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Abstract001

Speculative decoding is a powerful technique002
that accelerates Large Language Model (LLM)003
inference by leveraging a lightweight specula-004
tive draft model. However, existing designs005
suffers in performance due to misalignment006
between training and inference. Recent meth-007
ods have tried to solve this issue by adopting008
a multi-step training strategy, but the complex009
inputs of different training steps make it harder010
for the draft model to converge. To address011
this, we propose CORAL, a novel framework012
that improves both accuracy and efficiency in013
speculative drafting. CORAL introduces Cross-014
Step Representation Alignment, a method that015
enhances consistency across multiple training016
steps, significantly improving speculative draft-017
ing performance. Additionally, we identify018
the LM head as a major bottleneck in the in-019
ference speed of the draft model. We intro-020
duce a weight-grouping mechanism that se-021
lectively activates a subset of LM head pa-022
rameters during inference, substantially reduc-023
ing the latency of the draft model. We evalu-024
ate CORAL on three LLM families and three025
benchmark datasets, achieving speedup ratios026
of 2.50×-4.07×, outperforming state-of-the-027
art methods such as EAGLE-2 and HASS. Our028
results demonstrate that CORAL effectively029
mitigates training-inference misalignment and030
delivers significant speedup for modern LLMs031
with large vocabularies.032

1 Introduction033

Large Language Models (LLMs), such as GPT034

(OpenAI, 2023) and Llama series (Touvron et al.,035

2023a,b; Grattafiori et al., 2024), have demon-036

strated exceptional capabilities in various natural037

language processing tasks. However, achieving038

stronger model performance often depends on in-039

creasing the number of model parameters (Kaplan040

et al., 2020; Hoffmann et al., 2022), which leads to041

higher costs in both training and inference. Thus,042

achieving strong performance while maintaining043
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Figure 1: Speedup ratios of different methods on
Llama3-8B and Qwen2.5-7B at temperature=0, aver-
aging on MT-bench, HumanEval, and GSM8K datasets.
We present full results in Table 2 and this chart is only a
subset of all comparisons.

quick response is a crucial part in LLM implemen- 044

tations. Under common hardware conditions, trans- 045

former decoder-based LLMs are memory-bound 046

(Dao et al., 2022), which means that the generation 047

speed is mainly determined by memory access and 048

bandwidth, rather than arithmetic computations. 049

This allows for the acceleration of generation using 050

speculative decoding (Chen et al., 2023; Leviathan 051

et al., 2023). The general idea of speculative de- 052

coding is to utilize one or multiple lightweight 053

draft models to predict the output of target LLM 054

for several upcoming timesteps, and then verify 055

the drafted predictions in parallel using the target 056

model. The memory-bound characteristic guaran- 057

tees that the parallel verification of multiple tokens 058

does not incur a significant increase in latency com- 059

pared to generating a single token. 060

Recently, autoregressive draft models, such 061

as EAGLE (Li et al., 2024b), have received 062

widespread attention for their excellent speedup 063

performance. For training, EAGLE uses not only 064

the output tokens but also the last hidden states 065

from target LLM as input to the draft model, while 066

during the drafting phase, the draft model uses 067

its own hidden states from the previous timestep, 068
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Model Hidden Inter. size Vocab Wd / Wt Ld / Lt

Llama2-7B 4096 11008 32000 350M/6301M(5.6%) 1.36ms/23.65ms(5.8%)
Llama3-8B 4096 14336 128256 741M/7157M(10.4%) 2.58ms/26.06ms(9.9%)

Qwen2.5-7B 3584 18944 152064 767M/6743M(11.4%) 2.69ms/24.58ms(10.9%)

Table 1: Parameters and latencies of Llama3-8B, Llama2-7B, and Qwen2.5-7B draft and target models. Wd, Wt and
Ld, Lt denote the parameter counts and latency of draft and target model. In the table, M represents 1024×1024.
Parameters of the embedding layer are not calculated because they do not participate in general matrix multiplication
(GEMM). Latencies are tested with one token on a single NVIDIA A6000 GPU.
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Figure 2: Parameters and latencies of Llama3-8B,
Llama2-7B, Qwen2.5-7B draft model. For a model
with large vocabulary, the LM head takes the majority
of the drafting latency.

which may contain biases. This misalignment leads069

to a decrease in the prediction accuracy of the draft070

model. HASS (Zhang et al., 2024) proposes a071

multi-step training strategy, where the hidden states072

output by the draft model are fed back into itself073

multiple times during training, allowing the draft074

model to learn the feature distribution of the in-075

ference phase. In Section 2 we will provide more076

detailed discussions on them.077

Although HASS exhibits impressive perfor-078

mance, there are still some limitations to multi-step079

training. Specifically, their design causes the input080

features at differrent training steps to vary, which081

might be challenging for a lightweight draft model082

to adapt to. The discrepancy of each training step083

may also introduce potential gradient conflicts. Fur-084

thermore, modern LLMs are increasingly moving085

towards large vocabularies to obtain better perfor-086

mance (Tao et al., 2024). For example, previous087

model such as Llama2 has a small vocabulary size088

of only 32000 (Touvron et al., 2023b), while the vo-089

cabulary size of Llama3 (Grattafiori et al., 2024) is090

128256, and that of Qwen2.5 (Yang et al., 2024) is091

152064. Such large vocabularies lead to an increase092

in the parameter size of the Language Model head093

(LM head), resulting in increased overhead of draft-094

ing, which is presented in Table 1. As demonstrated095

in Figure 2, the heavy LM head could potentially096

dominate the latency of draft model. However, few097

studies have focused on this aspect. 098

In this paper, we introduce CORAL (learn- 099

ing COnsistent Representations Across multi-step 100

training with Lighter speculative drafter), a specula- 101

tive decoding method that improves the alignment 102

between the draft model and the target model while 103

maintaining high drafting speed. We first propose 104

Cross-Step Representation Alignment (CSRA), 105

which leverages the idea of contrastive learning 106

to enforce consistency among the output features 107

of each training step. The constraint on features 108

makes them more stable, and thus improves the 109

training efficiency and the performance of the draft 110

model. Furthermore, by grouping the LM heads, 111

we significantly reduce the activated parameters of 112

the draft model with large vocabulary size, thereby 113

decreasing the wall time of speculative decoding. 114

We evaluate acceleration capability of CORAL 115

on multi-turn conversation, code generation, and 116

mathematical reasoning tasks using the MT-Bench, 117

HumanEval and GSM8K datasets, respectively. 118

The results show that our method achieves 2.50×- 119

4.07× speedup over vanilla decoding at a tempera- 120

ture of 0, surpassing state-of-the-art methods such 121

as EAGLE-2 and HASS. 122

Our key contributions can be summarized as 123

follows. 124

1. We propose Cross-Step Representation Align- 125

ment, a technique that enables the draft model 126

to learn consistent representations across mul- 127

tiple timesteps. 128

2. We find that the vocabulary size can signifi- 129

cantly influence the latency of the draft model, 130

and propose a novel method which selectively 131

activates a subset of LM head parameters dur- 132

ing inference using a router. 133

3. CORAL achieves speedup ratios of 2.50×- 134

4.07× on various LLMs and datasets, outper- 135

forming existing speculative decoding meth- 136

ods such as EAGLE-2 and HASS. 137
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Figure 3: Demonstration of EAGLE training / inference and multi-step training with CSRA. f denotes feature
and e denotes embedding. Superscripts indicate the source of the variable, with t and d denoting the target model
and draft model. Subscripts index the position of a feature or embedding. For example, f t

3 means the feature in
position 3 and comes from the target model. For multi-step training, we use apostrophes to distinguish the outputs
of different training steps. Specifically, we denote the output feature of step 1 as fd, and for step 2 and 3 we use fd′

and fd′′
, respectively. Compared to HASS, CSRA introduces additional constraints on feature consistency. The

training target is applied at each step, and we only illustrate it once for the sake of clarity.

2 Preliminaries138

In this section, we provide some background in-139

formation related to speculative decoding and re-140

view some existing methods, including EAGLE141

and HASS.142

2.1 Speculative Decoding143

Speculative decoding (Chen et al., 2023; Leviathan144

et al., 2023) aims to accelerate the generation speed145

of autoregressive LLMs. Vanilla speculative decod-146

ing employs a lightweight model (draft model) to147

generate a chain of candidate tokens for the next γ148

timesteps, which are then verified in parallel by the149

original LLM (target model) and decide whether150

to accept them or not. Since the latency of LLM151

generation mainly lies in the memory access, par-152

allel verification of multiple tokens does not sig-153

nificantly impact the latency of the target LLM,154

although the computational cost is multiplied.155

The acceleration capability of speculative decod-156

ing is typically evaluated using two metrics: av-157

erage acceptance length τ and the actual Speedup158

Ratio (SR). A drafting-verification cycle consists159

of one token provided by the target model and mul-160

tiple candidates generated by the draft model over161

γ time steps. The average acceptance length τ is162

defined as the number of new tokens generated in163

a single drafting-verification cycle.164

Ideally, we can estimate the speedup ratio using165

τ and the latencies of draft and target model:166

SR ≈ τ × L′
t

γ × Ld + Lt
, (1)167

where Lt and Ld denote the latency of the target168

model and draft model, respectively. L′
t denotes 169

the latency for evaluating multiple tokens one time, 170

it could be slightly different from Lt depending on 171

the hardware. Some additional overheads might 172

also contribute to latency, such as comparing the 173

probabilities of tokens from draft and target models 174

to determine acceptance. However, since these 175

overheads typically do not dominate the overall 176

latency, it is a good choice to ignore them when 177

estimating the speedup ratio. 178

From Equation (1) we can see the speedup ratio 179

is primarily influenced by two factors: the align- 180

ment between the draft model and the target model, 181

which mainly influences τ , and the ratio of their 182

latencies. Specifically, the lower the latency of the 183

draft model and the better alignment between the 184

two models, the higher the speedup ratio will be 185

achieved by speculative decoding. 186

2.2 EAGLE 187

EAGLE (Li et al., 2024b) is a lightweight autore- 188

gressive draft model that leverages a single trans- 189

former layer identical to that of the target model. 190

The LM head of draft model is reused directly from 191

the target model, with its parameters frozen. EA- 192

GLE discovers that utilizing the feature (i.e., the 193

last hidden states) of the target model can effec- 194

tively enhance the alignment between the draft and 195

target model. For training, the input of the draft 196

model at position s is the current token ts and the 197

feature of the target model at position s− 1. The 198

token ts will first be transformed into embedding 199

es, and then concatenated with the feature. A linear 200

layer is adopted to reduce the dimensions before 201
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the single transformer layer.202

The training target of EAGLE is to align the fea-203

ture (regression) and probability distribution (clas-204

sification) of the draft and target model. EAGLE205

uses smooth L1 as the regression loss and cross-206

entropy as the classification loss.207

EAGLE selects multiple candidates at each208

timestep during drafting, resulting in a tree-shaped209

structure rather than a chain. Tree decoding of-210

fers more possible trajectories than chain decoding,211

leading to a higher acceptance length. EAGLE-2212

(Li et al., 2024a) improves the fixed tree structure213

to a dynamic one and achieves better performance.214

2.3 HASS215

HASS (Zhang et al., 2024) addresses the inconsis-216

tency between the training and inference phases of217

EAGLE by introducing a multi-step training strat-218

egy. As demonstrated in Figure 3, EAGLE uses the219

feature of the target model for training, whereas220

in inference, the draft model uses its own feature.221

HASS solves this problem by feeding the output222

feature of draft model back into itself for multi-223

ple times. To expose the draft model to inference-224

time conditions during training, attention masks225

from different training steps require careful adjust-226

ment. HASS also incorporates other improvements227

on EAGLE, but they are orthogonal to multi-step228

alignment. In this paper, we focus mainly on HASS229

alignment, and all references to HASS in the re-230

mainder of this paper denote HASS alignment un-231

less otherwise specified.232

While HASS improves the accuracy of draft233

models in autoregressive generation, we argue that234

there are still unresolved issues due to the discrep-235

ancies between representations from multiple train-236

ing steps (i.e., fd, fd′ and fd′′ in Figure 3). It is237

harder for the draft model to adapt to more complex238

inputs and the conflicting gradients from multiple239

steps may hinder convergence speed.240

3 Method241

In this section, we first introduce Cross-Step242

Representation Alignment, a method designed to243

strengthen the alignment between the draft model244

and the target model. We then analyze the speedup245

ratio and identify the LM head of the draft model246

as a bottleneck. To address this issue, we propose247

the LM head router, a novel solution that aims to248

reduce the latency of the draft model.249

(a) EAGLE Training (b) HASS Training

(c) CSRA

Figure 4: Comparison of EAGLE training, HASS train-
ing and CSRA. Here ⃝ denotes training target, △ de-
notes output features from different steps. Triangles
filled with darker colors represent the first step’s output.
Different colors represent outputs or targets of different
positions. Optimization direction is marked as →, and
the dashed ↔ means repulsion.

3.1 Cross-Step Representation Alignment 250

Cross-Step Representation Alignment (CSRA) 251

leverages the idea of contrastive learning (Chopra 252

et al., 2005; Schroff et al., 2015). Specifically, in 253

multi-step training, we treat the output features at 254

the same position in a sentence as positive views 255

of the same sample, while all other features are 256

considered negative samples. 257

Assuming current training step is t, the output 258

features of current step are Ft ∈ RB×S×D, where 259

B, S, and D represent the batch size, sequence 260

length, and hidden dimension, respectively. Natu- 261

rally, we regard them as B × S samples, and each 262

sample has t positive views, while all other features 263

are considered negative samples. 264

For each output feature f in current training step, 265

our objective is to minimize its distance to other 266

positive views while maximizing the distance to 267

negative samples. To achieve this, we normalize the 268

features and compute the InfoNCE loss (van den 269

Oord et al., 2018) as the objective function, which 270

encourages the feature to be closer to its positive 271

views and away from negative samples: 272

LCSRA = −log
exp(sim(q, f+)/τ)∑
f∈F exp(sim(q, f)/τ)

, (2) 273
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where q and f+ denotes the query feature and posi-274

tive views, and F is the set of all features along with275

the targets. The similarity function sim(·, ·) is de-276

fined as cosine similarity. Here τ is the temperature277

hyperparameter. Figure 4 shows the differences be-278

tween EAGLE / HASS training and CSRA.279

The training loss can be defined as:280

L = wregLreg + wclsLcls + wCSRALCSRA, (3)281

where Lreg and Lcls represent the regression loss282

and classification loss, respectively. Since LCSRA283

primarily affects representation learning, we main-284

tain wcls consistent with EAGLE and adjust an-285

other two weights according to different target mod-286

els. For detailed parameter settings, please refer to287

Appendix A.288

3.2 Estimation of Speedup Ratio289

As discussed in Section 2.1, the generation speed290

is primarily constrained by memory bandwidth.291

Therefore, the theoretical latency Ltheo. in genera-292

tion phase is proportional to the LLM’s parameter293

count WLLM :294

Ltheo. ∝ WLLM . (4)295

However, this estimation is not always accurate296

due to the following factors: 1) Not all operators297

and computing graphs are fully optimized. 2) The298

latency of some element-wise operators (e.g., ac-299

tivation, norm) is not reflected in the parameter300

count. This issue is particularly noticeable for Py-301

Torch, because it is not a framework optimized for302

inference.303

Luckily, the draft model and target one share the304

same transformer structure, and the extra latency305

caused by the aforementioned factors is relatively306

consistent in both models. This allows us to esti-307

mate the wall time and speedup ratio of speculative308

decoding based on the parameters of draft model309

and target model:310

Ld

Lt
≈ Wd

Wt
, (5)311

SR ≈ τ × Wt

γ ×Wd +Wt
, (6)312

where Wd, Wt and Ld, Lt denote the parameter313

counts and latency of draft and target model, respec-314

tively. Note that the embedding layer does not par-315

ticipate in general matrix multiplication (GEMM),316

therefore its parameters should not be included in317

latency estimation. Table 1 presents the latencies 318

and parameters of different LLMs, along with their 319

corresponding draft models. The results suggest 320

that estimating the latency ratio between the draft 321

and target models based on their parameter counts 322

is relatively accurate. Notably, for Llama3-8B and 323

Qwen2.5-7B, the latency of draft model is approxi- 324

mately 10% of that of target model. As the depth 325

of drafting increases, the latency of draft model is 326

expected to contribute significantly to the overall 327

wall time. 328

Furthermore, it is also possible to estimate the 329

latency of each component of the draft model based 330

on their parameter count. As shown in Figure 2, in 331

cases with large vocabularies, the latency of LM 332

head accounts for a significant proportion of the 333

total latency, which provides us with a valuable in- 334

sight: If we can reduce the activated weights of the 335

LM head, the overall speedup will be substantially 336

improved. 337

3.3 LM Head Router 338

As mentioned in Section 3.2, for draft models with 339

large vocabularies, LM head constitutes the major 340

part of drafting latency. We propose the LM head 341

router, aiming to group the LM head and then acti- 342

vate only a subset of LM head parameters during 343

drafting, as demonstrated in Figure 5. 344

Assuming a LLM with a vocabulary size V , we 345

divide the LM head equally into N groups, each 346

with a vocabulary size of v = V/N . We utilize a 347

router to select which group to activate. The output 348

of router can be outlined as follows: 349

prouter = Softmax(W2(act(W1h) + h)),

W2 ∈ RN×d,W1 ∈ Rd×d,
(7) 350

where h denotes the hidden states of draft model, 351

d is the hidden size. 352

Let p(x), q(x) denote the predicted and target 353

distribution, and pgroup(x
n) denote the probability 354

distribution within a specific group n. After select- 355

ing a particular group, the softmax probability is 356

calculated by logits in this group, independent of 357

the logits in other groups. 358

Then the final distribution with router should be 359

p(x) = prouter(n) · pgroup(xn). (8) 360

For each group,
∑

pgroup(x
n) = 1, and for router 361

we have
∑

prouter(n) = 1. Therefore, the final 362

p(x) is normalized. 363
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hidden states
probabilities

router

activated LM head params

non-activated params

(a) Vanilla LM head (b) LM head with router

…

Figure 5: Demonstration of LM head router in draft
model. With the router, we only output probabilities of
one or multiple subsets of vocabulary.

The training target of LM head router is the364

sum of target probabilities in each group, namely365

qrouter(n) =
∑

qgroup(x
n). We use cross-entropy366

as the loss function:367

Lrouter = −
∑

qrouter(n) log prouter(n). (9)368

It is evident that, although the LM head router369

reduces the latency of the draft model, it comes at370

the cost of a slight decrease in acceptance length τ371

due to imperfect routing accuracy. Based on Equa-372

tion (5) and (6), the LM head router gets its best373

performance when 1) the LM head accounts for374

a significant portion of the latency of draft model375

2) the latency ratio between the draft model and376

the target model is substantial. Therefore, we only377

apply the LM head router to models with large vo-378

cabularies (Qwen2.5, Llama3) and relatively small379

sizes (7B, 14B).380

We adopt a two-stage training strategy, where381

we first train the draft model following the standard382

training procedure (either single-step or multi-step),383

and then fix the weights of draft model and train384

the router separately. For further discussion, please385

refer to Appendix D.386

4 Experiments387

In this section, we first introduce the experimental388

setup, then discuss the overall effectiveness of our389

method, and finally present the ablation studies on390

CSRA and LM head router.391

4.1 Experimental Setup392

Target LLMs. We choose Llama3-Instruct-393

8B/70B(Grattafiori et al., 2024), Llama2-chat-394

7B/13B(Touvron et al., 2023b) and Qwen2.5-395

Instruct-7B/14B(Yang et al., 2024) as our target396

models.397

Tasks. We choose multiple datasets covering three 398

tasks, including MT-Bench(Zheng et al., 2023) for 399

multi-turn dialogue, GSM8K(Cobbe et al., 2021) 400

for mathematical reasoning, and HumanEval(Chen 401

et al., 2021) for code generation. For 7B/14B mod- 402

els, experiments are conducted with batch size of 1 403

on a single NVIDIA A6000 48G GPU. For Llama3- 404

70B, we use 4×A6000 GPUs due to memory re- 405

quirements. 406

Metrics. Since CORAL is a lossless speculative 407

decoding strategy, it is not necessary to measure 408

the generation quality. For acceleration, we use 409

two metrics to evaluate the performance: 410

• Speedup Ratio: the actual speedup ratio com- 411

pared to vanilla decoding. 412

• Acceptance Length τ : the average number of 413

new tokens generated per drafting-verification 414

cycle. 415

Comparisons. We use vanilla decoding as the 416

baseline (1.00×) to measure the speedup ratio. We 417

primarily compare CORAL with the latest lossless 418

speculative decoding methods, including EAGLE, 419

EAGLE-2, and HASS. Since EAGLE is already 420

one of the fastest speculative decoding methods, 421

we choose EAGLE as the speculative decoding 422

baseline and do not compare with other methods 423

with lower speedup ratios. 424

Implementation. Our implementation is based 425

on the open source repositories of HASS1 and 426

EAGLE-22, and the settings are primarily iden- 427

tical to those of them. All models are trained with 428

ShareGPT dataset for 20 epochs with batch size 429

of 2 per GPU. For HASS and CORAL, the default 430

step for training is set to 3. Our system prompt for 431

Llama3 is slightly different from that of EAGLE, 432

please refer to Appendix E for detailed discussion. 433

For inference, we employ a tree depth of 6 and 434

select 60 candidate tokens for all models. 435

4.2 Effectiveness and Ablation Studies 436

4.2.1 Effectiveness 437

We present the acceptance lengths τ and speedup 438

ratios of three datasets in Table 2. The results show 439

that CSRA achieves the best performance in both τ 440

and speedup ratio (SR) in all experiments we have 441

tested, surpassing EAGLE, EAGLE-2, and HASS. 442

The advantages of CSRA are more pronounced for 443

1https://github.com/HArmonizedSS/HASS
2https://github.com/SafeAILab/EAGLE
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MT-bench HumanEval GSM8K Average
τ / SR τ / SR τ / SR τ / SR

model method T=0 T=1 T=0 T=1 T=0 T=1 T=0

L2-13B

EAGLE 3.93/3.04× 3.23/2.35× 4.51/3.47× 3.47/2.56× 4.01/3.10× 3.51/2.59× 4.15/3.20×
EAGLE-2 4.80/3.16× 4.68/3.06× 5.59/3.75× 5.41/3.60× 4.98/3.38× 4.84/3.25× 5.12/3.43×

HASS 5.20/3.42× 5.02/3.26× 5.99/4.01× 5.79/3.86× 5.32/3.60× 5.24/3.51× 5.50/3.68×
CORAL 5.25/3.45× 5.10/3.32× 6.06/4.07× 5.90/3.93× 5.39/3.65× 5.25/3.51× 5.57/3.72×

L2-7B

EAGLE 3.80/2.67× 3.21/2.10× 4.29/3.04× 3.55/2.33× 3.84/2.73× 3.48/2.30× 3.87/2.81×
EAGLE-2 4.68/2.89× 4.45/2.70× 5.34/3.35× 5.02/3.11× 4.70/2.98× 4.67/2.89× 4.91/3.07×

HASS 5.02/3.09× 4.77/2.88× 5.71/3.58× 5.35/3.30× 5.11/3.25× 4.99/3.10× 5.28/3.31×
CORAL 5.09/3.13× 4.86/2.94× 5.73/3.58× 5.48/3.40× 5.12/3.25× 5.05/3.13× 5.31/3.32×

L3-70B

EAGLE 2.87/2.24× 2.62/2.02× 3.73/2.93× 3.45/2.67× 3.46/2.71× 3.23/2.50× 3.35/2.63×
EAGLE-2 4.08/2.70× 3.91/2.61× 4.95/3.31× 4.89/3.27× 4.03/2.70× 3.73/2.50× 4.35/2.90×

HASS 4.10/2.71× 4.00/2.65× 5.23/3.49× 5.10/3.40× 4.12/2.76× 3.83/2.56× 4.48/2.99×
CORAL 4.23/2.79× 4.13/2.72× 5.31/3.54× 5.19/3.46× 4.34/2.90× 3.91/2.61× 4.63/3.08×

L3-8B

EAGLE 2.63/1.65× 2.30/1.35× 3.65/2.29× 3.13/1.85× 3.47/2.18× 3.05/1.78× 3.25/2.04×
EAGLE-2 4.16/2.28× 3.84/2.08× 4.78/2.61× 4.64/2.50× 4.21/2.32× 3.94/2.13× 4.38/2.40×

HASS 4.48/2.45× 4.12/2.21× 5.31/2.89× 5.12/2.76× 4.56/2.51× 4.18/2.28× 4.78/2.62×
CORAL 4.57/2.50× 4.15/2.24× 5.43/2.95× 5.28/2.83× 4.70/2.58× 4.39/2.38× 4.90/2.68×

CORAL w/ r. 4.26/2.63× 3.92/2.39× 5.22/3.21× 5.03/3.07× 4.42/2.76× 4.12/2.53× 4.63/2.87×

Q2.5-14B

EAGLE 2.63/1.83× 2.33/1.55× 3.31/2.31× 2.82/1.88× 3.62/2.52× 3.21/2.16× 3.19/2.22×
EAGLE-2 4.08/2.36× 3.76/2.15× 5.01/2.89× 4.85/2.78× 4.62/2.69× 4.58/2.65× 4.57/2.65×

HASS 4.52/2.59× 4.12/2.35× 5.50/3.18× 5.37/3.07× 5.03/2.92× 4.91/2.83× 5.02/2.90×
CORAL 4.56/2.62× 4.13/2.35× 5.64/3.26× 5.40/3.09× 5.16/3.00× 5.12/2.95× 5.12/2.96×

CORAL w/ r. 4.26/2.74× 3.88/2.46× 5.31/3.44× 5.12/3.28× 4.80/3.14× 4.72/3.05× 4.79/3.11×

Q2.5-7B

EAGLE 2.53/1.56× 2.17/1.23× 3.04/1.87× 2.62/1.49× 3.32/2.05× 2.86/1.63× 2.96/1.83×
EAGLE-2 3.91/2.13× 3.45/1.86× 4.62/2.53× 4.36/2.35× 4.23/2.33× 4.07/2.21× 4.25/2.33×

HASS 4.15/2.26× 3.65/1.96× 4.96/2.71× 4.74/2.55× 4.53/2.49× 4.35/2.35× 4.55/2.49×
CORAL 4.22/2.30× 3.83/2.05× 5.09/2.78× 4.86/2.62× 4.67/2.57× 4.50/2.44× 4.66/2.55×

CORAL w/ r. 4.02/2.50× 3.62/2.21× 4.86/3.05× 4.57/2.81× 4.38/2.76× 4.16/2.58× 4.42/2.77×

Table 2: Acceptance lengths τ and speedup ratio (SR) of different methods on MT-bench, HumanEval, and GSM8K
datasets with temperature T ∈ {0, 1}. The best results are in bold, and some minor advantages may be obscured
due to rounding. We also calculate the average τ and SR under T = 0 for a more direct comparison. L2, L3,
Q2.5 represents Llama2-Chat, Llama3-Instruct, and Qwen2.5-Instruct, respectively. As clarified in Section 3.3,
we apply LM head router for relatively small LLMs with large vocabularies (denoted as CORAL w/ r.), such as
Qwen2.5-7B/14B and Llama3-8B. For Llama2 series and Llama3-70B, we use CSRA only.

LLMs with larger vocabularies, whereas the bene-444

fits are less significant for earlier models such as445

Llama2. For LM head router, we set the group num-446

ber to 16 and choose the top-2 groups for the best447

performance. Although the router sacrifices some448

acceptance length, the overall speedup ratio bene-449

fits from reduced latency and shows a considerable450

increase.451

4.2.2 Ablation Study on CSRA452

We adjust the number of training steps and make453

a more detailed comparison with HASS. Since454

CSRA and HASS employ the same draft model,455

the inference overheads are identical, we therefore456

compare the acceptance length only. The results in457

Table 3 show that CSRA consistently outperforms458

HASS under different training steps.459

To provide a more intuitive measure of the align-460

MT-bench HumanEval GSM8K
step HASS CSRA HASS CSRA HASS CSRA

2 4.41 4.53 5.24 5.35 4.50 4.60
3 4.48 4.57 5.31 5.43 4.56 4.70
4 4.46 4.58 5.39 5.55 4.58 4.70

Table 3: Acceptance length of Llama3-8B under differ-
ent alignment steps. Step-3 is the default setting.

ment between the draft model and the target model, 461

we compare the acceptance rates α of HASS and 462

CSRA at different timesteps during inference, as 463

shown in Figure 6. The results show that CSRA 464

generally outperforms HASS at different timesteps. 465

4.2.3 Ablation Study on LM Head Router 466

The LM head router has two hyperparameters: the 467

total number of groups N , and the number of top- 468

7



n groups to activate during inference. A larger469

group number, although leading to activating fewer470

parameters, would increase the difficulty of training471

and damage accuracy. Similarly, how many groups472

to activate is also a trade-off between speed and473

accuracy. We perform a grid search over these474

two hyperparameters in the MT-bench dataset with475

Llama3-8B, and the results are shown in Table 4.476

CORAL T=0

N top1 top2 top3 top4 top6 top8

N/A 2.50× - - - - -
4 2.60× 2.46× - - - -
8 2.62× 2.61× 2.54× - - -
16 2.53× 2.63× 2.60× 2.57× - -
32 2.41× 2.59× 2.60× 2.61× 2.56× -
64 2.33× 2.51× 2.55× 2.57× 2.57× 2.53×

EAGLE-2 T=0

N top1 top2 top3 top4 top6 top8

N/A 2.28× - - - - -
4 2.44× 2.29× - - - -
8 2.40× 2.39× 2.33× - - -
16 2.30× 2.41× 2.39× 2.36× - -
32 2.24× 2.37× 2.40× 2.38× 2.35× -
64 2.18× 2.33× 2.37× 2.37× 2.37× 2.33×

Table 4: Speedup of Llama3-8B with LM head router on
MT-bench dataset. We group the LM head parameters
into N groups and selectively activate top-n of them.
N/A denotes the results without LM head router.

The results show that our method consistently477

yields significant improvements, regardless of478

whether multi-step training is employed. For479

CORAL, dividing the LM head into 16 groups and480

activating the top-2 groups during inference brings481

the best speedup performance. Since the optimal482

setting may vary across different LLMs and can-483

not be easily estimated, we recommend empirical484

studies to identify the optimal configuration.485

5 Related Work486

There has been a significant amount of work in ac-487

celerating LLMs. Some methods focus on reducing488

the number of parameters, such as low-bit quanti-489

zation (Dettmers et al., 2022; Frantar et al., 2023;490

Xiao et al., 2023; Lin et al., 2024), and model distil-491

lation (Gu et al., 2024; Ko et al., 2024; Zhong et al.,492

2024). Recently, some studies have also explored493

activating only a subset of model parameters during494

inference to reduce memory access cost (Du et al.,495

2022; Fedus et al., 2022). Speculative decoding496

62

64

66

68

70

0-α 1-α 2-α 3-α 4-α 5-α

Llama3-8B-Instruct T=0

HASS CSRA

59

61

63

65

67

0-α 1-α 2-α 3-α 4-α 5-α

Llama3-8B-Instruct T=1

HASS CSRA

Figure 6: Acceptance rates in MT-bench dataset. Here
n-α denotes the acceptance rate of the n-th token.

(Chen et al., 2023; Leviathan et al., 2023) leverages 497

the memory-bound nature of decoder-only LLMs 498

and achieves lossless acceleration using a drafting- 499

verification framework. 500

Research on speculative decoding has primarily 501

focused on two areas: 1) drafter design, 2) verifi- 502

cation strategy. For drafter design, Medusa (Cai 503

et al., 2024) attaches multiple heads to the origi- 504

nal LLM and predict multiple subsequent tokens 505

one time. Hydra (Ankner et al., 2024) improves 506

Medusa by enhancing correlations between draft 507

heads. Clover (Xiao et al., 2024) introduces an 508

RNN-based draft head. Some methods utilize more 509

information from target model to improve align- 510

ment, EAGLE (Li et al., 2024b) combines the out- 511

put token and last hidden states of target LLMs 512

to resolve the uncertainty in drafter’s prediction. 513

GLIDE (Du et al., 2024) reuses the KV cache of 514

target LLMs. For the verification strategy, Hu and 515

Huang (2024); Sun et al. (2024) find that the accep- 516

tance length of speculative sampling is not optimal 517

and take into account the probability of subsequent 518

tokens. SpecInfer (Miao et al., 2024) proposes de- 519

coding tree for verification. Sequoia (Chen et al., 520

2024), EAGLE-2 (Li et al., 2024a), and OPT-tree 521

(Wang et al., 2024) adopts a dynamic tree structure. 522

6 Conclusion 523

This paper proposes CORAL, an efficient spec- 524

ulative decoding method. We introduce Cross- 525

Step Representation Alignment, which effectively 526

mitigates training-inference misalignment and im- 527

proves the accuracy of speculation. Additionally, 528

we propose the LM head router, a plug-and-play 529

module designed to reduce the latency of the draft 530

model. We compare CORAL with other state-of- 531

the-art methods on various LLMs and datasets, and 532

the results show that CORAL achieves the best 533

speedup performance. 534
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Limitations535

There are mainly two limitations in this work.536

Firstly, the introduction of CSRA loss may lead537

to a slight increase in regression loss, which re-538

sults in a decrease in the acceptance length if the539

draft model is trained with single step. This issue540

can be addressed by multi-step training. Secondly,541

adopting a large vocabulary is a trend in the devel-542

opment of modern LLMs, and our LM head router543

is specifically designed for LLMs with large vocab-544

ularies. It might not be suitable for models with545

small vocabularies, as the computational overhead546

of LM head is limited in the overall wall time of547

speculative decoding. In this case, the time saved548

by the draft model cannot compensate for the loss549

in acceptance length.550
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A Hyperparameters in CSRA Loss 746

The temperature of LCSRA is set to 0.07, consistent 747

with some previous works such as CLIP (Zheng 748

et al., 2023). 749
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Then we set wreg to 0.5, half of EAGLE’s origi-750

nal setting. The weight of CSRA loss is adjusted751

according to different target models, making the752

values of wCSRALCSRA and wregLreg roughly the753

same. In this way, the loss imposed on representa-754

tion is approximately the same as EAGLE/HASS755

training.756

Based on the values of wregLreg, we choose757

wCSRA = 0.2 for Qwen2.5-7B, wCSRA =758

0.15 for Llama3-8B, wCSRA = 0.1 for Llama3-759

70B, Qwen2.5-14B and Llama2-7B, and 0.05 for760

Llama2-13B.761

B Training Details762

We utilize a fixed dataset of 68,000 examples from763

ShareGPT3 as our training set, which is identical764

to EAGLE and HASS. CORAL requires approx-765

imately 2 days to train a 7B draft model under766

default settings (training step=3, epoch=20). It767

is worth noting that draft models with large vo-768

cabularies such as Llama3 and Qwen2.5 require769

more GPU memory compared to Llama2, so we use770

4×NVIDIA H20-96G GPUs for training. Training771

large draft models such as Llama3-70B on A100-772

40G GPU may result in out-of-memory issues un-773

der our experimental settings. We recommend us-774

ing GPUs with larger memory capacities or choos-775

ing other alternatives (e.g., reducing the batch size,776

model parallelism).777

C Single-step Training with CSRA778

We do not recommend using the CSRA loss in the779

context of single-step training. Our empirical find-780

ings suggest that introducing the CSRA loss may781

lead to a slight increase in regression loss, likely782

due to the mismatch between the two optimization783

objectives. Specifically, the CSRA loss focuses784

solely on the angular relationships between the out-785

put features, without imposing any constraints on786

the feature norm, whereas the regression loss aims787

to learn features that are identical to the target. The788

increase in regression loss may damage the accep-789

tance length. We present the results of CSRA with790

single-step training in Table 5.791

A plausible explanation for this phenomenon is792

that in single-step training, the draft model lacks793

exposure to subsequent steps, therefore the L1 dis-794

tance between the prediction and target feature is795

relatively more critical. In contrast, for multi-step796

3https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna
_unfiltered

MT-bench HumanEval GSM8K
EAGLE-2 4.16 4.78 4.21

CSRA Step1 4.10 4.70 4.10

Table 5: Acceptance length of Llama3-8B EAGLE-2
and CORAL model with single-step training.

training, the draft model learns to adapt to subse- 797

quent steps, making the discriminative power of 798

different representations and the multi-step consis- 799

tency more crucial. 800

D Discussion on LM Head Router 801

In this section, we will discuss some issues of LM 802

head router. 803

Tree decoding. In tree decoding, each timestep 804

contains multiple candidate tokens. Since each can- 805

didate requires a different set of LM head groups, 806

we need to activate all the involved groups, which 807

may bring additional latency. In some cases, we 808

even need to activate the entire LM head parame- 809

ters (e.g., if we take the top two groups and top 10 810

candidates, the worst-case scenario might require 811

activating 20 groups). 812

This issue can be addressed through appropri- 813

ate grouping strategies. First, dividing the tokens 814

into more groups helps alleviate the problem. For 815

instance, with a total of 32 groups, selecting the 816

top 10 candidates from the top 2 groups ensures 817

that the LM head parameters are not fully activated, 818

even in the worst-case scenario. Second, modern 819

LLMs utilize BPE (Sennrich et al., 2016) or BBPE 820

(Wang et al., 2020) for tokenization, where higher- 821

frequency tokens tend to be concentrated in groups 822

with smaller indices. As a result, such an extreme 823

scenario is unlikely to occur in practice. 824

Two-stage training. There are mainly two reasons 825

for adopting two-stage training. Firstly, the two- 826

stage training strategy ensures that the router serves 827

as a plug-and-play module, without affecting the 828

standalone usage of the first-stage model, thereby 829

providing greater flexibility. Secondly, since the 830

number of groups is a hyperparameter that may 831

require multiple experiments to determine the op- 832

timal setting, two-stage training allows us to store 833

the output of draft model and train the router only, 834

making it easier for parameter tuning. 835

Backends. Although many researches on specu- 836

lative decoding measure the speedup ratio on Py- 837

Torch, we do not consider PyTorch to be a good 838

backend. For example, as shown in Table 2, the 839
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Train Test MT-bench HumanEval GSM8K

sys_p2
sys_p2 4.16 4.78 4.21
sys_p1 4.11(-0.05) 4.73(-0.05) 4.27(+0.06)

sys_p1
sys_p1 4.18 4.78 4.38
sys_p2 3.87(-0.31) 4.17(-0.61) 3.93(-0.45)

open source
(sys_p1)

sys_p1 4.24 4.92 4.34
sys_p2 3.94(-0.30) 4.67(-0.25) 3.91(-0.43)

Table 6: Acceptance lengths of EAGLE-2 for Llama3-8B-Instruct with different system prompts.

FP16 latency of Llama3-8B-draft head on RTX840

A6000 GPU is 1.51ms, which is close to the the-841

oretical time of 1.3ms (1002M memory access842

with 768GB/s bandwidth). However, for other843

parts, which mainly consists of transformer, the844

actual time is much higher than the theoretical time845

(1.07ms vs 0.63ms), achieving only about 60% of846

the theoretical performance.847

This is a problem inherent to PyTorch. For in-848

stance, in Qwen2 speed benchmark4, the inference849

speed of 7B model on A100 80G GPU is only 38850

token/s (i.e., 26ms/token), which is far from the851

theoretical time of about 7ms (estimated by 14G852

memory access with 2TB/s bandwidth). This prob-853

lem can be mitigated by using a more optimized854

backend, such as vLLM (Kwon et al., 2023).855

Therefore, the performance of the LM head856

router may be affected by the hardware and back-857

end conditions. In a well-optimized backend, the858

router’s performance will be better than reported859

in this paper, as the latency of the LM head will860

occupy a larger proportion in the draft model.861

E Discussion on System Prompt862

EAGLE utilizes the system prompt from the official863

Llama2-chat example5:864

sys_p1 = You are a helpful, respectful and honest865

assistant. Always answer as helpfully as possible,866

while being safe. Your answers should not include867

any harmful, unethical, racist, sexist, toxic, dan-868

gerous, or illegal content. Please ensure that your869

responses are socially unbiased and positive in na-870

ture.\n\nIf a question does not make any sense, or871

is not factually coherent, explain why instead of an-872

swering something not correct. If you don’t know873

the answer to a question, please don’t share false874

information.875

The same system prompt is also used in Llama3876

4https://qwen.readthedocs.io/en/v2.0/benchmark/speed_be
nchmark.html

5https://huggingface.co/blog/llama2

drafter training. However, it appears that Llama3 877

does not have a default system prompt. Never- 878

theless, we find the system prompt in the offi- 879

cial Llama3.3 example6 is simpler and also widely 880

adopted: 881

sys_p2 = You are a helpful assistant 882

The system prompt has a certain impact on the 883

acceptance length and speedup ratio. To investigate 884

this, we compared the open-source Llama3-8B- 885

Instrct draft model in EAGLE official repository 886

(trained with sys_p1) and draft models trained by 887

ourselves using sys_p1 and sys_p2. Our results in 888

Table 6 show that switching between different sys- 889

tem prompts might lead to a decrease in speedup 890

and acceptance length on the MT-Bench and Hu- 891

maneval datasets, while GSM8K is an exception. 892

Upon closer inspection of the GSM8K results, 893

we find that when using sys_p1, most responses 894

start with a sentence similar to "Let’s break this 895

down step by step", whereas when using sys_p2, 896

the beginning if outputs will be more diverse. This 897

suggests that the speedup ratio using sys_p1 might 898

be artificially inflated in some cases. 899

Furthermore, since longer system prompts pro- 900

vide the draft model with more context, we suppose 901

that detailed prompts and increased information 902

could potentially improve the performance of draft 903

model when the system prompt of training and 904

inference is aligned. However, when the system 905

prompts are not consistent, training the model with 906

a more detailed system prompt may lead to greater 907

performance degradation. 908

To obtain a more generalizable draft model, we 909

use sys_p2 in all experiments with Llama3-Instruct 910

8B/70B. We believe a more general and simple 911

system prompt would reflect the draft model’s true 912

capabilities more accurately. 913

6https://github.com/meta-llama/llama-
models/blob/main/models/llama3_3/prompt_format.md
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F Licenses of Artifacts914

We present the licenses of artifacts related to this915

paper in table 7.

models
Llama3 llama3 license
Llama2 llama2 license

Qwen2.5 apache-2.0

datasets

ShareGPT apache-2.0
MT-bench CC-BY-4.0

HumanEval MIT
GSM8K MIT

codes
EAGLE/EAGLE2 apache-2.0

HASS not provided

Table 7: Licenses of artifacts

916

G Use of AI Assistants917

We use Llama3.2-90B to assist with grammar918

checks and text polishing in the writing of this919

paper.920
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