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Abstract

This paper presents a machine learning (ML) ap-
proach for generating site-specific fertilizer rec-
ommendations that maximize crop yield and nutri-
ent efficiency while minimizing environmental im-
pact. Using a rich agronomic dataset from the Al
Moutmir program in Morocco, various ML mod-
els are trained (linear, tree-based, ensemble, and
neural networks) to predict crop yield responses
to nitrogen (N), phosphorus (P), and potassium
(K) inputs under diverse soil and climate condi-
tions. The best predictive model (an XGBoost
regressor) achieved a Mean Absolute Percentage
Error (MAPE) of 8.9%, substantially outperform-
ing baseline approaches. The predictive model is
then integrated with optimization algorithms (in-
cluding Simulated Annealing and Particle Swarm
Optimization) to identify the optimal N, P, K lev-
els for each site. Simulated application of these
recommendations indicates an average yield im-
provement of about 544 kg/ha over current prac-
tices, along with more efficient fertilizer use and
low environmental impact. The importance of key
features is analyzed in the recommendations, and
an open analysis of the approach limitations is
provided. All results are validated with statistical
tests for significance. The proposed framework
demonstrates how advanced ML and optimization
techniques can enhance precision agriculture by
tailoring fertilizer strategies to local needs.

1. Introduction

Global food security and environmental sustainability are
driving a need for more efficient fertilizer use in agriculture.
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Conventional “one-size-fits-all” fertilization often leads to
nutrient imbalances, water pollution, and greenhouse gas
emissions. Precision agriculture (PA) has emerged as a
promising solution to these issues by accounting for spa-
tial variability in soil and crop conditions (Fanzo & Davis,
2019; Paudel et al., 2021). Site-specific fertilizer recom-
mendations aim to apply optimal N, P, and K rates per field,
improving yield and reducing waste. Recent studies high-
light the potential of data-driven approaches (Barbosa et al.,
2020; Ennaji et al., 2024). However, many existing ap-
proaches focus on yield prediction alone and do not directly
recommend optimal fertilizer rates while assessing nutrient
efficiency and environmental impact (Ennaji et al., 2023).

This study develops an end-to-end framework that predicts
crop yield response and optimizes fertilizer recommenda-
tions for each site. This framework builds upon prior ML
applications in agriculture and multi-objective optimization
techniques for resource management. The key contribu-
tions are: (1) an integrated dataset of 7,180 on-farm trials
covering varied regions and seasons, (2) a comparative eval-
uation of several ML algorithms for predicting yield from
soil, and fertilizer inputs, (3) a formulation of site-specific
fertilizer recommendation as a constrained optimization
problem. By tailoring fertilizer strategies to local condi-
tions, this approach aims to enhance farmers’ productivity
and sustainability.

2. Problem Formulation

The site-specific fertilizer task is formalized as a two-step
problem: (a) yield prediction and (b) fertilizer optimization.
First, an ML model f(x, N, P, K) is trained to predict crop
yield given site features x (soil properties, weather, crop
type, etc.) and fertilizer rates (N, P, K). This model approxi-
mates the complex agronomic response of yield to inputs.
Second, for a new site with known features x, the fertil-
izer combination (N, P, K') that maximizes predicted yield
while considering nutrient use efficiency and environmen-
tal impact is identified (Basso et al., 2018). The objective
function is defined as:

J(N,P,K | x) = Yped(N, P, K | x) = A- E(N, P, K),
ey
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where Yeq is the yield predicted by the ML model and
E(N, P, K) is an environmental penalty (e.g. for exces-
sive N that could leach). The trade-off parameter A adjusts
the weight on environmental cost. In practice, the opti-
mization maximizes Y4 under agronomic constraints (e.g.
upper/lower bounds for nutrients) instead of explicitly using
A (see below). The optimization problem is:

Ypred (N7 Pa K) (2)

max

N€E[NminsNmax]

PE[Prmin, Pmax)

K€[Kmin, Kmax]
with optional constraints on total fertilizer budget or en-
vironmental thresholds. This yields a recommended site-
specific NPK rate. It is worth noting that the formulation
inherently balances competing objectives: because the ML
model is trained on real-world data, maximizing its out-
put tends to favor high yields and avoid obviously wasteful
over-fertilization (diminishing returns). To further safeguard
against overuse, a custom penalty is included in the opti-
mization for any nutrient application beyond agronomic
needs (an approach inspired by adaptive penalty methods).

3. Methodology

3.1. Data and Features

Data from the Al Moutmir program was used (Ennaji et al.,
2025), an open agriculture program in Morocco, which con-
tains results from thousands of on-farm cereal trials. The
dataset comprises 7,180 field observations collected over
three growing seasons (2018-2019: 914 plots; 2019-2020:
1,736 plots; 2020-2021: 4,530 plots). Trials span 8 re-
gions and 34 provinces, covering both rainfed and irrigated
systems and mainly three cereal crops (soft wheat, durum
wheat, barley). Each observation includes the site’s soil
properties (measured via soil tests), crop type and man-
agement information, fertilizer application rates, and the
resulting yield.

Soil features: The key soil variables are pH (acid-
ity/alkalinity), organic matter (%), total and active calcium
carbonate (CaCQy3), texture (clay and sand %), Olsen phos-
phorus (P2Oj5 in ppm), exchangeable potassium (K5O in
ppm), and electrical conductivity (salinity). Significant vari-
ability was observed in these properties across sites, under-
scoring the need for site-specific management. Additional
context variables include geographic coordinates (latitude,
longitude) to capture spatial yield patterns (proxy for cli-
mate and other regional factors), and year/season indicators
(Qin et al., 2018).

Data processing: Prior to modeling, rigorous data process-
ing was applied. Missing values (some soil metrics) were
imputed using median values stratified by region. Obvious
outliers (e.g. unrealistically high yields or nutrient values)

were winsorized. Numeric features were standardized to
zero-mean, unit-variance for the ML models. Categorical
variables (crop type, region) were one-hot encoded. A few
redundant or future-known attributes (e.g. post-harvest mea-
surements) were also dropped to avoid data leakage. These
steps ensured a clean and consistent dataset for learning.

Train/test split: Models were evaluated under two scenar-
ios: a random split (80% train, 20% test, stratified by crop
yield quartiles) and a temporal split (earlier two seasons as
train, the last season as test). The random split represents
the case of independent and identically distributed samples,
while the temporal split evaluates the model’s ability to
generalize to a new year (simulating deployment for future
seasons). The random split was stratified to maintain yield
distribution, with 1,421 training and 356 test instances per
fold. The temporal split resulted in 1,356 train and 1,224
test points post data augmentation using SMOTE, with the
test set containing a different distribution (notably, 70% of
all data comes from 2020-2021, which was exclusively in
the test set in this split).

3.2. Model Training

A range of ML algorithms was evaluated for yield prediction,
including: (i) Linear models — Linear Regression, Ridge,
Lasso; (ii) Tree-based ensemble models — Random Forests,
Gradient Boosting Machines (GBM), XGBoost, LightGBM,
CatBoost, AdaBoost; (iii) Neural networks — a deep fully-
connected network (DNN), a feature-attention neural net-
work, and a residual network; and (iv) Stacked ensembles
— meta-learners combining multiple models. These models
capture increasing levels of non-linearity and interactions.
For fairness, all models were trained on the same input
features and target (yield).

Hyperparameters: Default or literature-based hyperpa-
rameters were adopted, with limited tuning. Tree-based
models were run with up to 2000 boosting iterations/trees
and a learning rate of 0.05, except AdaBoost, which used
10 estimators (with a Random Forest base) due to its higher
per-estimator cost. The forest models (Random Forest) used
100 trees. Neural networks were configured with 4 hidden
layers (sizes 1024—512—256—128) with BatchNorm and
Dropout regularization. Neural networks were trained for up
to 2000 epochs with early stopping (patience 50) to prevent
overfitting. All models were optimized using the Adam op-
timizer (for neural networks) or default boosting optimizers.
Training used a Kaggle notebook with a Tesla P100 GPU.

Ensembling: To further improve robustness, a simple en-
semble was implemented that averages the predictions of
top-performing models. Specifically, the three models with
the lowest validation error were selected and combined by
weighted averaging (weights proportional to the reciprocal
of their MAPE). This ensemble aimed to reduce variance
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and model-specific bias.

Evaluation metrics: MAPE was primarily used and the
coefficient of determination (R?) to assess predictive accu-
racy. MAPE directly measures percentage error relative to
actual yield, which is intuitive for agronomic relevance (e.g.
10% error on a 5 ton/ha yield = 0.5 ton/ha off). R? indi-
cates the variance explained by the model. RMSE (kg/ha)
was also tracked for interpretability in yield units. For each
experiment, these metrics were computed on the test set.

3.3. Optimization for Fertilizer Recommendation

Once a predictive model f(x, N, P, K) was trained, it was
used as a surrogate to optimize fertilizer rates. Because the
response surface can be complex and non-convex, meta-
heuristic algorithms were employed instead of gradient-
based optimization. A suite of optimization methods was
evaluated: Simulated Annealing (SA), Particle Swarm Op-
timization (PSO), Genetic Algorithm (GA), Adaptive Dif-
ferential Evolution, Bayesian Optimization (and a hybrid
Bayesian-Evolutionary variant), Q-Learning-based Opti-
mization, and others, totaling 10 methods. These algorithms
explore the (N, P, K) space (continuous, and bounded
within a reasonable range defined by the maximum and
minimum values observed in the training dataset) to find the
best predicted yield. The objective was the predicted yield
itself, and a mild penalty was incorporated for total fertilizer
amount to encourage parsimonious solutions (particularly
in GA and SA via a weighted fitness function).

Each optimization run starts from the actual farmer’s fer-
tilizer rate and searches for improvements. The number of
evaluations was limited to f to 1000 per method (to sim-
ulate a scenario of computational constraint in field use).
The output is an optimal NPK recommendation for that site
and the corresponding predicted yield. Each algorithm was
applied to test set sites and recorded: the objective value
reached (predicted yield minus any penalty), the predicted
yield improvement over the farmer’s practice, the reduction
in unused nutrients, and the environmental impact.

Evaluation of recommendations: Algorithms were com-
pared in terms of the yield gains, nutrient efficiency, and
environmental impact. Nutrient Use Efficiency (NUE) is
defined as the ratio of yield increase to additional nutrient
applied (kg grain per kg nutrient) and Environmental Impact
Metric as a proxy for potential N loss (e.g. surplus N beyond
crop uptake). These were computed from the model’s out-
puts. Additionally, Explained Variability was calculated for
each recommendation: the percentage of the site’s yield gap
(difference between potential and current yield) that was
closed by the recommended inputs. This metric indicates
how well an algorithm’s recommendation aligns with the
site’s actual needs. Higher values (close to 100%) mean the
method found nearly optimal inputs, whereas lower values

mean it fell short. Nutrient response surfaces were visual-
ized for select crops to qualitatively assess the interactions
between N, P, and K. For brevity, most detailed results are
deferred to the Appendix.

The Supplementary Material Figure 1 shows the research
workflow that involves data collection (soil and environ-
mental features), data processing and feature engineering
(cleaning, normalization, encoding), model training and
evaluation (trying various ML models with performance
metrics like R2, RMSE, MAPE, MAE, and conducting a
feature analysis), and finally an optimization step to derive
site-specific NPK recommendations using various optimiza-
tion algorithms. The process iterates with validation and
ensures the recommendations are evaluated for yield im-
provement and environmental impact.

4. Results
4.1. Predictive Model Performance

On the random split (mixed seasons), ML models captured
the yield variations with high accuracy. The best single
model, XGBoost, attained R2 = 0.90 and MAPE = 8.87%
on the test set. This means the model’s predictions were
on average within 9% of actual yields, a substantial im-
provement over baseline linear regression (MAPE 24%,
R? =~ 0.70) and a Null model (predicting mean yield,
R? = 0 by definition). The stacking ensemble further re-
duced error to 8.5% MAPE (not a large gain, indicating
XGBoost already captured most patterns). Most tree-based
models and neural networks clustered in performance be-
tween 9—12% MAPE, whereas simpler models (linear, ridge,
lasso) were worse (over 20% error). In contrast, on the
temporal split, all models saw a performance drop. Stack-
ing was top with MAPE = 29% and a negative R? on the
2020-2021 season. Other models had MAPE ranging from
30% (random forest) to over 40% (for less flexible models),
sometimes even yielding negative R? (indicating they per-
formed worse than predicting the historical average). This
highlights the challenge of capturing year-specific factors
like weather or crop changes. Overall, the random split
results demonstrate that given sufficient representative data,
ML can accurately learn the yield response function. The
temporal experiment underlines a limitation, indicating that
additional temporal features or transfer learning may be
needed to improve predictivity for future seasons.

To understand the models’ decisions, SHAP values (Shap-
ley Additive Explanations), feature importance, and permu-
tation tests were examined. Soil properties and location
emerged as critical factors. In particular, soil organic matter
and pH were consistently top predictors of yield response
across models, along with latitude (which correlates with
climate zone). High organic matter and neutral pH tended to
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increase yield potential and modify the optimal N, P require-
ments. Latitude/longitude features likely proxy regional
rainfall patterns not explicitly in the data. Crop type also
had a strong influence (different cereals respond differently
to nutrients). Interestingly, initial soil phosphorus levels
affected the yield response to P fertilizer additions fields
with low Olsen-P saw greater yield increases from P ap-
plications, as expected agronomically. These findings are
consistent with expert knowledge and lend credibility to
the model. They show that it learns reasonable cause-effect
relationships and not false patterns.

4.2. Optimization Outcomes

Using the best yield-prediction models, optimized NPK
recommendations were generated for each test plot and
evaluated. They substantially improved predicted yields
compared to farmers’ original practices. On average, the
optimized rates gave a +543.8 kg/ha increase in yield (from
a baseline of 3.5 t/ha, i.e. a 15% improvement) while
reducing unused nutrients. Many sites showed that similar
yields could be achieved with less fertilizer or higher yields
with the same fertilizer, by reallocating N, P, K based on
site conditions. For example, in some low-phosphorus soils,
the optimizer suggested increasing P and slightly reducing
N, improving nutrient balance and uptake.

Across the three major crops (barley, durum wheat, soft
wheat), Simulated Annealing (SA) and Particle Swarm Op-
timization (PSO) were the top-performing optimization al-
gorithms, consistently finding the highest-yield solutions.
SA achieved the best objective values in most cases, likely
due to effective search space exploration, while PSO was a
close second with a faster convergence in some runs. For
barley, SA improved yield by 768 kg/ha with a slight envi-
ronmental penalty, whereas PSO achieved an even higher
+770 kg/ha yield but with a bit more N usage (higher envi-
ronmental cost). For durum wheat, SA was again best (yield
+508 kg/ha), followed by a Bayesian-Evolutionary hybrid
method and PSO ( within 2%). Soft wheat showed a smaller
relative gain (being the highest-yielding crop baseline), with
SA and PSO still leading. GA and Adaptive Differential
Evolution also found good solutions but were slightly out-
performed by SA/PSO in the trials. Simpler local search
methods (gradient-based, etc.) often got stuck in suboptimal
points due to the complex response surface.

Qualitatively, the optimized nutrient rates reflected sensi-
ble agronomic trends. Supplementary Material Figure 2
visualizes the response surfaces for each crop: for barley,
yield is most sensitive to N and K balance (insufficient K
severely limits yield even if N is abundant) while P has
a lesser effect. For durum wheat, P is more critical — the
optimizer often increased P on P-deficient sites to improve
root development, and managed K carefully to avoid luxury

consumption. Soft wheat, being generally high-yielding,
required a high N supply but the model showed diminishing
returns beyond a point, so the optimizer sometimes reduced
N from farmer levels if the model indicated no further gain,
focusing on K instead. These patterns align with known
crop-specific nutrient needs.

Finally, Explained Variability (%) is used to assess how
well optimized nutrient rates align with actual crop needs.
For each nutrient ¢ € {N, P, K}, it is computed as:

Explained Variability (%) = 100 x (1 — W) ,
max(x;, 1)

comparing optimized (y;) vs. observed (x;) mean values.
The average across nutrients gives a composite score. While
SA and PSO had the highest yield gains, Gradient Descent
(76%), Policy-Based (64.6%), and Q-Learning Optimization
(61.2%) scored highest on Explained Variability, highlight-
ing a trade-off between maximizing yield and aligning with
real-world agronomic inputs. Moreover, the results suggest
that no single optimizer consistently excels across all crops,
emphasizing the importance of adopting crop-specific op-
timization strategies to fully capture the heterogeneity in
nutrient responses.

5. Limitations

This study faces limitations in data, temporal generaliza-
tion, optimization assumptions, and economic modeling.
The dataset is imbalanced (70% from 2020-2021, 77%
soft wheat) and relies on coarse external data (e.g., NASA
POWER, So0ilGrids ), which may limit generalizability.
Temporal performance drops significantly, likely due to un-
observed covariate shifts (e.g., weather, farming practices);
future work should consider temporal embeddings, domain
adaptation, or transfer learning. The optimization assumes
surrogate model correctness, errors in prediction may lead
to suboptimal or harmful recommendations, though mit-
igated with bounds and penalties. Finally, the objective
maximizes yield but does not account for input costs or crop
prices. Incorporating profit-based objectives and farmer
risk preferences is essential for real-world adoption. Syn-
thetic data generation (Belgaid & Ennaji, 2025) and robust
optimization are also promising future directions.

6. Conclusion

This study presents a machine learning and optimiza-
tion framework for site-specific fertilizer recommendation,
achieving strong yield gains and efficiency on Moroccan
cereal plots. By addressing data limitations and incorporat-
ing economic, temporal, and user-centered elements, this
approach can support scalable, responsible precision agri-
culture.
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Appendix: Machine Learning-Based Optimization
of Site-Specific Fertilizer Recommendation

June 29, 2025

This appendix provides supplementary material for the paper ”Machine
Learning-Based Optimization of Site-Specific Fertilizer Recommendation”. It
includes:

e Overview of the data analysis and optimization workflow (Figure Al)

e Summary statistics and distributions of key agronomic variables (Table

Al)

Grain yield distribution across crops and growing seasons (Figures A2-A3)

Comparative performance of optimization methods in terms of yield im-
provement, nutrient efficiency, and environmental impact (Figure A4)

Three-dimensional NPK response surfaces for selected crops (Figure A5)
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Figure 1: Research workflow.



Table 1: Descriptive Statistics and Histograms of Key Variables

Variable Mean SD PO P25 P50 P75 P100 Hist
soil_ph 7.97 0.37 7.40 7.68 8.00 8.30 8.50 u
organic_matter_percent 2.40 0.62 1.60 1.83 2.30 2.90 3.40 U
phosphorus_ppm 46.48 26.51 18.00 23.00 38.00 66.00 93.00 L-J
potassium_ppm 304.48  102.11  169.50  210.00  293.60  388.00  463.60 u
electrical_conductivity 0.09 0.48 0.00 0.00 0.00 0.00 8.00 H -IL
npk_nitrogen 28.76 5.81 20.00 24.00 30.00 34.00 36.75 m
npk_phosphorus_p205 46.01 13.92 26.00 34.17 45.00 60.00 65.00 u
npk_potassium_k2o0 39.22 15.54 20.00 24.50 38.25 53.00 66.00 h
npk_magnesium_mgo 1.14 0.69 0.36 0.53 0.97 1.64 2.37 L—I
npk_calcium_cao 3.15 1.72 1.09 1.52 2.83 4.17 6.02 L—I

electrical_conductivity_encoded 0.52 2.12 0.00 0.00 0.00 0.00 16.00 | -

grain_yield_kg 3524.55 1530.33 1365.00 2180.00 3500.00 5000.00 5700.00 u




Yield Distribution per Growth Season Across Crops

Barley Soft Wheat Durum Wheat
7000
6000
5000
©
< 4000
E
=<
o
3 3000
E
2000
1000
2018-2019 2019-2020 2020-2021 2018-2019 2019-2020 2020-2021 2018-2019 2019-2020 2020-2021
Growth Season Growth Season Growth Season

Figure 2: Distribution of grain yield across crops and growing seasons.
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Figure 3: Average grain yield per growing season.



Objective Value Across Methods and Crops
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Figure 4: Comparative performance of optimization methods across crops: ob-
jective function value, yield improvement, nutrient use efficiency, and environ-
mental impact.
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Figure 5: Three-dimensional NPK response surfaces for Barley, Durum Wheat,
and Soft Wheat. The surfaces represent the objective function values combining
yield prediction, nutrient use, and environmental cost.



