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Abstract. We consider the problem of fairly allocating items to a set of individuals, when the items are

arriving online. A central solution concept in fair allocation is competitive equilibrium: every individual

is endowed with a budget of faux currency, and the resulting competitive equilibrium is used to allocate.

For the online fair allocation context, the PACE algorithm of Gao et al. [2021] leverages the dual averaging

algorithm to approximate competitive equilibria. The authors show that, when items arrive i.i.d, the algorithm

asymptotically achieves the fairness and efficiency guarantees of the offline competitive equilibrium allocation.

However, real-world data is typically not stationary. One could instead model the data as adversarial, but

this is often too pessimistic in practice. Motivated by this consideration, we study an online fair allocation

setting with nonstationary item arrivals. To address this setting, we first develop new online learning results

for the dual averaging algorithm under nonstationary input models. We show that the dual averaging iterates

converge in mean square to both the underlying optimal solution of the “true” stochastic optimization problem

as well as the “hindsight” optimal solution of the finite-sum problem given by the sample path. Our results

apply to several nonstationary input models: adversarial corruption, ergodic input, and block-independent

(including periodic) input. Here, the bound on the mean square error depends on a nonstationarity measure of

the input. We recover the classical bound when the input data is i.i.d. We then show that our dual averaging

results imply that the PACE algorithm for online fair allocation simultaneously achieves “best of both worlds”

guarantees against any of these input models. Finally, we conduct numerical experiments which show strong

empirical performance against nonstationary inputs.

1 INTRODUCTION
In fair division, the goal is to allocate a set of items, typically assumed divisible, among a set of

agents with heterogeneous preferences. The goal is to perform this allocation in a fair way, while
simultaneously also guaranteeing some form of efficiency, typically Pareto efficiency. In the case

of allocating𝑚 divisible goods to 𝑛 agents, the competitive equilibrium from equal incomes (CEEI)
allocation guarantees many fairness properties. In CEEI, every agent is endowed with a unit budget

of faux currency, a competitive equilibrium is computed, i.e. a set of item prices along with an

allocation that clears the market, and the resulting allocation is used as the fair allocation [Varian,

1974]. This guarantees several fairness desiderata such as envy-freeness (every person prefers their

own bundle to that of any other person), proportionality (every person prefers their own bundle

over receiving their fair share 1/𝑛 of every item), and Pareto optimality (we cannot make any

person better off without making at least one other person worse off).

In this paper we are interested in how to achieve such fairness and efficiency guarantees in a

setting where items are arriving online: at every time step one item arrives, and we must irrevocably

assign it to some agent (while our results are similar to the divisible fair allocation setting, the PACE

algorithm does not require fractional allocation). Recently, there has been a growing literature on

such online fair allocation problems [Azar et al., 2016, Balseiro et al., 2020, Banerjee et al., 2022,

Bateni et al., 2021, Gao et al., 2021, Sinclair et al., 2021]. Examples of real-world systems that can be

captured by such settings include Internet advertising systems, job recommender systems, cloud

computing platforms, and many more. One of the key challenges in such problems is to balance

the (often conflicting) goals of overall efficient resource utilization with fairness guarantees for the

individual agents. A natural approach for trying to achieve this goal is to attempt to approximate a

competitive equilibrium of the hindsight allocation problem.
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We study large-scale online fair allocation problems, and our goal will be to develop regret-

minimizing online learning algorithms for such problems. For this setting, Gao et al. [2021] shows

that, when the item arrivals are drawn i.i.d. from an underlying distribution over a possibly

infinite or even continuous item space, a simple mechanism exists which generates allocations and

item prices that clear the market and ensure asymptotic fairness and efficiency. The mechanism,

termed PACE (Pace According to Current Estimated utility), uses funny money and repeated

first-price auctions to perform allocation. In PACE, agents maintain pacing multipliers to control

their spending over time, and the pacing multipliers are updated based on buyers’ budgets and

cumulative utilities. The algorithm ensures that the pacing multipliers and buyers’ realized utilities

converge to their respective competitive equilibrium quantities (i.e., “true values”) while keeping

the buyers’ cumulative expenditures approximately proportional to their budget rates. Here, the

competitive equilibrium is w.r.t. an underlying Fisher market with the same set of buyers and

a, possibly continuous, set of items with supplies given by the distribution from which the item

arrivals are sampled. These convergence results imply that the algorithm generates allocations that

are Pareto optimal, no-regret (w.r.t. the realized item prices), and envy-free asymptotically.

Yet in many large-scale markets we would not expect items to arrive in an i.i.d. manner. For

example, in the context of fair recommender systems [Kroer et al., 2021, Kroer and Stier-Moses, 2022]

or internet advertising, we would not expect the data to arrive i.i.d. from a single distribution over

items. Instead, one could assume that data arrives adversarially. Yet this leads to very pessimistic

negative results, and this is also not an accurate representation of the data one would expect to see

in practice. Instead, one would expect the data to have a strong stochastic component, but with

changes over time e.g. due to flow of traffic, breaking news events, or system updates [Balseiro et al.,

2020, Esfandiari et al., 2018]. Motivated by the above considerations, we study online fair allocation

when the data exhibits nonstationary behavior. In particular, we study the PACE algorithm of Gao

et al. [2021]. We show that, under various data input models, the fairness and efficiency guarantees

of the PACE algorithm are still preserved, up to errors due to the nonstationarity of the data input.

To show these results, we start by developing new results on more general nonstationary stochastic

optimization, and establish new convergence guarantees for dual averaging under nonstationary

data input models. These results are of broader interest beyond equilibrium computation and fair

resource allocation.

1.1 Summary of Contributions
First, we analyze the dual averaging (DA) algorithm for nonstationary stochastic optimization under

different data input models, namely, mildly corrupted, ergodic and periodic input data. Specifically,

we consider the composite dual averaging algorithm, where the composite term is strongly convex.

We show that, in all cases, the iterates generated by dual averaging (DA) converge to the optimal

solution in mean square, where the bound on the mean-square error decomposes into two terms:

i) the typical O(log 𝑡/𝑡) guarantee known from the i.i.d. case, and ii) a term that depends on the

amount of nonstationarity in the data input model. Our results recover the classical bounds under

i.i.d. data input as a special case. Here, the optimal solution can be w.r.t. the underlying convex

program given the true data distribution or w.r.t. the “sampled” convex program which depends on

the realized sample path of input arrivals. They will be referred to as the “true” and “hindsight”

optimal solutions, respectively.

Second, we consider the online fair allocation problem where item arrivals follow any of the data

input models that we consider for DA; these settings generalize the i.i.d. setting in Gao et al. [2021].

Utilizing our convergence results for DA under nonstationary data input models, we show that, for

item arrivals following these models, PACE ensures convergence of the pacing multipliers, again

with a decomposition into a O(log 𝑡/𝑡) term as well as a term depending on the nonstationarity. We
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then show that the agents’ realized utilities, envy, regrets, and expenditures all obtain convergence

bounds based on the convergence of pacing multipliers. Here, our results differ slightly from those

of Gao et al. [2021], in that the equilibrium values that we show bounds with respect to are those

from the “hindsight” market with finitely many items determined by the realized sample path of

item arrivals. Our results show that PACE as an online fair resource allocation algorithm is robust

against distributional uncertainty of the input and automatically adapts to many different data

input models without any parameter tuning. Numerical experiments corroborate the above theory

and demonstrate the practical efficiency of PACE under different data input models.

1.2 Related Work
Since our work studies competitive equilibrium computation, online fair resource allocation and

stochastic optimization, while PACE employs the idea of pacing in auction mechanism design, we

further discuss related work in these areas.

Convex optimization for computing competitive equilibria. Convex optimization algorithm (espe-

cially first-order methods) and their theory have been used to design and analyze algorithms for

computing competitive equilibria, often through equilibrium-capturing convex programs [Birn-

baum et al., 2011, Cheung et al., 2020, Cole et al., 2017, Gao and Kroer, 2020, Gao et al., 2021].

Applying a first-order method to such a convex program often leads to (recovers) interpretable

market dynamics that emulate real-world economic behaviors, such as the proportional response

dynamics [Birnbaum et al., 2011, Cheung et al., 2018, Gao and Kroer, 2020, Zhang, 2011] and

tâtonnement [Cheung et al., 2020]. The PACE algorithm of Gao et al. [2021] is no exception: it

results from applying dual averaging to a specific convex program. Discrete variants of these

convex programs have also been used for fair indivisible allocation [Caragiannis et al., 2019], which

yields some efficiency and fairness guarantees, though the discreteness breaks the connection to

competitive equilibria.

(Online) fair resource allocation. Azar et al. [2010, 2016] consider an online Fisher market with

arbitrary item arrivals. They focus on a quality measure that is minimized at a competitive equi-

librium and give an online algorithm that achieves a competitive ratio logarithmic in the size of

the market and the ratio between the maximum and minimum (nonzero) buyer valuations over

individual items. This algorithm requires solving a nontrivial linear program per iteration and

is not known to improve with stochastic arrivals. Banerjee et al. [2022] considers the problem

of online allocation of divisible items to maximize Nash social welfare. They show that, under

arbitrary item arrivals but with access to meaningful predictions of each buyer’s total utility

given all items, an online algorithm of the primal-dual type achieves a logarithmic competitive

ratio. Manshadi et al. [2021] studies the problem of rationing a social good and propose simple,

implementable algorithms that promote fairness and efficiency. In their setting, it is the agents’

demands rather than the supply that are sequentially realized and possibly correlated over time.

Bateni et al. [2021] uses Gaussian processes to model item arrivals and consider a budget-weighted

proportional fairness metric. They propose a reoptimization policy that consumes buyers’ budgets

and clears the market gradually while ensuring a competitive ratio in hindsight w.r.t. this metric.

This policy periodically resolves the Eisenberg-Gale (EG) convex program and does not require

prior knowledge of future item arrivals. Our work differs from the above literature as follows.

First, we consider practically-motivated nonstationary data input models for item arrivals that

interpolate between fully adversarial and fully stochastic (i.i.d.). Second, we show that the PACE

algorithm, without any parameter tuning, adapts to different data input models and achieves strong

performance guarantees that depend mildly on the “nonstationarity” of these models. Given that
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PACE is scalable, interpretable and easy to implement this paper further ensures its effectiveness

upon more realistic, non-i.i.d. item arrival processes.

(Nonstationary) stochastic optimization. Many stochastic optimization algorithms have been

shown to attain nontrivial performance guarantees under under nonstationary data input [Balseiro

et al., 2020, Besbes et al., 2015, Duchi et al., 2012]. Motivated by high-dimensional and distributed

optimization problems, Duchi et al. [2012] analyzes stochastic mirror descent under ergodic data

input. Balseiro et al. [2020] analyzes a version of mirror descent for online resource allocation.

They show that it achieve strong regret bounds under different data input models without knowing

the model in advance. The ergodic and periodic data input models in this paper are motivated by

those considered in Duchi et al. [2012] and Balseiro et al. [2020]. Different from these papers which

focus on mirror descent, this paper focuses on the dual averaging algorithm, a different stochastic

optimization algorithm particularly suitable for the equilibrium-capturing convex program we

study. Furthermore, we achieve stronger results than those past papers, by focusing on a setting

where a composite term has strong convexity.

Pacing in auction mechanism design. The PACE algorithm uses first-price auctions with pacing. As

noted in Gao and Kroer [2020], the idea of pacing has also been used widely in budget management

strategies for Internet advertising auctions, with strong revenue and incentive guarantees (see, e.g.,

Balseiro and Gur [2019], Conitzer et al. [2019, 2021]). It is also used widely in practice, as reported

in Conitzer et al. [2021]. As shown in Balseiro et al. [2020], pacing strategies ensure individual

bidders’ returns on their budgets and, if used by all buyers, lead to approximate Nash equilibria.

Similar to the analysis in Gao et al. [2021], in this paper, we focus on competitive equilibrium and

fairness properties of PACE, rather than game-theoretic (incentive) properties.

2 PRELIMINARY: ONLINE FAIR ALLOCATION
An online fair allocation instance with infinitely divisible items with 𝑛 agents and a finite horizon 𝑡

consists of a tuple A = (𝑛, 𝑡,Θ, 𝑄, 𝑣), where Θ is the (possibly uncountable) measurable space of

all possible items, with an associated 𝜎-algebraM and a probability measure 𝜇, the distribution

𝑄 ∈ Δ(Θ𝑡 ) is the distribution over possible sequences of items 𝛾 = (𝜃1, . . . , 𝜃𝑡 ) ∈ Θ𝑡 , each of unit

supply, and the set 𝑣 = (𝑣1, . . . , 𝑣𝑛) ∈ 𝐿1+ (Θ)𝑛 is the set of valuation functions of the 𝑛 agents. Agent

𝑖 sees a utility of 𝑣𝑖 (𝜃 ) in item 𝜃 ∈ Θ. Abusing notation we let 𝑣𝑖 (𝛾) =
(
𝑣𝑖 (𝜃1), . . . , 𝑣𝑖 (𝜃 𝑡 )

)
denote

the valuation for agent 𝑖 of items in the sequence 𝛾 . Let 𝑄𝜏 be the marginal distribution of 𝜃𝜏 and

𝑄 = (1/𝑡)∑𝑡
𝜏=1𝑄

𝜏
. We assume

∫
Θ
𝑣𝑖d𝑄 = 1 for all 𝑖 ∈ [𝑛]. We further assume ∥𝑣 ∥∞ := max𝑖 ∥𝑣 ∥∞ <

∞. We stress that the PACE algorithm that we study is not going to require access to either the

valuation functions 𝑣 or the set of possible items Θ; these are only required in order to discuss the

resulting bounds.

Given an instance A, the decision maker allocates the stream of items 𝛾 one at a time, in an

irrevocable manner. At time 𝜏 when item 𝜃𝜏 is revealed, the decision maker must choose an

allocation rule 𝑥𝜏 = (𝑥𝜏1, . . . , 𝑥𝜏𝑛) ∈ Δ𝑛 based on information available at that time, and allocate

accordingly. Here the 𝑖-th entry of 𝑥𝜏 is the fraction of item 𝜃𝜏 allocated to agent 𝑖 . On receiving

her fraction, agent 𝑖 realizes a utility of

𝑢𝜏𝑖 := 𝑣𝑖 (𝜃𝜏 )𝑥𝜏𝑖 . (1)

We collect the decisions made over time and let 𝑥 = (𝑥1, . . . , 𝑥𝑡 ). And for agent 𝑖 𝑥𝑖 = (𝑥1𝑖 , . . . , 𝑥𝑡𝑖 ) ∈
R𝑡 denotes the fraction of items given to agent 𝑖 across time. Then the total utility of agent 𝑖 is

⟨𝑥𝑖 , 𝑣𝑖 (𝛾)⟩. The goal of the decision maker is to decide, in an online fashion, on an allocation 𝑥 such

that it achieves some form of both efficiency and fairness guarantees.
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To measure the nonstationarity in the input data, we will use the total variation distance. Given

two probability measures 𝑃 and 𝑄 , it is defined as follows

∥𝑃 −𝑄 ∥TV := (1/2)
∫ ���d𝑃

d𝜇
− d𝑄

d𝜇

��� d𝜇 ,
where 𝜇 is a supporting measure. We use 1𝑡 to denote the vector of ones of length 𝑡 and 𝑒 𝑗 to denote
the vector with one on the 𝑗-th entry and zeros on the others. We use Δ(Θ) to denote the space of

probability measures on a measurable space Θ and Δ𝑛 to denote the simplex in R𝑛 .

2.1 Benchmark: The Hindsight Allocation
Suppose now all items are presented to the decision maker as opposed to arriving one by one. In that

case, a fair and Pareto efficient allocation can be found by allocating via competitive equilibrium.

This is achieved by the following Eisenberg-Gale-type (EG) convex program [Eisenberg and Gale,

1959] which generates an allocation by maximizing the sum of logarithmic utilities (which is

equivalent to maximizing the geometric mean of utilities):

max
𝑥≥0,𝑢≥0

{
𝑡

𝑛

𝑛∑︁
𝑖=1

log(𝑈𝑖 )
���� 𝑈𝑖 ≤ 〈

𝑣𝑖 (𝛾), 𝑥𝑖
〉
∀𝑖 ∈ [𝑛] ,

𝑛∑︁
𝑖=1

𝑥𝜏𝑖 ≤ 1 ∀𝜏 ∈ [𝑡]
}
. (2)

It is well-known that the hindsight allocation generated by the EG program enjoys many desirable

properties.

• Pareto optimality: we cannot strictly increase any agent’s utility without decreasing some

other agents’ utility.

• Envy-freeness: each agent prefers their own allocation to that of any other agent: ⟨𝑣𝑖 (𝛾), 𝑥∗𝑖 ⟩ ≥
⟨𝑣𝑖 (𝛾), 𝑥∗𝑘⟩ for all 𝑘 ≠ 𝑖 .

• Proportionality: every agent achieves at least as much utility as under the uniform allocation,

i.e. ⟨𝑣𝑖 (𝛾), 𝑥∗𝑖 ⟩ ≥ ⟨𝑣𝑖 (𝛾), (1/𝑛)1𝑡 ⟩.

In Fisher market terminology, we assume that each agent has the same budget of 𝑡/𝑛, and thus the

hindsight allocation Eq. (2) can be interpreted as a competitive equilibrium from equal incomes

(CEEI) in the corresponding Fisher market; see Appendix A for more details on this interpretation.

Although we focus on fair allocation in which all agents have the same priority ("budgets"), all

results in this paper extend directly to the case of unequal budgets, which can be useful in settings

such as when buyers have quasilinear utilities [Conitzer et al., 2019, Gao et al., 2021] or when it is

desirable to give a larger allocation to certain agents.

The hindsight allocation is the gold standard that we assume the decision maker would use if

she had known the sequence of items 𝛾 in advance. However, in the online setting the decision

maker does not know this sequence, and must therefore instead attempt to approximate an equally

good allocation in online fashion.

For an item sequence 𝛾 , we let 𝑥𝛾 denote the optimal hindsight allocation, which is an optimal

solution to Eq. (2), and we denote the resulting utility from the hindsight allocation as

𝑈
𝛾

𝑖
:=

〈
𝑥
𝛾

𝑖
, 𝑣𝑖 (𝛾)

〉
=

𝑡∑︁
𝜏=1

𝑥
𝛾,𝜏

𝑖
𝑣𝑖 (𝜃𝜏 ) . (3)
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2.2 Performance Metrics
For any online allocation rule 𝑥 , we measure its performance on the instance 𝛾 via the following

two quantities. The regret of agent 𝑖 is defined by

Reg𝑖,𝑡 (𝛾) := 𝑈
𝛾

𝑖
−

𝑡∑︁
𝜏=1

𝑢𝜏𝑖 , (4)

where the total hindsight equilibrium utility 𝑈𝑖 (𝛾) is defined in Eq. (3) and the time-𝜏 realized

utility by the allocation rule 𝑥 , 𝑢𝜏
𝑖
, is defined in Eq. (1). The envy is defined by

Envy𝑖,𝑡 (𝛾) := max
𝑘∈[𝑛]

{
⟨𝑣𝑖 (𝛾), 𝑥𝑘⟩ − ⟨𝑣𝑖 (𝛾), 𝑥𝑖⟩

}
. (5)

Had the agent 𝑖 been allocated what agent 𝑘 had, agent 𝑖 would receive a utility of ⟨𝑣𝑖 (𝛾), 𝑥𝑘⟩. The
discrepancy between such counterfactual utility and the realized utility measures how much agent

𝑖 envies other agents.

We seek to understand the worst-base behavior of an algorithm when facing a certain class

of input distributions. For a given input distribution C ⊂ Δ(Θ𝑡 ), we will develop bounds on the

quantities

sup
𝑄 ∈C
E𝛾∼𝑄

[
Reg𝑖,𝑡 (𝛾)

]
, sup

𝑄 ∈C
E𝛾∼𝑄

[
Envy𝑖,𝑡 (𝛾)

]
.

2.3 The PACE Algorithm
In this section, we review the PACE (Pace According to Current Estimated Utility) dynamics [Gao

et al., 2021], which utilizes repeated auctions for allocation. PACE allocates sequentially arriving

items by maintaining a pacing multiplier for each agent and performing simple, distributed updates.

Algorithmic details are displayed in Algorithm 1. At every time step 𝜏 an item 𝜃𝜏 is revealed. At

that point every agent comes up with a bid for that item, which is equal to their value for the item

multiplied by their current pacing multiplier 𝛽𝜏
𝑖
. Then, the agents submit these bids to a first-price

auction, and the item is allocated to the highest bidder. Each agent then observes their realized utility,

updates their average utility received so far, and updates their pacing multiplier accordingly. An

important fact about the PACE dynamics is that each agent has no stepsize parameter whatsoever,

which means that no stepsize tuning is required.

The PACE dynamics can be run in either centralized (by having the mechanism designer emulate

the pacing process for each agent) or decentralized fashion (since the auction-based allocation

is the only centralized step at each iteration), and are therefore suitable for Internet-scale online

fair division and online Fisher market applications. Moreover, PACE is robust against the types of
item arrival since the algorithm needs neither knowledge of the item distribution 𝑃 nor the input

type C. To appreciate the connection between PACE and convex optimization, Section 5.2 reviews

the derivations from Gao et al. [2021] showing that PACE is an instantiation of dual averaging

[Xiao, 2010] applied to the dual of the hindsight allocation program in Eq. (2).

In addition to the regret and the envy performance metrics, we will also derive results for the

following two quantities that characterize the long-run behavior of PACE. Let 𝑢𝑡 = (1/𝑡) · ∑𝑡
𝜏=1𝑢

𝜏

be the vector of average realized utilities for all agents. We will show that the agents’ utilities

converge to those associated to the underlying offline fair allocation problem, 𝑢∗ (to be defined in

Section 5.1), in an 𝐿2 sense , i.e.,

E
[
∥𝑢𝑡 − 𝑢∗∥2

]
→ 0 ,

as long as the error due to nonstationarity grows sublinearly in the number of time periods. We

also study the long-run average of bids of each agent (Line 4) in the PACE dynamics. Define the
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ALGORITHM 1: PACE(𝑛, 𝑡, 𝑣, 𝛿0)
Input: number of agents 𝑛, horizon 𝑡 , valuation functions 𝑣 = {𝑣1, . . . , 𝑣𝑛}, algorithm parameter 𝛿0 > 0.

1 Initialize: Set 𝛽1 = (1 + 𝛿0) · 1𝑛 .
2 Environment draws the item sequence 𝛾 = {𝜃1, . . . , 𝜃𝑡 } from the distribution 𝑄 .

3 for 𝜏 = 1, . . . , 𝑡 when item 𝜃𝜏 is revealed do
4 Agent 𝑖 bids 𝛽𝜏

𝑖
𝑣𝑖 (𝜃𝜏 ), the whole item 𝜃𝜏 is allocated to the highest bidder 𝑖𝜏 (with arbitrary tie

breaking)

𝑖𝜏 := min

{
argmax
𝑖∈[𝑛]

𝛽𝜏𝑖 𝑣𝑖 (𝜃
𝜏 )

}
.

5 Agent 𝑖 updates current average utility

𝑢𝜏𝑖 = 𝑣𝑖 (𝜃𝜏 )1{𝑖 = 𝑖𝜏 } , 𝑢𝜏𝑖 =
1

𝜏

𝜏∑︁
𝑠=1

𝑢𝑠𝑖 .

6 Agent 𝑖 updates the pacing multiplier

𝛽𝑡+1𝑖 = Π [ℓ,ℎ]
[
1/(𝑛𝑢𝑡𝑖 )

]
.

where the interval [ℓ, ℎ] =
[

1
(1+𝛿0)𝑛 , 1 + 𝛿0

]
.

7 end

expenditure of agent 𝑖 at time 𝜏 by

𝑏𝜏𝑖 := 𝛽
𝜏
𝑖 𝑣𝑖 (𝜃𝜏 ) 1 {𝑖 = 𝑖𝜏 } . (6)

Wewill show (1/𝑡)·∑𝑡
𝜏=1𝑏

𝜏
𝑖
→ 1/𝑛 inmean square as well, as long as the error due to nonstationarity

grows sublinearly in the number of time periods.

3 INPUT MODELS
This section introduces the different types of nonstationary input models that we consider. We first

introduce some notation that will be useful for describing these input models. For 𝑠 > 𝜏 ≥ 1 let

𝑄𝑠 (𝜃1:𝜏 ) denote the conditional distribution of 𝜃𝑠 given {𝜃1, . . . , 𝜃𝜏 }. For a subset 𝐼 of [𝑡] let 𝑄 𝐼
denote the joint distribution of the variables {𝜃𝜏 }𝜏 ∈𝐼 . Let𝑄 = (1/𝑡) ·∑𝑡

𝜏=1𝑄
𝜏
be the uniform mixture

of {𝑄𝜏 }𝜏 . We study three types of input: independent input with adversarial corruption, ergodic

and Markov input, and periodic input. For each input setting, we describe our main theorem for

the performance guarantees of PACE here. The proofs are given in Section 5, because these results

rely on developing a theory of nonstationary performance of DA, which is done in Section 4.

3.1 Independent Input with Adversarial Corruption
Adversarial perturbation of a fixed item distribution models real-world scenarios where the items

generally behave in a predictable manner, but for some time steps the input behaves erratically.

Typically this is assumed to happen only for a small number of time steps. Such perturbation could

be malicious, for example when item arrivals are manipulated in favor of certain agents in the

economy; or non-malicious, such as the surge of a certain keyword in search engines caused by

unforeseeable events [Esfandiari et al., 2018].

We study a type of adversarial perturbation where the item distribution at each time step might

be corrupted by an arbitrary amount, but distributions at different time steps are independent of

each other. We assume the average corruption is bounded by 𝛿 , as measured in TV distance. The



Luofeng Liao, Yuan Gao, and Christian Kroer 7

set of distributions over sequences that we consider is then:

CID (𝛿) :=
{
𝑄 ∈ Δ(Θ)𝑡 : 1

𝑡

𝑡∑︁
𝜏=1

∥𝑄𝜏 −𝑄 ∥TV ≤ 𝛿
}
. (7)

We use 𝑂 to hide numeric constants and polynomials of 𝑛, max𝑖 ∥𝑣𝑖 ∥∞, and log 𝑡 . Our main fair

online allocation result for the adversarial corruption case is:

Theorem 1 (Independent Case). We run Algorithm 1 against an instance A = (𝑛, 𝑡,Θ, 𝑄, 𝑣)
agnostic of 𝑄 . For the adversarially corrupted and independent case, we have

sup
𝑄 ∈CID (𝛿)

E𝛾∼𝑄
[
Reg𝑖,𝑡 (𝛾)

]
, sup
𝑄 ∈CID (𝛿)

E𝛾∼𝑄
[
Envy𝑖,𝑡 (𝛾)

]
= 𝑂

(√
𝑡 +

√
𝛿 · 𝑡

)
(8)

and

sup
𝑄 ∈CID (𝛿)

E𝛾∼𝑄
[
∥𝑏𝑡 − (1/𝑛)1𝑛 ∥2

]
, sup
𝑄 ∈CID (𝛿)

E𝛾∼𝑄
[
∥𝑢𝑡 − 𝑢∗∥2

]
, sup
𝑄 ∈CID (𝛿)

E𝛾∼𝑄
[
∥𝑢𝑡 − 𝑢𝛾 ∥2

]
= 𝑂 (𝛿 + 1/𝑡) . (9)

The result shows that the performance of PACE, in terms of the regret and the envy performance

metrics, degrades linearly in the average corruption 𝛿 . In the i.i.d. case where 𝛿 = 0, we recover
the

√
𝑡 regret rate in [Gao et al., 2021], as well as the 1/𝑡 rate of convergence for utilities and

expenditures in terms of the mean-square error. If out of the 𝑡 distributions of items in each time

step only 𝑂 (
√
𝑡) are corrupted, each by a constant amount, then the

√
𝑡 regret and envy bounds, as

well as 1/𝑡 convergence rates, are also preserved.

3.2 Ergodic Input and Markov Processes
To handle correlation across time, we next study ergodic inputs. For these inputs, strong correlation

might be present for items sampled at nearby time steps, but the correlation between items decays

as they are separated in time. For any integer 𝜄 such that 1 ≤ 𝜄 ≤ 𝑡 − 1, we measure the 𝜄-step

deviation from some distribution Π ∈ Δ(Θ) by the quantity

𝛿 (𝜄) := sup
𝛾

sup
𝜏=1,...,𝑡−𝜄

∥𝑄𝜏+𝜄 (𝜃1:𝜏 ) − Π∥TV .

Intuitively, this definition tells us that, no matter where and when we start the item arrival process,

it takes only 𝜄 steps to get 𝛿 (𝜄)-close to the distribution Π. The set of ergodic input distributions are
those whose 𝜄-step deviation is bounded by 𝛿 :

CE (𝛿, 𝜄) :=
{
𝑄 ∈ Δ(Θ𝑡 ) : sup

𝛾

sup
𝜏=1,...,𝑡−𝜄

∥𝑄𝜏+𝜄 (𝜃1:𝜏 ) − Π∥TV ≤ 𝛿, for some Π ∈ Δ(Θ)
}
. (10)

Theorem 2 (Ergodic Case). We run Algorithm 1 against an instance A = (𝑛, 𝑡,Θ, 𝑄, 𝑣) agnostic
of 𝑄 . For the ergodic case, we have

sup
𝑄 ∈CE (𝛿,𝜄)

E𝛾∼𝑄
[
Reg𝑖,𝑡 (𝛾)

]
, sup
𝑄 ∈CE (𝛿,𝜄)

E𝛾∼𝑄
[
Envy𝑖,𝑡 (𝛾)

]
= 𝑂 (

√
𝜄𝑡 +

√
𝛿 · 𝑡) (11)

and

sup
𝑄 ∈CE (𝛿)

E𝛾∼𝑄
[
∥𝑏𝑡 − (1/𝑛)1𝑛 ∥2

]
, sup
𝑄 ∈CE (𝛿)

E𝛾∼𝑄
[
∥𝑢𝑡 − 𝑢∗∥2

]
, sup
𝑄 ∈CE (𝛿)

E𝛾∼𝑄
[
∥𝑢𝑡 − 𝑢𝛾 ∥2

]
= 𝑂 (𝛿 + 𝜄/𝑡) . (12)



Luofeng Liao, Yuan Gao, and Christian Kroer 8

Remark 1 (Markov Input). We can specialize the result in Theorem 2 to fast mixing or Markov
item sequences. Fast mixing means the deviation 𝛿 decreases exponentially, i.e., for all 1 ≤ 𝜄 ≤ 𝑡 − 1, it
holds

sup
𝛾

sup
𝜏=1,...,𝑡−𝜄

∥𝑄𝜏+𝜄 (𝜃1:𝜏 ) − Π∥TV ≤ 𝑀𝜌𝜄 , (13)

for some𝑀 > 0, 𝜌 ∈ [0, 1), and Π is the stationary distribution. Examples include finite state-space
time-homogeneous Markov chain and uniformly ergodic Markov chains on general state spaces [Meyn
and Tweedie, 2012, Chapter 16]. In these cases, setting

𝜄 =
log(𝑡−1) + log(𝑀−1)

log(𝜌) = 𝑂

(
log 𝑡

log(𝜌−1)

)
=⇒ 𝛿 ≤ 1/𝑡 .

This means the Markov chain from which 𝛾 is generated takes 𝑂 (log 𝑡) steps to get (1/𝑡)-close to
stationarity. The dominant term for the regret in Theorem 2 (further ignoring𝑀) is then(

1 + 1

log(𝜌−1)

)1/2√
𝑡 .

The term in the parenthesis reflects the inflation caused by input dependency. To recover the case of i.i.d.
input, we simply send 𝜌 → 0 and the usual

√
𝑡 regret and envy rates and 1/𝑡 utility and expenditure

convergence rates are again recovered.

3.3 Periodic Input
Item sequences often exhibit statistical periodic structure. For example, when allocating scarce

compute time to requestors, there will be more requests during weekdays and less on weekends.

The compute request patterns vary throughout the week, and yet the weekly pattern would repeat

over time.

Formally, assume the length of each period is 𝑞 ≥ 1 and that the horizon 𝑡 = 𝐾𝑞 is a multiple of

𝑞. We divide the item sequence 𝛾 into consecutive blocks of length 𝑞. Assume blocks, as a whole,

are identically and independently distributed. We define the set of periodic input distributions as

follows:

CP (𝑞) :=
{
𝑄 ∈ Δ(Θ𝑞)𝐾 : 𝑄1:𝑞 = 𝑄𝑞+1:2𝑞 = . . . = 𝑄𝑡−𝑞+1:𝑡

}
. (14)

Theorem 3 (Periodic Case). We run Algorithm 1 against an instance A = (𝑛, 𝑡,Θ, 𝑄, 𝑣) agnostic
of 𝑄 . For the periodic case, we have

sup
𝑄 ∈CP (𝑞)

E𝛾∼𝑄
[
Reg𝑖,𝑡 (𝛾)

]
, sup
𝑄 ∈CP (𝑞)

E𝛾∼𝑄
[
Envy𝑖,𝑡 (𝛾)

]
= 𝑂

(√︁
𝑞𝑡

)
(15)

and

sup
𝑄 ∈CP (𝛿)

E𝛾∼𝑄
[
∥𝑏𝑡 − (1/𝑛)1𝑛 ∥2

]
, sup
𝑄 ∈CP (𝛿)

E𝛾∼𝑄
[
∥𝑢𝑡 − 𝑢∗∥2

]
, sup
𝑄 ∈CP (𝛿)

E𝛾∼𝑄
[
∥𝑢𝑡 − 𝑢𝛾 ∥2

]
= 𝑂 (𝑞2/𝑡) . (16)

If the length of the blocks are of order 𝑜 (𝑡) then the time-averaged regret and envy are both

vanishing. For i.i.d. case, we can set 𝑞 = 1 to recover the previous results.

4 NONSTATIONARY DUAL AVERAGING
As mentioned in Section 2.3, the PACE dynamics can be cast as dual averaging [Xiao, 2010] applied

to the dual of the hindsight allocation program in Eq. (2). However, in order to characterize the

PACE performance under various types of nonstationary input, we need to extend existing results

for dual averaging to the nonstationary case. In particular, the results of [Xiao, 2010] are not
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ALGORITHM 2: DA(G,Ψ, {𝑧𝜏 }𝑡𝜏=1)
Input: subgradient G, regularizer Ψ and data {𝑧𝜏 }𝑡𝜏=1 .

1 Initialize: set 𝑔0 = 0 and𝑤1 = argminΨ.

2 for 𝜏 = 1, . . . , 𝑡 do
3 Observe 𝑧𝜏 and compute 𝑔𝜏 = G(𝑤𝜏 , 𝑧𝜏 ).
4 Average subgradients (the dual average) via 𝑔𝜏 = 𝜏−1

𝜏 𝑔𝜏−1 + 1
𝜏 𝑔𝜏 .

5 Compute the next iterate𝑤𝜏+1 = argmin𝑤{⟨𝑔𝜏 ,𝑤⟩ + Ψ(𝑤)}.
6 end
Output: the DA iterates {𝑤𝜏 }𝑡+1𝜏=1

applicable for characterizing Eq. (18), since they rely on the stringent i.i.d. assumption. The work

of [Duchi et al., 2012] considers ergodic mirror descent for convex problems. Direct application of

their results does not exploit the strong convexity in Eq. (2).

In this section, after introducing the nonstationary setup of DA in Section 4.1 and Section 4.2, we

present a DA convergence result for independent but not identical input in Section 4.4, for which

we outline the proof idea and clarify technical challenges. In Section 4.5 we present DA convergence

results for ergodic and periodic inputs. We note that this paper focuses on DA for strongly convex

problems with an existing regularizer (and hence no auxiliary regularizer is needed), since this is

the setting used in the design and analysis of the PACE algorithm; similar convergence results under

our new input models can be derived for the general form of DA given in Xiao [2010, Algorithm 1]

with an auxiliary regularizer for non-strongly convex problems.

4.1 Optimization Setup and the DA Algorithm
We review the dual averaging setup in the strongly convex case [Xiao, 2010, §1.1]. Consider a

stochastic optimization problem of the form

min
𝑤

{
𝜙 (𝑤) := E𝑧∼Π

[
𝐹 (𝑤, 𝑧)

]
= E𝑧∼Π

[
𝑓 (𝑤, 𝑧)

]
+ Ψ(𝑤)

}
, (17)

where𝑤 ∈ (R𝑑 , ∥ · ∥) is the variable, Ψ is a closed convex function with closed domain DomΨ :=
{𝑤 ∈ R𝑛 : Ψ(𝑤) < ∞}. The expectation is taken over a probability distribution Π on a measurable

space 𝑍 . For each 𝑧 ∈ 𝑍 , the function 𝑓 (·, 𝑧) is convex and subdifferentiable (a subgradient always

exists) on DomΨ. Let 𝐹 (𝑤, 𝑧) = 𝑓 (𝑧,𝑤) + Ψ(𝑤).
Let G(𝑤, 𝑧) be a fixed element in the set of subgradients 𝜕𝑤 𝑓 (𝑤, 𝑧). We state the running assump-

tions for DA that we will use.

(1) for almost every 𝑧, it holds ∥G(𝑤, 𝑧)∥∗ ≤ 𝐺 , where ∥ · ∥∗ = max∥𝑤 ∥≤1⟨𝑠,𝑤⟩ is the dual norm.

(2) 𝐹 (𝑤, 𝑧) ≤ 𝐹 for all𝑤 and (almost every) 𝑧.

(3) Ψ is 𝜎-strongly convex, i.e., Ψ(𝛼𝑤 + (1− 𝛼)𝑢) ≤ 𝛼Ψ(𝑤) + (1− 𝛼)Ψ(𝑢) − 𝜎
2𝛼 (1− 𝛼)∥𝑤 −𝑢∥2

for𝑤,𝑢 ∈ DomΨ.

Because of our strong convexity assumption, the solution to Eq. (17) is unique. Associated with Π
we define

𝑤∗
Π := argminE𝑧∼Π

[
𝐹 (𝑤, 𝑧)

]
.

In the i.i.d. case, we are given i.i.d. data {𝑧𝜏 }𝑡𝜏=1 drawn from Π. The goal is to produce a sequence
converging to the optimal point 𝑤∗

Π or minimize the associated regret ([Xiao, 2010, §1.2]). This

can be achieved by the dual averaging algorithm (DA) [Xiao, 2010, Algorithm 1]. The algorithmic

details for DA are presented in Algorithm 2.



Luofeng Liao, Yuan Gao, and Christian Kroer 10

4.2 The Nonstationary Setup
Discarding the i.i.d. assumption on the data {𝑧𝜏 }𝑡𝜏=1, we let 𝑃 be the joint distribution of {𝑧𝜏 }𝜏 and
let 𝑃𝜏 be the marginal distribution of 𝑧𝜏 . In this section we study the relationship between the DA

iterate𝑤𝑡+1 and𝑤∗
Π via

E{𝑧𝜏 }𝑡𝜏=1∼𝑃
[
∥𝑤𝑡+1 −𝑤∗

Π ∥2
]
, (18)

and thus demonstrate in what sense the data distribution 𝑃 should stay close to the i.i.d. distribution

Π in order to preserve DA convergence. We will study the three types of input introduced in

the Section 3. Existing convergence results on dual averaging [Xiao, 2010] are not applicable for

characterizing Eq. (18), since they rely on the stringent i.i.d. assumption. Our results for DA with

nonstationary inputs will enable us to study the PACE dynamics in Section 5.

To facilitate the analysis, we introduce some more notations. Consider the dual averaging

algorithm with data {𝑧𝜏 }𝑡𝜏=1. Define the one-step and the average subgradient: 𝑔𝜏 := G(𝑤𝜏 , 𝑧𝜏 ) and
𝑔𝜏 = (∑𝜏

𝑠=1 𝑔𝑠 )/𝜏 . Given data {𝑧𝜏 }𝑡𝜏=1, we define the regret

𝑅𝑡 (𝑤) :=
𝑡∑︁
𝜏=1

(
𝐹 (𝑤𝜏 , 𝑧𝜏 ) − 𝐹 (𝑤, 𝑧𝜏 )

)
.

and the sum of squared subgradient norms
1

Δ𝑡 :=
1

2𝜎

(
5∥𝑔1∥2∗ +

𝑡−1∑︁
𝜏=1

∥𝑔𝜏+1∥2∗
𝜏

)
≤ (6 + log 𝑡)𝐺2

2𝜎
. (19)

The above bound holds in a deterministic manner due to the bounded subgradient assumption.

The first step in our analysis is a relationship between regret and the suboptimality term Eq. (18)

derived by Xiao [2010]:

Fact 1 (Regret Bound, Section B.2 in [Xiao, 2010]). For any sequence {𝑧𝜏 }𝑡𝜏=1, any𝑤 ∈ DomΨ,
any 𝑡 = 1, 2, . . . , it holds

∥𝑤𝑡+1 −𝑤 ∥2 ≤ 2

𝜎𝑡

(
Δ𝑡 − 𝑅𝑡 (𝑤)

)
.

The above analysis is deterministic and valid for any {𝑧𝜏 }𝑡𝜏=1. Next set𝑤 = 𝑤∗
Π in Fact 1. If the

input data {𝑧𝜏 }𝑡𝜏=1 were i.i.d. from Π, i.e., 𝑃 = Π𝑡 , then E[𝑅𝑡 (𝑤∗
Π)] would be greater than zero, and

we would obtain

E
[
∥𝑤𝑡+1 −𝑤∗

Π ∥2
]
≤ 2

𝜎𝑡

(
E[Δ𝑡 ] − E

[
𝑅𝑡 (𝑤∗

Π)
] )

≤ (6 + log 𝑡)𝐺2

𝜎2𝑡
.

However, in the case nonstationary data, the regret E[𝑅𝑡 (𝑤∗
Π)] might be negative. At a high

level, our results are achieved by introducing appropriate measures of the nonstationarity and then

lower bounding E[𝑅𝑡 (𝑤∗
Π)] based on those measures.

Finally, in the nonstationary setup of DA, we emphasize that whenever we mention convergence,

we mean convergence of DA iterates to the population-level optimum 𝑤∗
Π (or sometimes the

hindsight optimum), up to some error caused by nonstationarity. Only when those error measures

go to zero asymptotically do we get exact convergence. For simplicity, we will simply refer our

theorems as convergence results for DA.

1
See the first equation on page 2584 in [Xiao, 2010]. In [Xiao, 2010]’s notation, set 𝛽𝜏 = 0 all 𝜏 ≥ 1 and 𝛽0 = 𝜎 , plug in the

bound ℎ (𝑤2) ≤ 2∥𝑔1 ∥2∗ /𝜎 and we have the expression of Δ𝑡 in Eq. (19).
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4.3 Convergence to the Hindsight Optimum
Before developing the nonstationary convergence theory, we digress a bit and introduce a simple

deduction through which we can easily show the convergence of DA iterates to the optimum of

the hindsight problem based on convergence to𝑤∗
Π . Given data {𝑧𝜏 }𝑡𝜏=1, define the sum 𝜙𝛾 (𝑤) =

(1/𝑡) · ∑𝑡
𝜏=1𝐹 (𝑤, 𝑧𝜏 ) and its unique minimizer𝑤∗

𝛾 = argmin𝜙𝛾 (𝑤). We claim all results developed

for ∥𝑤𝑡+1 −𝑤∗
Π ∥2 will also hold for the hindsight suboptimality ∥𝑤𝑡+1 −𝑤∗

𝛾 ∥2.
Note the following inequality:

𝑅𝑡 (𝑤∗
𝛾 ) =

𝑡∑︁
𝜏=1

(
𝐹 (𝑤𝜏 , 𝑧𝜏 ) − 𝐹 (𝑤∗

𝛾 , 𝑧𝜏 )
)
=

𝑡∑︁
𝜏=1

(
𝐹 (𝑤𝜏 , 𝑧𝜏 ) − 𝜙𝛾 (𝑤∗

𝛾 )
)
≥

𝑡∑︁
𝜏=1

(
𝐹 (𝑤𝜏 , 𝑧𝜏 ) − 𝜙𝛾 (𝑤∗

Π)
)
,

the last term being exactly 𝑅𝑡 (𝑤∗
Π). Choose𝑤 = 𝑤∗

𝛾 in Fact 1 and we obtain

E
[
∥𝑤𝑡+1 −𝑤∗

𝛾 ∥22
]
≤ 1

𝜎𝑡

(
E[Δ𝑡 ] − E

[
𝑅𝑡 (𝑤∗

𝛾 )
] )

≤ 1

𝜎𝑡

(
E[Δ𝑡 ] − E

[
𝑅𝑡 (𝑤∗

Π)
] )
.

It follows that all lower bounds for the regret E
[
𝑅𝑡 (𝑤∗

Π)
]
can be turned into an upper bound for

the hindsight suboptimality measure ∥𝑤𝑡+1 −𝑤∗
Π ∥2. Convergence to the hindsight optimum is of

practical importance since the hindsight optimum𝑤∗
𝛾 can typically be computed, where this is not

always the case for the population optimum𝑤∗
Π .

A simple consequence of the deduction above is the following. We note the inequality

∥𝑤∗
𝛾 −𝑤∗

Π ∥2 ≤ 2∥𝑤𝑡+1 −𝑤∗
Π ∥2 + 2∥𝑤𝑡+1 −𝑤∗

𝛾 ∥2 .

Therefore convergence results for ∥𝑤𝑡+1 −𝑤∗
Π ∥ and ∥𝑤𝑡+1 −𝑤∗

𝛾 ∥2 similarly hold for ∥𝑤∗
𝛾 −𝑤∗

Π ∥2.

4.4 Independent Adversarial Corruption Case and Proof Idea
In this section we deal with independent data. To demonstrate the proof strategy, we first introduce

a variant of CID (𝛿) with a target distribution Π:

CID (𝛿;Π) :=
{
𝑃 ∈ Δ(Θ)𝑡 : 1

𝑡

𝑡∑︁
𝜏=1

∥𝑃𝜏 − Π∥TV ≤ 𝛿
}
. (20)

Theorem 4 (DA Convergence, Independent Case). If {𝑧𝜏 }𝑡𝜏=1 ∼ 𝑃 and 𝑃 ∈ CID (𝛿,Π), then the
expected regret cannot be too negative: E

[
𝑅𝑡 (𝑤∗

Π)
]
≥ −4𝐹𝛿 · 𝑡 . This implies for 𝑡 ≥ 1,

E{𝑧𝜏 }𝑡𝜏=1∼𝑃
[
∥𝑤𝑡+1 −𝑤∗

Π ∥2
]
≤ (6 + log 𝑡)𝐺2

𝜎2𝑡
+ 8𝐹

𝜎
𝛿 = 𝑂 (𝛿 + 1/𝑡) .

Moreover, the rate 𝑂 (𝛿 + 1/𝑡) applies to E
[
∥𝑤𝑡+1 −𝑤∗

𝛾 ∥22
]
and E

[
∥𝑤∗

𝛾 −𝑤∗
Π ∥22

]
by the deduction in

Section 4.3.

Proof Sketch. We decompose the regret as follows. Write

𝑅𝑡 (𝑤∗
Π) =

𝑡∑︁
𝜏=1

(
𝐹 (𝑤𝜏 , 𝑧𝜏 ) − 𝜙Π (𝑤𝜏 )

)
+

𝑡∑︁
𝜏=1

(
𝜙Π (𝑤∗

Π) − 𝐹 (𝑤∗
Π, 𝑧𝜏 )

)
(I)

+
𝑡∑︁
𝜏=1

(
𝜙Π (𝑤𝜏 ) − 𝜙Π (𝑤∗

Π)
)
. (II)

By optimality of 𝑤∗
Π we have II ≥ 0. Using the bound on the TV distance between {𝑃𝜏 }𝜏 and Π,

and boundedness of 𝐹 we can control the other two terms. The key is, conditional on F𝜏−1, the
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iterate 𝑤𝜏 is deterministic and the distribution of 𝑧𝜏 is 𝑃
𝜏
due to independence assumption. For

each term in the first summation, we condition on F𝜏−1 and obtain

|E[𝐹 (𝑤𝜏 , 𝑧𝜏 ) − 𝜙Π (𝑤𝜏 ) |F𝜏−1] | =
����E[ ∫

Z
𝐹 (𝑤𝜏 , 𝑧)𝑃𝜏 (d𝑧 | 𝑧1:𝜏−1) −

∫
Z
𝐹 (𝑤𝜏 , 𝑧) dΠ(𝑧) |F𝜏−1

] ����
=

����E[ ∫
Z
𝐹 (𝑤𝜏 , 𝑧)𝑃𝜏 (d𝑧) −

∫
Z
𝐹 (𝑤𝜏 , 𝑧) dΠ(𝑧) |F𝜏−1

] ����
≤ E

[���� ∫
Z
𝐹 (𝑤𝜏 , 𝑧)𝑃𝜏 (d𝑧) −

∫
Z
𝐹 (𝑤𝜏 , 𝑧) dΠ(𝑧)

����|F𝜏−1]
≤ 2𝐹 ∥𝑃𝜏 − Π∥TV .

For the detailed proof and a generalization, please see Appendix B.1 in Appendix B. □

4.5 Ergodic Case and Block-Independent Case
Results for other input types, CE (𝛿, 𝜄) and CP (𝑞), can be obtained by using more complicated regret

decompositions and conditioning arguments. We state the resulting convergence results here. The

proofs can be found in Appendix B.

Theorem 5 (DA Convergence, Ergodic Case). For the input distribution 𝑃 define the 𝜄-step
deviation from Π for an integer 1 ≤ 𝜄 ≤ 𝑡 − 1:

𝜖𝑡 (𝜄) := sup
𝑧1,...,𝑧𝑡

sup
𝜏=1,...,𝑡−𝜄

∥𝑃𝜏+𝜄 (· | 𝑧1:𝜏 ) − Π∥TV .

Then, for all 𝑡 ≥ 1 and any 1 ≤ 𝜄 ≤ 𝑡 − 1,

E{𝑧𝜏 }𝑡𝜏=1∼𝑃
[
∥𝑤𝑡+1 −𝑤∗

Π ∥22
]
≤

(
6 + log 𝑡

)
𝐺2

𝜎2𝑡
+
2
(
4𝐹𝜖𝑡 (𝜄)𝑡 + 2𝐺2𝜄 (log 𝑡 + 1) + 2𝜄𝐹

)
𝜎𝑡

= 𝑂 (𝜖𝑡 (𝜄) + 𝜄/𝑡) .

Moreover, the rate 𝑂 (𝜖𝑡 (𝜄) + 𝜄/𝑡) applies to E
[
∥𝑤𝑡+1 −𝑤∗

𝛾 ∥22
]
and E

[
∥𝑤∗

𝛾 −𝑤∗
Π ∥22

]
by the deduction

in Section 4.3.

Remark 2 (Comparison with EMD [Duchi et al., 2012]). Now we specialize Theorem 5 to
the setting of Remark 1, and we briefly compare our result with the Ergodic Mirror Descent (EMD)
results of Duchi et al. [2012]. EMD considers nonsmooth convex optimization problems of the form
𝑓 ∗ = min

{
𝑓 (𝑤) = EΠ [𝐹 (𝑤 ; 𝜉)] |𝑤 ∈ W

}
for a closed convex set W. Differently from our setting,

they do not assume strong convexity in 𝑓 , and do not allow a composite term Ψ which is not linearized.
Assume the Markov chain that generates {𝑧𝜏 }𝑡𝜏=1 are fast mixing with 𝜖𝑡 (𝜄) ≤ 𝑀𝜌𝜄 for some𝑀 > 0
and 𝜌 ∈ [0, 1), then the EMD algorithm produces iterates that satisfy the following convergence rate 2

E
[
𝑓 (𝑤𝑡+1) − 𝑓 ∗

]
= 𝑂

((
1 + 1

log(𝜌−1)

)1/2
· 1
√
𝑡

)
.

As in Remark 1, for the same fast mixing Markov chain, we set 𝜄 = 𝑂
(

log 𝑡
log(𝜌−1)

)
and 𝜖𝑡 (𝜄) = 1/𝑡 in

Theorem 5, we obtain the rate

E
[
∥𝑤𝑡+1 −𝑤∗∥2

]
= 𝑂

((
1 + 1

log(𝜌−1)

)
· 1
𝑡

)
.

2
In Eq. (3.2) of [Duchi et al., 2012], set 𝜅1 = 𝑀 and 𝜅2 = 1/log(𝜌−1) and ignore the parameters (𝐺,𝐷,𝜅1) .
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which is also the rate for E[𝑓 (𝑤𝑡+1) − 𝑓 ∗]. Both results characterize the dependence of convergence rate
on 𝜌 , the mixing parameter of the Markov chain. However, our result exploits the strong convexity of
the optimization problem and achieves the faster rate 1/𝑡 , while also achieving convergence in iterates
rather than only in function values.

Theorem 6 (DA Convergence, Block-Independent Case). Fix an integer 𝐾 ≥ 1. Let {1 = 𝜏1 <

𝜏2 < . . . 𝜏𝐾+1 = 𝑡} be an increasing subsequence of [𝑡]. Using each two consecutive points, form the
interval 𝐼𝑘 := [𝜏𝑘 , 𝜏𝑘+1 − 1]. Then P := {𝐼𝑘 }𝐾𝑘=1 is a partition of [𝑡]. Define by |𝐼𝑘 | = 𝜏𝑘+1 − 𝜏𝑘 ≥ 1 the
length of the interval and |P |∞ = max𝑘 |𝐼𝑘 | the maximum length of the intervals. Associated with the
input distribution 𝑃 and the partition P define the block-wise deviation from Π:

𝛿b :=
1

𝑡

𝐾∑︁
𝑘=1

|𝐼𝑘 | ·





Π − 1

|𝐼𝑘 |
∑︁
𝜏 ∈𝐼𝑘

𝑃𝜏







TV

.

Assume {𝑧𝜏 }𝑡𝜏=1 are block-wise independent according to the partition P. Then, for all 𝑡 ≥ 1,

E{𝑧𝜏 }𝑡𝜏=1∼𝑃
[
∥𝑤𝑡+1 −𝑤∗

Π ∥22
]
≤ (6 + log 𝑡)𝐺2

𝜎2𝑡
+
2
(
4𝐹 · 𝛿b𝑡 +𝐺2 |P |2∞ (log 𝑡 + 1)

)
𝜎𝑡

= 𝑂 (𝛿b + |P|2∞/𝑡) . (21)

Moreover, the rate𝑂 (𝛿b + |P|2∞/𝑡) applies to E
[
∥𝑤𝑡+1 −𝑤∗

𝛾 ∥22
]
and E

[
∥𝑤∗

𝛾 −𝑤∗
Π ∥22

]
by the deduction

in Section 4.3.

Let us briefly we comment on the dependence on |𝑃 |∞. Suppose there are in total 𝐾 blocks,

each of equal length |P |∞ = 𝑞, and blocks are i.i.d. We still allow arbitrary dependence within a

block. Moreover, we choose Π = 𝑃 in the definition of 𝛿b. This implies 𝛿b = 0 and then the rate in

Theorem 6 is 𝑞2/𝑡 .
Consider dual averaging with the knowledge of the block structure 𝑞. Then the rate 1/𝐾 = 𝑞/𝑡

can be achieved by executing DA using one randomly chosen data point within a block, throwing

away the rest in that same block. Such selection produces 𝐾 i.i.d. samples from 𝑃 . In comparison,

the rate in Eq. (21) is worse off by a factor of 𝑞 due to not knowing the block-structure information.

5 THE PACE DYNAMICS FOR ONLINE FAIR ALLOCATION
In this section, we show how to cast PACE as dual averaging. To this end, we will introduce

infinite-dimensional Eisenberg-Gale-type convex programs for the allocation of a (possibly infi-

nite/continuous) set of items. Here, the item supplies correspond to the probability density d𝑄/d𝜇
of the average item arrival distribution 𝑄 . They serve as intermediate “reference” convex programs

that facilitate the use of DA convergence results developed in the previous section to analyze

PACE. When the item space is continuous, the supply function, allocation rules, and the price

function in these convex programs are (measurable) functions over such item spaces, which can be

infinite-dimensional objects. When item arrivals are drawn from a (fixed) distribution with density

𝑠 , they correspond to the EG convex programs of the “underlying market” with item supplies 𝑠 .

Note that when the item space Θ is finite, the infinite-dimensional analogues reduce to the classical

finite-dimensional EG convex programs. After introducing these concepts we will show that our

results on nonstationary DA allows us to derive comparable results on various PACE performance

metrics. The results of Gao et al. [2021] cast PACE as dual averaging for the EG convex program of

the underlying market, and show guarantees with respect to that program. Here, we will show our

results for that setting, as well as for the hindsight allocation problem.
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5.1 The Dual of EG and the Infinite-Dimensional Analogue
We derive the dual program of Eq. (2). Introduce the dual variables 𝛽𝑖 ≥ 0 with 𝑖 ∈ [𝑛] for each
constraint of the first type and variables 𝑝𝜏 ≥ 0 with 𝜏 ∈ [𝑡] for constraints of the second type. The
Lagrangian 𝐿 : R𝑛×𝑡+ × R𝑛+ × R𝑛+ × R𝑡+ → R is given by

𝐿(𝑥,𝑢, 𝛽, 𝑝) = 𝑡

𝑛

𝑛∑︁
𝑖=1

log𝑢𝑖 +
𝑛∑︁
𝑖=1

𝛽𝑖
(
⟨𝑣𝑖 (𝛾), 𝑥𝑖⟩ − 𝑢𝑖

)
+

𝑡∑︁
𝜏=1

𝑝𝜏
(
1 −

𝑛∑︁
𝑖=1

𝑥𝜏𝑖

)
=

𝑡∑︁
𝜏=1

𝑝𝜏 +
𝑛∑︁
𝑖=1

(
𝑡

𝑛
log𝑢𝑖 − 𝛽𝑖𝑢𝑖

)
+

𝑛∑︁
𝑖=1

〈
𝛽𝑖𝑣𝑖 (𝛾) − 𝑝, 𝑥𝑖

〉
.

Maximizing out the variables (𝑥,𝑢) gives the dual program

min
𝑝≥0,𝛽≥0

{
1

𝑡

𝑡∑︁
𝜏=1

𝑝𝜏 − 1

𝑛

𝑛∑︁
𝑖=1

log 𝛽𝑖

���� 𝑝 ≥ 𝛽𝑖𝑣𝑖 (𝛾) ∀𝑖 ∈ [𝑛]
}
.

Moving the constraint 𝑝 ≥ 𝛽𝑖𝑣𝑖 (𝛾) to the loss, we obtain the following equivalent optimization

problem:

min
𝛽≥0

{
1

𝑡

𝑡∑︁
𝜏=1

max
𝑖∈[𝑛]

𝛽𝑖𝑣𝑖 (𝜃𝜏 ) −
1

𝑛

𝑛∑︁
𝑖=1

log 𝛽𝑖

}
. (22)

Let 𝛽𝛾 be the optimal solution. To recover the corresponding optimal𝑝𝛾 we define𝑝𝛾,𝜏 = max𝑖∈[𝑛] 𝛽
𝛾

𝑖
𝑣𝑖 (𝜃𝜏 )

for 𝜏 ∈ [𝑡].
We next introduce the infinite-dimensional analogue of Eq. (2):

max
𝑥 ∈𝐿∞+ (Θ),𝑢≥0

{
1

𝑛

𝑛∑︁
𝑖=1

log(𝑢𝑖 )
���� 𝑢𝑖 ≤ 〈

𝑣𝑖 , 𝑥𝑖
〉
∀𝑖 ∈ [𝑛],

𝑛∑︁
𝑖=1

𝑥𝑖 ≤ 𝑠
}
, (23)

where 𝑠 = d𝑄/d𝜇 is the average item supply function, and

〈
𝑣𝑖 , 𝑥𝑖

〉
:=

∫
Θ
𝑣𝑖𝑥𝑖 d𝜇. The infinite-

dimensional analogue of Eq. (22) is the following. For any 𝛿0 > 0,

min
𝛽≥0

{ ∫
Θ

(
max
𝑖∈[𝑛]

𝛽𝑖𝑣𝑖 (𝜃 )
)
𝑄 (d𝜃 ) − 1

𝑛

𝑛∑︁
𝑖=1

log 𝛽𝑖

���� 1

𝑛(1 + 𝛿0)
≤ 𝛽𝑖 ≤ 1 + 𝛿0 ∀𝑖 ∈ [𝑛]

}
, (24)

A rigorous mathematical treatment of the two infinite-dimensional programs can be found in [Gao

and Kroer, 2021] and [Gao et al., 2021, Section 2]. Note the additional constraint in Eq. (24) on 𝛽

does not affect the optimal solution since 1/𝑛 ≤ 𝛽∗𝑖 ≤ 1; see Lemma 1 in Gao and Kroer [2021].

The relationship between the finite and infinite versions of Eq. (22) is that we have replaced the

uniform averaging in Eq. (22) with an integral w.r.t. the item average distribution 𝑄 in Eq. (24). For

notational simplicity, we suppress dependence on𝑄 and let (𝑥∗, 𝑢∗, 𝛽∗) denote the optimal solutions

to the infinite-dimensional programs Eq. (23) and Eq. (24). Define the corresponding optimal 𝑝∗ in
Eq. (24) by 𝑝∗ := max𝑖∈[𝑛] 𝛽

∗
𝑖 𝑣𝑖 .

5.2 PACE as Dual Averaging
In this section we review how to cast PACE as dual averaging applied to the problem Eq. (24).

This derivation was originally given in Gao et al. [2021]. Let 𝑓𝜃 : 𝛽 ↦→ max𝑖 𝛽𝑖𝑣𝑖 (𝜃 ) and Ψ(𝛽) =
− 1
𝑛

∑𝑛
𝑖=1 log(𝛽𝑖 ). Following [Gao and Kroer, 2021, §5], since 𝑓𝜃 is a piecewise linear function, a

subgradient is

G(𝛽, 𝜃 ) := 𝑣𝑖𝜏 (𝜃 )𝑒𝑖𝜏 ∈ 𝜕𝛽 𝑓 (𝛽, 𝜃 ) ,
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where 𝑖𝜏 = min{argmax𝑖 𝛽𝑖𝑣𝑖 (𝜃 )} is the index of the winning agent (see, e.g., [Beck, 2017, Theorem
3.50]).

Lemma 1 (PACE as Dual Averaging). The iterates {𝛽𝜏 }𝑡+1𝜏=1 generated in the PACE dynamics are
exactly DA(G,Ψ, 𝛾).

Proof. Interpret the DA updates using the following substitution: Θ ↔ 𝑍 , 𝜃𝜏 ↔ 𝑧𝜏 , 𝛽
𝜏+1 ↔

𝑤𝜏+1 and 𝑔𝜏,𝑖 ↔ 𝑢𝜏
𝑖
. For initialization in DA, choose 𝛽1 to be the minimizer of Ψ over the cube

[(1 + 𝛿𝑛)−1𝑛−11𝑛, (1 + 𝛿0)1𝑛] and set 𝑔0 = 𝑢0 = 0.
(1) Subgradient computation ⇔ choose the winning bidder (Line 4 of PACE).

(2) Average subgradient ⇔ update current averaged utilities (Line 5 of PACE). The 𝑖-th entry of

G(𝛽, 𝜃 ) is exactly the time-𝜏 realized utility of agent 𝑖 in PACE, that is, 𝑔𝜏,𝑖 = 𝑣𝑖 (𝜃𝜏 )1{𝑖 = 𝑖𝜏 } = 𝑢𝜏𝑖 .
Then the average gradient, 𝑔𝜏 =

𝜏−1
𝜏
𝑔𝜏−1 + 1

𝜏
𝑔𝜏 , is the same as the time-averaged utilities:

𝑔𝜏,𝑖 =
𝜏 − 1

𝜏
𝑔𝜏−1,𝑖 +

1

𝜏
𝑣𝑖 (𝜃𝜏 )1{𝑖 = 𝑖𝜏 } .

(3) Solve regularized problem⇔ update pacing multiplier (Line 6 of PACE). The minimization

problem is separable in agent index 𝑖 and exhibits a simple and explicit solution. Recall 𝑔𝜏,𝑖 = 𝑢
𝜏
𝑖
:

𝛽𝜏+1𝑖 = argmin

{
𝑔𝜏,𝑖𝛽𝑖 −

1

𝑛
log 𝛽𝑖

��� 1

𝑛(1 + 𝛿0)
≤ 𝛽𝑖 ≤ 1 + 𝛿0

}
⇒ 𝛽𝜏+1𝑖 = Π [ℓ,ℎ]

(
1

𝑛𝑢𝜏
𝑖

)
.

□

5.3 Performance Guarantees via Dual Averaging
Now that we have cast PACE as an instantiation of dual averaging and developed results for

convergence in nonstationary settings, the following theorems follow easily from the general

convergence results for DA. Recall the hindsight optimum 𝛽𝛾 is defined in Eq. (22), and its infinite-

dimensional counterpart 𝛽∗ is defined in Eq. (24).

Theorem 7 (Convergence of PACE, Independent Case). Assume the item sequence 𝛾 ∼ 𝑄 and
𝑄 ∈ CID (𝛿). Choose 𝛿0 = 1 in PACE. It holds for 𝑡 ≥ 1,

E
[
∥𝛽𝑡 − 𝛽∗∥2

]
≤ (6 + log 𝑡)𝑛2∥𝑣 ∥2∞

𝑡
+ 8𝑛∥𝑣 ∥∞ · 𝛿 = 𝑂 (𝛿 + 1/𝑡) . (25)

Moreover, the rate 𝑂 (𝛿 + 1/𝑡) applies to E[∥𝛽𝛾 − 𝛽∗∥2] and E[∥𝛽𝑡+1 − 𝛽𝛾 ∥2].
Proof. Set 𝑃 = 𝑄 , Π = 𝑄 , 𝜎 = 1/𝑛, and 𝐹 = ∥𝑣 ∥∞ in Theorem 4. □

Here the convergence of 𝛽𝑡 to the hindsight counterpart 𝛽𝛾 is of practical importance. This is

because 𝛽𝛾 can always be computed after the fact, while its infinite-dimensional counterpart 𝛽∗ is
not necessarily obtainable.

Theorem 8 (Convergence of PACE, Ergodic and Periodic Cases). For the erogdic case, i.e.,
𝛾 ∼ 𝑄 and 𝑄 ∈ CE (𝛿, 𝜄), it holds for 𝑡 ≥ 1,

E[∥𝛽𝑡+1 − 𝛽∗∥2] ≤ 𝐶𝐸,1 +𝐶𝐸,2 · 𝜄
𝑡

+𝐶𝐸,3 · 𝛿 = 𝑂

(
𝛿 + 𝜄

𝑡

)
.

where 𝐶𝐸,1 = 𝑛2∥𝑣 ∥2∞
(
6 + log 𝑡

)
, 𝐶𝐸,2 = 4𝑛

(
∥𝑣 ∥2∞ (1 + log 𝑡) + ∥𝑣 ∥∞

)
and 𝐶𝐸,3 = 8𝑛∥𝑣 ∥∞.

For the periodic case, i.e., 𝛾 ∼ 𝑄 and 𝑄 ∈ CP (𝑞), it holds for 𝑡 ≥ 1

E[∥𝛽𝑡+1 − 𝛽∗∥2] ≤ 𝐶𝑃,1 +𝐶𝑃,2 · 𝑞2
𝑡

= 𝑂 (𝑞2/𝑡) .

where 𝐶𝑃,1 = 𝐶𝐸,1 and 𝐶𝑃,2 = 2𝑛∥𝑣 ∥2∞ (1 + log 𝑡).
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For both cases, similar convergence results can be stated for E[∥𝛽𝛾 − 𝛽∗∥2] and E[∥𝛽𝑡+1 − 𝛽𝛾 ∥2]
and are omitted here.

Proof. For the first inequality, set 𝑃 = 𝑄 , Π = 𝑄 , 𝜎 = 1/𝑛, and 𝐹 = ∥𝑣 ∥∞ in Theorem 5. For the

second inequality, set additionally 𝛿b = 0 and |P |∞ = 𝑞 in Theorem 6. □

5.4 From Dual EG Performance Bounds to Primal Performance Bounds
Convergence of 𝛽𝜏 to 𝛽∗ implies the convergence of the average utilities and expenditure to their

infinite-dimensional counterparts. This follows almost directly from results developed by Gao et al.

[2021]. In particular, they show:

Lemma 2 (PACE Long-Run Behavior, [Gao et al., 2021]). For any distribution 𝑄 ∈ Δ(Θ𝑡 ), let
𝛾 ∼ 𝑄 . It holds for 𝑡 ≥ 1,

E
[
∥𝑏𝑡 − (1/𝑛)1𝑛 ∥2

]
≤ 2E[∥𝛽𝑡+1 − 𝛽∗∥2] + 4∥𝑣 ∥2∞

(
1

𝑡

𝑡∑︁
𝜏=1

E[∥𝛽𝜏 − 𝛽∗∥2]
)
,

and

E
[
∥𝑢𝑡 − 𝑢∗∥2

]
≤ 𝐶𝑢 · E[∥𝛽𝑡+1 − 𝛽∗∥2] ,

where 𝐶𝑢 = 𝑛2
(
∥𝑣 ∥2∞/𝛿20 + (1 + 𝛿0)2

)
.

Finally, we relate results in Section 5.3 to the main quantities of interest: regret and envy, defined

in Eq. (4) and Eq. (5), as well as convergence to the hindsight utilities. Similar results are given by

Gao et al. [2021], and our proof is almost identical to theirs, simply extended to the nonstationary

case as well as to the hindsight allocation problem.

Lemma 3 (Regret and Envy). For any distribution 𝑄 ∈ Δ(Θ𝑡 ), let 𝛾 ∼ 𝑄 . It holds for 𝑡 ≥ 1,

E[∥𝑢𝑡 − 𝑢𝛾 ∥2] ≤ 𝐶𝑟,1 · E[∥𝛽𝑡+1 − 𝛽∗∥2] + 𝑛𝐶𝑟,2 ·
(
1

𝑡

𝑡∑︁
𝜏=1

E[∥𝛽𝜏 − 𝛽∗∥2]
)
,

E
[
Reg𝑖,𝑡 (𝛾)

]
≤ 𝑡 ·

√√
𝐶𝑟,1 · E[∥𝛽𝑡+1 − 𝛽∗∥2] +𝐶𝑟,2 ·

(
1

𝑡

𝑡∑︁
𝜏=1

E[∥𝛽𝜏 − 𝛽∗∥2]
)
,

and

E
[
Envy𝑖,𝑡 (𝛾)

]
≤ 𝑡 ·

√√
𝐶𝑒,1 · E[∥𝛽𝑡+1 − 𝛽∗∥2] +𝐶𝑒,2 ·

(
1

𝑡

𝑡∑︁
𝜏=1

E[∥𝛽𝜏 − 𝛽∗∥2]
)
,

where 𝐶𝑟,1 = 2𝐶𝑢 , 𝐶𝑟,2 = 2𝑛2∥𝑣 ∥2∞, 𝐶𝑒,1 = 2(1 + 𝑛2)𝐶𝑢 and 𝐶𝑒,2 = 4∥𝑣 ∥2∞𝑛2 + 2𝑛3.

Now we have all the ingredients to prove the convergence of PACE. Combine Lemma 2 with

Theorem 7 and Theorem 8 and we obtain the first set of inequalities in Theorems 1 to 3. Then

combine Lemma 3 with Theorem 7 and Theorem 8, and we obtain the second set of inequalities.

6 EXPERIMENTS
We conduct experiments on a market instance (a matrix of buyers’ valuations on items) generated

from the MovieLens dataset [Harper and Konstan, 2016] with 𝑛 = 100 buyers and𝑚 = 300 items.

The process of turning the MovieLens dataset into the market instance is described in [Kroer et al.,

2021]. Here, we briefly describe the experiment settings. For more details on the experiment settings

as well as all code and data to replicate the results, please refer to the Supplementary Material.

We generate item arrivals from the following data input models:



Luofeng Liao, Yuan Gao, and Christian Kroer 17

• i.i.d.: Every item 𝜃 𝑡 ∈ [𝑚] is sampled independently from a fixed distribution 𝑠0 ∈ Δ𝑚 (an

𝑚-dimensional probability vector).

• Mild corruption: 𝜃 𝑡 ∼ 𝑠𝑡 , where 𝑠𝑡 ∈ Δ𝑚 is a distribution such that ∥𝑠𝑡 − 𝑠0∥1 = Θ(1/𝑡)
for all 𝑡 . Here, 𝑠𝑡 is generated by randomly perturbing each coordinate of 𝑠0 followed by

normalization.

• Markov: (𝜃 𝑡 )𝑡 ≥1 is sampled from an irreducible Markov chain starting from an initial distri-

bution 𝑠0. It is a special case of ergodic input. Here, the Markov chain is given by a𝑚 ×𝑚
transition matrix (each row sums to 1), which we generated randomly (and row-wise nor-

malized). In this case, the “reference” item arrival distribution is the stationary distribution

of this Markov chain which is in general different from the initial distribution.

• Periodic: The period length is ℓ = 100. Let (𝑠𝑘 )𝑘∈[ℓ ] be a set of distributions (probability

vectors). Here, each 𝑠𝑘 is sampled randomly and normalized. The item arrivals of each period

is generated by sampling from each 𝑠𝑘 followed by a random permutation over the ℓ sampled

items.

For each (fixed) data input model, we generate 10 sample paths of item arrivals and run PACE

for 𝑇 = 200𝑛 = 20000 time steps on each sample path. Then, we measure the convergence of the

pacing multipliers and time-averaged realized utilities to their hindsight equilibrium values. More

specifically, we record the following relative differences:max𝑖
|𝛽𝑡

𝑖
−𝛽HS

𝑖 |
𝛽HS
𝑖

andmax𝑖
|𝑢𝑡

𝑖
−𝑢HS

𝑖 |
𝑢HS
𝑖

, where

HS denote the hindsight equilibrium values of the “sample-path” market determined by the realized

item arrivals. Equivalently, 𝑢HS
and 𝛽HS

are optimal solutions of the hindsight convex programs (2)

and (22), respectively. We also measure the performance of a proportional-share baseline solution

that divides each arriving item among all buyers proportionally w.r.t. their budgets: for an arrived

item 𝜃 𝑡 , each buyer 𝑖 gets 𝐵𝑖 amount of it and receives utility 𝐵𝑖𝑣𝑖 (𝜃 𝑡 ) (in this paper, the buyers’

budgets are 𝐵𝑖 = 1/𝑛 for all 𝑖). We compute the means and standard errors of the error measures

across the 10 sample paths and plot them in Figure 1.

As can be seen, for all data input models, the pacingmultipliers and buyers’ time-averaged utilities

converge to their respective hindsight values and quickly outperform the baseline proportional-

share solution. Similar convergence behavior can also be observed when the error metrics are w.r.t.

to the true equilibrium values 𝛽∗, 𝑢∗ instead of the hindsight values.

7 CONCLUSION
We establish new convergence results for dual averaging under nonstationary data input models,

namely, adversarial corruption, ergodic, and block-independent input models. Leveraging these

results, we show that, for an online fair allocation problem, when item arrivals are generated from

these nonstationary data input models, the PACE algorithm automatically adapts to them and

achieves asymptotic fairness and efficiency without any parameter tuning. Numerical experiments

demonstrate the effectiveness of PACE under these data input models.
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A REVIEW OF LINEAR FISHER MARKET
A linear Fisher market refers to the tuple F = (𝑛,𝑚, 𝐵, v). The market consists of 𝑛 buyers and𝑚

items. We assume each buyer has a budget of 𝐵𝑖 . We use {1, . . . ,𝑚} to represent the set of items,

each of unit supply. The matrix v = (v1, . . . , v𝑛) ∈ (R𝑚+ )𝑛 consists of valuations, with v 𝑗
𝑖
being the

valuation of item 𝑗 from buyer 𝑖 . For buyer 𝑖 , an allocation of items, x𝑖 ∈ R𝑚+ , gives a utility of

𝑢𝑖 (x𝑖 ) := ⟨v𝑖 , x𝑖⟩ :=
∑𝑚
𝑗=1 v 𝑗

𝑖
x𝑗
𝑖
. Note we use different fonts to distinguish notions that appear in

both the online allocation problem and the Fisher market.

Definition 1 (Demand). Given item prices 𝑝 ∈ R𝑚+ , the demand of buyer 𝑖 is its set of utility-
maximizing allocations given the prices and budget:

𝐷𝑖 (𝑝) := argmax{⟨v𝑖 , x𝑖⟩ : x𝑖 ≥ 0, ⟨𝑝, x𝑖⟩ ≤ 𝐵𝑖 } . (26)

Definition 2 (Market Eqilibrium). The market equilibrium of F = (𝑛,𝑚, 𝐵, v) is an allocation-
price pair (x∗, 𝑝∗) ∈ (R𝑚+ )𝑛 × R𝑚+ such that the following holds.

(1) Supply feasibility:
∑𝑛
𝑖=1x

∗
𝑖 ≤ 1𝑚 .

(2) Buyer optimality: x∗𝑖 ∈ 𝐷𝑖 (𝑝∗) for all 𝑖 .
(3) Market clearance: ⟨𝑝∗, 1𝑚 − ∑𝑛

𝑖=1x
∗
𝑖 ⟩ = 0.

Market equilibrium and fair allocation are related as follows. In CEEI, we construct a mechanism

for fair division by giving each agent the same budget of fake currency, i.e., 𝐵𝑖 = 𝐵 𝑗 for all 𝑖, 𝑗 ,

computing what is called a market equilibrium under this new market, and using the corresponding

allocation as our fair allocation rule.

It is known that an allocation x∗ from the set of CEEI has many desirable properties. It is Pareto

optimal (every market equilibrium is Pareto optimal by the first welfare theorem). It has no envy:

since each agent has the same budget in CEEI and every agent is buying something in their

demand set, no envy must be satisfied, since they can afford the bundle of any other agent. Finally,

proportionality is satisfied, since each agent can afford the bundle where they get 1/𝑛 of each good.

The ME is essentially a collection of optimization problems (Eq. (26)) coupled through the

constraint

∑𝑛
𝑖=1x𝑖 ≤ 1𝑚 . A celebrated result is the Eisenberg-Gale convex program, which provides

an equivalent characterization of ME.

max
x1,...,x𝑛

𝑛∑︁
𝑖=1

𝐵𝑖 log ⟨v𝑖 , x𝑖⟩ s.t.
𝑛∑︁
𝑖=1

x𝑗
𝑖
≤ 1 ∀𝑗 ∈ [𝑚] , x𝑖 ∈ R𝑚+ ∀𝑖 ∈ [𝑛] . (27)

That is, we maximize the sum of logarithmic utilities under the supply constraint. The solution

to the primal problem x∗ = (x∗1, . . . , x∗𝑚) along with the vector of dual variables 𝑝∗ yields a market

equilibrium.

The hindsight allocation Eq. (2) is just the EG program of the linear Fisher market FA = (𝑛, 𝑡, 𝐵, v)
where entries of the valuation matrix v are defined by v 𝑗

𝑖
= 𝑣𝑖 (𝜃 𝑗 ) for all 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑡], and

𝐵 = (𝑡/𝑛)1𝑛 .

B PROOFS FOR NONSTATIONARY DUAL AVERAGING
The DA algorithm Algorithm 2 is obtained in Xiao [2010, §3.2] for the strongly convex case. We

simply set ℎ = (1/𝜎)Ψ, 𝛽0 = 𝜎 and 𝛽𝑡 = 0 for 𝑡 ≥ 1 in [Xiao, 2010, Algorithm 1].

Recall 𝑃𝜏 is the distribution of 𝑧𝜏 . For integers 𝜏 and 𝜏 ′ (𝜏 ′ ≥ 𝜏), let 𝑃𝜏
′ (· | 𝑧1:𝜏 ) denote the

distribution of 𝑧𝜏′ if the process starts at 𝑧1:𝜏 = {𝑧1, . . . , 𝑧𝜏 }.
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B.1 Adversarial Corruption and Independent Data
Assume the data 𝛾 = {𝑧𝜏 }𝑡𝜏=1 follows the distribution 𝑃 with no further assumptions. We let 𝑧1:0 = ∅
and further let 𝑃𝜏 (· | 𝑧1:0) = 𝑃𝜏 , the marginal distribution of 𝑧𝜏 .

Define the progressive deviation from Π

𝛿𝑡 := sup
𝑧1,...,𝑧𝑡

𝑡∑︁
𝜏=1

∥𝑃𝜏 (· | 𝑧1:𝜏−1) − Π∥TV . (28)

If the data are independent, then it holds

𝛿𝑡 =

𝑡∑︁
𝜏=1

∥𝑃𝜏 − Π∥TV .

Note for the independent case, 𝛿𝑡 = 𝑡 · 𝛿 where 𝛿 is in Eq. (20). If the data further has identical

distribution Π then 𝛿𝑡 = 0. If 𝛿𝑡 = 𝑂 (log 𝑡) we call data has mild corruption.

Theorem 9 (Corrupted Independent Data, Generalization of Theorem 4). It holds

E
[
∥𝑤𝑡+1 −𝑤∗

Π ∥22
]
= 𝑂

( log 𝑡
𝜎2𝑡

+ 𝛿𝑡

𝜎𝑡

)
, (29)

where 𝑂 hides dependence on constants, 𝐺 and 𝐹 . Recall 𝜎 is the strong convexity parameter of Ψ.

Remark 3. In either the i.i.d. case or the mild corruption case (𝛿𝑡 = 𝑂 (log 𝑡)), we recover the usual
𝑂 (log 𝑡/𝑡) rate.

Proof of Theorem 9 In Fact 1, the term Δ𝑡 is upper bounded in a deterministic manner. So it

remains to handle 𝑅𝑡 . In the i.i.d. case, E𝑅𝑡 (𝑤∗
Π) is positive and thus can be dropped:

E[𝑅𝑡 (𝑤∗
Π)] = E

[ 𝑡∑︁
𝜏=1

(
𝐹 (𝑤𝜏 , 𝑧𝜏 ) − 𝐹 (𝑤∗

Π, 𝑧𝜏 )
) ]

=

𝑡∑︁
𝜏=1

(
𝜙Π (𝑤𝜏 ) − 𝜙Π (𝑤∗

Π)
)
≥ 0 .

However, to handle corrupted data, we need to use

Lemma 4. The regret can be lower bounded by the corruption parameter 𝛿 :

E[𝑅𝑡 (𝑤∗
Π)] ≥ −4 · 𝐹𝛿𝑡 .

Plugging in the above lemma, we get

E[∥𝑤𝑡+1 −𝑤 ∥2] ≤ 1

𝜎𝑡

(
E[Δ𝑡 ] − E[𝑅𝑡 (𝑤∗

Π)]
)
≤

(
6 + log 𝑡

)
𝐺2

𝜎
+ 8𝐹

𝜎
𝛿 = 𝑂

(𝐺2 log 𝑡

𝜎2𝑡
+ 𝐹𝛿𝑡
𝜎𝑡

)
. (30)

Thus, to complete the proof of Theorem 9 we only need to prove Lemma 4.

Proof of Lemma 4. Write

𝑅𝑡 (𝑤∗
Π) =

𝑡∑︁
𝜏=1

(
𝐹 (𝑤𝜏 , 𝑧𝜏 ) − 𝜙Π (𝑤𝜏 )

)
(I)

+
𝑡∑︁
𝜏=1

(
𝜙Π (𝑤∗

Π) − 𝐹 (𝑤∗
Π, 𝑧𝜏 )

)
(II)

+
𝑡∑︁
𝜏=1

(
𝜙Π (𝑤𝜏 ) − 𝜙Π (𝑤∗

Π)
)
. (III)

By optimality of𝑤∗
Π we have III ≥ 0.
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Bounding I and II. Conditional on F𝜏 , the iterate𝑤𝜏 is deterministic and the distribution of 𝑧𝜏 is

𝑃𝜏 (· | 𝑧1:𝜏−1).
Note

E[𝐹 (𝑤𝜏 , 𝑧𝜏 ) − 𝜙Π (𝑤𝜏 )] = E[E[𝐹 (𝑤𝜏 , 𝑧𝜏 ) − 𝜙Π (𝑤𝜏 ) |F𝜏−1]] .

Let us investigate the inner expectation. Conditional on F𝜏−1, the iterate𝑤𝜏 is deterministic, and

the distribution of 𝑧𝜏 |F𝜏−1 is 𝑃𝜏 (· | 𝑧1:𝜏−1) by definition.

|E[𝐹 (𝑤𝜏 , 𝑧𝜏 ) − 𝜙Π (𝑤𝜏 ) |F𝜏−1] | =
����E[ ∫

Z
𝐹 (𝑤𝜏 , 𝑧)𝑃𝜏 (d𝑧 | 𝑧1:𝜏−1) −

∫
Z
𝐹 (𝑤𝜏 , 𝑧) dΠ(𝑧) |F𝜏−1

] ����
≤ E

[���� ∫
Z
𝐹 (𝑤𝜏 , 𝑧)𝑃𝜏 (d𝑧 | 𝑧1:𝜏−1) −

∫
Z
𝐹 (𝑤𝜏 , 𝑧) dΠ(𝑧)

����|F𝜏−1]
≤ 𝐹

∫
Z
| d𝑃𝜏 (· | 𝑧1:𝜏−1) − dΠ(𝑧) |

= 2𝐹 · ∥𝑃𝜏 (· | 𝑧1:𝜏−1) − Π∥TV .

where we use boundedness of 𝐹 , i.e., sup𝑤 𝐹 (𝑤, 𝑧) ≤ 𝐹 for Π-almost every 𝑧,

Next, sum over 𝜏 = 1, . . . , 𝑡 and move | · | inside the sum and the outer expectation.

|E[I] | =
���� 𝑡∑︁
𝜏=1

E[E[𝐹 (𝑤𝜏 , 𝑧𝜏 ) − 𝜙Π (𝑤𝜏 ) |F𝜏−1]]
����

≤
𝑡∑︁
𝜏=1

E
[��E[𝐹 (𝑤𝜏 , 𝑧𝜏 ) − 𝜙Π (𝑤𝜏 ) |F𝜏−1]��]

≤ 2𝐹 ·
𝑡∑︁
𝜏=1

E
[
∥𝑃𝜏 (· | 𝑧1:𝜏−1) − Π∥TV

]
≤ 2𝐹 · sup

𝑧1,...,𝑧𝑡

𝑡∑︁
𝜏=1

∥𝑃𝜏 (· | 𝑧1:𝜏−1) − Π∥TV

= 2𝐹𝛿𝑡 .

Next consider |E[II] |. The analysis goes through without the outer expectation.

Combining we get

E𝑅𝑡 (𝑤∗
Π) = E[I + II + III] ≥ E[I + II] ≥ −

(
|E[I] | + |E[II] |

)
≥ −4𝐹𝛿𝑡 .

This completes the proof of Lemma 4. □

B.2 Ergodic and Markov Data
Now we consider data that are not necessarily independent across time. We restrict our attention

to ergodic processes, meaning data tend to be independent as they grow apart in time.

Define the 𝜄-step deviation from stationarity

𝜖𝑡 (𝜄) := sup
𝑧1,...,𝑧𝑡

sup
𝜏=1,...,𝑡−𝜄

∥𝑃𝜏+𝜄 (· | 𝑧1:𝜏 ) − Π∥TV .

An equivalent quantity is the 𝜖-mixing time [Duchi et al., 2012]

𝜄mix (𝜖) := min
{
𝜄 : 1 ≤ 𝜄 ≤ 𝑡 − 1, sup

𝑧1,...,𝑧𝑡

sup
𝜏=1,...,𝑡−𝜄

∥𝑃𝜏+𝜄 (· | 𝑧1:𝜏 ) − Π∥TV ≤ 𝜖
}
.
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This means, no matter where and when we start the process, it takes only 𝜄 steps to get 𝜖𝑡 (𝜄)-close
to the stationary distribution Π. One could expect the deviation 𝜖𝑡 (𝜄) decreases as 𝜄 increases. This
makes sense because for large 𝜄, the process has run long enough to reach stationarity.

Theorem 10 (Mixing Data, Restatement of Theorem 5). It holds for all 𝑡 ≥ 1 and any
1 ≤ 𝜄 ≤ 𝑡 − 1,

E
[
∥𝑤𝑡+1 −𝑤∗

Π ∥22
]
= 𝑂

( log 𝑡
𝜎2𝑡

+ 𝜄 log 𝑡
𝜎𝑡

+ 𝜖𝑡 (𝜄)/𝜎
)
, (31)

where 𝑂 (·) hides dependence on constants, 𝐺 and 𝐹 . Here there is a trade-off in 𝜄 in the last two terms.

Proof of Theorem 10We use the proof in [Duchi et al., 2012]; see Eq. (6.2) in the paper. Decompose

𝑅𝑡 (𝑤∗
Π) as follows.

𝑅𝑡 (𝑤∗
Π) =

𝑡−𝜄∑︁
𝜏=1

( (
𝐹 (𝑤𝜏 , 𝑧𝜏+𝜄) − 𝐹 (𝑤∗

Π, 𝑧𝜏+𝜄)
)
−

(
𝜙Π (𝑤𝜏 ) − 𝜙Π (𝑤∗

Π)
) )

(A)

+
𝑡−𝜄∑︁
𝜏=1

(
𝐹 (𝑤𝜏+𝜄, 𝑧𝜏+𝜄) − 𝐹 (𝑤𝜏 , 𝑧𝜏+𝜄)

)
(B)

+
𝑡−𝜄∑︁
𝜏=1

(
𝜙Π (𝑤𝜏 ) − 𝜙Π (𝑤∗

Π)
)

(C)

+
𝜄∑︁

𝜏=1

(
𝐹 (𝑤𝜏 , 𝑧𝜏 ) − 𝐹 (𝑤∗

Π, 𝑧𝜏 )
)
. (D)

By optimality of𝑤∗
Π we have C ≥ 0. By boundedness of 𝐹 we get |D| ≤ 2𝜄𝐹 . Remains to handle

A and B. We will show

" A ≤ 𝜖𝑡 (𝜄)𝑡, B ≤ 𝜄 " .
Bounding A. The key is 𝑧𝜏+𝜄 is almost independent of F𝜏−1 if 𝜄 is moderately large. For each 𝜏 ,

|E[𝐹 (𝑤𝜏 , 𝑧𝜏+𝜄) − 𝜙Π (𝑤𝜏 )] |
= |E[E[𝐹 (𝑤𝜏 , 𝑧𝜏+𝜄) − 𝜙Π (𝑤𝜏 ) |F𝜏−1]] |

=

�����E
[
E

[ ∫
Z
𝐹 (𝑤𝜏 , 𝑧)𝑃𝜏+𝜄 (d𝑧 | 𝑧1:𝜏−1) −

∫
Z
𝐹 (𝑤𝜏 , 𝑧)Π(d𝑧) |F𝜏−1

] ] ����� (Key)

≤ E
[
E

[��� ∫
Z
𝐹 (𝑤𝜏 , 𝑧)𝑃𝜏+𝜄 (d𝑧 | 𝑧1:𝜏−1) −

∫
Z
𝐹 (𝑤𝜏 , 𝑧)Π(d𝑧)

���|F𝜏−1] ]
≤ 2𝐹 · E

[
∥𝑃𝜏+𝜄 (· | 𝑧1:𝜏−1) − Π∥TV

]
≤ 2𝐹 · sup

𝑧1,...,𝑧𝜏−1
∥𝑃𝜏+𝜄 (· | 𝑧1:𝜏−1) − Π∥TV ≤ 2𝐹𝜖𝑡 (𝜄) .

Analysis for |E[𝐹 (𝑤∗
Π, 𝑧𝜏+𝜄) − 𝜙Π (𝑤∗

Π)] | is almost identical. Next sum over 𝜏 = 1, . . . , 𝑡 − 𝜄.
|E[A] | ≤ 4𝐹𝜖𝑡 (𝜄) · 𝑡 .

Bounding B. The change in 𝐹 by 𝜄 steps of updates, starting from𝑤𝜏 , is controlled by 𝑐 · 𝜄𝐺 · 1
𝜏

where 1/𝜏 acting like a stepsize.

Lemma 5. Let ΠΨ,W (𝑔) := argmin𝑤∈W{⟨𝑔,𝑤⟩ + Ψ(𝑤)}. If Ψ is 𝜎-strongly convex, then

∥ΠΨ,W (𝑔) − ΠΨ,W (𝑔′)∥ ≤ (1/𝜎)∥𝑔 − 𝑔′∥∗ .
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Proof. See [Nesterov, 2003, Lemma 6.1.2]. □

Noting𝑤𝜏+1 = ΠΨ,W (𝑔𝜏 ) and𝑤𝜏 = ΠΨ,W (𝑔𝜏−1), Lemma 5 gives

∥𝑤𝜏+1 −𝑤𝜏 ∥ ≤ ∥𝑔𝜏 − 𝑔𝜏−1∥∗/𝜎 = ∥𝑔𝜏−1 − 𝑔𝜏 ∥∗/(𝜏𝜎) ≤ 2𝐺/(𝜏𝜎) . (32)

It holds Π-a.s. that for each 𝜏 , the map𝑤 ↦→ 𝐹 (𝑤, 𝑧𝜏+𝜄) is Lipschitz with parameter 𝐺 .

|E[𝐹 (𝑤𝜏+𝜄, 𝑧𝜏+𝜄) − 𝐹 (𝑤𝜏 , 𝑧𝜏+𝜄)] | ≤ 𝐺 · E
[
∥𝑤𝜏+𝜄 −𝑤𝜏 ∥

]
≤ 𝐺 ·

𝜏+𝜄−1∑︁
𝑡 ′=𝜏

E
[
∥𝑤𝑡 ′+1 −𝑤𝑡 ′ ∥

]
≤ 𝐺 ·

𝜏+𝜄−1∑︁
𝑡 ′=𝜏

2𝐺/(𝜎𝑡 ′)

≤ 𝐺 ·
𝜏+𝜄−1∑︁
𝑡 ′=𝜏

2𝐺/(𝜎𝜏) = 2𝐺2𝜄/𝜏 .

Summing over 𝜏 = 1, . . . , 𝑡 − 𝜄, we get

|E[B] | ≤ 2𝐺2𝜄 (log 𝑡 + 1) .

Putting together,

E[𝑅𝑡 (𝑤∗
Π)] = E[A + B + C +D]

≥ E[A + B +D]
≥ −

(
|E[A] | + |E[B] | + |E[D] |

)
≥ −(4𝐹𝜖𝑡 (𝜄)𝑡 + 2𝐺2𝜄 (log 𝑡 + 1) + 2𝜄𝐹 ) ,

and

E[∥𝑤𝑡+1 −𝑤 ∥2] ≤ 1

𝜎𝑡

(
E[Δ𝑡 ] − E[𝑅𝑡 (𝑤∗

Π)]
)

≤
(
6 + log 𝑡

)
𝐺2

𝜎2𝑡
+
2
(
4𝐹𝜖𝑡 (𝜄)𝑡 + 2𝐺2𝜄 (log 𝑡 + 1) + 2𝜄𝐹

)
𝜎𝑡

. (33)

We complete the proof of Theorem 10.

B.3 Block Structure and Periodic Data
Assume {𝑧𝜏 }𝑡𝜏=1 are block-wise independent according to the partition P. Given the partition P,

define

𝛿block𝑡 :=
𝐾∑︁
𝑘=1

|𝐼𝑘 | ·





Π − 1

|𝐼𝑘 |
∑︁
𝜏 ∈𝐼𝑘

𝑃𝜏







TV

.

Note we compute the deviation in a block-wise manner. Note 𝛿block𝑡 = 𝑡 · 𝛿b with 𝛿b defined in

Theorem 6.

Theorem 11 (Block-wise Independent Data, Restatement of Theorem 6). It holds

E
[
∥𝑤𝑡+1 −𝑤∗

Π ∥22
]
= 𝑂

(
log 𝑡

𝜎2𝑡
+ |P|2∞ log 𝑡

𝜎𝑡
+
𝛿block𝑡

𝜎𝑡

)
, (34)

where 𝑂 (·) hides dependence on constants, 𝐺 and 𝐹 .



Luofeng Liao, Yuan Gao, and Christian Kroer 25

Generally, compared with 𝛿𝑡 defined in Eq. (28), our new notion of deviation can be much smaller

for block-structured data. This is especially true when each block of data, as a whole, forms a good

estimate of Π, but each data point in the block deviates from Π by a constant amount. The periodic

case in Remark 6 examplifies this.

Remark 4 (Extreme 1: Recover Independent Case). Setting |P |∞ = 1 and 𝛿block𝑡 = 𝛿𝑡 in Eq. (28)
we recover the usual rate under independence assumption (Theorem 9).

Remark 5 (Extreme 2: Fail to Recover Arbitrary Distribution Case). If we allow arbitrary
dependence in the whole sequence 𝛾 = {𝑧𝜏 }𝑡𝜏=1, then we can only set |P |∞ = 𝑡 and the bound is useless.

Remark 6 (The Gain from Block Structure). Although Theorem 9 applies to block-structure
data, we obtain significant improvement in Theorem 11.
Consider the periodic case where each block is of length 𝑞 and blocks are i.i.d. At the start of block

𝐼𝑘 , we draw a sample from Π, i.e., 𝑧𝑡𝑘 ∼ Π, and then let rest of the 𝑧𝜏 ’s in that block equal 𝑧𝑡𝑘 . In this
case 𝛿block𝑡 = 0 because the marginal of every 𝑧𝜏 is exactly Π. Then the bound in Theorem 11 becomes

𝑞2 log 𝑡

𝑡
, (35)

which converges to zero at the rate𝑞2/𝑡 . However, the bound in Theorem 9 fails to converge. To see this let
us estimate 𝛿𝑡 in Eq. (28). Consider some 𝜏 in the interval 𝐼𝑘 . If 𝜏 ≠ 𝑡𝑘 , then the conditional distribution
𝑃𝜏 (· | 𝑧1:𝜏−1) is a point mass on 𝑧𝑡𝑘 . If 𝜏 = 𝑡𝑘 then 𝑃𝜏 (· | 𝑧1:𝜏−1) = Π. Let 𝑐 = sup𝑧 ∥𝛿𝑧 − Π∥TV. The
quantity 𝑐 is positive unless Π is a point mass. Then

𝛿𝑡 = sup
𝑧1,...,𝑧𝑡

𝐾∑︁
𝑘=1

∑︁
𝜏 ∈𝐼𝑘

∥𝑃𝜏 (· | 𝑧1:𝜏−1) − Π∥TV = sup
𝑧1,...,𝑧𝑡

𝐾∑︁
𝑘=1

(𝑞 − 1)∥𝛿𝑧𝑡𝑘 − Π∥TV = 𝐾 (𝑞 − 1)𝑐 ,

and then Theorem 9 becomes
log 𝑡

𝑡
+ 𝑐 → 𝑐 .

Proof of Theorem 11
We decompose the regret by blocks.

𝑅𝑡 (𝑤∗
Π) =

𝐾∑︁
𝑘=1

∑︁
𝜏 ∈𝐼𝑘

(
𝐹 (𝑤𝜏 , 𝑧𝜏 ) − 𝜙Π (𝑤𝜏𝑘 )

)
+

𝑡∑︁
𝜏=1

(
𝜙Π (𝑤∗

Π) − 𝐹 (𝑤∗
Π, 𝑧𝜏 )

)
(36)

+
𝐾∑︁
𝑘=1

∑︁
𝜏 ∈𝐼𝑘

(
𝜙Π (𝑤𝜏𝑘 ) − 𝜙Π (𝑤∗

Π)
)
. (37)

Rewrite the first sum by adding and then subtracting the term

∑𝐾
𝑘=1

∑
𝜏 ∈𝐼𝑘 𝐹 (𝑤𝜏𝑘 , 𝑧𝜏 ).

𝐾∑︁
𝑘=1

∑︁
𝜏 ∈𝐼𝑘

(
𝐹 (𝑤𝜏 , 𝑧𝜏 ) − 𝜙Π (𝑤𝜏𝑘 )

)
=

𝐾∑︁
𝑘=1

( ∑︁
𝜏 ∈𝐼𝑘

(
𝐹 (𝑤𝜏 , 𝑧𝜏 ) − 𝐹 (𝑤𝜏𝑘 , 𝑧𝜏 )

)
:=𝐵𝑘

)
(I)

+
𝐾∑︁
𝑘=1

( ∑︁
𝜏 ∈𝐼𝑘

(
𝐹 (𝑤𝜏𝑘 , 𝑧𝜏 ) − 𝜙Π (𝑤𝜏𝑘 )

)
:=𝐴𝑘

)
. (II)
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Bounding 𝐴𝑘 . Use a conditioning argument. The key is, conditional on F𝜏𝑘−1, the iterate 𝑤𝜏𝑘 is

deterministic and the distribution of 𝑧𝜏 is 𝑃
𝜏
due to block-wise independence.

|E[𝐴𝑘 ] | =
�����∑︁
𝜏 ∈𝐼𝑘
E[E[𝐹 (𝑤𝜏𝑘 , 𝑧𝜏 ) − 𝜙Π (𝑤𝜏𝑘 ) |F𝜏𝑘−1]]

�����
≤ E

[����∑︁
𝜏 ∈𝐼𝑘
E[𝐹 (𝑤𝜏𝑘 , 𝑧𝜏 ) − 𝜙Π (𝑤𝜏𝑘 ) |F𝜏𝑘−1]

����]
= E

[����∑︁
𝜏 ∈𝐼𝑘

∫
Z
𝐹 (𝑤𝜏𝑘 , 𝑧)𝑃𝜏 (d𝑧) −

∫
Z
𝐹 (𝑤𝜏𝑘 , 𝑧)Π(d𝑧)

����]
≤ 2𝐹 ·





∑︁
𝜏 ∈𝐼𝑘

(
𝑃𝜏 − Π

)




TV

.

Then sum over 𝑘 = 1, . . . , 𝐾 , and we have��E[I]�� ≤ 𝐾∑︁
𝑘=1

��E[𝐴𝑘 ]�� ≤ 2𝐹 ·
𝐾∑︁
𝑘=1





∑︁
𝜏 ∈𝐼𝑘

(𝑃𝜏 − Π)





TV

≤ 2𝐹𝛿block𝑡 .

Bounding 𝐵𝑘 . Using Lemma 5 and Eq. (32), we have

|E[𝐵𝑘 ] | ≤ 𝐺 ·
∑︁
𝜏 ∈𝐼𝑘
E
[
∥𝑤𝜏 −𝑤𝜏𝑘 ∥

]
≤ 𝐺 ·

∑︁
𝜏 ∈𝐼𝑘

𝐺 (𝜏 − 𝜏𝑘 )/𝜏𝑘

≤ 𝐺 ·
∑︁
𝜏 ∈𝐼𝑘

𝐺 (𝜏𝑘+1 − 𝜏𝑘 )/𝜏𝑘

= 𝐺2 (𝜏𝑘+1 − 𝜏𝑘 )2/𝜏𝑘 ≤ 𝐺2 |P |2∞/𝜏𝑘 .

Then sum over 𝑘 = 1, . . . , 𝐾 , and we have��E[II]�� ≤ 𝐾∑︁
𝑘=1

��E[𝐵𝑘 ]�� = 𝐺2 |P |2∞ ·
𝐾∑︁
𝑘=1

1

𝜏𝑘
≤ 𝐺2 |P |2∞ ·

𝑡∑︁
𝜏=1

1

𝜏
≤ 𝐺2 |P |2∞ (log 𝑡 + 1) .

It can be shown the second sum in the regret decomposition (Eq. (36)) is upper bounded by

2𝐹𝛿block𝑡 . The third sum is ≥ 0. Using Fact 1 we get

E[∥𝑤𝑡+1 −𝑤 ∥2] ≤ 1

𝜎𝑡

(
E[Δ𝑡 ] − E[𝑅𝑡 (𝑤∗

Π)]
)
≤ (6 + log 𝑡)𝐺2

𝜎2𝑡
+
2
(
4𝐹𝛿block𝑡 +𝐺2 |P |2∞ (log 𝑡 + 1)

)
𝜎𝑡

.

(38)

We complete the proof of Theorem 11.

C PROOFS FOR PACE
C.1 Proof of Theorem 7 and Theorem 8
We show convergence of 𝛽 under different input assumption. Recall 𝛽𝑡 is the pacing multiplier

generated by PACE, and 𝛽∗ is the solution to the optimization problem Eq. (24). The vector 𝛾 is the

sequence of items.
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Theorem 12 (Restatement of Theorem 7 and Theorem 8). For the independent case, i.e., 𝛾 ∼ 𝑄
and 𝑄 ∈ CID (𝛿), it holds for 𝑡 ≥ 1

E[∥𝛽𝑡+1 − 𝛽∗∥2] ≤ (6 + log 𝑡)𝐺2

𝜎2𝑡
+ 8𝐹

𝜎
𝛿 . (39)

and for 𝑡 ≥ 3,

1

𝑡

𝑡∑︁
𝜏=1

E[∥𝛽𝜏 − 𝛽∗∥2] ≤ 𝐺2

𝜎2

(
6(1 + log 𝑡) + (log 𝑡)2

2

)
+ (8𝐹/𝜎) · 𝛿 . (40)

For the erogdic case, i.e., 𝛾 ∼ 𝑄 and 𝑄 ∈ CE (𝛿, 𝜄), it holds for 𝑡 ≥ 1,

E[∥𝛽𝑡+1 − 𝛽∗∥2] ≤
(
6 + log 𝑡

)
𝐺2

𝜎2𝑡
+
2
(
4𝐹𝛿𝑡 + 2𝐺2𝜄 (log 𝑡 + 1) + 2𝜄𝐹

)
𝜎𝑡

= 𝑂

(
𝛿 + 𝜄

𝑡

)
. (41)

and for 𝑡 ≥ 3,

1

𝑡

𝑡∑︁
𝜏=1

E[∥𝛽𝜏 − 𝛽∗∥2] = 𝑂
(
𝛿 + 𝜄

𝑡

)
. (42)

For the periodic case, i.e., 𝛾 ∼ 𝑄 and 𝑄 ∈ CP (𝑞), it holds for 𝑡 ≥ 1

E[∥𝛽𝑡+1 − 𝛽∗∥2] ≤ (6 + log 𝑡)𝐺2

𝜎2𝑡
+ 2𝐺2𝑞2 (log 𝑡 + 1)

𝜎𝑡
= 𝑂 (𝑞2/𝑡) . (43)

and for 𝑡 ≥ 3,

1

𝑡

𝑡∑︁
𝜏=1

E[∥𝛽𝜏 − 𝛽∗∥2] = 𝑂 (𝑞2/𝑡) . (44)

Proof. Set 𝜎 = 1/𝑛 and 𝐺 = 𝐹 = ∥𝑣 ∥∞. Eq. (39) follows by Theorem 9 and specifically Eq. (30).

The next inequality Eq. (40) follows by [Xiao, 2010, Corollary 4]: for 𝑡 ≥ 3,

1

𝑡

𝑡∑︁
𝜏=1

(6 + log 𝜏)𝐺2

𝜏𝜎2
≤ 1

𝑡

(
6(1 + log 𝑡) + (log 𝑡)2

2

)
𝐺2

𝜎2
.

Eq. (41) follows by Theorem 10 and specifically Eq. (33). Following [Xiao, 2010, Corollary 4], we

have for 𝑡 ≥ 3,
𝑡∑︁
𝜏=1

E[∥𝛽𝜏 − 𝛽∗∥2]

≤ 𝐺2

𝜎2

(
6(1 + log 𝑡) + (log 𝑡)2

2

)
+ 8𝐹 · 𝛿𝑡 + 4𝐺2

𝜎

(
6(1 + log 𝑡) + (log 𝑡)2

2

)
+ 4𝐹

𝜎
(1 + log 𝑡) · 𝜄

= 𝑂 (𝛿𝑡 + 𝜄) ,
and thus Eq. (42) holds.

The inequality Eq. (43) follows from Theorem 11 and specifically Eq. (38). For the inequality

Eq. (44), apply the same strategy: for 𝑡 ≥ 3,

𝑡∑︁
𝜏=1

E[∥𝛽𝜏 − 𝛽∗∥2]

≤ 𝐺2

𝜎2

(
6(1 + log 𝑡) + (log 𝑡)2

2

)
+ 2𝐺2

𝜎2

(
6(1 + log 𝑡) + (log 𝑡)2

2

)
· 𝑞2 = 𝑂 (𝑞2) .

□
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C.2 Proof of Lemma 2 and Lemma 3
Proof of Lemma 2

Lemma 2 follows from [Gao et al., 2021, Theorem 3 and 4].

Proof of Lemma 3
Define the hindsight average equilibrium utility 𝑢

𝛾

𝑖
:= (1/𝑡) ·𝑈 𝛾

𝑖
. Although results in [Gao et al.,

2021] were stated for i.i.d. case, the proof in fact goes through for nonstationary input distributions.

Bounding E[∥𝑢𝑡 − 𝑢𝛾 ∥2]. For the first inequality we use the proof of [Gao et al., 2021, Theorem

6]. Follow that paper, we define 𝑟 𝑡𝑖 = max{0, 𝑢𝑡𝑖 − 𝑢
𝛾

𝑖
}. In Theorem 6 the authors show

E[(𝑟 𝑡𝑖 )2] ≤ 𝐶𝑟,1 · E[∥𝛽𝑡+1 − 𝛽∗∥2] +𝐶𝑟,2 ·
(
1

𝑡

𝑡∑︁
𝜏=1

E[∥𝛽𝜏 − 𝛽∗∥2]
)
.

In particular, the constant 𝐶𝑟,1 comes from the constant 𝐶 in [Gao et al., 2021, Theorem 4] and 𝐶𝑟,2
comes from [Gao et al., 2021, Equation (11)]

Bounding Reg𝑖,𝑡 . Note Reg𝑖,𝑡 = 𝑡 · (𝑢
𝛾

𝑖
− 𝑢𝑡𝑖 ) ≤ 𝑡 · 𝑟 𝑡𝑖 . Then we use Cauchy-Schwarz.

E
[
Reg𝑖,𝑡

]
≤ 𝑡E[𝑟 𝑡𝑖 ] ≤ 𝑡

√︃
E[(𝑟 𝑡

𝑖
)2] .

Bounding Envy𝑖,𝑡 . For the second inequality we use the proof of Theorem 6 in the same paper.

Following that paper, we define

𝜌𝑡𝑖 = (𝑛/𝑡) · max
𝑘∈[𝑛]

{
⟨𝑣𝑖 (𝛾), 𝑥𝑘⟩ − ⟨𝑣𝑖 (𝛾), 𝑥𝑖⟩

}
.

During the course of proving Theorem 6, the authors show

E[(𝜌𝑡𝑖 )2] ≤ 𝑛2
(
𝐶𝑒,1 · E[∥𝛽𝑡+1 − 𝛽∗∥2] +𝐶𝑒,2 ·

(1
𝑡

𝑡∑︁
𝜏=1

E[∥𝛽𝜏 − 𝛽∗∥2]
))
.

In particular, the constant 𝐶𝑒,1 comes from [Gao et al., 2021, Theorem 4, Equations (5) and (13)]

and 𝐶𝑒,2 comes from [Gao et al., 2021, Equations (5), (13) and (15)]

Then using Cauchy-Schwarz,

E
[
Envy𝑖,𝑡 (𝛾)

]
= E

[
(𝑡/𝑛) · 𝜌𝑡𝑖

]
≤ (𝑡/𝑛)

√︃
E
[
(𝜌𝑡
𝑖
)2

]
.

This completes the proof of Lemma 3.
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