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Abstract

Speculative decoding significantly accelerates lan-
guage model inference by enabling a lightweight
draft model to propose multiple tokens that a
larger target model verifies simultaneously. How-
ever, applying this technique to vision-language
models (VLMs) presents two fundamental chal-
lenges: small language models that could serve
as efficient drafters lack the architectural com-
ponents to process visual inputs, and their to-
ken predictions fail to match those of VLM tar-
get models that consider visual context. We in-
troduce Multimodal Adaptation and Self-Data
Distillation for Speculative Decoding of Vision-
Language Models (MASSV), which transforms
existing small language models into effective mul-
timodal drafters through a two-phase approach.
MASSV first connects the target VLM’s vision
encoder to the draft model via a lightweight train-
able projector, then applies self-distilled visual
instruction tuning using responses generated by
the target VLM to align token predictions. Com-
prehensive experiments across the Qwen2.5-VL
and Gemma3 model families demonstrate that
MASSV increases accepted length by up to 30%
and delivers end-to-end inference speedups of up
to 1.46x compared to conventional text-only draft-
ing baselines on visually-grounded tasks.

1. Introduction
Large language models (LLMs) have transformed artifi-
cial intelligence by delivering breakthrough capabilities in
reasoning (Jaech et al., 2024; DeepSeek-AI et al., 2025),
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code generation (Hui et al., 2024; Li et al., 2023), and nat-
ural language understanding (OpenAI et al., 2023; Gemini
Team et al., 2023; Anthropic et al., 2024; Grattafiori et al.,
2024). However, these achievements come with substan-
tial computational costs, particularly during inference. The
fundamental constraint arises from autoregressive genera-
tion, where each token must be predicted sequentially based
on all previous tokens, creating an inherent bottleneck that
limits parallelization. Speculative decoding (SD) addresses
this bottleneck by leveraging smaller draft models to gen-
erate multiple candidate tokens autoregressively, which are
then verified in parallel by the larger target model (Chen
et al., 2023; Leviathan et al., 2023). This technique reduces
sequential operations while preserving the original output
distribution, effectively amortizing the computational cost
and enabling substantial inference speedups without quality
degradation.

While SD has been well-studied for text-only models, ex-
tending it to vision-language models (VLMs) introduces
unique challenges. VLMs process multimodal inputs by
mapping image features and text tokens into a joint embed-
ding space, enabling sophisticated visual reasoning capabili-
ties (Radford et al., 2021; Liu et al., 2023). This multimodal
conditioning presents two fundamental challenges for SD:
(1) architectural incompatibility, as small language mod-
els lack the components to process visual inputs, and (2)
distribution mismatch, as unimodal draft models cannot ef-
fectively capture the visually-grounded nature of the target
VLM’s outputs. Previous approaches have addressed these
challenges either by excluding image tokens entirely or by
training small multimodal models from scratch (Gagrani
et al., 2024). The former approach fails to leverage visual
information, while the latter requires substantial compu-
tational resources and may still suffer from distribution
misalignment. Lee et al. (2024) explored ensemble-based
methods that combine multiple drafting strategies through
batch inference, achieving robustness across diverse input
scenarios. However, these ensemble approaches do not
fundamentally address the distribution mismatch between
draft and target models, instead relying on averaging pre-
dictions from multiple unaligned drafters. Neither of these
approaches fully exploit the potential of existing model
families or directly optimize for the distribution alignment
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Figure 1. End-to-end wallclock speedups when drafting for Qwen2.5-VL 7B Instruct at temperature T = 0 with speculation length γ = 5.
The baseline uses Qwen2.5-1.5B as a text-only drafter (image tokens removed). MASSV consistently yields the highest speedups across
all categories, achieving up to 1.46× on COCO captioning and 1.28× overall. The gains are most pronounced for visually grounded tasks,
demonstrating the importance of multimodal adaptation and self-distilled visual instruction for accelerating VLM inference.

needed for SD (see Appendix D for extended related work).

We introduce Multimodal Adaptation and Self-Data Distilla-
tion for Speculative Decoding of Vision- Language Models
(MASSV), a principled method for adapting smaller lan-
guage models from the same family as the target VLM to
serve as efficient multimodal draft models. Our approach
consists of two key components. First, we formulate the mul-
timodal drafting problem as mapping from a target VLM’s
vision-language embedding space to a draft LM’s embed-
ding space, constructing a drafter by connecting the tar-
get VLM’s vision encoder and multimodal projector to a
smaller language model from the same family. Second, we
propose a training methodology centered on self-data distil-
lation (Thangarasa et al., 2025; Yang et al., 2024) to align
the draft model’s distribution with the target model’s, specif-
ically optimizing for higher token acceptance rates during
SD. As shown in Figure 1, MASSV achieves significant end-
to-end speedups, particularly on visually grounded tasks,
demonstrating the importance of multimodal adaptation and
self-data distillation for improving acceptance rate of draft
tokens. Our contributions are as follows:

• We propose MASSV, a comprehensive framework that
combines (1) a architectural adaptation connecting tar-
get VLM components with smaller language models
from the same family, and (2) a self-data distillation
technique specifically designed to align multimodal
distributions for improved token acceptance.

• We provide extensive empirical evaluations demonstrat-
ing significant improvements in acceptance rates across
multiple model families, with speedups reaching up to
1.28x overall on multimodal tasks.

2. Preliminaries
We establish the necessary background for our approach.
First, we review SD, an inference acceleration technique that
uses a smaller draft model to propose tokens that are verified
by a larger target model. Second, we describe VLMs, which
combine visual encoders with language models to process

multimodal inputs. Finally, we discuss how SD has been
adapted for VLMs, including the text-only drafting baseline
we compare against.

Speculative decoding is a technique for accelerating
LLM generation without altering the distribution of the
generation output (Leviathan et al., 2023; Chen et al.,
2023). In each iteration of the algorithm, a draft model
Mq generates multiple draft tokens that are verified in par-
allel by the target model Mp. The algorithm continues
iterating until an end-of-sequence (EOS) token is gener-
ated or the max sequence length is reached. Formally, let
X1:t = X1, X2, ..., Xt be the input sequence for the current
iteration. Mq first autoregressively samples γ draft tokens
Xt+1:t+γ , where token Xt+i is sampled with probability
q(Xt+i|X1:t+i−1). Next, Mp computes the probabilities
p(Xt+i|X1:t+i−1) for i = 1, 2, ..., γ + 1 in parallel with
one forward call. These probabilities are used to evaluate
the draft tokens sequentially, with the probability of ac-
cepting token Xt+i being min

(
1, p(Xt+i|X1:t+i−1)

q(Xt+i|X1:t+i−1)

)
. If the

token is accepted, it is added to the generation output and
the next token is evaluated. Otherwise, if the token is re-
jected, a new token is sampled from the residual distribution
norm(max(p(·|X1:t+i−1)−q(·|X1:t+i−1), 0)) and the iter-
ation ends. Sampling from the residual distribution ensures
the output distribution of the speculative decoding algorithm
is the same as the target’s output distribution. In the degener-
ate case where sampling is disabled (temperature = 0), the al-
gorithm simplifies to greedy decoding. The draft model gen-
erates tokens by selectingXt+i = argmaxx q(x|X1:t+i−1).
During verification, token Xt+i is accepted if and only if
Xt+i = argmaxx p(x|X1:t+i−1). If rejected, the token is
set to argmaxx p(x|X1:t+i−1).

Vision-language models (VLMs) process multimodal in-
puts, consisting of visual and text tokens, by mapping the to-
kens into a joint embedding space. A VLM consists of three
components: a vision encoder ϕI , multimodal projector gθ,
and a language model Mp. Given an input consisting of to-
kens X1:t and visual information I , a VLM first extracts m
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Figure 2. Detailed architecture of MASSV illustrating: (1) the two-phase training methodology consisting of multimodal projector
pretraining followed by self-distilled visual instruction tuning, and (2) the deployment configuration for draft token generation during
speculative decoding inference. Components marked with the snowflake remain frozen during training to preserve their parameters, while
components with the flame are trainable. This architecture enables efficient knowledge transfer from the target vision-language model to
the smaller draft model while maintaining alignment in their token distributions.

features H1:m = ϕI(I) from the image using the vision en-
coder. These image features are then projected into the joint
embeddings space Vi = gθ(Hi) for i ∈ {1, ...,m}. Finally,
the VLM samples the next tokenXt+1 from p(·|X1:t, V1:m),
where p(·|·) denotes the conditional probability distribution
of Mp. Note that directly using SD to accelerate a VLM
on multimodal inputs requires the drafter to also be a VLM.
However, Gagrani et al. (2024) show that a small language
model (SLM) can be used as an effective drafter by condi-
tioning it only on the text tokens in the input. Concretely,
given an SLM drafter Mq, the draft token Xt+i is sampled
from q(·|X1:t+i−1) for i = 1, ..., γ. We refer to this as text-
only drafting and use it as the baseline in our experiments.

3. Methodology
We introduce a method to adapt an SLM into an effective
draft model for LLaVA-style vision-language models, which
employ a modular architecture of separate vision encoder
and language model components connected via a projection
layer that maps image features into the language model’s
embedding space. Our approach integrates the target VLM’s
frozen vision encoder into the SLM through a randomly
initialized MLP-based projector, preserving architectural
compatibility while enabling visual processing. We then
align the adapted model with the target VLM through a two-
phase training protocol: (1) the projector is pretrained on
paired image-text data to establish robust visual grounding;
and (2) the model undergoes self-distilled visual instruction
tuning to optimize token-level distribution alignment. The
overall architecture is illustrated in Figure 2.

Architectural Adaptation. Let MVLM
p = (ϕpI , g

p
θ ,Mp)

denote the target VLM, where ϕpI is the vision encoder, gpθ
is the multimodal projector, and Mp is the language model.
Let Mq be an SLM from the same model family as Mp.
While our method can be applied to any small language
model, this work specifically focuses on text-only SLMs
from the same model family as the larger VLM. This choice
ensures that the draft model’s tokenizer and vocabulary are
compatible with those of the target during SD. Although
recent work has demonstrated approaches to handle hetero-
geneous vocabularies (Timor et al., 2025), these techniques
trade latency for vocabulary compatibility. Furthermore,
existing methods have not demonstrated their effectiveness
in handling multiple modalities, as required for VLMs. Due
to these limitations and considerations beyond the scope of
this work, we leave exploring vocabulary heterogeneity in
multimodal SD for future research.

We construct the VLM drafter MVLM
q as follows, MVLM

q =
(ϕpI , g

q
ψ,Mq), where ϕpI is the shared vision encoder from

the target VLM, gqψ is a randomly initialized multimodal
projector, and Mq is the draft SLM. The projector gqψ has
the same architecture as gpθ , but its output dimension dqout is
set to match the embedding dimension of Mq , gqψ : Rdvis →
Rd

q
emb where dvis is the vision encoder’s output dimension

and dqemb is the embedding dimension of Mq . We choose to
share the vision encoder between the target and the drafter,
since this ensures that the drafter and target process the
same visual features H1:m = ϕpI(I) for a given image input
I . This architectural choice also reduces compute cost by
avoiding redundant vision encoding operations.
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Multimodal Projector Pretraining. Following Liu et al.
(2024b), we first pretrain the multimodal projector gqψ by
training the VLM drafter with the vision encoder and SLM
backbone frozen. Given a pretraining dataset Dpre =
{(Ij , Cj)}Nj=1 of image-caption pairs, we optimize,

Lpre(ψ) = −
N∑
j=1

|Cj |∑
i=1

log qψ(c
i
j |c1:i−1

j , Vj), (1)

where Vj = gqψ(ϕ
p
I(Ij)) are the projected visual features, cij

is the i-th token of caption Cj , and qψ denotes the distribu-
tion of the draft VLM with projector parameters ψ. Only
ψ is updated during this phase while ϕpI and Mq remain
frozen.

Self-Distilled Visual Instruction Tuning (SDViT). In this
phase, we introduce SDViT, an approach that employs SDD
to align the drafter’s distribution with the target’s multi-
modal distribution. Let D = {(Ii, Xi, yi)}ni=1 be a visual
instruction dataset, where Ii is the image input, Xi is the
text instruction, and yi is the reference response. The orig-
inal SDD formulation by Thangarasa et al. (2025); Yang
et al. (2024) generates target outputs using task-specific con-
texts and templates. In contrast, for SD, our objective is to
align the drafter’s token-level predictions with the target’s.
Therefore, we directly use the target VLM to generate re-
sponses, y′i = sampletop-p(p(·|Ii, Xi)), where p denotes
the target VLM’s distribution conditioned on both image Ii
and text instruction Xi. This creates a self-distilled dataset
D′ = {(Ii, Xi, y

′
i)}ni=1. We then fine-tune the drafter with

its vision encoder frozen to minimize,

LSDViT(θ) = −
n∑
i=1

|y′i|∑
k=1

log qθ(y
′k
i |y′1:k−1

i , Xi, Vi), (2)

where Vi = gqψ(ϕ
p
I(Ii)) are the projected visual features,

y′ki is the k-th token of the target’s response, and qθ de-
notes the drafter’s distribution with parameters θ = {ψ, θq}
(projector and SLM parameters). In contrast to generic
visual instruction tuning with fixed dataset labels, our self-
distillation strategy trains the drafter on the target’s actual
outputs, directly optimizing for the acceptance mechanism
in SD. SDViT addresses this through diverse sampling,
where the target VLM generates responses across differ-
ent temperature values with top-p sampling, creating a var-
ied dataset that better represents the full response distribu-
tion. Specifically, draft tokens are accepted with probability
min

(
1, p(Xt|X1:t,I)

q(Xt|X1:t,I)

)
. By training on the target’s outputs

rather than generic labels, we maximize the overlap between
the drafter’s distribution q and the target’s distribution p,
leading to higher token acceptance rates during inference.
Our results in Section 4.2 show that this alignment translates
to improved token acceptance rates during SD.

4. Empirical Results
4.1. Experimental Setup
Draft and Target Models. Our evaluation leverages two
distinct model families: the Qwen2.5-VL Instruct (Bai et al.,
2025) and instruction-tuned Gemma3 (Gemma Team et al.,
2025). Specifically, for Qwen2.5-VL, we set the 7B model
as our primary target, applying MASSV to Qwen2.5-1.5B
Instruct. Similarly, for Gemma3, we target the 12B IT vari-
ant and adapt Gemma3-1B IT using MASSV. We selected
these specific SLMs because they are from the same model
families as the larger target models and were readily avail-
able as checkpoints on HuggingFace. We utilize text-only
drafting with the off-the-shelf SLM as our baseline (1.00x).

Drafter Training for Multimodal Adaptation. The draft
model training process consists of two distinct phases and
requires only moderate compute infrastructure, achievable
with standard research hardware (e.g., four-GPU server with
current-generation accelerators). Initially, we pretrain each
drafter for one epoch on the LLaVA-Pretrain-LCS-558K
dataset, using a global batch size of 256 and a learning
rate of 1 x 10-4. Subsequently, we fine-tune the models on
data distilled from the LLaVA-mix-665K dataset for another
epoch with a batch size of 128 and learning rate 2 x 10-5.
See Appendix A for more details.

Evaluation Tasks. We conduct evaluations using four multi-
modal benchmarks: LLaVA Instruct 150k (Liu et al., 2023),
LLaVA-Bench (In-the-Wild), GQA (Hudson & Manning,
2019), and image captioning prompts from COCO Test
2017 (Lin et al., 2015). Performance is measured by mean
accepted length (τ ), which quantifies the average number
of tokens accepted per forward pass of the target model,
directly correlating to speedup independent of hardware.
Extended details and evaluation prompts for GQA reasoning
and COCO Captioning tasks are provided in Appendix B.

Inference Settings. During inference, all drafters run on a
single H100 GPU, with speculation length set to γ = 5. We
evaluate performance at sampling temperatures T ∈ {0, 1}.

4.2. Results

Our results demonstrate MASSV’s significant improve-
ments over the text-only baseline across all evaluated set-
tings (see Table 1). At temperature T = 0, MASSV
achieves a noticeable increase in mean accepted length
(MAL), most notably improving by 30.1% (from 2.46 to
3.20) for the Qwen2.5-VL 7B Instruct model. Similarly,
at T = 1, MASSV attains a MAL improvement of 23.3%
(from 2.58 to 3.18). These improvements are consistent
across different downstream tasks, with the largest relative
gains observed in visually intensive tasks such as COCO
captioning. For instance, MASSV increases MAL by 47.5%
(2.21 to 3.26) on COCO captioning tasks at T = 0, high-
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Table 1. Mean accepted lengths (τ ) and speedups across model families, tasks, and temperatures (T ∈ {0, 1}) with speculation length
γ = 5. Values show tokens accepted per target VLM forward pass, with speedup ratios in parentheses (normalized to baseline). MASSV
consistently outperforms the text-only baseline (Gagrani et al., 2024), achieving substantial gains on visually-grounded tasks like COCO
captioning (+47.5% at T = 0: 2.21 → 3.26) and improving overall acceptance (+30.1% for Qwen2.5-VL 7B: 2.46 → 3.20). MASSV
delivers practical efficiency with 1.28× end-to-end speedup for Qwen2.5-VL 7B at T = 0.

TARGET MODEL METHOD LLAVA 150K LLAVA-BENCH GQA COCO OVERALL

TEMPERATURE = 0

QWEN2.5-VL 7B
INSTRUCT

BASELINE 2.37 (1.00X) 2.61 (1.00X) 2.59 (1.00X) 2.21 (1.00X) 2.46 (1.00X)
MASSV 3.21 (1.24X) 3.12 (1.16X) 3.28 (1.26X) 3.26 (1.46X) 3.20↑0.74 (1.28X)

QWEN2.5-VL 32B
INSTRUCT

BASELINE 2.46 (1.00X) 2.70 (1.00X) 2.79 (1.00X) 2.48 (1.00X) 2.61 (1.00X)
MASSV 3.12 (1.26X) 2.90 (1.07X) 3.19 (1.13X) 3.09 (1.23X) 3.04↑0.43 (1.17X)

GEMMA3-12B IT BASELINE 2.71 (1.00X) 2.72 (1.00X) 2.75 (1.00X) 2.84 (1.00X) 2.76 (1.00X)
MASSV 3.30 (1.19X) 3.00 (1.11X) 3.07 (1.18X) 3.41 (1.24X) 3.19↑0.43 (1.18X)

GEMMA3-27B IT BASELINE 2.49 (1.00X) 2.70 (1.00X) 2.61 (1.00X) 2.73 (1.00X) 2.65 (1.00X)
MASSV 3.00 (1.20X) 2.84 (1.05X) 2.86 (1.09X) 3.24 (1.20X) 2.99↑0.34 (1.14X)

TEMPERATURE = 1

QWEN2.5-VL 7B
INSTRUCT

BASELINE 2.47 (1.00X) 2.75 (1.00X) 2.63 (1.00X) 2.41 (1.00X) 2.58 (1.00X)
MASSV 3.35 (1.26X) 2.98 (1.09X) 3.19 (1.19X) 3.31 (1.35X) 3.18↑0.60 (1.22X)

QWEN2.5-VL 32B
INSTRUCT

BASELINE 2.48 (1.00X) 2.69 (1.00X) 2.75 (1.00X) 2.56 (1.00X) 2.63 (1.00X)
MASSV 3.01 (1.25X) 2.87 (1.09X) 3.00 (1.09X) 3.04 (1.19X) 2.97↑0.34 (1.15X)

GEMMA3-12B IT BASELINE 2.67 (1.00X) 2.79 (1.00X) 2.78 (1.00X) 2.94 (1.00X) 2.82 (1.00X)
MASSV 3.08 (1.13X) 2.82 (1.05X) 3.01 (1.10X) 3.37 (1.16X) 3.06↑0.24 (1.11X)

GEMMA3-27B IT BASELINE 2.57 (1.00X) 2.67 (1.00X) 2.63 (1.00X) 2.73 (1.00X) 2.67 (1.00X)
MASSV 2.81 (1.09X) 2.62 (1.02X) 2.82 (1.07X) 3.13 (1.15X) 2.84↑0.17 (1.08X)

lighting the importance of multimodal drafting for visually-
grounded generations. Moreover, MASSV consistently out-
performs the baseline on the Gemma3 family despite their
significant architectural differences (e.g., dynamic visual
token count in Qwen2.5-VL versus interleaved sliding win-
dow attention in Gemma3). Specifically, MASSV improves
MAL by 15.6% (2.76 to 3.19) on Gemma3-12B IT at T = 0,
demonstrating its effectiveness across diverse VLMs.

Generalization to Larger Model Variants. We also eval-
uated MASSV on larger variants within each model family,
specifically Qwen2.5-VL 32B and Gemma3-27B. Although
we did not directly apply SDViT to these larger targets, we
hypothesized that MASSV, when applied to smaller dis-
tilled versions (7B and 12B), could still benefit their larger
counterparts due to their shared architecture and distillation
lineage. Our empirical results demonstrate that MASSV
provides meaningful gains even when scaling up within the
same model family. This finding is particularly impactful
as it allows substantial computational and time savings by
enabling MASSV adaptation on smaller, more efficient tar-
gets, which can subsequently generalize to larger models.
See Appendix C for ablations on the effect of SDViT and
text-only versus multimodal drafting.

End-to-end Inference Speedups. The mean accepted
length improvements translate directly to substantial wall-
clock speedups during inference. MASSV achieves an over-

all end-to-end speedup of 1.28× for Qwen2.5-VL 7B In-
struct at temperature T = 0, with even higher speedups on
specific tasks such as COCO captioning (1.46×). These
speedups remain consistent across model families, with
Gemma3-12B IT achieving 1.18× acceleration. Notably,
MASSV demonstrates effective scalability to larger models,
achieving 1.17× speedup for Qwen2.5-VL 32B and 1.14×
for Gemma3-27B, despite not requiring direct alignment
on these larger targets. These results show that MASSV’s
improved token acceptance rates translate to meaningful
practical efficiency gains across diverse model architectures.

5. Conclusion
In this paper, we present MASSV, a method to trans-
form smaller language-only models into highly efficient
speculative drafters for VLMs. MASSV addresses chal-
lenges like architectural incompatibility and distribution
mismatch by grafting the frozen vision encoder of the tar-
get VLM onto the draft model via a trainable projector
and aligning the drafter’s token distribution through fine-
tuning on self-generated vision-language data. Across both
Qwen2.5-VL and Gemma3 model families, MASSV in-
creases mean accepted length by 16-30% with end-to-end
inference speedups of up to 1.46x. Ablation studies show
that self-data distillation is critical for distribution align-
ment, and full multimodal drafting consistently outperforms
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text-only approaches. Given its generalizability and demon-
strated performance gains, MASSV presents a readily de-
ployable solution for significantly accelerating VLM infer-
ence across diverse architectures and tasks.
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A. Additional Experimental Details
The training curves presented in Figure 3 of illustrate the convergence patterns for both phases of the MASSV methodology
described in Section 3. In Phase 1 (Multimodal Alignment), the multimodal projector pretraining loss exhibits rapid
convergence within the first 500 steps, starting from approximately 8.0 and stabilizing around 2.5 by step 2000. This
demonstrates effective knowledge transfer from the target VLM’s vision encoder to the draft model via the trainable projector.
Phase 2 (Self-Distilled Visual Instruction Tuning) shows a more gradual optimization process with the loss starting at
approximately 2.6 and stabilizing around 1.1 with minor fluctuations across 5000 training steps. These training dynamics
align with our experimental setup where each drafter was first pretrained for one epoch on the LLaVA-Pretrain-LCS-558K
dataset (batch size 256, learning rate 10−3), followed by fine-tuning on data distilled from LLaVA-mix-665K (batch size 128,
learning rate 2× 10−5) using the target VLM. The convergence patterns show successful training of both the multimodal
projector and subsequent distribution alignment through self-distilled visual instruction tuning.
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Figure 3. Training loss curves obtained during the two-phase MASSV training process when adapting Qwen2.5-1.5B Instruct into a VLM
drafter for Qwen2.5-VL 7B Instruct. (a) shows the cross-entropy loss during multimodal projector pretraining, which rapidly decreases
from ∼8.0 to ∼2.5 within 2000 steps, indicating efficient adaptation of the trainable projector. (b) displays the loss trajectory during
fine-tuning with self-generated target VLM responses, with stable convergence around 1.1 across 5000 training steps, demonstrating
successful token distribution alignment between the draft and target models.

B. Training and Evaluation Details
Training Datasets. In the first phase, when pretraining the multimodal projector for each drafter we use the LLaVA-
Pretrain-LCS-558K 1 dataset. In the second phase, we fine-tune the models on data distilled from the LLaVA-mix-665K 2

dataset using the target model via self-distilled visual instruction tuning (SDViT).

Evaluation Prompt Templates. The following prompt templates were used during the evaluations described in Section 4.1.
The GQA prompt explicitly requests reasoning explanations alongside answers, evaluating the model’s visual reasoning
capabilities. The COCO Captioning prompt elicits detailed image descriptions without stylistic constraints. These
standardized prompts ensure consistent evaluation across all model variants (baseline, MASSV without SDViT, and full
MASSV), enabling fair comparison of mean accepted length and end-to-end speedup metrics. By maintaining these
consistent prompt templates, we facilitate meaningful performance comparison not only within our experimental framework
but also with previously published results in multimodal speculative decoding research.

1https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain
2https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava v1 5 mix665k.json
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Table 2. Ablation results on the effect of SDViT on drafting performance. Qwen2.5-1.5B Instruct and Gemma3-1B IT are the base SLMs
used to create drafters for Qwen2.5-VL 7B Instruct and Gemma3-12B IT, respectively. The reported mean accepted lengths (τ ) are
measured on the overall multimodal speculative decoding benchmark dataset at temperature = 0.

TARGET METHOD τ SPEEDUP

BASELINE 2.46 1.00X
QWEN2.5-VL 7B
INSTRUCT

MASSVW/O SDVIT 2.56 1.04X

MASSV 3.20 1.28X

BASELINE 2.74 1.00X
GEMMA3-12B IT MASSVW/O SDVIT 2.33 0.87X

MASSV 3.14 1.18X

Prompt for GQA Evaluation
For the following question, provide a detailed explanation of your reasoning process. Please analyze the visual
elements systematically and articulate each step of your thought process leading to the final answer. {{Question}}

Prompt for COCO Captioning Evaluation
Examine the provided image carefully and generate a comprehensive description. Please include relevant details
about objects, their spatial relationships, activities, attributes, and any other notable visual elements.

C. Ablation Studies
We investigate the critical components of our approach through two ablation studies. First, we evaluate the impact of
self-distilled visual instruction tuning on distribution alignment. Second, we examine whether multimodal capability
provides meaningful benefits over text-only drafting.

C.1. Effect of Self-Distilled Visual Instruction Tuning

We assess the role of self-distilled distillation in our method by comparing drafters trained with SDViT versus standard
fine-tuning on a vanilla dataset. Specifically, we adapt Qwen2.5-1.5B Instruct and Gemma3-1B IT into drafters for Qwen2.5-
VL 7B Instruct and Gemma3-12B IT, respectively. Figure ?? demonstrates the efficacy of MASSV with SDViT (green
bar) for Qwen2.5-VL 7B Instruct across diverse multimodal benchmarks. MASSV exhibits substantial performance gains,
most prominently in COCO Captioning where the mean accepted length increases from 2.21 to 3.26 tokens (+47.5%).
Table 2 summarizes our comprehensive ablation study on SDViT across both target models: Qwen2.5-VL 7B Instruct and
Gemma3-12B IT. The quantitative evaluation results clearly demonstrate the critical importance of self-distilled visual
instruction tuning for effective multimodal SD. For the Gemma3 architecture, without SDViT (denoted as MASSVw/o SDViT),
the Gemma3-1B IT draft model exhibits a significant performance regression, with mean accepted length deteriorating to
2.33 compared to the baseline’s 2.74 (a 13% decrease in acceptance rate). This indicates that naive architectural adaptation
without distribution alignment can be notably detrimental to performance. In contrast, when enhanced with SDViT, the
model achieves a mean accepted length of 3.14, representing a substantial 14.6% improvement over the baseline and a 1.18x
speedup. These results highlight the critical role of distribution alignment in multimodal SD.

Distribution Analysis. To understand the mechanism behind these improvements, we analyze the distribution alignment
between drafters and targets. For each multimodal input, we compute the Total Variation Distance (TVD) between the
drafter’s and target’s output token distributions. The TVD measures the maximum difference between two probability
distributions,

TVD(P,Q) =
1

2

∑
x∈X

|P (x)−Q(x)|, (3)

where P and Q are the target and drafter token distributions, respectively, and X is the vocabulary. TVD is particularly
relevant in the context of SD, as it bounds the expected probability that tokens proposed by the draft model will be rejected
by the target model. By minimizing TVD through our SDViT approach, we directly optimize for higher token acceptance
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Figure 4. Histogram of total variation distances (TVD), comparing the Qwen2.5-1.5B drafters trained with (purple) and without (orange)
self-distilled visional instruction (SDViT) against the Qwen2.5-VL 7B target model on our multimodal SD benchmark. MASSV yields a
highly skewed distribution concentrated at low TVD values, indicating tighter alignment with the target’s token distribution. In contrast,
MASSVw/o SDViT produces a broader, heavier-tailed distribution, reflecting reduced alignment. The left-skewed shape of the MASSV
distribution quantitatively suggests that SDViT narrows the distributional gap between draft and target.

Table 3. Ablation results on the performance of text-only drafting. The VLM drafter’s language model backbone serves as a text-only
drafter by discarding all visual tokens. Mean accepted lengths (τ ) are measured on the overall benchmark dataset at temperature = 0.

TARGET MODEL METHOD τ

QWEN2.5-VL 7B
INSTRUCT

TEXT-ONLY 2.84
MULTIMODAL 3.20

GEMMA3-12B IT TEXT-ONLY 2.99
MULTIMODAL 3.19

rates, which explains the improved mean accepted length observed in our experiments. For discrete distributions like
token probabilities, TVD ranges from 0 (identical distributions) to 1 (completely disjoint distributions). Figure 4 shows
the resulting distribution. The drafter trained with SDViT produces significantly more tokens with output distributions
closely matching the target. This demonstrates that SDViT enables the drafter to more faithfully reproduce the target model’s
token-level behavior. These results indicate that: (1) self-data distillation substantially improves distribution alignment
between drafter and target, and (2) distribution alignment contributes more to drafting performance than raw multimodal
capability.

C.2. Text-Only vs Multimodal Drafting

Given that distribution alignment appears more important than multimodal capability, we investigate whether multimodal
processing provides any benefit over text-only drafting. This question is particularly relevant since text-only drafting could
offer computational advantages by avoiding visual encoding operations during the draft phase.

We evaluate our VLM drafters in text-only mode by discarding visual tokens from the input, thereby using only the
language model backbone of our adapted drafter. This approach mirrors the baseline strategy used in prior work (Gagrani
et al., 2024), where standard SLMs trained from scratch serve as drafters for VLM targets without processing any visual
information. Table 3 shows that multimodal drafting consistently outperforms text-only drafting across both model families.
The improvements are substantial: 12.7% higher mean accepted length for Qwen2.5-VL (3.20 vs. 2.84) and 6.7% higher
for Gemma3 (3.19 vs. 2.99). These gains demonstrate that while distribution alignment is the primary factor in drafting
performance, incorporating visual information provides additional benefits for predicting the target VLM’s outputs.

The advantage of multimodal drafting likely stems from its ability to condition token predictions on the actual visual content,
particularly for visually-grounded tokens such as object names, spatial relationships, and visual attributes. While text-only
drafting must rely solely on linguistic patterns and context, multimodal drafting can leverage direct visual evidence to better
predict the target VLM’s outputs.

Based on these observations, we focus exclusively on multimodal drafting in our main experiments (Section 4). This choice
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ensures we capture the full benefits of visual information while maintaining strong distribution alignment through SDViT.
As we demonstrate across multiple model families and tasks, this combination of multimodal capability and distribution
alignment yields consistent improvements in SD performance.

D. Related Work
Speculative decoding has emerged as a promising technique for accelerating LLM inference without compromising output
quality. This approach leverages smaller, faster draft models to autoregressively generate multiple candidate tokens, which
are then verified in parallel by the larger target model in a single forward pass (Leviathan et al., 2023; Chen et al., 2023).
The theoretical foundations of this technique were established by identifying conditions under which speculative proposals
can preserve the original model’s output distribution (Leviathan et al., 2023). Recent advancements include tree-structured
variants (Li et al., 2024b;a; Wang et al., 2025; Chen et al., 2024), self-drafting (Elhoushi et al., 2024; Zhang et al., 2024; Liu
et al., 2024a; Xia et al., 2025), N-gram-based (Stewart et al., 2024; Ou et al., 2024) and retrieval-based (He et al., 2024;
Yang et al., 2023) that further enhance inference efficiency. However, these approaches have primarily focused on text-only
models, where the draft and target operate within the same modality space.

Multimodal Speculative Decoding. Extending speculative decoding to vision-language models introduces fundamental
challenges absent in unimodal settings. Gagrani et al. (2024) conducted initial explorations in this domain by evaluating
several draft model variants with the LLaVA-7B architecture (Liu et al., 2024b). Their analysis across image question-
answering, captioning, and reasoning tasks revealed modest token acceptance rates, with the multimodal variant achieving
only marginal improvements over text-only counterparts. Detailed traces demonstrated that while drafters successfully
predicted function words and repeated tokens, they struggled with visually-grounded content, highlighting two fundamental
challenges: (1) architectural misalignment between drafters and vision-language targets, and (2) distributional divergence
between text-only priors and visually-informed outputs. Lee et al. (2024) introduced a batch-based approach that combines
predictions from multiple drafting methods to increase the likelihood of token acceptance. While their ensemble technique
improves empirical performance without parameter overhead, it operates primarily as a post-hoc aggregation mechanism
rather than addressing the underlying distributional divergence between individual drafters and the target model. Our
MASSV framework directly addresses these limitations through principled vision-language alignment techniques.

Draft Model Alignment. Self-distillation uses a model’s own outputs as training targets, extending traditional knowledge
distillation approaches. While Yang et al. (2024) showed self-distillation can bridge distribution gaps during language
model fine-tuning and Thangarasa et al. (2025) demonstrated its effectiveness in mitigating catastrophic forgetting in pruned
models, we extend these insights to multimodal drafting. In particular, SD2 (Lasby et al., 2025) apply self-data distillation
to fine-grained sparse draft models, aligning them closely with their original dense counterparts and yielding substantially
higher mean accepted lengths than undistilled sparse drafters. Unlike previous work, we explicitly formulate self-distillation
as an optimization for token acceptance probability in the speculative decoding framework. By training our draft model on
responses generated by the target VLM itself rather than fixed dataset labels, we align the draft model’s distribution with
that of the target model. This approach creates a direct optimization path that maximizes the likelihood of draft tokens being
accepted during inference.
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