
vectors in both IRM and TCEM must be recalculated, which signifi-
cantly increases the average time cost. Furthermore, due to random
sampling constraints, the Hit Ratio (HR) shows a marked decline
as it is sensitive to the number of evaluated candidate lists.

5.5 Hyperparameter Analysis
We analyze the impact of weight 𝛼 in GBPR loss. Table 6 shows
the results of our experiments and we can find that 𝛼 significantly
affects YOLOR’s AUC/GAUC metric. As 𝛼 increases, AUC first
increases and then decreases while GAUC increases and stabilizes
at a high level.

5.6 Performance on Online System
To evaluate the online performance of YOLOR, we deployed YOLOR
on the Meituan Shichiguan business as shown in Figure 5.

We also conducted a rigorous A/B test for three weeks, from
March 2025 to April 2025. Specifically, we assigned YOLOR with

Table 6: The effect of parameter weight 𝛼 in GBPR loss.

Settings Taobao Ad Meituan
AUC GAUC AUC GAUC

𝛼=0 0.6305 0.8207 0.7629 0.7632
𝛼=0.01 0.6334 0.8297 0.7641 0.7704
𝛼=0.05 0.6351 0.8323 0.7669 0.7749
𝛼=0.1 0.6345 0.8323 0.7664 0.7749
𝛼=0.5 0.6341 0.8323 0.7658 0.7750

Figure 5: Architecture of the online deployment with YOLOR.

30% traffic, while the remaining 70% traffic was assigned to baseline
(PIER). Table 7 shows the online performance of YOLOR. Compared
to the baseline model (PIER), YOLOR has increased the CTR by
5.13% and the GMV by 7.64%, which are very significant growth to
business. Besides, we find that time consumption has not increased
at all, which is an important indicator to determine whether it
can be applied to large-scale industrial scenarios. Now, YOLOR is
deployed on the Meituan food delivery platform and serves millions
of users.

Table 7: Online A/B test result.

Method CTR GMV Cost (ms) Time-out
YOLOR +5.13% +7.64% -0.003 -0.001%

6 Conclusion
In this paper, we identify the inherent trade-off issues in two-stage
re-ranking methods, which cannot simultaneously balance effi-
ciency and effectiveness. To overcome this limitation, we propose
a tree-based approach, named YOLOR, designed to achieve both
"permutation-level efficiency" and "list-level effectiveness." Specifi-
cally, we design a Tree-based Context Extraction Module (TCEM)
that integrates multi-scale contextual information to accurately
evaluate the list. Additionally, we develop a Context Cache Module
(CCM) to enable efficient reuse of multi-scale contextual infor-
mation across lists. The efficiency of YOLOR allows you to only
evaluate once. Both offline experiments and online A/B tests show
that YOLOR significantly outperformed other existing reranking
baselines. We have deployed YOLOR on the Meituan food delivery
platform.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

References
[1] Qingyao Ai, Keping Bi, Jiafeng Guo, and W Bruce Croft. 2018. Learning a deep

listwise context model for ranking refinement. In The 41st international ACM
SIGIR conference on research & development in information retrieval. 135–144.

[2] Areej Alsini, Du Q Huynh, and Amitava Datta. 2020. Hit ratio: An evaluation
metric for hashtag recommendation. arXiv preprint arXiv:2010.01258 (2020).

[3] Irwan Bello, Sayali Kulkarni, Sagar Jain, Craig Boutilier, Ed Chi, Elad Eban,
Xiyang Luo, Alan Mackey, and Ofer Meshi. 2018. Seq2Slate: Re-ranking and slate
optimization with RNNs. arXiv preprint arXiv:1810.02019 (2018).

[4] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An
overview. Learning 11, 23-581 (2010), 81.

[5] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. 129–136.

[6] Jianxin Chang, Chenbin Zhang, Zhiyi Fu, Xiaoxue Zang, Lin Guan, Jing Lu, Yiqun
Hui, Dewei Leng, Yanan Niu, Yang Song, et al. 2023. TWIN: TWo-stage interest
network for lifelong user behavior modeling in CTR prediction at kuaishou. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 3785–3794.

[7] Moses S Charikar. 2002. Similarity estimation techniques from rounding algo-
rithms. In Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing. 380–388.

[8] Chi Chen, Hui Chen, Kangzhi Zhao, Junsheng Zhou, Li He, Hongbo Deng, Jian
Xu, Bo Zheng, Yong Zhang, and Chunxiao Xing. 2022. EXTR: Click-Through Rate
Prediction with Externalities in E-Commerce Sponsored Search. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
2732–2740.

[9] Qiwei Chen, Changhua Pei, Shanshan Lv, Chao Li, Junfeng Ge, and Wenwu Ou.
2021. End-to-end user behavior retrieval in click-through rateprediction model.
arXiv preprint arXiv:2108.04468 (2021).

[10] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[11] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[12] Yufei Feng, Yu Gong, Fei Sun, Junfeng Ge, and Wenwu Ou. 2021. Revisit recom-
mender system in the permutation prospective. arXiv preprint arXiv:2102.12057
(2021).

[13] Yufei Feng, Binbin Hu, Yu Gong, Fei Sun, Qingwen Liu, and Wenwu Ou. 2021.
GRN: Generative Rerank Network for Context-wise Recommendation. arXiv
preprint arXiv:2104.00860 (2021).

[14] Xudong Gong, Qinlin Feng, Yuan Zhang, Jiangling Qin,Weijie Ding, Biao Li, Peng
Jiang, and Kun Gai. 2022. Real-time Short Video Recommendation on Mobile
Devices. In Proceedings of the 31st ACM International Conference on Information
& Knowledge Management. 3103–3112.

[15] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction.
arXiv preprint arXiv:1703.04247 (2017).

[16] Ray Jiang, Sven Gowal, Timothy A Mann, and Danilo J Rezende. 2018. Beyond
greedy ranking: Slate optimization via list-CVAE. arXiv preprint arXiv:1803.01682
(2018).

[17] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xdeepfm: Combining explicit and implicit feature in-
teractions for recommender systems. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining. 1754–1763.

[18] Xiao Lin, Xiaokai Chen, Chenyang Wang, Hantao Shu, Linfeng Song, Biao Li,
et al. 2023. Discrete Conditional Diffusion for Reranking in Recommendation.
arXiv preprint arXiv:2308.06982 (2023).

[19] Shuchang Liu, Qingpeng Cai, Zhankui He, Bowen Sun, Julian McAuley, Dong
Zheng, Peng Jiang, and Kun Gai. 2023. Generative flow network for listwise rec-
ommendation. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 1524–1534.

[20] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. 2007. Detecting near-
duplicates for web crawling. In Proceedings of the 16th international conference
on World Wide Web. 141–150.

[21] Liang Pang, Jun Xu, Qingyao Ai, Yanyan Lan, Xueqi Cheng, and Jirong Wen.
2020. Setrank: Learning a permutation-invariant ranking model for information
retrieval. In Proceedings of the 43rd international ACM SIGIR conference on research
and development in information retrieval. 499–508.

[22] Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao Sun, Jian
Wu, Peng Jiang, Junfeng Ge, Wenwu Ou, et al. 2019. Personalized re-ranking
for recommendation. In Proceedings of the 13th ACM conference on recommender
systems. 3–11.

[23] Qi Pi, Guorui Zhou, Yujing Zhang, Zhe Wang, Lejian Ren, Ying Fan, Xiaoqiang
Zhu, and Kun Gai. 2020. Search-based user interest modeling with lifelong

sequential behavior data for click-through rate prediction. In Proceedings of the
29th ACM International Conference on Information & Knowledge Management.
2685–2692.

[24] Yuxin Ren, Qiya Yang, Yichun Wu, Wei Xu, Yalong Wang, and Zhiqiang Zhang.
2024. Non-autoregressive generative models for reranking recommendation. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 5625–5634.

[25] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. 2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv
preprint arXiv:1205.2618 (2012).

[26] Xiaowen Shi, Fan Yang, ZeWang, XiaoxuWu, Muzhi Guan, Guogang Liao, Wang
Yongkang, Xingxing Wang, and Dong Wang. 2023. PIER: Permutation-Level
Interest-Based End-to-End Re-ranking Framework in E-commerce. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
4823–4831.

[27] A Vaswani. 2017. Attention is all you need. Advances in Neural Information
Processing Systems (2017).

[28] Shuli Wang, Xue Wei, Senjie Kou, Chi Wang, Wenshuai Chen, Qi Tang, Yinhua
Zhu, Xiong Xiao, and Xingxing Wang. 2025. NLGR: Utilizing Neighbor Lists for
Generative Rerank in Personalized Recommendation Systems. arXiv preprint
arXiv:2502.06097 (2025).

[29] Yunjia Xi, Weiwen Liu, Xinyi Dai, Ruiming Tang, Weinan Zhang, Qing Liu,
Xiuqiang He, and Yong Yu. 2021. Context-aware reranking with utility maxi-
mization for recommendation. arXiv preprint arXiv:2110.09059 (2021).

[30] Yunjia Xi, Weiwen Liu, Jieming Zhu, Xilong Zhao, Xinyi Dai, Ruiming Tang,
Weinan Zhang, Rui Zhang, and Yong Yu. 2022. Multi-Level Interaction Reranking
with User Behavior History. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 1336–1346.

[31] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang
Zhu, and Kun Gai. 2019. Deep interest evolution network for click-through rate
prediction. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33.
5941–5948.

[32] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through
rate prediction. In Proceedings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining. 1059–1068.

[33] Tao Zhuang, Wenwu Ou, and Zhirong Wang. 2018. Globally optimized mutual
influence aware ranking in e-commerce search. arXiv preprint arXiv:1805.08524
(2018).

8

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Proposed Method
	4.1 Item-level Representation Module
	4.2 Tree-based Context Extraction Module
	4.3 Context Cache Module
	4.4 Model Complexity
	4.5 Model Training

	5 Experiments
	5.1 Experimental Setup
	5.2 Overall Performance
	5.3 Consistency Analysis
	5.4 Ablation Study
	5.5 Hyperparameter Analysis
	5.6 Performance on Online System

	6 Conclusion
	References

