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Abstract

We propose the Variational Causal Autoencoder (VCAUSE), a novel class of1

variational graph autoencoders for causal inference in the absence of hidden con-2

founders, when only observational data and the causal graph are available. Without3

making any structural assumption, VCAUSE mimics the necessary properties of4

a Structural Causal Model (SCM) to provide a framework for performing inter-5

ventions (do-operator) and abduction-action-prediction steps. As a result, and as6

shown by our empirical results, VCAUSE provides a practical and accurate pipeline7

for estimating the interventional and counterfactual distributions of diverse SCMs.8

Finally, we apply VCAUSE to evaluate counterfactual fairness in classification9

problems and also to learn accurate and fair classifiers.10

1 Introduction11

Predicting causal effects of actions (interventions) is a central problem in scientific research in a12

broad variety of fields [4, 5, 7, 23, 51], and machine learning is no exception [44]. As an example,13

fundamental machine learning questions—such as fairness [6, 9, 19, 24, 25] and interpretability14

[17]—, are increasingly being formulated as causal queries.15

Research on causal reasoning has predominantly focused on causal discovery, a.k.a. structure16

learning, aimed at discovering the underlying causal graph from data (see, e.g., [15, 30, 49, 60]).17

An alternative line of work instead aims to answer causal queries under different assumptions, e.g.,18

assuming access to partial causal knowledge [17, 18] or to a randomized trial [16]. Here, we focus19

on the latter line of research, that is, on answering the following two types of causal questions:20

interventional queries, e.g., “What is the effect of a universal unconditional basic income of 1k21

EUR on the health of the population?”; and counterfactual queries, e.g., “Had Kim received an22

unconditional basic income of 1k EUR, what would have been the effect on Kim’s health?”.23

Unfortunately, predicting causal effects from observational data alone is in general difficult and24

often requires strong and impractical causal assumptions. In this context, the Structural Causal25

Model (SCM) [39] is a framework that allows to answer causal queries from observational data, but26

requires complete causal knowledge. That is, knowledge not only on the parent-children (cause-effect)27

relationship between every pair of observed variables (i.e., on the causal graph), but also on how28

these relationships are (i.e., on the structural equations). As a consequence, randomized controlled29

studies are today still considered to be the gold standard for estimating causal effects. Unfortunately,30

real world experiments are often expensive to conduct, unethical, or directly impossible.31

In this work, we aim at answering the above causal queries, when only observational data and32

the causal graph are available. Note that the causal graph can often be inferred from domain33

knowledge [62] or via one of the numerous approaches for causal discovery [27, 54]. We assume34

causal sufficiency, i.e., that there are no hidden confounders, which are unobserved variables that35
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affect more than one observed variable. We propose the novel Variational Causal Autoencoder36

(VCAUSE), a variational graph autoencoder that leverages the causal graph structure and yields37

accurate estimates of the observational, interventional and counterfactual distributions induced by an38

unkonwn causal model.39

Importantly, we provide the necessary conditions for the design of the encoder and decoder graph40

neural networks (GNNs), so that the resulting VCAUSE behaves like an SCM. As a result, and41

without making any assumptions on the true structural equations, VCAUSE provides a practical42

framework to perform interventions (do-operator) and abduction-action-prediction steps, which are43

necessary to evaluate interventional and counterfactual queries.44

We evaluate the performance of the proposed VCAUSE model in extensive experiments using45

observational data from different SCMs, with diverse causal graphs and structural equations. Our46

experiments show that VCAUSE outperforms competing methods [17, 18] at estimating not only47

the mean of the interventional/counterfactual distribution, but also the overall distribution, as shown48

by the quality of its samples (in terms of Maximum Mean Discrepancy, MMD). We finally show a49

use-case in which VCAUSE is used to assess counterfactual fairness of different classifiers trained on50

the German Credit dataset [10] as well as to learn accurate and counterfactually fair classifiers.51

Related work. There are numerous works on causal discovery [15, 18, 27, 30, 33, 40, 49, 54, 56,52

58, 60, 63]. In addition, extensive work focuses on interventional and/or counterfactual queries53

using non-parametric methods [1, 32, 46, 47], and more recently, tractable probabilistic models [59].54

Moreover, deep generative models are enjoying increasing attention for causal queries in complex55

data [31, 35]. Existing approaches focus on estimating the Average Treatment Effect (ATE) by56

assuming a fixed causal graph that includes the treatment variable [19, 29, 42, 45, 53]; on discovering57

and intervening on the causal latent structure of the (e.g., image) data [19, 35, 37, 48, 56]; or58

on addressing interventional and/or counterfactual queries by fitting a conditional model for each59

observed variable given its causal parents [11, 17, 22, 36, 38]. In the most recent work related60

to ours [18], the authors propose CAREFL, an autoregressive normalizing flow (ANF) for causal61

discovery and queries, which focuses on bi-variable scenarios with affine relationships between62

observed and unobserved variables. In our experiments, we compare VCAUSE with CAREFL (as63

well as [17]) in more general settings. Finally, up to the best of our knowledge, GNNs have previously64

been used for causal discovery [58, 61], but have not yet been exploited to address counterfactual and65

interventional queries, like VCAUSE does.66

2 Background67

In this section, we first provide a brief overview on structural causal models (SCMs) and then68

introduce the main building block of VCAUSE, i.e., variational graph autoencoders (VGAEs).69

2.1 Structural causal models70

An SCM M = (p(U), F̃) determines how a set of d endogenous (observed) random variables X :=71

{X1, . . . Xd} is generated from a set of exogenous (unobserved) random variables U := {U1, . . . Ud}72

(with prior distribution p(U)) via the set of structural equations F̃ = {Xi := f̃i

�
Xpa(i), Ui

�
}di=1.73

Here Xpa(i) refers to the set of variables directly causing Xi, i.e., parents of i. Every SCM M is74

associated with a directed acyclic graph (DAG): a causal graph G := (X,E), for which the nodes75

(vertices) correspond to endogenous variables X and the directed edges E account for the causal76

parent-child relationship between variables [39]. Given an SCM, there are two types of causal queries77

of general interest: interventional queries, e.g., “What would happen to the population X, if variable78

Xi would be set to a fixed value ↵?”; and counterfactual queries, e.g.,“What would have happened to79

a specific factual sample xF , had Xi been set to a value ↵?”.80

More in detail, interventional queries aim to evaluate changes in the causal world, or equivalently,81

manipulations of a subset of the endogenous variables I ✓ [d] := {1, . . . , d} at the population82

level. Interventions on an SCM M are often represented with the do-operator do(Xi = ↵i) and83

lead to a new distribution over the set of endogenous variables p(X | do(Xi = ↵i)), which is84

referred to as the interventional distribution. In G an intervention removes incoming edges to node85

i and sets Xi = ↵ (see Figure 1c). A counterfactual query for a given factual instance xF aims to86

estimate what would have happened had XI instead taken value ↵. This effect is captured by the87
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counterfactual distribution p(xCF | xF
, do(XI = ↵)), which can be computed using the abduction-88

action-prediction approach by Pearl [39]. Refer to Section 3 for further details on the computation of89

the interventional and counterfactual distributions.90

U ⇠ p(U)

f̃1 : X1 = U1

f̃2 : X2 = 2X1 + U2

f̃3 : X3 = 3X1 � 4X2 + U3

(a) SCM M := {p(U), F̃}

X1

X3X2

U1
U2

U3

(b) G without intervention

X1

X3↵ •

U1

U3

(c) G with intervention

Figure 1: Example of (a) a triangle SCM M with d = |X| = 3 endogenous variables; (b) correspond-
ing causal graph G and (c) illustration of an intervention do(X2 = ↵) on the causal graph. Green
arrows highlight the direct causal path from X1 to X3, and red arrows the indirect causal path via X2.

2.2 Variational Graph Autoencoder and Graph Neural Networks91

Variational Autoencoders (VAEs) [20] are powerful latent variable models based on neural networks92

(NNs) for jointly i) learning complex and expressive density estimators p(X) ⇡
R
p✓(X | Z)p(Z)dZ,93

where the likelihood function (a.k.a. decoder) is parameterized using a NN with parameters ✓; and ii)94

performing approximate posterior inference over the latent variables Z using a variational distribution95

(a.k.a. encoder) q� (Z | X) parameterized using a NN with parameters �. The parameters ✓ and �96

are usually learned by maximizing a lower bound on the log-evidence [3, 34, 41, 52].97

Variational Graph Autoencoders (VGAEs) [21] extend VAEs to account for graph-structure in-98

formation on the data [58]. VGAEs define a (potentially multidimensional) latent variable Zi per99

observed variable Xi, i.e., Z := {Z1, . . . , Zd}. Additionally, VGAEs rely on an adjacency ma-100

trix A, which is used by two Graph Neural Networks (GNNs), one for the encoder and one for101

the decoder, to enforce structure on the posterior approximation q�(Z | X,A) and the likelihood102

p✓(X | Z,A). More in detail, A 2 {0, 1}d⇥d encodes the graph structure among the observed103

variables X := {X1, . . . Xd}, so that Aij = 1 if there is a directed edge from Xj to Xi, and Aij = 0,104

otherwise. Hence, A determines which variables Xi influence Zj (i, j 2 [d]), and vice versa.105

Graph Neural Networks (GNNs) have generated a lot of attention during the last years, as they106

achieved significant improvements in graph representation learning [2, 12, 14, 43, 57], While the107

taxonomy of GNNs is immense [55], in this work we focus on message passing GNNs which allow108

us to work with directed graphs. In its most general form, a message-passing GNN calculates the109

output hl
i for node i in layer l in three steps: i) compute the set of incoming messages arriving to node110

i from its neighbors Ni = {Xj | Aij = 1} using a message function f
m (a NN with parameters ✓lm),111

that is {ml
ij}j2Ni = {fm

i (hl�1
i , h

l�1
j ; ✓lm) | j 2 Ni} ; ii) combine the set of messages into a single112

message M l
i := f

a({ml
ij}j) using an aggregation function f

a (e.g. adding up the messages); and iii)113

update the node state h
l
i := f

u(hl�1
i ,M

l
i ; ✓

l
u), using an update function f

u (a NN with parameters114

✓
l
u). As a result, the output hl

i can be written as115

h
l
i = f

u
�
h
l�1
i , f

a
�
{fm(hl�1

i , h
l�1
j ; ✓lm) | j 2 Ni}

�
; ✓lu

�
. (1)

Note that the above expression assures that the output for each node i is computed using information116

from its neighbors Ni according to A. Moreover, if the GNN has Nh hidden layers, then the117

output for node i not only depends on its direct neighbors Ni, but also on its neighbors up to order118

Nh + 1 (hops). As an example, if Nh = 0 then the output for each node only depend on its direct119

neighbors (parents). If instead Nh = 1, then the output for each node depends on 2-hop neighbors120

(grand-parents). For a detailed description of GNNs, please refer to Appendix A.121

3 Observational, interventional and counterfactual distributions122

In this section, we introduce the observational, interventional and counterfactual distributions (trig-123

gered by any intervention do(XI = ↵)) that are induced from an SCM M := {p(U), F̃}. Specifi-124

cally, we summarize the main properties of an SCM that will allow us to propose a novel class of125
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VGAEs, the variational causal autoencoders (VCAUSE), to compute accurate estimates of these126

distributions using observational data and a known causal graph. To this end, we assume the absence127

of hidden confounders, i.e., we assume that p(U) =
Qd

i=1 p(Ui).128

Observational distribution. The SCM M determines the observational distribution p(X) over the129

set of endogenous variables X = {X1, . . . Xd}, which satisfies causal factorization [44], i.e., p(X) =130 Qd
i=1 p(Xi | Xpa(i)). That is, after marginalizing out the exogenous variables U, the distribution of131

each endogenous variable Xi depends only on its parents, i.e., Xpa(i). The observational distribution132

can alternatively be written only in terms of the exogenous variables U as133

p(X) =

Z
F(U)p(U)dU, (2)

where F : U ! X corresponds to the set of structural equations, equivalent to F̃, that directly134

transform the exogenous variables U into the endogenous variables X. Let us denote by an(i) the set135

of indexes of the ancestors of i, and an
⇤(i) := an(i) [ {i}. Then, the causal factorization induced136

by the SCM M leads to the following property of F(U):137

Property 1. Each endogenous variable Xi can be expressed as a function of its exogenous variable138

Ui and the ones of all its causal ancestors, i.e., F(U) := {Xi = fi({Uj | j 2 an
⇤(i)})}. This,139

together with the causal sufficiency assumption, implies that Xi is statistically independent of140

Uj , 8j /2 an
⇤(i).141

Interventional distribution. As stated in Section 2.1, interventions on a set of variables I can be142

performed using the do-operator, which can be seen as a mapping do(XI = ↵) : M 7! MI =143

(p(U), F̃I) where F̃I = {f̃j | j 62 I} [ {↵i | i 2 I}. As above, we can represent the resulting set144

of intervened structural equations FI = {fj | j 62 I} [ {↵i | i 2 I} in terms of only the exogenous145

variables U, so that we can write the interventional distribution as:146

p(X | do(XI = ↵)) =

Z
FI(U)p(U)dU. (3)

Assuming an intervention do(XI = ↵) on M, then the resulting structural equations FI(U) satisfy:147

Property 2. After an intervention do(XI = ↵) on M, all the causal paths from Uj 8j 2 an
⇤(i) to148

Xi that include an intervened variable in XI (i.e., the causal paths where XI is a mediator) are149

severed in FI
, while the rest of causal paths remain untouched.150

The above property is illustrated in Figure 1, where we can easily observe that after an intervention151

do(X2 = ↵), the indirect causal path (in red) from X1, and thus from U1, to X3 via X2 is severed,152

while the direct path (in green) remains.153

Counterfactual distribution. Assuming the SCM M = {p(U), F̃} to be known, the following154

three steps defined by Pearl [39] allow us to compute counterfactuals xCF as: i) Abduction: infer the155

values of the exogenous variables U for a factual sample xF , i.e., compute p(U | xF ); ii) Action:156

intervene with do(XI = ↵) : M 7! MI = (p(U), F̃I); and iii) Prediction: use the posterior157

distribution p(U | xF ) and the new structural equations F̃I to compute p(xCF | xF ). The prediction158

step can be alternatively computed using the new set of structural equations FI defined in terms of159

the exogenous variables U, so that we can write the counterfactual distribution as:160

p(xCF | xF
, do(XI = ↵)) =

Z
FI(U)p(U | xF )dU. (4)

Importantly, the resulting posterior distribution p(U | xF ) satisfies:161

Property 3. In the abduction step, statistical independence implies that conditioned on the endoge-162

nous variables of the factual sample xF
, each exogenous variable Ui is independent of the factual163

value x
F
j if j 6= i and the variable Xj is not a parent of Xi, i.e., j 62pa⇤(i) := pa(i) [ {i}.164

4 Variational Causal Autoencoder (VCAUSE)165

In this section, we present a novel variational causal graph autoencoder (VCAUSE) to approximate166

the observational, interventional and counterfactual distributions given in (2), (3) and (4), respectively.167
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While the underlying SCM M is unknown, we assume access to: the causal graph G and observational168

data {xn}Nn=1, i.e., i.i.d. samples of the observational distribution induced by M.169

Definition 4.1. (VCAUSE) . Given a causal graph G over a set of endogenous variables X =170

{X1, . . . , Xd}, which establishes the set of parents pa⇤(i) for each variable Xi (including the i-th171

node). A variational causal graph autoencoder (VCAUSE) is defined by:172

• A causal adjacency matrix A, which is a d ⇥ d binary matrix with elements Aij = 1 if173

j 2 pa
⇤(i), i.e., when i = j or j is a parent of i. Otherwise, Aij = 0.174

• A prior distribution p(Z) =
Q

i p(Zi) over the set of latent variables Z = {Z1, . . . , Zd}.175

• A decoder p✓(X | Z,A), which is a GNN (parameterized by ✓) that takes as input the set176

of latent variables Z and the causal adjacency matrix A, and outputs the parameters of the177

likelihood p✓(X | Z,A).178

• An encoder q�(Z | X,A), which is a GNN (parameterized by �) that takes as input the179

endogenous variables X and the causal adjacency matrix A, and outputs the parameters of180

the posterior approximation q�(Z | X,A).181

Given observational data {xn}Nn=1, one may learn the parameters ✓ and � that best estimate the182

density p(X). We here rely on the partially importance weighted auto-encoder (PIWAE) [41].183

Next, we discuss how to design VCAUSE such that it is able to capture the observational, inter-184

ventional, and counterfactual distribution induced by an unknown SCM. Importantly, we derive the185

necessary conditions on the design of both the encoder and decoder GNNs such that VCAUSE fulfills186

the SCM properties introduced in Section 3.187

4.1 Observational distribution188

VCAUSE approximates the observational distribution in (2) using the generative model as189

p(X) ⇡
Z

p✓(X | Z,A)p(Z)dZ =

Z dY

i=1

p✓(Xi | Z,A)p(Z)dZ. (5)

Figure 2a depicts this generative process. If we compare (5) with the true observational distribution190

in (2), we observe that the latent variables Z play a similar role to the exogenous variables U,191

and the decoder p✓(X | Z,A) plays a similar role to the structural equations F. Yet, we remark192

that Z does not need to correspond to the exogenous variables, i.e., p(U) 6= p(Z), in order for (5)193

to provide a good approximation of the observational distribution in (2). In fact, standard VAEs194

perform accurate density estimation using observational data, without the need for capturing causal195

information. However, in this paper, we seek to ensure that our observational distribution induced196

by VCAUSE complies causal factorization (Property 1). To that end, we need to make sure that197

p✓(Xi | Z,A) = p✓(Xi | Zan⇤(i)). That is, Xi depends only on Zj if j = i or Xj is an ancestor of198

Xi in the causal graph. To fulfill this property, the GNN of the decoder should satisfy the following:199

Proposition 1. (Causal factorization). VCAUSE satisfies causal factorization, p✓(X | Z,A) =200 Q
i p✓i(Xi | Zan⇤(i)), if and only if the number of hidden layers in the decoder is greater or equal201

than � � 1, with � being the longest shortest directed path between any two endogenous nodes.202

The above proposition (proved in Appendix B) is based on the fact that, in a GNN with Nh hidden203

layers (and Nh + 1 layers in total), the output for the i-th node depends on its neighbors of up204

to Nh + 1 hops. As an example, consider the following chain causal graph: X1 ! X2 ! X3,205

such that � = 2. In the decoder, the first layer yields a hidden representation for the 3-rd node206

h
1
3 := f(f(Z2), Z3) that only depends on Z2 and Z3. Thus, we need a second layer for its output207

h
2
3 := f(h2, Z3) = f(f(f(Z1), Z2), Z3) to depend on Z1 (note that X1 is an ancestor of X3).208

4.2 Interventional distribution209

VCAUSE approximates the interventional distribution in (3) as (illustrated Figure 3):210

p(X | do(XI = ↵)) ⇡
Z

p✓(X | {Zi}i 62I , {ZI
i }i2I ,A

I)p(Z)q�(Z
I | AI

,XI)dZ, (6)

where the do-operator is performed on the causal adjacency matrix as do(XI = ↵) : A 7! AI =211

{Aij} 8i 62I,j [ {Aij = 0} 8i2I,j . This ensures that Xi for i 2 I is independent of Zj for all212
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(a) Observational (b) Interventional (c) Counterfactual
Figure 2: VCAUSE generation of (a) observational, (b) interventional, and (c) counterfactual samples.
The ‘hat’ in X̂ and x̂CF indicate that they are sample estimates of the true random variables.

j 6= i. Note that in order for (6) to be able to approximate the interventional distribution in (3), an213

intervention on a variational causal autoencoder should satisfy Property 2, i.e.:214

Proposition 2. (Causal interventions). VCAUSE can capture causal interventions if and only if the215

number of hidden layers in its decoder is greater than or equal to � � 1, with � being the longest216

directed path between any two endogenous nodes in G.217

X1

X2

X3

Z1

Z2

Z3

•h1

•h2

•h3

(a) Original

X1

X2

X3

Z1

Z2

Z3

•h1

•h2

•h3

(b) Intervened
Figure 3: VCAUSE decoder (a) with and (b) with-
out intervening on X2. Arrows indicate message
passing in the GNN corresponding to direct (green)
and indirect (red) causal paths in Figure (1).

To illustrate this, Figure 3 depicts how messages218

are exchanged in a one-hidden-layer decoder219

GNN corresponding to the causal graph G in220

Figure 1 (triangle with � = 2), both (a) without221

and (b) with an intervention on X2. We high-222

light in green the direct messages (sent via direct223

causal path in G), and in red the indirect mes-224

sages (sent via indirect causal path in G) from225

Z1 to X3. Observe that, similarly to Figure 1, in226

(a) there is an indirect path (via h2) from Z1 to227

X3; while in (b) this path is severed. Hence, the228

hidden layer (h1, h2, h3) allows to differentiate229

between direct and indirect paths and thus to230

capture interventional effects.231

As the condition in Proposition 2 is more restrictive than the one in Proposition 1, in order for232

VCAUSE to be able to capture observational and interventional distributions, it should satisfy that:233

Design condition 1: The decoder GNN of VCAUSE has at least as many hidden layers as � � 1, with234

� being the longest directed path in the causal graph G.235

4.3 Counterfactual distribution236

VCAUSE approximates the counterfactual distribution in (4) as (illustrated in Figure 2c):237

p(xCF | do(XI = ↵),xF ) ⇡
Z

p✓(X | {ZF
i }i 62I , {ZI

i }i2I ,A
I)q�(Z

I | xI ,AI)
| {z }

action

q�(Z
F | xF ,A)

| {z }
abduction

dZ

| {z }
prediction

,

where xF represents a sample from X for which we seek to compute the distribution over counterfac-238

tual xCF . Note here that two different passes of the encoder are necessary: one for the abduction239

step of the factual instance q�(ZF | xF
,A); and another one for the action step (intervention)240

q�(ZI | xI
,AI) with x

I
i = ↵i 8i 2 I (we remark that the rest of the values in xI do not affect the241

overall counterfactual computation). We then evaluate the likelihood, making sure that the resulting242

counterfactual sample xCF only depends on the {ZF
i }i 62I ✓ ZF and {ZI

i }i2I ✓ ZI . Importantly,243

in order for VCAUSE to be able to approximate the counterfactual distribution, we need its abduction244

(and action) step(s) to comply with Property 3, i.e.:245

Proposition 3. (Abduction). The abduction step of an observed sample x = {x1, . . . , xd} in a246

variational causal autoencoder satisfies that for all i the posterior of Zi is independent on the subset247

{xj}j 62pa⇤(i) ✓ x, if and only if the encoder GNN has no hidden layers.248

The above result (proved in Appendix B) can be shown by the message passing algorithm computed249

by the encoder GNN, and leads to the second condition that VCAUSE should satisfy by design:250
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Table 1: Evaluation of the observational and interventional distributions generated by VCAUSE with
different numbers of hidden layers Nh. All metrics are shown in percentage (%).

Nh
collider (� = 1, � = 1) triangle (� = 1, � = 2) chain (� = 2, � = 2)

MMD Obs. (%) MMD Inter.(%) MMD Obs.(%) MMD Inter.(%) MMD Obs.(%) MMD Inter.(%)

0 1.37 ± 0.54 0.90 ± 0.19 2.20 ± 0.74 4.03 ± 0.42 5.58 ± 1.01 8.07 ± 0.53
1 0.86 ± 0.34 0.95 ± 0.28 1.05 ± 0.38 2.35 ± 0.35 1.4 ± 0.31 1.56 ± 0.4
2 1.0 ± 0.50 0.91 ± 0.16 1.20 ± 0.63 2.33 ± 0.29 1.67 ± 0.61 1.46 ± 0.29

Design condition 2: The encoder GNN of VCAUSE has no hidden layers.251

Note that while the above condition may look restrictive and limiting the capacity of our encoder, we252

may choose arbitrarily complex NNs to model the message f
m and update f

u functions, as well as253

one or more aggregation functions fa, e.g., sum, mean or max, to model the encoder [8].254

4.4 Practical considerations255

Next, we briefly discuss practical implementation considerations to handle complex causal models,256

which often appear in real world applications–see the causal graph of the German Credit dataset [10]257

in Section 6 for an example. For further details on VCAUSE implementation, refer to Appendix C.258

Heterogeneous endogenous variables: In general GNNs are parametrized such that the parameters259

of the message f
m and update f

u functions are shared for all the nodes and edges in the graph.260

However, similarly as in the structural causal equations F, we can define a different message function261

f
m
ij for every edge in the causal graph by assuming a different set of parameters ✓mij per edge in (1).262

Similarly, we can also assume different update functions fu
i for each node i, by considering different263

update parameters ✓ui for each node. This allows us to use different functions for each node, and264

thus model heterogeneous endogenous variables, in terms of their continuous/discrete distribution,265

and also of their structural equations, e.g., linear/non-linear.266

Heterogenous causal nodes: So far, we have modeled each endogenous variable Xi as a node in267

the causal graph G, and thus in the VCAUSE GNNs. However, in some application domains the268

relationships between a subset of variables may be unknown, or they may be affected by hidden269

confounders, leading to an undirected path between them. In such cases, the subset of (ki) variables270

is modeled as a multidimensional and potentially heterogeneous node Xi = {Xi1, . . . , Xiki}. Note271

that all the variables in the multidimensional node Xi share the same latent random variable Zi.272

5 Evaluation273

In this section, we conduct extensive experiments to evaluate the performance of VCAUSE at274

estimating the outcomes of causal queries. Please refer to Appendix D for a complete description275

of the experimental set-up. Moreover, to ease the reproducibility of our experiments, our code is276

publicly available at https://github.com/XXXX/XXXXX.277

Datasets. We consider different synthetic causal graphs that differ in the number of nodes d, diameter278

�, and longest path �: synthetic collider (d = 3, � = 1, � = 1), M-graph (d = 3, � = 1, � = 1),279

triangle (d = 3, � = 1, � = 2), chain (d = 3, � = 2, � = 2), and a semi-synthetic loan (d = 7, � = 2,280

� = 3) from [17]. For all of the synthetic datasets (i.e., except loan), we consider three different types281

of structural equations with increasing complexity: linear additive noise (LIN), non-linear additive282

noise (NLIN) and non-additive noise (NADD).283

Metrics. We evaluate the observational distribution using the Maximum Mean Discrepancy (MMD)284

[13] as distance-measure between the true and estimated distributions as a whole, i.e., the lower the285

MMD the better the distributions match. For the interventional distribution, we additionally report the286

estimation squared error for the mean and for the standard deviation (MeanE and StdE respectively)287

for the children of the intervened variables. For the counterfactual distribution we report the mean288

square error (MSE) as well as the standard deviation of the squared error (SSE) between the true and289

the estimated counterfactual value. We compute all results over 10 independent runs.290

Validating VCAUSE design conditions. In a first step we empirically validate our design choices291

for the VCAUSE encoder and decoder. We show how the number of hidden layers Nh in the decoder292

affect the quality of the estimation of the observational and interventional distributions for three293
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Table 2: Performance of different methods at estimating the observational, interventional and counter-
factual of different SCMs. All metrics are shown in percentage (%).

Obs. Interventional Counterfactuals

SCM Model MMD (%) MMD (%) MeanE (%) StdE (%) MSE (%) SSE (%)
tri

an
gl

e
LI

N
MultiCVAE 1.07±0.88 4.92±2.00 0.81±0.33 24.39±0.20 15.52±4.69 12.78±5.07
CAREFL 5.51±0.80 3.63±0.22 0.18±0.05 50.10±0.79 5.11±0.87 6.18±0.81
VCAUSE 1.26±0.68 2.21±0.26 0.65±0.12 24.51±0.09 11.68±0.69 7.62±0.42

N
LI

N MultiCVAE 1.15±0.83 7.21±3.90 0.57±0.29 17.58±0.26 12.92±4.11 10.03±5.33
CAREFL 5.37±1.18 8.15±0.76 1.14±0.38 60.48±1.36 8.03±1.53 8.95±1.42
VCAUSE 1.55±0.90 6.26±1.31 0.85±0.16 17.41±0.09 12.10±0.95 8.17±0.64

N
A

D
D MultiCVAE 2.15±0.58 43.63±2.73 0.18±0.07 19.14±1.75 24.45±1.62 38.23±3.83

CAREFL 6.14±1.33 76.84±14.78 2.59±3.76 112.65±6.08 8.32±0.93 39.82±0.88
VCAUSE 2.54±1.18 8.87±1.52 0.09±0.04 20.94±1.72 10.36±0.78 17.82±1.20

lo
a

n

-

MultiCVAE 76.18±12.61 188.35±9.05 16.84±5.64 60.29±3.39 72.41±4.75 38.69±1.16
CAREFL 9.28±2.15 9.54±1.82 3.55±2.48 28.94±1.15 32.54±0.21 17.68±0.34
VCAUSE 1.09±0.24 1.41±0.16 0.40±0.09 9.58±0.06 30.06±0.14 14.22±0.11

SCMs, with different values of longest shortest directed path � and longest directed path �. In Table 1,294

we observe that as expected: i) the collider (� = � = 1) does not need any hidden layer to provide295

accurate estimate of both the observational and interventional distributions. In contrast, the triangle296

(� = 1, � = 2), which according to Proposition 2 needs at least one hidden layer to get a more297

accurate estimate of the interventional distribution (while an improvement in the observational is not298

as evident). Finally, as stated by Propositions 1 and 2, the chain (� = � = 2) requires at least one299

hidden layer to accurately approximate both the observational and interventional distributions.300

5.1 Estimating interventional and counterfactual distributions301

In the following we evaluate the potential of VCAUSE to model interventional and counterfactual302

queries. We consider interventions of the form do(xi = ↵i) for several values of ↵i on both root and303

non-root nodes. Here we report the results for the triangle and loan graphs. Refer to Appendix E for304

the remaining results.305

Baselines. We compare our VCAUSE with two competing methods: i) MultiCVAE, which trains a306

conditional VAE for each endogenous variable that is not a root node in the causal graph [17]; and ii)307

CAREFL [18], which relies on autoregressive causal flows to estimate counterfactual queries.308

Results for interventional distributions. Table 2 (middle columns) reports the MMD, MeanE, and309

StdE for the interventional distribution. Here we can observe that VCAUSE consistently outperforms310

other methods in terms of MMD. Note that the three methods provide comparable results in capturing311

the mean of the interventional distribution (MeanE) (except for the more complex loan graph, where312

VCAUSE outperforms the others). However, it can also be seen that CAREFL and MultiCVAE313

often fail to capture the standard deviation of the interventional distribution (StdE), while VCAUSE314

provides a more accurate estimate of the overall interventional distribution.315

CAREFL VCAUSE Ground truth

�2 0 2

�

�2

0

2

x
C

F
1

�2 0 2

�

�2

0

2

x
C

F
2

�2 0 2

�

�2

0

2

x
C

F
3

Figure 4: Example of counterfactuals for a fac-
tual xF from the test set of the triangle NLIN and
do(x1 = ↵).

Results for the counterfactuals. Table 2 also316

reports the results for the counterfactual dis-317

tribution. Here, we first observe that MultiC-318

VAE slightly underperforms the other two mod-319

els. Second, we observe that CAREFL provides320

more accurate estimates than VCAUSE in terms321

of MSE, which may be explained by the fact that322

CAREFL performs exact inference. However,323

CAREFL presents high variance in its results324

(see SSE). Note that to perform interventions,325

CAREFL sets the parents of the intervened vari-326

ables to zero, which may not completely severe the causal paths to the intervened nodes. In contrast,327

as further illustrated in Figure 4, VCAUSE leads to consistent counterfactual estimations across fac-328

tual samples and interventions. Figure 4 also shows that CAREFL fails severely for some intervention329

values, despite of intervening on a root node.330
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6 Use case: counterfactual fairness331

Finally, we showcase the practical use of VCAUSE for assessing counterfactual fairness and also for332

training a counterfactually fair classifier. To this end, we use the German Credit dataset publicly avail-333

able at the UCI repository [50]. We rely on the causal model with the following random variables X334

as proposed in [6] (see Figure 5): sensitive feature S = {sex}, and non-sensitive features C = {age},335

R = {credit amount, repayment history} and H = {checking account, savings, housing}. Then, we336

aim to predict the binary feature Y = {credit risk} from X. See Appendix F for further details.337

Counterfactual fairness. Let S ⇢ X be a sensitive attribute (e.g., gender), then a classifier h : X !338

Y is considered ✏-counterfactually fair [24] if:339
��P (h(xCF ) = y | do(S = ↵),xF ) � P (h(xCF ) = y | do(S = ↵

0),xF )
��  ✏, 8xCF

,↵
0 6= ↵, y.

A classifier is counterfactually fair (✏ = 0), if, given a factual xF with sensitive attribute S = ↵,340

had its sensitive attribute been different S = ↵
0, the classifier prediction would remain the same. As341

VCAUSE allows us to generate counterfactual samples, we can thus use it to audit the fairness level of342

a classifier. Moreover, we can use the VCAUSE encoder to learn a fair classifier hVCAUSE : Z\ZS !343

Y , which takes as input the latent variables generated by VCAUSE without the one of the sensitive344

attribute ZS . Following [24], we compare our VCAUSE fair classifier hVCAUSE with: i) a full model345

hfull : X ! Y that takes as input the complete variable set; ii) an unaware model hunaw : X\S ! Y346

that takes as input all variables but the sensitive one; iii) and a fair model hfair : {Xi|S 62an⇤(i)} ! Y347

that takes as input all non-descendant variables of the sensitive attribute.348

Results. The results for logistic regression (LR) and support vector machine (SVM) classifiers are349

summarized in Table 3. Note that VCAUSE correctly ranks the different methods based on their350

unfairness level, showing that the full classifier is consistently less fair than the unaware and the fair351

classifiers, respectively. Moreover, the VCAUSE classifier leads to a fair classifier, while keeping352

the f1-score comparable to the unfair classifier. Therefore, VCAUSE does not only allow us to audit353

counterfactual fairness but also provides a practical approach to train accurate and fair classifiers.354

S

R H

C

Figure 5: Causal graph for
variables X of the German
Credit dataset [6].

Table 3: Evaluation of counterfactual (un)fairness. All metrics are
shown in %. Lower/Larger values of unfairness/f1-score are better.

Metric Classifier full unaware fair VCAUSE

" f1-score (%) LR 71.07 68.33 50.00 74.81
SVM 74.60 72.44 64.71 70.40

# unfairness (%) LR 5.93 2.25 0.16 0.85
SVM 6.07 2.68 0.20 1.00

355

7 Conclusion356

In this work, we have proposed VCAUSE a variational causal autoencoder based on GNNs that: i) is357

specially designed to capture the properties of SCMs; ii) inherently handles heterogeneous causal358

graphs and data; and iii) provides accurate estimates of interventional and counterfactual distributions359

for SCMs of different complexities. As demonstrated by extensive experiments, VCAUSE provides360

accurate results for a wide variety of interventions in diverse SCMs leading to significantly more361

robust results than competing methods [17, 18]. Finally, we have shown a practical use-case of362

VCAUSE in a problem of increasing interest for the machine learning community, namely, fairness363

in classification. In particular, we have shown how to use VCAUSE to both assess counterfactual364

fairness and to train counterfactually fair classifiers.365

Moreover, our work opens up many interesting venues for future work. First, as we have assumed a366

known causal graph and the absence of hidden confounders, it would be important to evaluate the367

sensitivity of VCAUSE to the violation of these assumptions in order to avoid its misuse. We also368

plan to extend VCAUSE to handle hidden confounders and to perform efficient causal discovery.369

Second, it would be interesting to perform ablation studies on the limitations of available GNNs370

architectures [55] for the VCAUSE encoder and decoder; as well as on how the performance of GNNs371

deteriorates as we increase the length of the causal path and thus the required number of hidden372

layers [28]. Finally, it would be interesting to apply VCAUSE to other causal questions recently373

discussed in the machine learning literature, such as privacy-preserving causal inference [26] or374

explainable machine learning [17].375
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cipal neighbourhood aggregation for graph nets. In Advances in Neural Information Processing395

Systems (NeurIPS), Vol. 33.396

[9] Saloni Dash, Vineeth N Balasubramanian, and Amit Sharma. 2020. Evaluating and miti-397

gating bias in image classifiers: A causal perspective using counterfactuals. arXiv preprint398

arXiv:2009.08270 (2020).399

[10] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. https://archive.400

ics.uci.edu/ml/datasets/statlog+(german+credit+data)401

[11] Sergio Garrido, Stanislav S Borysov, Jeppe Rich, and Francisco C Pereira. 2020. Estimating402

causal effects with the neural autoregressive density estimator. arXiv preprint arXiv:2008.07283403

(2020).404

[12] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. 2017.405

Neural message passing for quantum chemistry. In Proceedings of the International Conference406

on Machine Learning (ICML), Vol. 34. PMLR.407

[13] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander408

Smola. 2012. A kernel two-sample test. The Journal of Machine Learning Research (JMLR) 13409

(2012).410

[14] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning on graphs:411

Methods and applications. Bulletin of the IEEE Computer Society Technical Committee on Data412

Engineering (2017).413

[15] Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. 2008.414

Nonlinear causal discovery with additive noise models. In Advances in Neural Information415

Processing Systems (NeurIPS), Vol. 21.416

[16] Maximilian Ilse, Patrick Forré, Max Welling, and Joris M Mooij. 2021. Efficient causal inference417

from combined observational and interventional data through causal reductions. arXiv preprint418

arXiv:2103.04786 (2021).419

[17] Amir-Hossein Karimi, Julius von Kügelgen, Bernhard Schölkopf, and Isabel Valera. 2020.420

Algorithmic recourse under imperfect causal knowledge: A probabilistic approach. arXiv421

preprint arXiv:2006.06831 (2020).422

10

https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)


[18] Ilyes Khemakhem, Ricardo Monti, Robert Leech, and Aapo Hyvarinen. 2021. Causal au-423

toregressive flows. In Proceedings of International Conference on Artificial Intelligence and424

Statistics (AISTATS), Vol. 24. PMLR.425

[19] Hyemi Kim, Seungjae Shin, JoonHo Jang, Kyungwoo Song, Weonyoung Joo, Wanmo Kang,426

and Il-Chul Moon. 2021. Counterfactual fairness with disentangled causal effect variational427

autoencoder. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35.428

[20] Diederik P Kingma and Max Welling. 2014. Auto-encoding variational bayes. In Proceedings429

of the International Conference on Learning Representations (ICLR), Vol. 2.430

[21] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv preprint431

arXiv:1611.07308 (2016).432

[22] Murat Kocaoglu, Christopher Snyder, Alexandros G. Dimakis, and Sriram Vishwanath. [n.d.].433

CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training. In Pro-434

ceedings of the International Conference on Learning Representations (ICLR), year=2018,.435

[23] Noemi Kreif and Karla DiazOrdaz. 2019. Machine learning in policy evaluation: New tools for436

causal inference. arXiv preprint arXiv:1903.00402 (2019).437

[24] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. 2017. Counterfactual fairness.438

In Advances in Neural Information Processing Systems (NeurIPS), Vol. 30.439

[25] Matt J Kusner, Chris Russell, Joshua R Loftus, and Ricardo Silva. 2018. Causal interventions440

for fairness. arXiv preprint arXiv:1806.02380 (2018).441

[26] Matt J Kusner, Yu Sun, Karthik Sridharan, and Kilian Q Weinberger. 2016. Private causal442

inference. In Proceedings of the Conference on Artificial Intelligence and Statistics (AISTATS),443

Vol. 19. PMLR.444

[27] Felix Leeb, Yashas Annadani, Stefan Bauer, and Bernhard Schölkopf. 2020. Structured445

representation learning using Structural autoencoders and hybridization. arXiv preprint446

arXiv:2006.07796 (2020).447

[28] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph convolutional448

networks for semi-supervised learning. In Proceedings of the AAAI Conference on Artificial449

Intelligence, Vol. 32.450

[29] Christos Louizos, Uri Shalit, Joris M Mooij, David Sontag, Richard Zemel, and Max Welling.451

2017. Causal effect inference with deep latent-variable models. In Advances in Neural Informa-452

tion Processing Systems (NeurIPS), Vol. 30.453

[30] Ricardo Pio Monti, Kun Zhang, and Aapo Hyvärinen. 2020. Causal discovery with general454

non-linear relationships using non-linear ICA. In Proceedings of the Uncertainty in Artificial455

Intelligence (UAI), Vol. 36. PMLR.456

[31] Raha Moraffah, Bahman Moraffah, Mansooreh Karami, Adrienne Raglin, and Huan Liu. 2020.457

CAN: A causal adversarial network for learning observational and interventional distributions.458

arXiv preprint arXiv:2008.11376 (2020).459

[32] Krikamol Muandet, Motonobu Kanagawa, Sorawit Saengkyongam, and Sanparith Marukatat.460

2018. Counterfactual mean embeddings. arXiv preprint arXiv:1805.08845 (2018).461

[33] Ignavier Ng, Shengyu Zhu, Zhitang Chen, and Zhuangyan Fang. 2019. A graph autoencoder462

approach to causal structure learning. arXiv preprint arXiv:1911.07420 (2019).463

[34] Sebastian Nowozin. 2018. Debiasing evidence approximations: On importance-weighted464

autoencoders and jackknife variational inference. In Proceedings of the International Conference465

on Learning Representations (ICML), Vol. 35. PMLR.466

[35] Álvaro Parafita and Jordi Vitrià. 2019. Explaining visual models by causal attribution. arXiv467

preprint arXiv:1909.08891 (2019).468

11



[36] Álvaro Parafita and Jordi Vitrià. 2020. Causal inference with deep causal graphs. arXiv preprint469

arXiv:2006.08380 (2020).470

[37] Álvaro Parafita and Jordi Vitrià. 2019. Explaining visual models by causal attribution. In471

International Conference on Computer Vision Workshop (ICCVW).472

[38] Nick Pawlowski, Daniel Coelho de Castro, and Ben Glocker. 2020. Deep structural causal473

models for tractable counterfactual inference. In Advances in Neural Information Processing474

Systems (NeurIPS), Vol. 33.475

[39] Judea Pearl. 2009. Causal inference in statistics: An overview. Statistics surveys 3 (2009).476

[40] Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. 2016. Causal inference by using477

invariant prediction: identification and confidence intervals. Journal of the Royal Statistical478

Society, Series B (Statistical Methodology) (2016).479

[41] Tom Rainforth, Adam Kosiorek, Tuan Anh Le, Chris Maddison, Maximilian Igl, Frank Wood,480

and Yee Whye Teh. 2018. Tighter variational bounds are not necessarily better. In Proceedings481

of the International Conference on Machine Learning (ICML), Vol. 35. PMLR.482

[42] Vineeth Rakesh, Ruocheng Guo, Raha Moraffah, Nitin Agarwal, and Huan Liu. 2018. Linked483

causal variational autoencoder for inferring paired spillover effects. In Proceedings of the484

International Conference on Information and Knowledge Management (CIKM). ACM.485

[43] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.486

2008. The graph neural network model. IEEE transactions on neural networks 20 (2008).487

[44] Bernhard Schölkopf. 2019. Causality for machine learning. arXiv preprint arXiv:1911.10500488

(2019).489

[45] Patrick Schwab, Lorenz Linhardt, and Walter Karlen. 2018. Perfect match: A simple method490

for learning representations for counterfactual inference with neural networks. arXiv preprint491

arXiv:1810.00656 (2018).492

[46] Uri Shalit, Fredrik Johansson, and David Sontag. 2016. Bounding and minimizing counterfactual493

error. arXiv preprint arXiv:1606.03976 (2016).494

[47] Uri Shalit, Fredrik D Johansson, and David Sontag. 2017. Estimating individual treatment495

effect: Generalization bounds and algorithms. In Proceedings of the International Conference496

on Machine Learning (ICML), Vol. 34. PMLR.497

[48] Xinwei Shen, Furui Liu, Hanze Dong, Qing Lian, Zhitang Chen, and Tong Zhang. 2020.498

Disentangled generative causal representation learning. arXiv preprint arXiv:2010.02637499

(2020).500

[49] Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, Antti Kerminen, and Michael Jordan. 2006.501

A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning502

Research 7 (2006).503

[50] Ilya Shpitser, Thomas S. Richardson, and James M. Robins. 2011. An efficient algorithm for504

computing interventional distributions in latent variable causal models. In Proceedings of the505

Conference on Uncertainty in Artificial Intelligence (UAI), Vol. 27.506

[51] Bob Siegerink, Wouter den Hollander, Maurice Zeegers, and Rutger Middelburg. 2016. Causal507

Inference in law: An epidemiological perspective. European Journal of Risk Regulation 7, 1508

(2016).509

[52] George Tucker, Dieterich Lawson, Shixiang Gu, and Chris J Maddison. 2018. Doubly repa-510

rameterized gradient estimators for monte carlo objectives. arXiv preprint arXiv:1810.04152511

(2018).512

[53] Matthew James Vowels, Necati Cihan Camgoz, and Richard Bowden. 2020. Targeted VAE:513

Structured inference and targeted learning for causal parameter estimation. arXiv preprint514

arXiv:2009.13472 (2020).515

12



[54] Antoine Wehenkel and Gilles Louppe. 2021. Graphical normalizing flows. In Proceedings of the516

International Conference on Artificial Intelligence and Statistics (AISTATS), Vol. 24. PMLR.517

[55] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip.518

2020. A comprehensive survey on graph neural networks. IEEE Transactions on Neural519

Networks and Learning Systems (2020).520

[56] Mengyue Yang, Furui Liu, Zhitang Chen, Xinwei Shen, Jianye Hao, and Jun Wang. 2020.521

CausalVAE: Disentangled representation learning via neural structural causal models. arXiv522

preprint arXiv:2004.08697 (2020).523

[57] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-temporal graph convolutional networks:524

a deep learning framework for traffic forecasting. In Proceedings of the International Joint525

Conference on Artificial Intelligence (IJCAI), Vol. 27.526

[58] Yue Yu, Jie Chen, Tian Gao, and Mo Yu. 2019. DAG-GNN: DAG structure learning with graph527

neural networks. In Proceedings of the International Conference on Machine Learning (ICML),528

Vol. 36. PMLR.529
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Checklist546

1. For all authors...547

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s548

contributions and scope?549

[Yes] Our contributions are: i) identifying the properties of an SCM that allow us550

to propose our model (Section 3), ii) proposing the Variational Causal Autoencoder551

(VCAUSE) for answering causal queries given observational data and the causal552

graph (Section 4), iii) evaluating the estimation of interventional and counterfactual553

distributions as a whole on different SCMs (Section 5), iv) showing how VCAUSE can554

be used for counterfactual fairness evaluation and classification (Section 6).555

(b) Did you describe the limitations of your work?556

[Yes] As stated throughout the paper, our approach relies on two causal assumptions,557

i.e., causal sufficiency and access to the true causal graph. As these assumptions may558

be seen as a practical limitations, in Section 7, we discuss our plans to address them559

in future work. Moreover, Section 7 states that our approach inherits the limitations560

of GNNs, and thus propose future ablation studies to investigate the scalability of the561

proposed approach to more complex causal graphs.562

(c) Did you discuss any potential negative societal impacts of your work?563

[Yes] The proposed approach allows for causal reasoning under certain assumptions,564

which we make explicit to avoid its misuse. Moreover, as discussed in Section 7, we565

consider the relaxation of such assumptions as future work.566

(d) Have you read the ethics review guidelines and ensured that your paper conforms to567

them?568

[Yes] We have read the ethics review guidelines and ensured that our paper conforms569

to them.570

2. If you are including theoretical results...571

(a) Did you state the full set of assumptions of all theoretical results?572

[Yes] In section 4, we explicitly state the assumptions that we make throughout the573

paper as well as the necessary conditions for the proposed approach to yield reliable574

results.575

(b) Did you include complete proofs of all theoretical results?576

[Yes] Appendix B provides complete proofs for all the theoretical results in the paper.577

3. If you ran experiments...578

(a) Did you include the code, data, and instructions needed to reproduce the main experi-579

mental results (either in the supplemental material or as a URL)?580

[Yes] We upload the code with the supplementary material and will be releasing the581

code on GitHub.582

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they583

were chosen)?584

[Yes] Appendix D provide a detailed description of the experimental set-up, the im-585

plementation and validation of the methods and the computation of the performance586

metrics.587

(c) Did you report error bars (e.g., with respect to the random seed after running experi-588

ments multiple times)?589

[Yes] In Tables 1 and 2 we report the average and standard deviation for 10 different590

runs.591

(d) Did you include the total amount of compute and the type of resources used (e.g., type592

of GPUs, internal cluster, or cloud provider)?593

[Yes] See Appendix D. However, note that experiments are light-weight and we do not594

require any GPU.595

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...596

(a) If your work uses existing assets, did you cite the creators?597

[Yes] Our implementation of the baselines in Section 5 is built on the publicly available598

code provided by [17] and [18]. The semi-synthetic dataset loan is taken from [17]. In599

Section 6 we use the publicly available German Credit dataset from the UCI repository600

[10].601
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(b) Did you mention the license of the assets?602

[Yes] See Appendix D. We rely on research code from [17] and [18] provided under603

MIT License.604

(c) Did you include any new assets either in the supplemental material or as a URL?605

[Yes] Our code can be found in the supplemental material and we will make it publicly606

available on GitHub.607

(d) Did you discuss whether and how consent was obtained from people whose data you’re608

using/curating?609

[No] Does not apply. The only real world data we use is the publicly available German610

Credit dataset from the UCI repository [10], which is published in anonymized form.611

(e) Did you discuss whether the data you are using/curating contains personally identifiable612

information or offensive content?613

[N/A] Does not apply.614

5. If you used crowdsourcing or conducted research with human subjects...615

(a) Did you include the full text of instructions given to participants and screenshots, if616

applicable?617

[N/A] Does not apply.618

(b) Did you describe any potential participant risks, with links to Institutional Review619

Board (IRB) approvals, if applicable?620

[N/A] Does not apply.621

(c) Did you include the estimated hourly wage paid to participants and the total amount622

spent on participant compensation?623

[N/A] Does not apply.624
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