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Abstract

For this last phase, we adapted our model-based
cartesian impedance controller in three ways: An
improved pre-grasping position controller, refined
grasping points and obtaining new hyperparameters
through Bayesian optimization on the real system.
Combined, these three adaptations enabled us to
tackle the significantly more challenging cuboid ob-
ject, which required more delicate manipulation com-
pared to the cube. Videos can be found at:
sites.google.com/view/robotchallenge-modelbased

1 Introduction

In Phases I & II, we proposed a model-based Carte-
sian impedance controller (CIC) [I} 2, [B, @] of the
TriFinger robotic platform [5] for the Real Robot
Challenge (RRC). The motivation for such a struc-
tured approach is balance between inductive biases
and adaptivity. Encoding prior knowledge like the
dynamics model and goal state avoids excessive learn-
ing, while the adaptivity of the impedance structure
should allow for sim-to-real transfer without explicit
consideration. While purely data-driven robot learn-
ing is a noble pursuit, the time and resource limita-
tions of the RRC encourage maximal usage of prior
knowledge.

In Phase I, the controller had several limitations.
For one, each finger was controlled independently.
This severely limited the ability to perform orien-
tation control, which is best achieved by moments
generated by several fingers acting in a coordinated
fashion.

Therefore, in Phase II, we proposed to overcome
these limitations by adding an holistic formulation
that considers all three fingers, a task decomposi-
tion for complex manipulation sequences and added
Bayesian optimization of the hyperparameters.

The Phase IT controller had two key weaknesses:
The IK-based pre-grasp manoeuvre had no timing
guarantees, which was the source of random catas-
trophic failures. The grasp quality was also a source
of fragility, as we were limited to form-closure rather
than force-closure.

While the Phase II additions improved the per-
formance, the existing issues and control strategy
had to be adjusted for the task of manipulating the
fine cuboid, which is smaller and lighter than the
previous cube. The biggest challenge was a sur-
prise, as it actually pertained to the pre-grasp move-
ments. Previously, we controlled the robot solely us-
ing torque commands. However, when approaching
the object, iteratively solving the inverse kinematics
(IK) could result in timing issues that lead to un-
desired movements of the fingers and disturbing the
object. Whereas the heavier cube of Phase II was
robust against these movements, in this phase, these
disturbances significantly displaced the cuboid, such
that it was often difficult to recover. This phenomena
was also absent in the simulation, so it required tun-
ing on the real system. Thus, we switched to position
control for the pre-grasp movements and determined
additional via-points that should stabilize the ma-
noeuvre. Moreover, due to the change in the object,
we had to adapt the grasping points and re-run the
Bayesian optimization (BO) [6] of the hyperparame-
ters on the real system.

Videos illustrating the performance of the pre-
sented approach are provided E

The report is structured as follows: Section 2 re-
caps the controller formulation, Section 3 details the
finger placement and pre-grasp movements, and Sec-
tion 4 describes the use of Bayesian optimization.
Section 5 provides the team’s conclusion.
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2 Cartesian Model-based Impedance
Control

In this section, we summarize the controller and ex-
plain the holistic formulation.
Grasping and Position Control For the desired
cartesian position of the ith fingertip X;, we define
X, to be the error between this tip position and the
cuboid’s centre of mass X, so X; = X, — X;. We
then define an impedance controller for X;, a second
order ODE that can be easily interpreted as a mass
spring damper system with parameters {M, D, K},
MX,;+ DX, + KX, = fi. (1)
For the task of grasping the cuboid, each finger is
controlled independently. Since the cuboid’s centre
of mass is estimated using a vision-based system, the
damping factor was zeroed for fast control. Convert-
ing this cartesian space control law back to joint co-
ordinates results in 71 ; = M(q)J X, where 1 ;
denotes the torques to be applied to finger i, g the
joint configuration and J the Jacobian. The natural
adaptivity of this impedance control law ensures a
stable grasp of the cuboid.

To perform cuboid pose control, we follow the ideas
presented in previous CIC literature [4] and design a
proportional control law that perturbs the cuboid’s
centre based on the goal position X, X, = X, +
Ki(X4 — X.). Replacing X, by X, in the equation
above results in our impedance-based grasping and
position control law. It ensures that the cuboid is
grabbed and held (mostly by choosing the stiffness
K) and moves the cuboid to the desired goal location.
K determines the evolution of the reference position
and allows to control how fast the cuboid moves to
its target.

Force-based, Holistic Components Despite the
functionality of the initial controller, it did not con-
sider the fingers as a whole, and so was limited in
controlling orientation of the cuboid. Contact forces
were also passively applied rather than explicitly con-
sidered. To incorporate these additional considera-
tions, we superimpose four torques. First is the al-
ready introduced position control and gravity com-
pensation, which is added with three contact and ro-

tational terms explained in the following, such that
T = Z?:l Tji-

To also allow directly specifying the force applied
by each finger, we introduce an additional compo-
nent 1 ; = JTFy;, where F ; is the force applied by
finger ¢. We chose F,; to be in the direction of the
surface normal of the face where finger 7 touches the
cuboid (F3,; = Kad;). However, to not counteract
the impedance controller, the resulting force of this
component Fi.s = ZZ F; ; should account to zero.
We ensure this by solving

*Frcs == [J7T7J7T7JiTHT3,17T3,27T3,3]Ta (2)
for 73;. All previous components ensure a stable
grasp closure. This is essential for the following ori-
entation control law. Neglecting the cuboid’s exact
shape, we model the moment that is exerted onto
the cuboid as @ = > r; x Fy; = Y S, Fy,;, where
r; = —X,; /| X;|2 denotes the vector pointing from the
cuboid’s centre towards the finger position, S,, the
respective skew-symmetric matrix, and Fy ; an addi-
tional force that should lead to the desired rotation.
The goal is now to realize a moment proportional to
the current rotation errors, which are provided in the
form of an axis of rotation 74 and its magnitude ¢.
Thus, the control law yields £ = K3¢rg. We achieve
Q by solving

Q - [S’I“lJiTa ST2J7T7 ST‘3J7T] [T4,17T4,2,T4,3]T (3)

for 74;. Associated parameters are tuned using
Bayesian optimization.

3 Finger Placement and Pre-Grasp
Movement

We further combine the previously introduced control
law with a simple finger placement heuristic. Com-
pared to the previous phase, we ended up only us-
ing two fingers to control the cuboid. We place the
fingers such that the two fingers occupy the centres
of the two long faces that are perpendicular to the
ground plane. The assignment is computed based on
the current distance of the fingers to the desired po-
sitions. Initially, we also planned to place the third
finger on one of the small faces to enable fine ori-
entation control, especially once the cuboid is lifted.



However, we failed to come up with a robust imple-
mentation of this strategy in time and found better
results using the two fingers only. The main case of
failure was that the force applied by the third finger
resulted in one of the other fingers losing contact and
therefore dropping the cuboid. We hypothesis that
force-closure, rather than form-closure, is required to
make this delicate three finger grasp work reliably.

As the cartesian impedance controller does not
guarantee the grasping points explicitly, it is essential
to add a pre-grasping manoeuvre. We drive the fin-
gers to locations such that activating the impedance
control law results in the desired contact points.
Therefore, we define a pre-grasping trajectory con-
sisting of three via-points as illustrated in Figure [I]
In the previous phases, we used torque control to
drive the fingers to the desired locations. However,
as this sometimes resulted in violating the timing and
poor control, we changed to position control. After
reaching the third via-point, we switch back to the
torque-based impedance control law which does not
contain any iterative solving of the IK, and reliably
runs at the specified frequency. Replacing the via-
points with a smoother motion plan is a planned fu-
ture improvement. Improving the grasp point heuris-
tic is another open area for improvements. We believe
the kinematics of the system is not flexible enough
that simple finger placement and impedance motion
guarantees grasp maintenance. Therefore, it is likely
that this needs to be incorporated into the grasp
choice and motion.

4 Bayesian Optimization of
Hyperparameters

From the formulation detailed in Section [2]
the CIC mainly depends on six hyperparameters
(K, Ky, K5,K3). The overall control strategy con-
tains more parameters, such as the via-points for ap-
proaching the desired grasp locations or thresholds
that define when to switch to the next ‘primitive’ con-
troller, i.e. when to switch from moving the cuboid in
the ground plane to lifting it. Bayesian optimization
was used to perform sample-efficient black-box opti-
mization, using the BoTorch library [7]. Optimizing
the hyperparameters can also be viewed as correct-
ing for modelling error through parameter tuning. In

Figure 1: Illustration of the three via-points of the
pre-grasp manoeuvre. The first point is chosen such
that it can be reached by any finger without colliding
with the cuboid, while points 2 and 3 should allow a
smooth approaching movement.

the last phase, we found the importance of tuning
the contact-based hyperparameters (impedance stiff-
ness and the force scalar). Having different stiffnesses
for the zy and z direction was found to dramatically
improve performance. For successfully manipulating
the smaller object, optimizing the parameters of the
pre-grasp manoeuvre had a big impact. In particu-
lar, we used BO to tune the location of third via-point
since it heavily influenced the grasp success.

When applying BO on the real system, we only op-
timized the key contact-based and pre-grasp parame-
ters to reduce the dimensionality of the search space.
To counteract the stochasticity of the real platform
and to ensure generalization of the identified param-
eters, we performed several rollouts each iteration.

5 Conclusion and Outlook

For this phase, our time was invested in robustify-
ing the pre-grasp motion, rather than improving the
core manipulation algorithm, due to the change in
object. While improvements were made, we believe
more work needs to be done. In particular, the grasp
robustness needs to be improved. Further, we be-
lieve force-closure, combined with motion planning
that can maintain this grasp, is required.
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