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ABSTRACT

Sparsely-activated Mixture-of-Experts (SMoE) models offer efficient pre-training and
low latency but their large parameter counts create significant memory overhead, mo-
tivating research into expert compression. Contrary to recent findings favouring expert
merging on discriminative benchmarks, we find that expert pruning is a superior strategy
for generative tasks. We demonstrate that existing merging techniques introduce an
irreducible error due to the loss of fine-grained routing control over experts. Leveraging
this insight, we propose Router-weighted Expert Activation Pruning (REAP), a novel
pruning criterion that considers both router gate-values and expert activation norms
to minimize the reconstruction error bound. Across a diverse set of SMoE models
ranging from 20B to 1T parameters, REAP consistently outperforms merging and
other pruning methods on generative benchmarks, especially at 50% compression.
Notably, our method achieves near-lossless compression on code generation tasks with
Qwen3-Coder-480B and Kimi-K2, even after pruning 50% of experts.

1 INTRODUCTION

Interest in the Sparsely-activated Mixture-of-Experts (SMoE) architecture for Large Language Models
(LLMs) surged following the release of DeepSeek-V3 (DeepSeek-Al et al., 2024) and other high-quality
open-weight SMoE LLMs (Jiang et al., 2024; Meta Al Team, 2025; Yang et al., 2025a; Zeng et al., 2025;
Baidu, 2025; Kimi Team et al., 2025). Compared to dense models, SMoEs offer lower latency and more
efficient pre-training (Fedus et al., 2022). However, SMoEs require more parameters than dense models to
achieve similar accuracy, resulting in significant memory overhead. Further, expert usage imbalance during
inference causes poor accelerator utilization, leading to increased latency or compromises such as dropped
tokens (Balmau et al., 2025). Expert usage imbalance also represents an opportunity, motivating prior work
which investigates whether experts can be compressed without negatively impairing accuracy (Li et al., 2023;
Lu et al., 2024). By eliminating or compressing redundant experts, memory overhead is reduced. A more
uniform distribution of expert usage would also improve hardware utilization. Expert compression is particu-
larly valuable for use cases which feature small batch sizes such as local deployments and academic research.

Initial expert compression efforts focused on expert pruning, the removal of experts in their entirety.
However, expert pruning is a strong intervention on the model’s weights. Techniques such as quantization,
low-rank compression, and expert merging also offer memory savings but maintain a lossy representation of
the less important experts. Crucially, expert merging has recently been demonstrated to outperform expert
pruning when evaluated with perplexity and on Multiple Choice (MC) question answering benchmarks (Li
et al., 2023; Liu et al., 2024b). However, an evaluation comparing these methods on generative benchmarks
has yet to be conducted. In this work, we demonstrate that — when paired with a suitable saliency criterion
— expert pruning outperforms expert merging, particularly on generative benchmark tasks such as code
generation, creative writing, and mathematical reasoning. Specifically, our main contributions are as follows:

* We demonstrate that existing expert merging techniques introduce irreducible error due to the loss of
the router’s independent, input-dependent modulation of the expert outputs. In high-granularity SMoEs,
the loss of fine-grained routing control results in functional subspace collapse;

» Empirically, we find that expert merging distorts the functional manifold topology due to the introduction
of novel functionality. Conversely, as a coordinate subspace operation, pruning preserves the topology;

* We introduce Router-weighted Expert Activation Pruning (REAP), a novel expert pruning saliency
criterion. By considering both router gate-values and expert activation norms, REAP explicitly minimizes
reconstruction error bound derived in our analysis, targeting experts to prune which contribute minimally
to the layer output;
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* Across diverse SMoE architectures ranging from 20B to 1T parameters and a suite of generative
evaluations, we demonstrate the significant and consistent advantage of REAP over existing expert
pruning and merging approaches, particularly at 50% compression. Notably, our method achieves
near-lossless compression (A,.. < 2%) on code generation tasks after pruning 50% of experts from
Qwen3-Coder-480B and Kimi-K2;

* Our anonymized code is available to facilitate peer-review and we will open source the code and select
compressed model checkpoints upon acceptance to facilitate further research on compressed SMoEs
and their applications.

2 RELATED WORK

Sparsely activated SMoE architecture. A Mixture-of-Experts (MoE) layer is comprised of multiple,
specialized feed-forward subnetworks known as experts and a router which produces gate-values (i.e.,
gates) to dynamically modulate the output of the experts based on the input. The architecture was revived in
the deep learning era by the introduction of the SMoE by Shazeer et al. (2017). SMoE:s layers only select a
subset of experts to use for each input, enabling massive scaling of model parameters without a commensu-
rate increase in computational cost (Lepikhin et al., 2021; Fedus et al., 2022). In transformer-based LLMs,
SMOoE layers are integrated by replacing the traditional feed-forward layers. Further innovations such as
auxiliary-loss-free load balancing (DeepSeek-Al et al., 2024), shared experts, and fine-grained experts (Dai
et al., 2024) have propelled SMoE architectures to become the de facto standard for LLMs in recent months.

Expert pruning. Although SMOoE layers effectively decouple total model parameters from inference
costs, the memory overhead of storing large SMoEs restricts their deployment in resource-constrained
environments, motivating research in expert pruning to reduce total number of parameters. Early efforts
demonstrated that progressively pruning experts based on router weights during fine-tuning until a single
expert remained could preserve model quality in task-specific settings (Chen et al., 2022). Koishekenov
et al. (2023) found expert pruning to be effective without further fine-tuning despite aggressively pruning
up to 80% of experts. Muzio et al. (2024) found that global pruning using gate-values as a saliency
criterion was more effective than uniform, layer-wise frequency-based pruning. Other sophisticated pruning
criteria have been proposed: Lu et al. (2024) introduced an exhaustive search strategy which prunes
experts that minimize the reconstruction loss between the original and pruned layer outputs; Liu et al.
(2024a) used a gradient-free evolutionary algorithm to prune experts. Both of these works demonstrated
significant improvements over naive frequency-based pruning. A comprehensive evaluation of 16 diverse
pruning criteria was conducted by Jaiswal et al. (2025). Expert Activation Norm (EAN) was empirically
found to be the highest performing criterion and the benefits of iterative pruning were presented.

Expert merging. While the above-noted works prove that expert compression is feasible via pruning,
an alternative compression technique is to merge experts. Generally, merging requires both a clustering
algorithm and a merging technique. Li et al. (2023) introduced Merge Sparse Mixture of Experts
(M-SMoE) which first initializes expert cluster centres by identifying the dominant experts with the highest
usage frequency globally across all layers. The remaining non-dominant experts are clustered based on
the cosine similarity of router logits. Finally, expert weights are aligned via permutation with the weight
matching algorithm (Ainsworth et al., 2023) and merged using frequency-weighted parameter averaging.
Li et al. (2023) found that their technique outperformed Chen et al.’s (2022) pruning method on MC
benchmarks. Chen et al. (2025) proposed Hierarchical Clustering for Sparsely activated Mixture of Experts
(HC-SMoE). HC-SMOE clusters experts based on the euclidean similarity of their representative vectors —
the average activation of each expert measured on every token in a calibration dataset — using hierarchical
agglomerative clustering. Similar to M-SMoE, HC-SMoE uses frequency-weighted parameter averaging
to merge clusters into a single merged expert. Without any fine-tuning, Chen et al. (2025) found that their
technique outperformed expert pruning based on router logits (He et al., 2025a), frequency, and Lu et al.’s
(2024) method when benchmarked on a suite of MC question answering tasks.

Other compression techniques. In addition to pruning and merging, experts may be compressed through
quantization (Huang et al., 2025; Li et al., 2025; Duanmu et al., 2025), low-rank decomposition (Yang
et al., 2024a; Gu et al., 2025; He et al., 2025b), weight sparsity (He et al., 2025a), or a combination of
any of the above techniques (Liu et al., 2025). These other approaches are orthogonal to expert pruning
and merging; however, note that expert merging necessitates re-quantization for block quantization formats
that share common scaling coefficients across a group of weights whereas pruning does not.
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Model merging. Model merging aims to combine parameters from multiple trained neural networks
and has been rapidly adopted as a cost-effective way to improve model quality across diverse domains.
The initial motivation for merging was based on the finding that mode connectivity exists between the
loss landscapes of two or more trained neural networks, enabling interpolation of their parameters without
incurring an increase in loss (Garipov et al., 2018; Ainsworth et al., 2023; Ito et al., 2024). Simple
parameter averaging remains an effective technique; however, more sophisticated strategies based on task
vectors have also been proposed to minimize interference in the merged model parameters (Ilharco et al.,
2023; Yadav et al., 2023; Yu et al., 2024). Much of the existing literature focuses on the setting in which
multiple fine-tunes of a single checkpoint are merged. Non-local merging in which the models do not
share a common checkpoint is more closely related to expert merging. Sharma et al. (2024) found that
re-scaling of model activations was necessary to achieve high-quality non-local merging.

LLM evaluation. Evaluating LLMs is challenging; prior work demonstrated that simple metrics such
as perplexity can be misleading when used to evaluate compressed LLMs (Jaiswal et al., 2024). MC
benchmarks typically measure the log-likelihood of answer tokens to determine a model’s response to a
question (Gao et al., 2023; Chandak et al., 2025). As such, each response choice is evaluated in a single for-
ward pass, without any tokens being generated by the model. Perplexity and MC accuracy can therefore be
viewed as discriminative metrics. In contrast, generative benchmarks require the model to output a response,
more closely corresponding with real-world use-cases of LLMs. Tasks such as code generation, mathe-
matical reasoning with structured outputs, and creative writing are examples of generative benchmarks.

3 MOTIVATION

Setup. To motivate our proposed expert pruning method, we derive the expected errors of both expert
merging and pruning. Consider a SMoE layer with K experts f1,..., fx, each a function f, : R? — RY,
Let 7 () denote the set of indices corresponding to the top-k router scores. The router produces a
sparse gating vector g(x) € RE ) where g () > 0if k € T () and gi,(x) =0 otherwise. We assume the
active gates are normalized such that ), €T (x) Ik () =1, an operation commonly included in SMoE

architectures. The output of the layer is

h(x) ::ZkET(m)gk(x)fk(x)' (1

Two operations at fixed compression. To analyse the fundamental difference between compression
operations, we focus on the elementary case of reducing two experts, (f;,f;), to one by comparing the

mean squared reconstruction error, £ = ||h(z) —h(z)||3 where h(z) is output of the layer after compression.
Pruning removes expert j and re-normalizes the router outputs over the remaining /X —1 experts . Merging
replaces ( f;,f;) with a new expert }’ Existing one-shot expert merging methods such as HC-SMoE and
M-SMOE sum the gates of the original experts g;(2)+g; (). The pruned, i(z), and merged, h(z), layer
outputs are
)=y 2 gg@?) f@), @ @)= (@@ rg@) @+ Y a@ @) )
iy 9 ki,

3.1 MERGING INDUCES AN INPUT-DEPENDENT TARGET A SINGLE EXPERT CANNOT REALIZE

— gi ()

= G@)te@ ©
gi+g; > 0. Substituting g;(x) and g;(z) in terms of r(z), the original contribution of the pair (4,5) can
be written as

9i(2) filx)+g;(2) f;(x)

Define the router’s input-dependent mixing ratio r(z) : [0,1] locally on the set where

[ ()61 )+ 95 @] @)+ [(1= (@) )05 )] £ )
(9:@)+95@)) (@) i)+ (1=r(2)) f5(2) ). @

The ideal, input-dependent target expert

After merging, the router must apply the summed gate, g;(z)+g;(x), to a constant convex combination
of the constituent experts which is independent of x. The core issue is that the merged model is forced
to approximate the dynamic, input-dependent target expert with a static one. The following quantifies
this unavoidable approximation error.
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Irreducible error of merging. Let f(z)=af;(z)+(1—«)f;(z) with a constant o€ [0,1] and define

; := fi(x) — f;j(z). This definition of f assumes that the experts are linear functions of = which is
generally not the case; however, this simplified model approximates the behaviour of frequency-weighted
parameter averaging used by expert merging techniques in practice. &£y,erge is minimized when « is chosen
to be the expected mixing ratio, o* :=[E[r(z)]. Omitting the argument () for brevity, this minimal error is

[ (gi+95) (rfit- (=) f5) — (9i+5) (@ firt (1—a) f5) | =B [(git9)% (r—a*)? || Ay]).
——— N N —
router scale policy variability expert gap

In particular, if the router’s policy is not constant (Var[r(z)] > 0) and the experts are not functionally
identical (||A;;|| > 0), then every constant-cv merge incurs positive error. Let G5 : =, [||A;;(2)]|3]. Under
a simplifying assumption that the router scale, policy variability, and G;; are weakly correlated across
inputs, the error term may be decomposed to:

Eo[(9i(2)+g;(2))(r(@) —a*)?|| Ay (@) [3] ~ B (i (2) +g5 (2)?] - Vax[r ()] Gi ©)

Consequences. This is a standard least-squares problem minimized when av=E|r], and the minimal
value is Var[r]. Based on the assumptions noted above, we conclude that merging with summed gates
is fundamentally flawed whenever: (i) the router has learned an input-dependent policy for mixing
two experts (Var([r] > 0) ; and (ii) the experts are themselves distinct (][A;;]| > 0). Any fixed o cannot
overcome the irreducible error bound established in Equation (6).

3.2 PRUNING PRESERVES INDEPENDENT CONTROL

Pruning removes one function but importantly does not tie the remaining gates. The router still modulates
each surviving expert independently. In contrast, merging removes a degree of freedom in the policy by
replacing individual experts with their mergers. For a direct comparison under no fine-tuning, we consider
the error of pruning expert j where j € T (x). After pruning, the router promotes previously inactive expert
i with the new gate-value of g, (x)# 0, producing the error

Eyrune ~Exero g0 o) —si@)f o)~ LI 5, ) ™
~~ (3 k;ﬁj

substitution error
~~

renormalization error

Substitution error is the dominant term in the above expression as the renormalization error coefficient
simply scales the magnitude of the surviving expert outputs without changing their direction. In contrast,
the substitution error includes the output of the promoted expert which may introduce significant error.
With top-k routing ¢} < ¢g; and the maximum substitution error occurs when g} ~ ¢g; with a magnitude
upper bounded by

19; (@) f3 (@) —gi (@) fi(@)l| < g; (@) (Il £ @) +]]fi()I])- ®

Synthesis. While neither method is clearly superior for all distributions, our simplified analysis above
isolates specific sources of error. Merging with summed gates couples the experts, incurring error whenever
either expert is active, unless the experts are functionally identical (A;; ~0). The router loses the ability to
independently modulate the merged experts in an input-dependent manner. Equation (6) establishes that
summed gate merging incurs an irreducible error directly proportional to the router’s policy variability

(Var[r(x))).

In contrast, pruning only incurs errors when the pruned expert is in the top-k set, j € T (x). Unlike
Equation (5), Equation (8) does not penalize policy variability; the router still controls surviving experts
independently. The substitution error from pruning (Eq. 7) is proportional to its gate-value ( g;) and is
insensitive to policy variability. Highly-granular SMoEs with many experts per layer use highly variable
routing policies (high Var[r(x)]) to combine many small contributions (small g;(z)). In this setting, we
expect merging with summed gates to be fundamentally disadvantaged.

Remarks. (i) The constant-mixture model f is mathematically related to the frequency weighted
parameter averaging merge used in practice. (ii) Even if f was dependent on z, the router after merging
cannot independently modulate the two latent functions, so the original policy is invalidated. (iii) With
top-k routers, the specific irreducible error from policy variability (Var[r(z)]) is generated exclusively
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on the support where both experts are selected. Outside that support, this component vanishes, leaving
only a static error term that depends on the functional expert gap. (iv) See Appendix A for an extension
of the above analysis to hierarchical clustering.

3.3 EMPIRICAL EVIDENCE FOR LOSS OF INDEPENDENT CONTROL

Setup. We analyse the functional expert output manifolds across four diverse state-of-the-art SMoE
architectures by recording mean expert activations from 32 samples of 2048 tokens from the C4
dataset (Raffel et al., 2020).

Functional subspace collapse. By projecting expert activations onto their first two principal components,
we visualize how pruning and merging affect the learned representations. Figures 1, AS5a and ASb demon-
strate a striking progression of functional subspace collapse from early to late layers in high-granularity
architectures such as Qwen3 and ERNIE-4.5. In early layers, the original experts form relatively compact
manifolds with moderate spread. After pruning, the surviving experts maintain their positions on the
original manifold, preserving its geometric structure with reduced density. In contrast, merging produces
a visible contraction toward the manifold’s centre. The contrast becomes dramatic in late layers, where
experts are more specialized .

The progression from early to late layers validates our theoretical prediction that the irreducible error
is proportional to Var[r(z)]. Early layers, which typically learn more generic features, exhibit lower
policy variability and thus less dramatic collapse. Late layers, where experts have specialized for distinct
computational roles, demonstrate high policy variability, resulting in the severe functional collapse observed
when these specialized experts are merged into static averages.

Functional manifold distortion. While collapse is less apparent in low-granularity models, the intro-
duction of novel functions due to merging distorts the topology of the original expert manifold to a greater
degree than pruning. To quantitatively measure this phenomenon, we measure the 1-Wasserstein distance
(Earth Mover’s distance) between the original and compressed expert output manifolds, see Appendix B.2
for details. As depicted in Figure 2, the merged outputs consistently exhibit a higher transport cost from
the original manifold.

Manifold geometry preservation. Across all models and layers, we observe that pruning preserves the
topology of the functional manifold while merging fundamentally alters it. The preservation of manifold
geometry under pruning reflects the mathematical structure of the operation: the pruned expert class is a coor-
dinate subspace of the original, with the router maintaining independent control over each surviving expert.

In contrast, the subspace collapse observed in merged highly-granular SMoEs visualizes the loss of
independent control. When gates g; and g, are tied by their sum (g; + g;), the router can no longer
independently modulate the two underlying functions, forcing the model to approximate the dynamic

mixture () f; () +(1—r(x)) f; (x) with a static merged expert f.

With low-granularity SMoEs, such as Llama-4-Scout and Mixtral, functional subspace collapse due to expert
merging is less apparent, see Figures ASc to ASf. With few experts per layer and active experts per token,
these architectures have less variable routing and higher gate-values, which better preserves the variance of
the original manifold. However, the introduction of novel functions by merging introduces greater manifold
distortion than the substitution error associated with pruning. These observations reveal that the core issue
is not the reduction in the number of experts per se, but rather the qualitative change in the router’s control
structure and the introduction of novel functionality. See Appendix B for additional discussion.

4 ROUTER-WEIGHTED EXPERT ACTIVATION PRUNING (REAP)

The motivation in Section 3 demonstrates that the functional output space of a SMoE layer is defined
by the coordinated behaviour of the router and experts. As established in Equation (8), the magnitude
of the substitution error incurred by promoting expert ¢ in lieu of pruned expert j is upper bounded by
gj(@)(|Ifj(@)||+ | fi(x)|]). Naive frequency-based pruning considers neither the coordination between
router and expert (g;(«)) nor the functional properties of the pruned expert (|| f;(z)||), effectively assuming
that all active experts contribute equally to the output . By ignoring these terms, frequency-based methods
fail to minimize the error bound derived above.
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Figure 1: (a) Functional subspace (PCA) for early SMoE layers in Qwen3-30B. Pruning (blue) preserves
the manifold geometry; merging (green) collapses it toward the centre. (b) Functional subspace (PCA)
for late MoE layers. The contraction under merging is dramatically more pronounced, with up to 100x
reduction in spread for models with many experts. See Figure A5 for results from other models.
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Figure 2: 1-Wasserstein distance between the compressed and original expert output manifolds measured
in normalized angular distance. Expert merging introduces novel functions which distort the manifold.

Since the identity of the promoted expert ¢ (and thus || f;(2)||) varies across tokens, directly minimizing
the pruned expert’s impact g; ()| f;(x)]| is an effective heuristic to minimize the total error. This strategy
targets the known components of the error bound (g, || f;||) while simultaneously shrinking the scaling
coefficient (g;) of the unknown component (|| f;||). Intuitively, this identifies experts which contribute
minimally to the layer output, yielding the minimal difference between the original and pruned layer
outputs in expectation. To select which experts to prune, we propose a novel saliency criterion, REAP
. Specifically, the saliency score, S}, is defined as the average of the expert’s weighted magnitude over
tokens for which it is active:

1
Si=mo7 2 9i(@) [ £@,, ©)
%]

reX;

where X is the set of tokens where expert j is active (i.e., X; ={z|j € T(z)}). Crucially, calculating
this average conditionally over AX’; rather than globally decouples the expert’s functional impact from its
frequency of activation. A global average may be dominated by usage frequency and risks pruning specialist
experts which are rarely activated but contribute significantly to the layer output when selected. By pruning
experts with the lowest S; , REAP targets those that provide a weak functional contribution even when
specifically requested by the router, thereby minimizing the substitution error bound for every active token.

5 EXPERIMENTS

Setup. We implement REAP and other expert compression baselines in PyTorch (Ansel et al., 2024).
We collect router logits and expert activation data to calibrate the compression algorithms using a variety
of general pre-training and domain-specific Supervised Fine-Tuning (SFT) datasets. For calibration, 1,024
samples are randomly selected and packed to 2,048 sequence length for models with < 110B parameters.
For models with> 110B parameters, we select 12,228 samples with a maximum sequence length of
16,384 tokens without truncation or packing.
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Table 1: Comparison of SMoE models included in our study.

Mo Bl Sl sy IS e R
ERNIE-4.5-21B-A3B-PT 64 2 6 87.88% 219 3 Yes High
Qwen3-30B-A3B 128 0 8 93.75% 30.5 3 No High
Mixtral-8x7B-Instruct-v0.1 8 0 2 75.00% 46.7 13 No Low
GLM-4.5-Air 128 1 8 93.02% 106.9 12 Yes High
Llama-4-Scout-17B-16E-Instruct 16 1 1 88.24% 107.8 17 No Low
Qwen3-Coder-480B-A35B-Instruct-FP8 160 0 8 95.00% 480.2 35 No High
Kimi-K2-Instruct-W4A 16 (RedHatAl, 2025) 384 1 8 97.66% 1026.4 32 Yes High

We compress models by pruning or merging 25% or 50% of experts in each layer, except for M-SMoE
which determines the number of clusters per layer based on global expert usage frequency. When
evaluating models with < 50B parameters on coding and MC, we calibrate and compress the models using
three different seeds and report the mean. Larger models, creative writing, and mathematical reasoning
evaluations are reported using a single seed, except where explicitly noted otherwise. All models are
evaluated in the one-shot setting, with no additional fine-tuning after compression.

Models and data. We evaluate the expert compression algorithms on a diverse set of six SMoE
architectures covering model sizes from 21B to 1T with varying degrees of sparsity and expert granularity,
see Table 1 for details. For MC question answering and code generation benchmarks, we use C4 (Raffel
et al., 2020; Allen Institute for Al, 2024) and evol-codealpaca (Chaudhary, 2023; Luo et al., 2024; Tam,
2023) datasets to assess both general and domain-specific calibration. Models with > 110B parameters
are additionally calibrated with data from xlam-function-calling (Liu et al., 2024c; Salesforce, 2025)
and SWE-smith-trajectories (Yang et al., 2025c¢;b) datasets. For creative writing and math benchmarks
we employ WritingPrompts curated (Pritsker, 2024) and tulu-3-sft-personas-math (Lambert et al., 2025;
Allen Institute for Al, 2025), respectively. The default chat template is applied to all SFT datasets and
</think> tags are explicitly closed to disable reasoning in hybrid reasoning models.

Evaluation. Compressed SMoE models are evaluated on a suite of benchmarks including MC question
answering, code generation, mathematical reasoning, creative writing, and tool calling. See Appendix C
for details. We implement HC-SMoE and M-SMOoE as expert merging baselines. Average linkage criterion
is used for HC-SMoE. M-SMOoE does not include low-rank compression from the complete MC-SMoE
method. Pruning baselines consist of frequency-based pruning and EAN and experts with the lowest
saliency scores according to each method’s criterion are pruned. See Appendix D for formal definitions.

5.1 RESULTS

In Table 2 and Figure 3 code generation, creative writing, math reasoning, and MC results are presented for
Qwen3-30B and GLM-4.5-Air after calibration with domain-specific datasets. Table 3 contains results for
large-scale SMoE pruned models on code generation , tool calling, and MC benchmarks. See Table A5 and
Table A6 for detailed MC and code generation results, respectively. Figure A6 depicts coding generation
and MC accuracy versus model parameters. See Appendix E for additional results.

Zero-shot MC question answering. Both merging and pruning are capable of producing accurate com-
pressed SMoE models for MC question answering. HC-SMoE and REAP have a mean decrease in accuracy
of approximately 4% and 13% for compression ratios of 25% and 50%, respectively, excluding large-scale
SMoEs. REAP achieves first or second rank among all methods, models and compression ratios, suggesting
strong consistency regardless of specific model architecture. When calibrated on C4, we find slightly
improved accuracies for all compression methods with similar rankings as noted above, see Table A7.

Generative benchmarks. Compared to MC, generative benchmarks are more representative of real-world
use cases of LLMs. In this setting, pruning emerges as the clearly superior compression method on the gener-
ative task benchmarks. Excluding large-scale SMoEs, REAP achieves a mean decrease in accuracy of 2.8%
and 8.0% at 25% and 50% compression ratios, respectively, on coding. In comparison, both HC-SMoE and
M-SMoE produce mean decreases in accuracy >5% at 25% compression and >20% at 50% compression.
Notably, REAP maintains significantly higher accuracy at 50% compression than other pruning methods.
M-SMOoE achieves significantly better code generation accuracy on low-granularity SMoE architectures.
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Table 2: MC and generative benchmark results for Qwen3-30B and GLM-4.5-Air.

Coding Creative Writing Math MC
Model Compression Technique Method \Eval+ LiveCode Code Avg WildBench GSMSK MATH-500 Math Avg | MC Avg
Baseline | 0859 0302 0581 | 03811 | 0903 0872 0887 | 0721

Morin M-SMoE | 0822 0293 0558 0.805 0.901 0872 0.886 0558

OIS HC-SMOE | 0.800 0258 0529 0497 0864 0834 0.849 0.674

25% Frequency | 0849 0302 0.576 0.807 0.905 0.864 0.885 0.600

Qwen3-30B-A3B Pruning  EAN 0840 0311 0576 0811 0.895 0.866 0.881 0.603
REAP 0843 0308 0575 0.804 0.892 0.864 0878 0669

Merin M-SMoE | 0621 0205 0413 0725 0.824 0838 0831 0451

g2 HC.SMOE | 0574  0.185 0379 0.008 0.760 0.696 0728 0542

50% Frequency | 0704 0236 0470 0677 0.882 0.860 0.871 0483

Pruning  EAN 0798 0306 0552 0702 0.886 0.842 0.864 0493

REAP 0821 0293 0557 0718 0878 0872 0875 0518

Baseline | 0820 0374 0597 | 0.839 | 0846 0918 0882 | 0747

Mergi M-SMoE | 0781 0330 0555 0781 0848 0.880 0.864 0.59

CIEME HCSMOE | 0793 0363 0578 0.788 0.842 0.908 0.875 0.704

25% Frequency | 0805 0341 0573 0793 0832 0.908 0870 | 0648

GLM-4.5-Air Pruning  EAN 0821 0374 0597 0.824 0839 0908 0.874 0637
REAP 0794 0390 0592 0.831 0835 0926 0.880 0678

Mergin M-SMoE | 0493  0.099 0.296 0391 0465 0466 0465 0.444

EME  HC-SMOE | 0662 0220 0441 0.593 0.667 0.732 0.700 0.564

50% Frequency | 0546  0.104 0325 0.604 0615 0612 0613 0521

Pruning  EAN 0773 0253 0513 0702 0.781 0838 0.809 0511

REAP 0755 0352 0553 0.754 0820 0926 0.873 0559

Table 3: Large-scale pruned SMoEs on agentic, non-agentic coding, tool-use tasks, and MC benchmarks.

Non-Agentic Coding Agentic Coding Tool-Use (BFCLv3) MC
Model Compression Method \ Eval+ LiveCode Code Avg | SWE-Bench-Verified | Non-Live Live Multi-Turn Overall | MC Avg
Baseline | 0.889 0431 0660 | 0.540 | 0866 0825 0.380 069 | 0750

Qwen3-Cod Frequency | 0.792  0.296 0.544 0378 0844 0763 0355 0654 | 0.606
48‘(‘;]33“ A'gs"Be“ 25% EAN 0876 0419 0.647 0.534 0831 0813 0.384 0676 | 0702
Sincd REAP 0884 0416 0.650 0.540 0878  0.823 0.392 0698 | 0748

Instruct-FP8

Frequency | 0.011  0.012 0.011 0.000 0200 0392 0.000 0.197 | 0506

50% EAN 0831 0382 0.607 0.536 082 0774 0.383 0659 | 0591

REAP 0873 0415 0.644 0522 0.849  0.801 0371 0674 | 0.692

Baseline | 0883 0434 0659 | 0.554 | 0840 0802 0355 0.666 | 0.780

KimiK2 Frequency | 0.524  0.082 0303 0.000 0644 0.603 0.045 0431 0.604
I TJL g 25% EAN 0831 0379 0.605 0.562 0819  0.802 0335 0652 | 0703
V‘;j Af o REAP 0889  0.440 0.664 0.580 0842 0.801 0.263 0.635 0.773
Frequency | 0.124  0.000 0.062 0.000 0255 0397 0.003 0218 | 0439

50% EAN 0772 0253 0513 0576 0778 0767 0.173 0573 | 0587

REAP 0863 0429 0.646 0576 0785 0743 0.164 0564 | 0.643

On creative writing, REAP and EAN are near-lossless at 25% compression with REAP offering improved
quality at 50% compression. Merging methods are less consistent across various model architectures and
compression ratios. For example, M-SMoE is the best method for Qwen3-30B at 50% compression, but
the worst on GLM-4.5-Air. REAP attains the best mathematical reasoning results with a remarkable mean
decrease in accuracy of just 1.1% at 50% compression. HC-SMoE and M-SMoE offer high accuracy
at 25% compression but are significantly less accurate than pruning at 50% compression.

Expert pruning at scale. To assess whether pruning remains viable at scale, we prune Qwen3-Coder-
480B and Kimi-K2-Instruct. On MC questions, REAP outperforms other pruning methods. On non-agentic
coding tasks, REAP achieves near-lossless accuracy with a 0.20% and 1.4% mean decrease in accuracy
compared to baseline at 25% and 50%, respectively, outperforming EAN and frequency-based pruning,
particularly at 50% compression. On the challenging SWE-Bench task, both REAP and EAN maintain
high accuracy at 25% and 50% compression, with some scores slightly exceeding the baseline. On tool
use, EAN and REAP are comparable, with REAP slightly outperforming at 50% compression with a
mean decrease in accuracy of 5.9% versus 6.2% for EAN. Frequency-based pruning suffers from a sharp
degradation in quality at 50% compression, highlighting the importance of pruning saliency criteria which
consider expert activations. Scaling the pruning methods is relatively trivial. Unlike HC-SMoE, calibration
for pruning does not require recording activations from every expert for every token, facilitating efficient
calibration. Further, pruning can be easily applied to quantized models without any additional steps
required to reconcile block scales or re-quantize following compression.

Quantifying merged SMoE generation quality. While merged expert SMoEs offer reasonable
quality for discriminative tasks such as MC question and answering, they fail to remain competitive on
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Figure 3: GLM-4.5-Air and Qwen3-30B accuracy vs. task type. REAP offers significant improvements
compared to other methods at 50% compression. Note the significant performance drop for merging
methods on generative tasks (Coding, Math, Creative Writing) compared to their relative strength on MC.
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Figure 4: (a) & (b) N-Gram diversity and cross-perplexity of compressed Qwen3-30B-A3B models at
50% compression, respectively. ( ¢) Jensen-Shannon Divergence (JSD) of compressed and baseline
model logits vs. completion token position for Qwen3-30B-A3B at 50% compression. Initially, all
compressed models share close alignment with the baseline model. However, as the completion token
position increases the merged models diverge from the baseline more rapidly than the REAP pruned model.
( d) The mean relative L2-distance and singular-vector alignment between Qwen3-30B expert weights
at 50% compression . Expert merging is more challenging than model merging due to large distances
between experts in weight space and low singular-vector alignment.

generative tasks. To help explain the performance gap of merged models between discriminative and
generative tasks, we perform an analysis of the compressed model outputs and compare with REAP
pruned models. We prompt 50% compressed Qwen3-30B models with 100 questions randomly sampled
from the evol-codealpaca dataset and record their outputs. In Figure 4a, we measure the N-gram diversity
and find that the merged models have significantly lower diversity across all N-gram sizes measured.
In contrast, the REAP pruned model remains similar to the base model, albeit slightly less diverse. In
Figure 4b, we measure the perplexity of the text generated by the compressed models with the original
baseline model. The text generated by the merged models has both a higher mean and higher variance than
the pruned model generations, suggesting that the REAP pruned model outputs are more closely aligned
to the original model. The alignment between the baseline and REAP pruned SMoE:s is further supported
by Figure 4c, which plots the JSD of the compressed and baseline logits vs. output token position. The
merged model logits diverge from the baseline more rapidly than the pruned model.

The challenges of expert merging. Model merging has been widely adopted to facilitate LLM fine-
tuning. Why does expert merging miss the mark? In addition to the loss of the router’s input-dependent
modulation of experts explored in Section 3, we argue that the non-local nature of expert merging and high
cardinality of expert clusters pose significant unresolved challenges. In Figure 4d, we plot the mean relative
L2-distance between experts clustered by HC-SMoE or M-SMoE and compare with the distance between ex-
pert weights from the pretrained to Instruct Fine-Tuned (IFT) checkpoints. We find that the distance between
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clustered experts within the same layer greatly exceeds that of experts in the IFT checkpoint after fine-tuning.
Ito et al. (2024) found that weight matching permutations improved alignment of parameters’ singular vec-
tors. Following their approach, we decompose expert weights with Singular Value Decomposition (SVD)
and plot the singular-vector alignment in Figure 4d. Even after applying weight matching permutations, the
M-SMOoE expert clusters remain far apart both in weight space and singular-vector alignment. The relatively
poorly aligned experts highlight the considerable challenge of coherently merging their parameters.

When merging works well, it’s more closely related to pruning than one might expect. In Figure A7a, we
depict the frequency of singleton clusters — clusters containing a single expert — for both HC-SMoE and
M-SMOoE. A singleton cluster is directly analogous to an expert that remains after pruning. We find that
HC-SMOoE in particular has a high prevalence of singleton clusters, leaving important experts unadulterated
and compressing the rest into a few mega-clusters containing tens of experts. This is particularly true of
the high granularity models which contain more experts per layer. We hypothesize that the cardinality of
these mega-clusters poses a challenge for existing merging algorithms and test this intuition in Figure A7b.
Unfortunately, even modest restrictions of the maximum cluster size to 32 — half the number of experts
to compress — results in large decreases in model quality on coding tasks.

The importance of domain-specific calibration. In Figure A8, we plot the code generation accuracy
of the various compression methods and models when calibrated on either C4 or evol-codealpaca. The
difference is stark, C4 calibration results in a collapse in accuracy, with several compressed model instances
failing to produce coherent outputs, resulting in 0% accuracy. In Figure A9, we compare the accuracy
of compressed Qwen3-30B models calibrated with either domain-specific data or the combined calibration
data across all generative tasks. The domain-specific calibrated models achieve significantly higher
accuracy, especially at 50% compression.

6 DISCUSSION

Similar to prior work, we find that expert merging performs reasonably well on MC benchmarks. This may
be because MC tasks only require a discriminative function that can be approximated by an average expert.
In contrast, merging fails to maintain model quality on generative tasks, particularly at 50% compression
and high-granularity architectures. Generative tasks require auto-regressive generation, a capability that
is impaired when the router’s fine-grained control is removed or novel expert functions are introduced.
Compared to expert pruning, merging is less consistent, exhibiting higher variance across models and
compression ratios. The outputs of expert merged models are more repetitive and less closely aligned
with the base model compared with pruned model’s outputs. Taken together, these observations are direct
evidence of functional manifold distortion of the SMoE layers discussed in Section 3.3 .

Overall, expert pruned models offer consistently higher accuracy than merged models on generative tasks.
REAP is a robust pruning criterion that generalizes across a wide array of SMoE architectures, compression
ratios, and generative tasks. By taking into consideration both the router gate-values and expert activation
norms, REAP minimizes the reconstruction error bound by pruning experts which contribute the least
to each layers output . REAP is scalable, achieving near-lossless compression on coding tasks with
Qwen3-Coder-480B and Kimi-K?2. The successes of REAP highlight the crucial importance of preserving
coordination between the router and experts. Compression methods which impair the router’s ability to
independently modulate expert outputs or distort the original functional manifold are less likely to succeed.

Finally, this work highlights the importance of comprehensive downstream evaluations and the significant
challenges involved with evaluating LLMs. Discriminative metrics such as perplexity and log-likelihood
based MC benchmarks are not necessarily good proxies for generative model quality.

7 CONCLUSION

Our analysis of current SMoE expert merging techniques introduces irreducible error due to the loss of
the router’s independent control over experts . In contrast, expert pruning produces a coordinate subspace
of the original layer which maintains the topology of the functional manifold. We introduce REAP, a
novel expert pruning method which prunes experts that contribute the least to the layer’s output, thereby
minimizing the reconstruction error bound. Empirically, we demonstrate that REAP retains remarkably
high accuracy on a wide array of generative tasks across a diverse set of model architectures. We hope that
this work inspires further compression techniques for SMoEs and facilitates the deployment of accurate,
domain-specific models in resource constrained settings.

10
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ETHICS STATEMENT

This research focused on the algorithmic compression of SMoE models and does not involve the use of
human subjects, personally identifiable information, or sensitive data. The datasets used for calibration
and evaluation (e.g., C4, evol-codealpaca) are publicly available. Our aim is to enable the use of large-scale
SMOoE models in resource constrained settings. However, we acknowledge that compression techniques
such as REAP could potentially facilitate deployment of models for malicious purposes. Further, our
compression methods are applied to pre-trained models and any biases related to fairness, discrimination,
or representation inherent in the original models may be present in their compressed versions. We make no
attempt in this work to mitigate these potential biases. The primary contribution of this paper is technical,
and we do not foresee any new, direct ethical concerns arising from our proposed methodology beyond
those already associated with the deployment of large language models.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. We have open-sourced our code and
released select compressed model checkpoints to facilitate further research on compressed SMoEs. REAP
is formally described in Section 4. The baseline methods we compare against, including frequency-based
pruning, EAN, M-SMoE, and HC-SMOoE, are formally defined in Appendix D. Section 5 provides a
detailed description of our experimental setup, including the specific models used, the calibration and
evaluation datasets, and the implementation details for all compression experiments. Further evaluation
details are provided in Appendix C.
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A EXTENSION TO HIERARCHICAL CLUSTERING

While Equation (5) analyses pairwise merging, practical implementations often employ hierarchical
clustering to form groups of experts. Consider a cluster C'={f;, ..., f;, } of k experts merged into a single

representative fc. The original contribution of this cluster can be decomposed as:

Zgzj fz] Zgz] : Zw] f?, (10

jeC jeC jec

Dynamic, input-dependent mixture

where w;(z) = 94 (%) ) are the within-cluster mixing ratios that sum to 1.

Zzecglz
After hierarchical merging, the router must apply the summed gate > jecYi; 0 a single, static cluster

representative fe. typically computed as a weighted average of the cluster members based on calibration
data. This induces an irreducible error .

Hierarchical clustering error. For a cluster C' merged into :fc =3 jec Ji; with fixed weights a;; >0,
Zjaj =1, the minimal L2 error is:

2

mln Zgzj fz] Zgij fc =E Zgij -Var, ij f,] (11)

JjeC jeC jeC

The error grows with both the cluster’s total gate-value and the variance of the dynamic mixture that the
cluster must approximate with a static representative.

Implications for cluster formation. The hierarchical error bound reveals a fundamental tension:

* Large clusters (|C| large) aggregate more gate-value jecYi;» amplifying any approximation
error

* Diverse clusters (high ||A;;|| for ¢,j € C) increase the variance term, as the static representative
must approximate a wider range of functions

¢ Imbalanced clustering (many singletons, few mega-clusters) combines the worst aspects:
mega-clusters suffer severe collapse while singletons provide minimal compression

Distance metrics like Euclidean distance that consider magnitude can exacerbate these issues by creating
clusters based on norm similarity rather than functional role, potentially grouping experts with different
specializations but similar scales. The resulting mega-clusters force the router to apply a single control
signal to what were previously dozens of independently modulated experts, explaining the catastrophic
functional collapse observed empirically in late layers where Var[w; ()] is highest.

B ADDITIONAL EMPIRICAL EVIDENCE FOR LOSS OF INDEPENDENT CONTROL

B.1 FUNCTIONAL SUBSPACE PCA ANALYSIS

Qualitative evidence of functional subspace collapse.  In Figure 1a, Qwen3’s layer O exemplifies
the contraction of the functional output space by merging in early layers. The original 128 experts span
from —0.4 to 1.0 along PC1, pruning maintains this full range with 64 experts, while merging contracts
the distribution to approximately [—0.2,0.3], a 5-fold reduction. This contraction is dramatic in late layers,
where experts are more specialized , as can be seen in Figure 1b. Figures A5a and A5b exhibit similar
contractions of the expert output manifold under merging, whereas pruning often preserves outlier experts
and the span of the original expert output manifold.

In Table A4, we tabulate the total cumulative variance explained by PC1 +PC2 for the PCA projections in
Figures 1 and AS. For low-granularity SMoEs such as Llama-4-Scout and Mixtral, PCA1 and PC2 capture
most of the variance in the activations. Even in high-granularity SMoEs such as Qwen3 and ERNIE, a large
portion of the total variance is captured by PC1 and PC2. The merged variance explained is consistently
higher than the baseline, suggesting that the merged outputs have lost some of their high-dimensional
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Figure AS5: (a,c,e) Functional subspace (PCA) for early SMoE layers. Pruning (blue) preserves the
manifold geometry; merging (green) collapses it toward the centre. (b,d,f) Functional subspace (PCA)
for late MoE layers.

complexity. In contrast, the pruned variance explained is consistently lower than the baseline, suggesting
that pruning preserves outlier experts and the high-dimensional complexity of the baseline model.

The role of expert granularity. Both Qwen3-30B-A3B and ERNIE-4.5-21B are highly-granular
SMoE:s containing 128 and 64 routed experts per layer, respectively, and 8 and 6 routed experts per token,
respectively. Functional subspace collapse due to expert merging is more pronounced in these models
than in low-granularity models such as Mixtral-8x7B and Llama-4-Scout. With fewer experts and a lower
amount of experts per token, low-granularity SMoEs appear to better preserve the variance of their expert
output manifolds under expert merging. For example, in Figure AS5c, the merged manifold spans along PC1
from approximately [—0.1,0.2] whereas the pruned manifold spans from approximately [0.0,0.2] along
PC1. Similarly, as depicted in Figure AS5e, the pruned and merged manifolds span PC1 along [—0.04,0.0)
and [—0.05,0.05], respectively.

However, the merged manifold is distorted by the introduction of novel expert functions. For example,
in Figure A5e, expert merging introduces novel functions which occupy approximately [0.05,0.005] and
[—0.025,0.005] which are significantly different than any of the original experts. This is best exemplified
by Figure 2, which plots the Wasserstein distance between the original and compressed expert output
manifolds in terms of normalized angular distance. Compared to the pruned models, the higher distances
between the merged and original expert output manifolds suggest a lower degree of similarity. The distorted
manifold of the merged expert outputs represents a loss of fidelity with the original manifold which cannot
be restored in the one-shot compression setting.

B.2 WASSERSTEIN DISTANCE

To quantify the distortion of the original expert output manifold, we measure the 1-Wasserstein distance
(Earth Mover’s distance) between the original and compressed expert output manifolds, see Figure 2.

The distance is calculated between the discrete empirical distributions of the original expert outputs,
F={f1,-[K }, and compressed expert outputs, /- ={ f1,...,fx 2}, projected onto the unit hypersphere
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Table A4: Cumulative variance explained by PC1 and PC2 across compression methods. Compared to
pruning, merging results in a consistently higher explained variance suggesting that the merged models
have lost some of their high-dimensional complexity.

Model Layer Baseline Merged Pruned
Qwen3-30B-A3B 0 0.2343  0.2700  0.1845
Qwen3-30B-A3B 47 0.7195  0.7437  0.6860
ERNIE-4.5-21B 0 03836  0.2851  0.2733
ERNIE-4.5-21B 26 0.2563 04599  0.0785
Llama-4-Scout 0 09032  0.9343  0.8480
Llama-4-Scout 47 09473 09546  0.8754
Mixtral-8x7B 0 0.6486  0.8479 04016
Mixtral-8x7B 31 0.8580  0.8140  0.7027
LR 1 firl;
Wi(F.F)= inf 7ij —arccos < lf) (12)
’VGFWW);; ™ £l

where (4 and v are uniform probability measures over the indices of F and F respectively, I'(u,v) is the
set of all transport plans (joint distributions) with marginals ;2 and v, and the cost function is defined
as the normalized angular distance. This metric quantifies the minimum "work" required to transport
the probability mass from the compressed functional manifold to cover the original manifold, thereby
penalizing both the contraction of variance (subspace collapse) and the introduction of functionally distinct
artifacts (distortion).

C EVALUATION DETAILS

Multiple choice (MC) evaluation. Following Chen et al. (2025), our MC benchmarks include:
Al2 Reasoning Challenge (ARC-c & ARC-e) (Clark et al., 2018), BoolQ (Clark et al., 2019), Hel-
laSwag (Zellers et al., 2019), MMLU (Hendrycks et al., 2021a), OpenBookQA (OBQA) (Mihaylov
et al., 2018), Recognizing Textual Entailment Challenge (RTE) (Bentivogli et al., 2009), and WinoGrande
(WinoG.) (Sakaguchi et al., 2021). We evaluate the models in the zero-shot setting using the standard
log-likelihood approach with Im-eval-harness (Gao et al., 2023). We report byte-length normalized
accuracies for ARC-c, ARC-e, HellaSwag, and OBQA'.

Coding evaluation. For code generation, all models are evaluated on EvalPlus (Liu et al., 2023) and
182 LiveCodeBench (Jain et al., 2025) questions collected between January and April 2025. We extend
the original source code for these benchmarks to evaluate our models. We additionally evaluate Kimi-
K2-Instruct-W4A16 and Qwen3-Coder-480B on the agentic coding benchmark SWE-Bench (Jimenez
et al., 2024) and tool-calling benchmark BFCLv3 (Patil et al., 2025). For BFCLv3, we use the original
Gorilla framework for evaluating our models (Patil et al., 2024).

For SWE-Bench evaluation, we run our compressed models with the mini-SWE-agent scaffolding (Yang
et al., 2024b) and report the score on the SWE-Bench Verified test set (Neil Chowdhury et al., 2024).
We use 4,096 and 16,384 as the maximum number of output tokens for evaluating Qwen3-Coder-480B
and Kimi-K2-Instruct-W4A16 on SWE-Bench, respectively. The input context length for both models
is limited to 65,536. We do not limit the number of turns in mini-SWE-agent flow, but restart the rollout
in cases where the model could not generate a valid patch (that is, in the case when the output of the
final turn does not containa diff —-—git substring). We set the maximum number of restarts to 20,
which we found to be sufficient to generate patches for all samples with pruned models, unless the model
produces degenerate responses like repeating strings. We use the cloud-based evaluation provided with
the sb-cli tool to get the final scores for all evaluated models.

"Reported as the acc_norm field in the EleutherAl evaluation harness outputs. See Gao (2021) for details.
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For 72-bench Barres et al. (2025), we use greedy decoding and 4,096 as the maximum number of out-
put tokens for each LLM call. For user simulation, we use the gpt—4.1-2025-04-14 model;
maximum number of steps is 100 and number of trials is set to three for each domain. Following
Artificial Analysis (2025), we additionally implement an LLM-based repetition checking step. Every 30
steps of the simulation, a model (in our case, gpt—4.1-mini-2025-04-14) is given the past 30
episodes of the conversation trajectory with a repetition checking prompt to determine whether the agent is
stuck in the loop or making meaningful progress. This allows early task termination if the agent is stuck.
We use the same decoding parameters for the repetition model as for the user and assistant models.

Math and creative writing evaluation. Mathematical reasoning is assessed on GSM8K (Cobbe
et al., 2021) and MATH-500 (Hendrycks et al., 2021b; Lightman et al., 2023) benchmarks using the
evalscope (ModelScope Team, 2024) framework. To assess creative writing, we use 146 creative writing
prompts sampled from WildBench (Lin et al., 2024) with GPT-40 used as the judge to evaluate the model
responses. We report normalized scores using the WildBench rubric.

Generation configuration. For models with < 110B parameters, we use greedy sampling (i.e,
temperature = 0.0) to evaluate code generation and math reasoning. For creative writing we use the
default temperature, top-P, and top-K settings for each respective model. The maximum number of
output tokens is extended to 16,384 for all generative tasks to account for the verbosity of some models.
For hybrid reasoning models such as Qwen3-30B-A3B, we disable reasoning on all tasks by setting
enable_thinking=False in the chat template.

For larger models with > 110B parameters, we use greedy sampling for EvalPlus, SWE-Bench,
and BFCLv3. On LiveCodeBench, Qwen3-Coder-480B and Kimi-K2 are evaluated with default
sampling parameters and greedy sampling, respectively. We report the mean and standard deviation for
Qwen3-Coder-480B on LiveCodeBench over five random seeds. We use a repetition penalty of 1.05 for
all large model evaluations. For EvalPlus we use 768 as the maximum number of output tokens and 16,384
for LiveCodeBench. For BFCLv3 we set the maximum number of output tokens to 4,096.

Model details. The Kimi-K2-Instruct-W4A16 model used throughout this study is an INT4
weight-quantized version of Kimi-K2-Instruct released by RedHatAlI (2025).

D BASELINE METHODS
The following formally describes the baselines compression methods we consider.

Notation. Let X,; be a calibration dataset. Consider a SMoE model with n layers, L,,, K experts
per layer fi, ..., fx, each a function f;, : R? — RY and a router producing non-negative gates
g(z)=(g1(2),....gx (z)) € AK~1. The output of layer L,, is

K
hn:Zgi(-r)fi(x)-

The expert usage frequency, v;, for expert f; is the number of tokens in X,,; for which f; is activated
Vi= |XZ |a
where X; ={x € X |i € TopK(g(x))}.

Given saliency scores, S € R¥, pruning removes experts with the minimum saliency score. For merging,
we first cluster experts based on their pairwise distances, D € RE*% and then merge the parameters
of experts contained within each cluster.

Frequency-based pruning. The frequency-based pruning saliency criterion prunes experts with the
lowest usage frequency across the calibration dataset. The saliency of f; is simply S; =v;.

EAN pruning. EAN pruning introduced by Jaiswal et al. (2025) accumulates the activation norm of
each expert across tokens for which the expert is activated. The saliency of f; is

Si= Y _ | fi@)ll2- (13)

reX;
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M-SMoE merging. Proposed by Li et al. (2023), M-SMOoE first uses weight-matching (Ainsworth et al.,
2023) to find a permutation matrix P; which aligns expert f; to expert f;. In the models we study, each
expert is a two-layer feed-forward SwiGLU block (Shazeer, 2020) with up, gate, and down projections:
fi= {Wuj ) Wg(ile,Wdown} The permutation matrix is applied to the intermediate dimension of the
experts such that the expert outputs are invariant to the transformation

W’li(pj):W’lS.‘}]))Pj7 W’(j) :W(J) P W 1(5) _PTW(J)

gate gate down down*

The permuted expert is defined as }’j = {W;(pj) ,W/(j ) WD }.

gate’ down

To initialize the expert clusters, M-SMoE identifies the set of m dominant experts F4,,,, as the experts
across all layers with the highest usage frequency v. The pairwise expert distance is based on the cosine
distance of the router gate-values measured on the calibration dataset

9;(x)
; (14)
W mz\ 2! ||gz || los
Non-dominant expert j is clustered by selecting the dominant expert with the smallest pairwise distance

i* =argminD; ;.
1€Fdom

The merged expert f,, is created by calculating the frequency-weighted average of the permuted parameters,
W, of all experts in the cluster C, 3 W
i€C i

Ziecaui .

We=
HC-SMoE merging. Chen et al. (2025) clusters experts based on their representative vectors, A;, defined
as the average activation across every token in the calibration dataset

> filw

r€EXeal

(15)

A IE"E'\"Xcal [fl ‘X l|

The expert pairwise distance is defined as the cosine distance between representative vectors

A A
Dy j=1— 9 (16)
N (Al A

Clusters are formed using hierarchical agglomerative clustering with average linkage criterion. We start
by initializing each expert as a singleton cluster. At every iteration, the closest pair of clusters, C7,C}
are joined and the pairwise distances updated as the average of the constituents

. D-.k
i*,j*:argminDi,j, Co=C;- U(Cj*, Da’k:Zzeciaz,
.7 |Ca|

The clusters are merged with Equation (15).

E ADDITIONAL RESULTS

Table A5 shows the full suite of MC question answering benchmarks and the average result across all
models and methods. Table A6 tabulates code generation accuracy of compressed SMoE models calibrated
on evol-codealpaca. Eval+ is the average of MBPP, MBPP+, HumanEval (HE), HE+. The Code Avg
column is the average of Eval+ and LiveCodeBench (LiveCode). Table A7 summarizes the accuracy of the
various compression methods studied when calibrated with the C4 dataset on coding and MC benchmarks.
Notably, while the MC performance is generally slightly higher than models calibrated on evol-codealpaca,
the resulting code generation quality is abysmal, with most models failing to generate coherent output.

Figure A6 plots non-agentic coding and MC accuracy versus compressed model size. Figure A7a
depicts the proportion of singleton clusters for HC-SMoE and M-SMoE. Figure A7b plots accuracy vs.
maximum cluster sizes when the maximum cardinality of clusters is restricted. Figures A8 and A9 show
the importance of using domain-specific calibration data, particularly at high compression ratios.
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Table AS: Detailed benchmark results for multiple-choice QA tasks.

Model Compression  Technique Method |  ARC-c ARC-e BoolQ Hellaswag MMLU OBQA RTE WinoG. MC Avg
Baseline | o564 0.782 0873 0813 0737 0462 0812 0724 0721
Merging  M-SMOE | 0434£0006 0,652+ 0008 0846 +0001 059740002 05910001 0350£0006 0819 +0010 0.655+0003 061840002
88 HC-SMOE | 0506£0000 07170001 08490001 0714+0001 06520002 0371+£0002 0799 =+0002 0.674=0004 0660+ 0001
ERNIE4521B 25% Frequency | 04860004 07110000 0.852=0.004 0675+0003 0.628+0003 0373£0003 0780=0006 0.676=0.005 0648+ 0001
e Pruning  EAN 04980005 071320002 08630002 071740004 06250001 0405+0011 08110009 0702+0005 0.667 % 0.000
A3B-PT REAP 0527+0004 07590002 0857+0003 071740003 06440001 040940009 0.756=0008 06900001 0.670 & 0.002
Merai M-SMoE | 02940033 0452+0040 0.764+0010 0341£0011 038540001 0270+0004 0687+0017 052940010 0465+ 0012
SIS HCSMOE | 041140003 0.641£0002 082240001 0523+0001 049540002 0330+0005 07420011 0587 £0.009 0569+ 0.001
0% Frequency | 0400 £ 0002  0584+0.006 083040001 0522+0003 05060006 03030004 0.758+0004 0625+0004 0566+ 0.002
Puning  EAN 04170005 0.633=0.005 0830+£0003 057240001 05090002 03360003 07850014 0626+0003 0589 +0.003
REAP 04170009 0.626=0.007 08030006 0.556+0003 0505+0003 0325+0006 0.775=0014 0623+0008 0.579 +0.002
Baseline | 0563 0.790 0887 0778 0779 0454 0816 0702 0721
Merging  M/SMOE | 03570006 051920003 0843£0006 05290002 053640004 03100005 0735+£0027 0635£0005 0558 0003
TS HCSMOE | 0478 £0006 07220006 0.863=0.003 0714+0000 0.684=0002 0417-£0001 0805+0004 0.710=0004 0674+ 0.001
25% Frequency | 0401 = 0.011 0847£0003 05930005 0600+0004 0342+0012 0.781=0002 0637+0005 0.600 % 0.005
Qwen3-30B-A3B Pruning  EAN 0406 + 0.007 0847 £0005 0.607+0.006 06000002 03370003 0.764=0002 0660+0009 0.603 % 0.004
REAP 0481 0005 085240003 07060006 0.674+0002 0405+0005 0813+0006 0.701+0008 0.669 +0.003
Merging  MSMOE [ 0278-£0003  0402+0003 075340004 03990002 03660004 0278+0002 05860014 05460004 0451 0002
B8 HC-SMOE | 036840002 0.593+0003 07400003 0473+0002 05160003 0301+£0007 07240004 0.620+0005 0542+ 0.001
0% Frequency | 0285 £ 0001 04240002 0779 £ 0003 0458 £ 0003 0397 £0.002 0286 £ 0004 0659 £0012 057040009 0483+ 0001
Pruning  EAN 0296+0006 0.426=0.009 0759+0007 047140002 04430001 0291+0009 0.668=0.020 0589+0009 0493 +0.003
REAP 0344+0004 0.504=0008 07450005 04890013 05070005 0311+0003 0.625=0031 0623+0007 0.518+0.004
Bascline | 0650 0.842 0887 03861 0691 0496 0722 0.740 0736
Mergi MSMoE | 05320004 0769+0007 0.847=0.001 07470002 05530001 04290008 0632=0010 0.656=0004 0646+ 0001
NS HC-SMOE | 0590 +0.004 0797 +0004 0869 + 0003 08350002 0626+0000 0482+0004 07030012 0731 £0.007 0704 £ 0.001
- 25% Frequency | 0.616=0014 0826+0007 08750001 0825+0002 063740003 04510003 0706=0017 069240005 0.704 + 0002
l“‘{""“"ff)7l“' Pruning ) 0607+ 0004 0831 £0.001 0884 +£0001 083640001 0.646+0002 0484+0005 0700+0004 073240004 0715+ 0.000
nstruct-vO. REAP 0.611£0003 08250001 0874+0002 0830+0002 0643+0001 04750006 0761 +0.002 0718 +£0001 0717 & 0.001
Merging  M-SMOE | 0446£0.005 07000001 0788+0003 063040002 0430+0001 0386£0003 0570 +0000 059+ 0005 0568 % 0.001
B8 HC-SMOE | 0539+£0003 07590000 08510001 07910001 054320000 04420000 0700+0004 0.712+0002 0667+ 0001
0% Frequency | 0541 £0.004 0781+0003 08240013 0759+£0002 051640002 04110006 0708+0023 0.650+0.005 0649 +0.004
Pruning  EAN 05510014 0.774=0008 08590004 07940002 0550+0006 0452+0014 07170023 0693+0008 0.674+0.005
REAP 0544 +0005 07850005 08370003 077840002 0554+0001 0462+0005 07150013 0679+0005 0.669 % 0.001
Bascline | 0627 0.848 0879 0823 0803 0462 0.765 0692 0738
Merging  M-SMoE 0573 0802 0872 0752 0719 0434 0.769 0671 0699
¥ HC.SMoE 0.588 0814 0.876 0.779 0.720 0424 0.729 0.695 0.703
Limad-Scout- 2% Frequency 0584 0817 0876 0779 0733 0438 0773 0691 0711
17B-16E- Puning  EAN 0582 0816 0872 0777 0735 0446 0791 0679 0712
Instruct REAP 0594 0830 0872 0788 0756 0452 0.769 0683 0.718
Merging  M-SMoE 0498 0717 0856 0676 0609 0388 0.787 0665 0649
8 HC-SMoE 0526 0.781 0862 0718 0628 0386 0.726 0.660 0661
0% Frequency 0518 0.734 0860 0704 0652 0398 0.765 0657 0661
Pruning  EAN 0510 0.750 0857 0712 0650 0398 0.762 0662 0663
REAP 0561 0.802 0.869 0.745 0.682 0432 0.762 0.664 0.689
Bascline | 0619 0.825 0.882 0858 0789 0478 0.747 0776 0747
Merging  M-SMoE 0429 0651 0.808 0671 0578 0362 0578 0.695 0.59
BN HC-SMoE 0577 0.782 0860 0815 0722 0458 0.668 0.755 0.704
2% Frequency 0493 0715 0827 0732 0653 0422 0.614 0725 0.643
GLM-4.5-Air Puning  EAN 0492 0.705 0805 0736 0656 0368 0603 0730 0637
REAP 0555 0.756 0813 0.796 0701 0434 0643 0724 0678
Merg M-SMoE 0291 0452 0693 0433 0382 0266 0484 0551 0444
CENE HC-SMoE 0428 0671 0.761 0590 0524 0318 0.603 0613 0564
0% Frequency 0334 0535 0767 0.566 0478 0288 0567 0635
Pruning  EAN 0358 0.530 0.682 0573 0489 0300 0516 0.635
REAP 0427 0.604 0662 0642 0569 0318 0.606 0640
Bascline | o6 0.822 0.906 0.841 0.850 0468 0.751 0717
Quien-Cod Frequency 0443 0.673 0.845 0.651 0621 0280 0.704 0.632
4;;’);" > ;’BE" 25% Pruning EAN 0.555 0.766 0.891 0.769 0.795 0.404 0.747 0.691
-ASB- REAP 0635 0824 0900 0841 0836 0466 0.754 0725
Instruct-FP8
Frequency 0314 0470 0791 0502 0451 0262 0679 0580
50% Pruning  EAN 0402 059 0858 0629 0615 0216 0.744 0666
REAP 0546 0772 0872 0756 0696 0430 0.762 0.701
Bascline | o 0879 0913 0765 0872 0504 0.783 0811
Kimi-K2 Frequency 0518 0.771 0825 0787 0242 0420 0653 0613
I "‘“" - 25% Pruning EAN 0615 0.819 0.893 0.843 0.500 0.446 0.762 0.743
WaALe REAP 0671 0854 0907 0.860 0.809 0470 0805 0.809
Frequency 0285 0498 0620 0436 0241 0314 0617 0500
50% Pruning  EAN 0426 0682 0863 0663 0324 0356 0.726 06359
REAP 0476 0.661 0883 0643 0636 0350 0816 0681

Table A8 presents the complete 72-bench results across three domains (Retail, Airline, and Telecom) for
the baseline model and REAP compression at 25% and 50% levels. The results show pass’k metrics
for k=1, 2, and 3, demonstrating the impact of pruning on evaluating conversational agents, specifically
designed to test their ability to collaborate with a user in real-world scenarios.
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Table A6: Detailed benchmark results for non-agentic code generation tasks. Eval+ is the average of MBPP,
MBPP+, HE, HE+. The Code Avg column is the average of Eval+ and LiveCodeBench (LiveCode).

Model Compression  Technique Method | HE HE+ MBPP MBPP+ Eval+ LiveCode Code Avg
Baseline | 0902 0.866 0910 0.765 0.861 0231 0546
Mergin M-SMoE | 0774+ 0011 0730£0.009 0.768 =0015 0647 +0017 0730+0005 0.194 %0022 0462+ 0011
EM8 HC-SMOE | 0.837 £0.007 0.805+0000 08270003 0.696 0008 07910004 02070008 0499 % 0003
ERNIE45.21B 25% Frequency | 0.890 +0.006 0.846+0.009 0.837 0010 070940010 08200006 0.151 0096 0486+ 0.045
e Pruning  EAN 0.890+0.006 0.848 £0011 084040006 0727 +0.004 0.826+0004 0161 +0.111 0494 + 0,054
- REAP 089240009 0.854£0012 087640000 0738+0.003 0840 £0005 0.167+0.124  0.504 = 0.060
Mergin M-SMoE | 010440022 0.100£0.029 0239 +0036 0207+0040 0.162+0012 0024 %0008 0093 +0.008
EN8 HC-SMOE | 0425 +£0004 04040007 0608 +0.018 05110011 0487 +0008 00820015 0.285 % 0.009
0% Frequency | 0.699 + 0031 0640+0.022 0.696+0014 0584 +0006 0.655+0015 00830066 0369 +0.025
Pruning  EAN 0675+0019 0.642+0009 071340015 0591+0016 0.655+0014 0.112+0064 0384 + 0,035
REAP 079740009 0764 £0.007 0767 +0017 0.644+0013 0743 £0008 0.137+0.119 0440 £ 0.064
Baseline | 0927 0.884 0.881 0743 0859 0302 0581
Merging  M-SMOE | 0878 £0012 0833+0007 084940007 072840007 08220004 029340017 055840006
EM8 HC-SMOE | 0.866+0.011 0.805+0016 0832+0.006 0.698 0005 08000004 02580000 0.529 %0002
25% Frequency | 0921 0006 0874+0.007 08680000 0.735+0003 0.849+0004 0.302=0011 0576+ 0.004
Qwen3-30B-A3B Pruning  EAN 0909 +0.006 0.864 0004 085940009 0729+0.008 0.840+0004 03110018 0576 + 0.010
REAP 0917+0007 0.876+0004 085340002 0727+0.006 0.843+0002 03080015 0.575+ 0.008
Mergin M-SMoE | 0.687 0013 0638 +0004 06180004 0.541 0007 0621 +0.006 0205+0019 0413 %0007
EME HC-SMOE | 0577 £0.023 0.541 0013 06310010 0.546+0004 05740010 0.185+0.018 0.379 %0005
0% Frequency | 0.787 £0.016 0756 +0.022 0692+0016 0579 +0016 0.704+0017 0236+0025 0470+ 0021
Pruning  EAN 0.886+0.025 08370020 079840006 06690008 0.798+0013 03060003 0552+ 0.005
REAP 0919+0007 08700004 0.805+0009 0692+0.008 0.821+0003 0293+0003 0.557 + 0.001
Baseline | 0524 0476 0556 0463 0505 0.123 0314
Morging  M-SMOE_ | 031550007 02700015 0446+0007 038040015 0353%0008 0033%0.010 0.193+0.008
TENE HC-SMOE | 043940028 038640020 053040022 04410007 0449+0005 0.110+0.010 0.279 + 0.002
s 25% Frequency | 0400 =0.034 035840035 0541£0006 04530012 04380018 0099 0014 0.269 & 0.004
Mixteal SX7B- Pruning  EAN 04130027 0366+0024 04770009 04090013 04160015 011140006 0.264 = 0.006
nstruct-v0. REAP 0439+0018 03700007 053540011 0452+0011 04490002 010240010 0275 + 0.005
Mergi M-SMoE | 0.085£0.026 007640022 0.139+£0.121 0.118 0102 0091 +0079 0004 £0.006 0.047 = 0.037
e HC-SMOE | 0.175+ 0015 0.146+£0000 033540026 0282+0.031 0235+0018 001340008 0.124 + 0008
0% Frequency | 0.187 0015 0.148£0.007 0.342+0016 0287 +0012 02410007 0023 =0004 0.132 % 0.003
Pruning  BAN 0220 +£0.006 0189 £0.006 0375+0020 032540015 02770005 0.031+0011 0.154 + 0.007
REAP 0232+0018 0.193+0013 027440106 0241 +0.087 0.235+0056 0.035+0003 0.135 + 0.027
Baseline | 082 0.768 0.788 0.640 0757 0341 0549
Morgi M-SMoE 0.823 0.762 0.786 0635 0752 0324 0538
g HC-SMoE 0.787 0.738 0.735 0587 0712 0.148 0430
Llama4-Scout- % Frequency 0.835 0768 0.788 0630 0755 0317 0536
17B-16E- Pruning  EAN 0823 0.762 0.804 0648 0759 0328 0544
Tnstruct REAP 0.829 0787 0.788 0622 0.756 0242 0499
Morgi M-SMoE 0787 0732 0.762 0614 0723 0.187 0455
g HC-SMoE 0.604 0530 0500 0399 0.508 0077 0293
0% Frequency 0.823 0.756 0.751 0.595 0731 0223 0477
Pruning  BAN 0.805 0.744 0.754 0.601 0.726 0209 0468
REAP 0.841 0768 0.762 0624 0.749 0248 0.499
Baseline | 0848 0.829 0.860 0743 0.820 0374 0597
Merein M-SMoE 0.866 0.793 0.807 0659 0781 0330 0555
g8 HC-SMoE 0872 0.805 0825 0.669 0.793 0363 0578
2% Frequency 0.848 0811 0.854 0.706 0.805 0341 0573
GLM-4.5-Air Pruning  EAN 0872 0817 0876 0.720 0821 0374 0597
REAP 0.866 0.805 0828 0677 0.794 0390 0592
Merein M-SMoE 0518 0.500 0519 0437 0493 0.099 0.296
BNE HC-SMoE 0.707 0.659 0706 0577 0.662 0220 0.441
0% Frequency 0628 0573 0534 0450 0546 0.104 0325
Pruning  EAN 0.841 0780 0.807 0.661 0773 0253 0513
REAP 0878 0.841 0712 0.587 0755 0352 0553
Baseline | 0951 0.890 0923 0.791 0.889 0431+ 0011 0.660
3Cod Frequency 0.884 0.805 0810 0.669 0.792 0296 +0.017 0544
%31 e 2% Pruning  EAN 0939 0878 0911 0775 0876 0419+ 0015 0.647
-A5OB- REAP 0957 0.890 0917 0772 0.884 0416+ 0013 0.650
Instruct-FP8
Frequency 0.020 0012 0.007 0.003 0011 0012 +0.001 0011
50% Pruning  EAN 0915 0.841 0854 0714 0831 0382+ 0012 0.607
REAP 0939 0872 0910 0772 0873 0415+ 0015 0.644
Baseline | 0963 0921 0913 0735 0.883 0434 0659
o Frequency 0530 0463 0595 0508 0524 0.082 0303
I 25% Pruning  EAN 0.909 0.860 0857 0.698 0831 0379 0.605
vr;:&f(; REAP 0.957 0.921 0918 0.759 0.889 0.440 0.664
Frequency 0.098 0079 0175 0.146 0.124 0.000 0.062
50% Pruning  EAN 0.866 0811 0.780 0632 0772 0253 0513
REAP 0915 0.884 0.899 0754 0863 0429 0.646
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Table A7: C4 calibrated results for coding and MC tasks.

Coding MC

Model Compression  Technique Method ‘ Eval+ LiveCode Code Avg ‘ ARC-c ARC-e¢ BoolQ Hellaswag MMLU OBQA RTE WinoG. MC Avg
Baseline 086l 0231 0546 | 0564 0782 0873 0813 0737 0462 0812 0724 0721

Merging  MFSMOE_ | 0065 0016 0041 | 0497 0729 0860 0723 0602 0424 0801 069 0667

eing HCSMOE | 0403 0.099 0251 | 0515 0728 0860 0745 0649 0428 0794 0694 0677

ERNIE4.5.21B 25% Frequency | 0274 0.000 0137 | 0515 0735 0841 0719 0588 0382 0791 0683 0657
ERNIE-4.5-21B- Puning  EAN 0282 0.000 0141 | 0528 0750 0853 079 0558 042 078 0706 0676
3B- REAP 0242 0023 0133 | 049 0716 0855 0783 0656 0452 0809 0723  0.685
Merging  MESMOE_ | 0000 0.000 0000 | 0297 0460 0674 049 0312 0280 0671 0575 0465

eing jCSMoE | 0000 0.000 0000 | 0409 0615 0666 0515 048 0290 0632 0580 0524

0% Frequency | 0000 0.000 0000 | 0393 0625 0717 0569 049 0324 0758 0619 0563

Pruning  EAN 0007  0.003 0005 | 0451 0676 0742 0687 0474 0398 0736 0691  0.607

REAP 0033 0.000 0016 | 0406 0612 0754 0654 0468 0396 0718 0656 0583

Baseline [ 089 0302 0581 | 0563 079 0887 0778 0779 0454 0816 0702 0721

Merging MESMOE_ | 0000 0,000 0000 | 0551 0768 0883 0761 0733 0418 0848 0701 0708

eing HOSMOE | 0831 0269 0550 | 0470 0713 083 0622 0646 0376 0805 0665 0641

2% Frequency | 0000 0.000 0000 | 0548 0789 0889 0775 0735 0438 0801 0694 0709

Qwen3-30B-A3B Pruning  EAN 0000  0.000 0000 | 0569 0802 0889 0774 0735 0438 0801 0697 0713
REAP 0735 0227 0481 | 0557 0781 0872 0746 0718 0436 0794 0704 0701

Merging  MSMOE_ | 0000 0.000 0000 | 0262 0348 0693 0479 0237 0290 0523 052 042

ereing  poSMoE | 0728 0209 0468 | 0316 0495 0715 0354 0422 0282 0603 0536 0465

0% Frequency | 0000 0.000 0000 | 03499 0488 0782 0672 0503 0364 0588 0619 0545

Puning  EAN 0000 0.000 0000 | 0480 0736 0876 0760 0607 0424 0762 0694  0.667

REAP 0006 0.000 0003 | 0421 0640 0837 0653 0495 0388 0704 0635  059%

Baseline 0505 0123 0314 | 0650 0842 0887 0861 0691 0496 0722 0740 0736

Meging | MESMOE | 0320 0044 0182 | 0532 0775 0828 0746 0529 0424 0603 0632 0634

g jeSMoE | 0420 0.121 0271 | 0608 0811 0876 0838 0631 0484 0736 0726 0714

Mixiral 87D 25% Frequency | 0396 0070 0233 | 0612 0816 0868 0836 0593 0482 0675 0739 0703
L ixtral- 31 - Pruning EAN 0399 0.092 0246 0613 0814 0875 0.842 0613 0498 069 0733 0.710
nstruct-v0. REAP 0415 0077 0246 | 0606 0807 0875 0835 0633 048 0791 0709 0718
Merging  MFSMOE_ | 0000 0,000 0000 | 0260 0460 0614 0395 0240 0302 0527 0526  04l6

g HCSMOE | 0174 0.033 0.103 | 0540 0764 0862 0795 054  0M8 0675 0709 0667

0% Frequency | 0173 0.008 00% | 0504 073 0793 0771 0463 0426 0675 0646 0627

Puning  EAN 0139 0008 0074 | 0550 0756 0842 0804 0529 0460 0726 0716  0.673

REAP 0167 0012 008 | 0525 0774 0856 0794 0533 0454 0751 0688 0672

Table A8: 72-bench results with REAP compression across different benchmark domains on Qwen3-480B-
A35B-Coder-FP8.

Dataset Compression Method | pass™l pass™2 pass™3
Baseline \ 0.643 0544  0.500
Retail — 5sq, REAP | 0661 0535 0465
50% REAP 0.632 0515 0456
Baseline ‘ 0.460 0.340 0.280
Airline 550, REAP | 0487 0367 0320
50% REAP 0447 0333 0.280
Baseline \ 0500 0.398  0.325
Telecom  »5q, REAP | 0529 0456 0421
50% REAP 0.471 0.339  0.263
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Figure A6: Coding and MC accuracy across all models vs. parameters. The benefits of REAP over
other compression methods are evident at 50% compression. For large-scale SMoEs, REAP is near-lossless
whereas the shortcomings of frequency-based pruning become apparent.
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Figure A7: (a) Average proportion of singleton clusters vs. model for HC-SMoE and M-SMoE. We find
that the clustering algorithms used by our baseline merging methods tend to generate a high proportion
of singleton clusters containing just a single expert. In order to achieve the desired compression ratio,
the large number of singletons conversely results in some clusters which contain many experts, in some
cases N/2+ 1 experts for a layer with N experts are grouped into a single cluster. (b) Accuracy vs.
maximum cluster size using M-SMOoE to compress 50% of experts in Qwen3-30B. While MC accuracy
remains stable up to a maximum cluster size of 4, generative coding capabilities are severely diminished by
restricting the clustering algorithm.
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Figure A8: Coding accuracy vs. calibration dataset. Using domain-specific calibration datasets
substantially improves compressed model quality within the target domain. Fine-grained models such as
Qwen3-30B and ERNIE suffers greater degradation, with several compression methods failing to produce
any coherent output when calibrated on C4.

Compression Ratio
0%

50%

25%

Method

REAP (ours) (specific)
REAP (ours) (general)
EAN (specific)

EAN (general)
Frequency (specific)
Frequency (general)
HC-SMoE (specific)
HC-SMoE (general)
M-SMoE (specific)
M-SMoE (general)

(o]
o

N

(=)}
o

N

N
o

Mean Accuracy (%)
i oy

HHH@§H§IUIIIm I

(T T T
Ay
NNy

—@—_—_ T =r
ANy
NA\\\\\N\\\\\\\\

N

o
ALHTS.S_
ARy
AAANNNNANNNANNNN
M i

0- Z 2 -
Coding Math Multiple Choice Creative Writing

Figure A9: Mean accuracy vs. task type for models calibrated with domain specific data versus
general data. The “general” calibration data consists of the combination of evol-codealpaca-v1, Writing-
Prompts curated, and tulu-3-sft-personas-math and includes three times the total number of samples as the
domain-specific calibration datasets. While the general data calibrated models perform reasonably well at
25% compression, domain-specific data is crucial for high-quality compressed SMoE accuracy at 50%
compression.
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