
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

VilLain: Self-Supervised Learning on Hypergraphs without
Features via Virtual Label Propagation

Anonymous Author(s)

ABSTRACT

Group interactions arise in various scenarios in real-world systems:

collaborations of researchers, co-purchases of products, and dis-

cussions in online Q&A sites, to name a few. Such higher-order

relations are naturally modeled as hypergraphs, which consist of

hyperedges (i.e., any-sized subsets of nodes). For hypergraphs, the

challenge to learn node representation when features or labels

are not available is imminent, given that (a) most real-world hy-

pergraphs are not equipped with external features while (b) most

existing approaches for hypergraph learning resort to additional

information. Thus, in this work, we propose VilLain, a novel self-

supervised hypergraph representation learning method based on

the propagation of virtual labels (v-labels). Specifically, we learn

for each node a sparse probability distribution over v-labels as its

feature vector, and we propagate the vectors to construct the fi-

nal node embeddings. Inspired by higher-order label homogeneity,

which we discover in real-world hypergraphs, we design novel

self-supervised loss functions for the v-labels to reproduce the

higher-order structure-label pattern. We demonstrate that VilLain

is: (a) Requirement-free: learning node embeddings without rely-

ing on node labels and features, (b) Versatile: giving embeddings

that are not specialized to specific tasks but generalizable to di-

verse downstream tasks, and (c) Accurate: more accurate than

its competitors for node classification, hyperedge prediction, node

clustering, and node retrieval tasks.

ACM Reference Format:

Anonymous Author(s). 2018. VilLain: Self-Supervised Learning on Hyper-

graphs without Features via Virtual Label Propagation. In Proceedings of
Make sure to enter the correct conference title from your rights confirma-
tion emai (Conference acronym ’XX). ACM, New York, NY, USA, 18 pages.

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

In many real-world complex systems, interactions often occur in

groups: research collaborations, email communications, group dis-

cussions, and protein interactions, to name a few. Representing such

group interactions (i.e., higher-order relationships) as edges in an

ordinary pairwise graph impairs the semantics of the interactions,

often leading to considerable information loss [13, 37, 76].

Hypergraphs address the limitations of ordinary graphs by mod-

eling group interactions as hyperedges, the non-empty subsets of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

nodes. Specifically, the flexibility in hyperedge sizes enables each

hyperedge to naturally represent an interaction among any number

of nodes. Hypergraphs have been used to model data from various

fields, including bioinformatics [31], social network analysis [73],

circuit design [32], and computer vision [29, 33, 66]. Notably, hyper-

graph modeling has demonstrated its effectiveness over ordinary

graphs in diverse applications, such as recommendation [67, 68],

medical prediction [6], and crime prediction [40].

A popular approach for analyzing such complex relations is

to learn node embeddings (i.e., vector representations of nodes)

through self-supervision. In the context of hypergraphs, self-supervised
learning has been applied for node classification [27, 35, 64], hyper-

edge prediction [62, 82], recommendation [69, 79], and user loca-

tion prediction in social media [73]. Self-supervised learning enjoys

several key advantages. It does not require external node labels,

which are scarce in many real-world scenarios due to substantial

costs in their acquisition [26]. Moreover, the learned embeddings

often demonstrate considerable versatility, maintaining their utility

across a broad range of tasks.

Many self-supervised node embedding methods require external

features. Hypergraph Neural Networks (HNNs) [11, 17, 20, 28, 35,

64] and Graph Neural Networks (GNNs) [24, 34, 50, 60, 61, 70, 85],

for instance, heavily rely on the external node features. As such,

most of them are only tested on attributed benchmark datasets [18,

25, 49, 54, 56, 74], and their performances strongly depend on the

feature quality [15, 19, 41, 46].

Despite their usefulness, external features are often entirely or

partially missing in real-world hypergraphs [10, 15, 19, 53, 75, 82].

In fact, only 3.03% of the graphs at a popular graph database are

given with node features [54],
1
and none of the hypergraphs at

the largest hypergraph database is attributed.
2
Such a problem, in

combination with the issue of label scarcity, poses an imminent

challenge for hypergraph representation learning.

While some self-supervised approaches do not require external

features, their embeddings are hardly versatile. Some link prediction

HNNs and GNNs leverage the structural or identity features [7, 62,

78, 80, 86] without the external ones, and random walk (RW) [23,

27, 51]- or matrix factorization (MF) [47, 52, 58]-based methods (i.e.

Hyper2Vec) only need graph structure for their node embeddings.

However, they arguably only preserve structural properties, since

their input and objective functions are solely structural. Such models

are, thus, less applicable to tasks where the importance of structural

property is less prominent, such as node classification.

Thus, in this paper, we aim to learn versatile node embeddings for

hypergraphs without relying on external labels or features. To this

end, we propose VilLain (Virtual Label Propagation). VilLain con-

structs for each node a sparse probability distribution over virtual

labels (v-labels) as its feature. The probabilistic v-label assignment

vectors are propagated to construct the final node embeddings.

1
Out of 6,659 graph datasets, 202 are given with node attributes.

2
https://www.cs.cornell.edu/~arb/data/

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://www.cs.cornell.edu/~arb/data/

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

At each propagation step, the v-labels are optimized with a novel

self-supervised loss function, inspired by higher-order label homo-

geneity in real-world hypergraphs (see Section 4). Thus, VilLain

learns potential (higher-order) structure-label relationships, beyond

purely structural properties.

Through extensive experiments using eight real-world hyper-

graphs and three downstream tasks (specifically, node classifica-

tion, node retrieval, node clustering, and hyperedge prediction), we

demonstrate the superiority of VilLain over 15 baseline approaches.

We summarize its strengths as follows:

• Minimum Requirements: VilLain learns node embeddings

without any supervision (e.g., node labels) or extra information

(e.g., node features and the number of labels).

• Versatile Embedding: VilLain learns general-purpose node em-

beddings that are not specialized to specific tasks but generalized

to diverse downstream tasks.

• Accurate Embedding: VilLain achieves up to 71.6%, 72.3%, and

6.7% better accuracy than unsupervised and (semi-)supervised

baseline approaches for node classification, node retrieval, and

hyperedge prediction tasks, respectively.

Reproducibility. Our code and dataset are available at https://

anonymous.4open.science/r/VilLain-C18B (anonymous).

2 RELATEDWORK

In this section, we briefly review related works on node represen-

tation learning, focusing on learning without labels or features.

Node embedding with propagation. Propagation has beenwidely

applied and shown effective for both hypergraph and graph rep-

resentation learning. GNNs typically have each node propagate

its features to the direct neighbors [9, 22, 34], whereas for HNNs,

the propagation is conducted on hypergraph structure. Specifically,

HGNN [20] has each node propagate to its hyperedges, where the

node feature are aggregated and propagated back to the nodes that

belong to the hyperedges. HNHN [17] uses non-linear aggrega-

tion functions to update both node and hyperedge embeddings,

alternatingly. AllSet [11] uses permutation-invariant functions to

propagate on hyperedges. Other simplified GNNs [12, 16, 21, 65]

first learn soft label vectors from feature vectors, which are propa-

gated to learn the final node embeddings. Note that all the described

methods require external labels or features.

Node embedding without external labels. Self-supervision has

been widely adopted for representation learning without external

labels. Self-supervised HNNs and GNNs often utilize contrastive

losses. Given both original and perturbed features or structures,

the models maximize the mutual information between them [35, 61,

85]. For hypergraphs, HyperGCL [64] uses node- and hyperedge-

level perturbation, and TriCL [35] conducts tri-directional contrasts

that maximize the agreement between two augmented views of

nodes, groups, and memberships. Intuitively, such self-supervised

loss functions are designed to learn node embeddings that denoise

the input features and structure. It, then, implies that these self-

supervised models can only learn structural properties if their input

node features are random or structural.

Given random walk sequences, RW-based embedding meth-

ods [23, 27, 51] typically use Skip-Gram [44] to optimize the em-

beddings to maximize the likelihood of the visited nodes. MF-based

approaches [47, 52, 58], on the other hand, factorize proximity ma-

trices into low-rank matrices. As such, most RW- and MF-based

embedding methods specifically preserve structural proximity.

Node embedding without external features. If external features

are not available, HNNs and GNNs require derived features for their

prediction. For structural prediction, some models have leveraged

only structural information as the input features [7, 15, 62, 78, 80,

86]. Specifically, structural [4, 7, 15, 78], positional [15, 39, 63], and

identity [1, 55, 62, 77, 80, 81, 86] encoding methods have been de-

veloped. Such encoding methods generally aim to enhance model

expressivity beyond 1-WL test [70]. On the other hand, the majority

of RW- and MF-based approaches do not require any features or

labels [23, 27, 47, 51, 52, 58]. It is, however, worth noting that all

the described methods over-emphasize structural properties, since
their features and objective loss functions are solely structural.

Thus, predictions from their embeddings hardly generalize to less

structure-dependent tasks, such as node classification.
3

Relating VilLain to the prior works. In comparison to (hyper)

graph learning models without external features or labels, we

present the novelty of VilLain in the subsequent sections as follows:

• Novel Self-Supervised Loss:Only VilLain has loss function that

learns beyond structural information for embedding versatility.

• Novel Input Feature Learning: VilLain’s motivation and mech-

anism of input feature learning are distinguished from the prior

methods.

3 PROBLEM STATEMENT

In this section, we formulate hypergraph representation learning

without features or labels. A hypergraph 𝐺 = (𝑉 , 𝐸) consists of
a set of nodes 𝑉 = {𝑣1, · · · , 𝑣 |𝑉 | } and a set of hyperedges 𝐸 =

{𝑒1, · · · , 𝑒 |𝐸 | }. Each hyperedge 𝑒 𝑗 ∈ 𝐸 is a non-empty subset of

nodes, i.e., ∅ ⊊ 𝑒 𝑗 ⊆ 𝑉 . In the incidence matrix H ∈ {0, 1} |𝑉 |× |𝐸 |

of 𝐺 , H𝑖 𝑗 = 1, if 𝑣𝑖 ∈ 𝑒 𝑗 , and H𝑖 𝑗 = 0 otherwise.

Given a hypergraph 𝐺 = (𝑉 , 𝐸), the objective of self-supervised
hypergraph representation learning is to learn a node embedding

Z𝑖 ∈ R𝑑 of each node 𝑣𝑖 ∈ 𝑉 , or equivalently, a node embedding

matrix Z ∈ R |𝑉 |×𝑑
that captures meaningful proximity between

nodes in 𝐺 . Specifically, we aim to learn node embeddings that

are generally useful for various tasks (e.g., node classification and

hyperedge prediction), without relying on any kind of supervision

(e.g., ground-truth semantic labels or even the number of unique

labels) or external information (e.g., node attributes).

4 MOTIVATING OBSERVATIONS

In this section, we present our observation in real-world hyper-

graphs, which motivate the design of VilLain in Section 5. Inspired

by pervasive homophily [2, 43] in real-world graphs, we postulate

that hypergraphs also exhibit a similar tendency. For example, re-

searchers from the same area tend to co-author a paper, and e-mails

are likely to be exchanged within the same department. To sub-

stantiate this hypothesis, we examine label homogeneity in eight

different real-world hypergraphs.

3
See the low performances of such methods (e.g. Hyper2Vec, HyperGCL) in Table 2.

2

https://anonymous.4open.science/r/VilLain-C18B
https://anonymous.4open.science/r/VilLain-C18B

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

VilLain: Self-Supervised Learning on Hypergraphs without Features via Virtual Label Propagation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Real-world hypergraphs Randomized hypergraphs

Datasets Datasets

Figure 1: Hyperedges in real-world hypergraphs (statistics

in Appendix B) exhibit label homogeneity (Obs. 1).

Using the ground-truth node labels, for each hyperedge, we

measure the entropy of its soft label assignment vector, which is

obtained by averaging the label assignment one-hot vectors of the

nodes in the hyperedge. If the entropy is 0, all nodes in the hyper-

edge are labeled identically (high homogeneity). The higher the

entropy is, the more diverse labels the nodes in the hyperedge have

(low homogeneity). As shown in Figure 1, the entropy in real-world

hypergraphs tends to be lower than that in hypergraphs that are

randomized as described in [36]. Moreover, the ratio of the hyper-

edges with entropy 0 is much higher in real-world hypergraphs than

in the randomized hypergraphs, and the average entropy is lower

in real-world hypergraphs than in the randomized hypergraphs.

Observation 1. Hyperedges in real-world hypergraphs exhibit
label homogeneity, i.e., they tend to contain the same labeled nodes.

In addition, we examine higher-order homogeneity in real-world

hypergraphs. To this end, we measure the entropy of the higher-

order label assignment vectors (or ℓ-step labels in short) of hyper-

edges. For each ℓ ≥ 0, the ℓ-step label of a hyperedge is obtained by

averaging the ℓ-step labels of the nodes in it. The ℓ-step label of each

node is given if ℓ = 0, or obtained by averaging (ℓ − 1)-step labels

of the incident hyperedges (the detailed procedure can be found in

Section 5.1). Figure 2 demonstrates that (a) the entropy of 50-step

labels of hyperedges in a real-world hypergraph (spec., Trivago) is

lower than those in the randomized counterpart, and (b) regardless

of the step count ℓ , hyperedges in the real-world hypergraph ex-

hibit higher homogeneity than those in the randomized hypergraph.

These findings provide concrete evidence supporting the presence

of higher-order homogeneity in real-world hypergraphs. Refer to

Appendix C for results from other real-world hypergraphs.

Observation 2. Real-world hypergraphs exhibit higher-order
label homogeneity, i.e., the node labels in each hyperedge tend to be
homogeneous even after multiple steps of propagation.

5 PROPOSED METHOD

In this section, we propose VilLain (Figure 3), a self-supervised node

representation learning method for hypergraphs. Notably, VilLain

does not require external labels or features.

5.1 VilLain: Virtual Label Propagation

We first present how VilLain obtains node embeddings through

virtual label (v-labels) propagation, without external features.
Virtual Labels. Since node labels or features are not given, VilLain

assumes the presence of 𝑑 v-labels and leverages the soft v-label

assignment vector of each node as its learnable feature. Specifically,

Trivago
Trivago-Random

Trivago
Trivago-Random

Figure 2: Real-world hypergraphs exhibit higher-order label

homogeneity (Obs. 2).

VilLain employs a learnable matrix X̃ ∈ R |𝑉 |×𝑑
where each 𝑖th row

X̃𝑖 is used to obtain the soft assignment vector X(0)
𝑖

∈ [0, 1]𝑑 of

the node 𝑣𝑖 to 𝑑 v-labels as follows:

X(0)
𝑖 𝑗

=
𝑒 (X̃𝑖 𝑗 +𝑔𝑗)∑𝑑

𝑗 ′=1
𝑒
(X̃𝑖 𝑗 ′+𝑔𝑗 ′)

, for 𝑗 = 1, · · · , 𝑑, (1)

where 𝑔 𝑗 = − log(log(1

𝑢𝑖
)) is random noise and𝑢𝑖 ∼ Uniform(0, 1) .

The above equation transforms the vector into a probability vector

and encourages it to be biased towards a single v-label. As described

later, the v-label assignment vectors are optimized to reproduce

higher-order label homogeneity (Observations 1 and 2).

Hypergraph V-label Propagation. After obtaining the v-label

matrix X(0)
, VilLain conducts v-label propagation on the input

hypergraph to obtain X(ℓ)
. At each step, v-labels are propagated

alternatingly between nodes and hyperedges. Specifically, the v-

label assignment matrices of hyperedges and nodes at step ℓ are:

Y(ℓ) = D−1

𝐸 H𝑇X(ℓ−1)
and X(ℓ) = D−1

𝑉 HY(ℓ) , (2)

where D𝑉 and D𝐸 are the diagonal matrices with node degrees and

hyperedge sizes, respectively. To capture higher-order dependencies

among nodes, VilLain computes node embeddings Z ∈ [0, 1] |𝑉 |×𝑑

by averaging the v-label assignment vectors obtained at propaga-

tion steps 1, · · · , 𝑘′:

Z =
1

𝑘′

𝑘 ′∑︁
ℓ=1

X(ℓ) . (3)

Namely, the embedding Z𝑖 of node 𝑣𝑖 is a probability vector aver-

aging its v-label assignment vector at each step.

Multi-V-label Propagation. In real-world hypergraphs, nodes

may have multiple labels, each representing different aspects. For

instance, in a social network, socioeconomic status and political

inclination can both serve as labels, albeit their independent homo-

geneity w.r.t. hypergraph topology. The same goes for the number

of labels. Learning a single set of v-labels, then, can be insufficient
to capture their complex structure-label patterns.

Thus, VilLain learns multi-v-labels for the final node embed-

ding Z*
. Specifically, we partition the 𝑑-dimensional embedding

space into𝐷 subspaces of potentially different dimensions, allowing

for independent v-label propagation within each subspace. Then,

VilLain concatenates the outputs from each subspace as follows:

Z∗𝑖 =

[
Z⟨1⟩
𝑖

∥ Z2⟩
𝑖

∥ · · · ∥ Z⟨𝐷 ⟩
𝑖

]
,

where ∥ is the concatenation operation, and Z⟨·⟩
𝑖

is the embedding

obtained from each subspace.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

2 5 63 7 81 4

Balanced & Distinctive
v-label Distribution (Global Loss)

e1 e2 e3 e4

Label-Homogeneous
v-label Distribution (Local Loss)

2

5 6

3

7

8

1

4

0-hop node v-labels
𝐗 𝟎 = So8max 𝐗#

2

5 6

3

7

8

1

4

𝒌-hop node v-labels
𝐗 𝒌

…e1

e2

e3

e4 2

5 6

3

7

8

1

4

2

5 6

3

7

8

1

4

1-hop hyperedge v-labels
𝐘 𝟏

1-hop node v-labels
𝐗 𝟏

e1

e2

e3

e4 e1

e2

e3

e4 e1

e2

e3

e4

v-label distribution:v-labels: (red) (blue)

Figure 3: (Left) Two v-labels (red and blue) are propagated between nodes and hyperedges on a hypergraph (Sec. 5.1). Note that

hyperedges are colored to indicate Y(1)
. (Right) By minimizing the proposed local and global losses, the v-label distributions

are learned to exhibit higher-order label homogeneity while being balanced and distinctive at each propagation step (Sec. 5.2).

5.2 Self-Supervision Objectives

The learning objectives of VilLain are designed to reproduce higher-

order label homogeneity by effectively capturing structural proper-

ties and also potential higher-order structure-label relationships.

Recall that the entries of the matrix X̃ are the only learnable pa-

rameters in VilLain that the objective function updates.

Capturing Local Information.Motivated by Observations 1 and

2 in Section 4, we design an objective to capture the higher-order

homogeneity of nodes and hyperedges. Specifically, VilLain mini-

mizes the entropy of the v-label assignment vectors of each node

and hyperedge obtained at propagation steps 1, · · · , 𝑘 :

L
local

=

𝑘∑︁
ℓ=1

©­« 1

|𝑉 |

|𝑉 |∑︁
𝑖=1

E
(
X(ℓ)
𝑖

)
+ 1

|𝐸 |

|𝐸 |∑︁
𝑖=1

E
(
Y(ℓ)
𝑖

)ª®¬ , (4)

where E(𝑝) = −∑
𝑖 𝑝𝑖 log 𝑝𝑖 is the entropy measure of 𝑝 . That is,

we induce structurally close nodes (or hyperedges) to be assigned to

the same v-label. Beyond capturing the homogeneity at the hyper-

edge level, i.e., ℓ = 1 (Observation 1), the loss function is designed

to reproduce the higher-order homogeneity of nodes and hyper-

edges by minimizing the entropy of v-label assignment vectors at

each propagation step ℓ ∈ {1, · · · , 𝑘} (Observation 2). For training

speed, the number of steps 𝑘 for training can be smaller than 𝑘′ for
inference.

Capturing Global Information.VilLain also considers the global

distribution of labels. To this end, we give v-label-level supervision

to VilLain so that v-labels are properly distributed over the entire

hypergraph. First, since Eq. (4) is trivially minimized when all nodes

and hyperedges are assigned to a single v-label, we use the following

term to prevent this problem:

J
cls

= −
𝑘∑︁
ℓ=1

(
E

(
x(ℓ)

)
+ E

(
y(ℓ)

))
(5)

where x(ℓ)
𝑖

=

X(ℓ)
:,𝑖

1

𝑑∑
𝑗=1

X(ℓ)
:, 𝑗

1

and y(ℓ)
𝑖

=

Y(ℓ)
:,𝑖

1

𝑑∑
𝑗=1

Y(ℓ)
:, 𝑗

1

.

Here, x(ℓ) = [x(ℓ)
1

, · · · , x(ℓ)
𝑑

] and y(ℓ) = [y(ℓ)
1

, · · · , y(ℓ)
𝑑

] denote the
weighted ratios of nodes and hyperedges for each v-label at step ℓ .

Note thatX(ℓ)
:,𝑖

and Y(ℓ)
:,𝑖

, which are the 𝑖th columns ofX(ℓ)
and Y(ℓ)

,

correspond to the vectors of v-label 𝑖 for nodes and hyperedges,

respectively. That is, we maximize the entropy of the global distribu-
tion of the v-labels at each step, restraining any single v-label from

dominating the entire hypergraph.

In addition, we aim to make v-labels distinctive by making the

sets of nodes and hyperedges assigned to each v-label nearly disjoint

from those with another v-label. To this end, we minimize the

following cross-entropy-based objective:

J
dst

= −
𝑘∑︁
ℓ=1

𝑑∑︁
𝑖=1

(
log x̄(ℓ)

𝑖
+ log ȳ(ℓ)

𝑖

)
(6)

where x̄(ℓ)
𝑖

=
𝑒
S

(
X(ℓ)

:,𝑖
,X(ℓ)

:,𝑖

)
𝑑∑
𝑗=1

𝑒
S

(
X(ℓ)

:,𝑖
,X(ℓ)

:, 𝑗

) and ȳ(ℓ)
𝑖

=
𝑒
S

(
Y(ℓ)

:,𝑖
,Y(ℓ)

:,𝑖

)
𝑑∑
𝑗=1

𝑒
S

(
Y(ℓ)

:,𝑖
,Y(ℓ)

:, 𝑗

) .

Here, x̄(ℓ)
𝑖

and x̄(ℓ)
𝑗

indicate the distinctiveness of v-label 𝑖 at each

propgation step ℓ in nodes and hyperedges, respectively, and S(·, ·)
measures the cosine similarity of two input vectors. Minimizing

Eq. (6) reinforces the distinctiveness of each v-label at each step.

Finally, we minimize the global-level loss, defined as the sum of

Eq. (5) and Eq. (6), to let v-labels be properly distributed across the

entire hypergraph:

L
global

= J
cls

+ J
dst

(7)

Objective Function. To exhibit both the local and global structure-

label patterns, VilLain minimizes both objectives, Eq. (4) and (7):

L = L
local

+ L
global

.

While we can introduce a hyperparameter for balancing L
local

and

L
global

, we simply add the two losses since hyperparameter tuning

based on external supervision is strictly restricted in our setting.

Note that, by reproducing higher-order label homogeneity, Vil-

Lain captures not only structural properties but also potential

higher-order structure-label relationships. Consequently, compared

to self-supervised methods that exclusively focus on structural as-

pects (see Section 2 for further discussion), VilLain can learn effec-

tive embeddings for less structure-dependent tasks, such as node

classification, as confirmed empirically in Section 6.

Complexity Analysis.We analyze the time and space complexity

of VilLain for computing the final embedding Z∗, as well as the com-

putational cost associated with optimizing their losses. Specifically,

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

VilLain: Self-Supervised Learning on Hypergraphs without Features via Virtual Label Propagation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

when the dimension of each subspace is 𝑑/𝐷 , it takes:

𝑂

(
𝑘𝑑

∑︁
𝑒∈𝐸

|𝑒 | + 𝑘𝑑2

𝐷
(|𝑉 | + |𝐸 |)

)
time and 𝑂

(
𝑘𝑑2

𝐷
(|𝑉 | + |𝐸 |)

)
space

for propagating v-labels (Eq. (2)) and computing lossesL
local

(Eq. (4)),

J
cls

(Eq. (5)), and J
dst

(Eq. (6)) for 1, · · · , 𝑘 steps. To generate node

embeddings (Eq. (3)), the losses are not necessarily computed, and

thus it takes 𝑂 (𝑘′𝑑 ∑
𝑒∈𝐸 |𝑒 |) time and requires 𝑂 (𝑘′𝑑 (|𝑉 | + |𝐸 |))

space. The details can be found in Appendix A. Importantly, intro-

ducing multi-v-labels (i.e., 𝐷 > 1) leads to the reduction in time

and space complexity, thereby indicating an additional advantage

of learning v-labels in multiple subspaces. This is empirically sup-

ported in Section 6.4.

5.3 Extension to Unobserved Nodes

Heretofore, we described how VilLain learns node embeddings Z
from a static hypergraph. However, in many scenarios, hypergraphs

evolve over time (e.g., new members in the group), introducing new

nodes and hyperedges to the hypergraph. This motivates us to

extend VilLain to generate embeddings also for newly introduced,

unobserved nodes and hyperedges. In this subsection, we extend

VilLain to embed such unobserved nodes and hyperedges.

Settings. Consider a connected hypergraph 𝐺S = (𝑉S, 𝐸S), which
is a subset of a connected hypergraph 𝐺 = (𝑉 , 𝐸), where 𝑉S ⊆ 𝑉

and 𝐸S ⊆ 𝐸. Using the incidence matrix HS ∈ {0, 1} |𝑉S |× |𝐸S |
of 𝐺S,

VilLain has generated v-labels and embeddings X(0)
S

,ZS ∈ R |𝑉S |×𝑑
,

respectively, for the observed nodes𝑉S. Nodes𝑉 \𝑉𝑆 and hyperedges
𝐸 \ 𝐸𝑆 are introduced after VilLain training.

Embedding Unobserved Nodes. To embed nodes including the

unobserved ones𝑉 \𝑉S, VilLain propagates learned v-labels X(0)
𝑆

of

the observed nodes𝑉𝑆 on hypergraph𝐺 containing the unobserved

nodes and hyperedges. Specifically, v-label assignment matrices for

all nodes X(ℓ)
and hyperedges Y(ℓ)

at step ℓ ≥ 1 are obtained like

in Eq. (2) as follows:

Y(ℓ) = D−1

𝐸 H𝑇X(ℓ−1)
and X(ℓ) = D−1

𝑉 HY(ℓ) ,

where X(0) ∈ R |𝑉 |×𝑑
is X(0)

𝑆
with zero-paddings at row indices

of the nodes 𝑉 \𝑉S. Since we assume a connected hypergraph 𝐺 ,

there always exists ℓ′ such that all nodes 𝑉 are assigned non-zero

v-labels. Then, using Eq. (3), X(ℓ ′) , · · · ,X(𝑘 ′)
are used to generate

embeddings Z for all nodes 𝑉 , where 𝑘′ ≥ ℓ′. We empirically show

that VilLain generates informative embeddings for unobserved

nodes in Section 6.4.

6 EXPERIMENTAL RESULTS

In this section, we present experimental results for four downstream

tasks utilizing node embeddings. We first assess the accuracy of

VilLain by comparing it with the state-of-the-art (hyper)graph rep-

resentation learning methods (Section 6.2). Then, we demonstrate

the effectiveness of each design choice of VilLain (Section 6.3).

Lastly, we conduct additional analyses on VilLain (Section 6.4).

6.1 Experimental Settings

In this subsection, we report the experimental settings.

Table 1: Summary statistics of eight real-world hypergraphs:

the number of nodes |𝑉 |, the number of hyperedges |𝐸 |, the
size of the hypergraph

∑
𝑒∈𝐸 |𝑒 |, the number of edges |E | in

the clique expansion, and the number of ground-truth labels.

Dataset |𝑉 | |𝐸 | ∑
𝑒∈𝐸 |𝑒 | |E | # Labels

Primary (PR) [57] 242 12,704 30,729 8,317 11

High (HG) [42] 327 7,818 18,192 5,818 9

Citeseer (CS) [71] 1,019 819 2,808 3,867 6

Cora (CR) [71] 1,330 1,503 4,599 4,144 7

Pubmed (PM) [71] 3,824 7,951 34,605 123,819 3

DBLP (DB) [71] 36,188 18,924 90,868 425,669 6

Trivago (TV) [14] 172,738 233,202 726,861 1,095,204 160

Amazon (AZ) [45] 260,209 31,964 422,076 14,142,811 10

Datasets. We use eight publicly available real-world hypergraphs

summarized in Table 1. All datasets are derived from group inter-

actions that arise in real-world scenarios (e.g., coauthorship and

co-purchase). For details regarding the preprocessing method and

descriptions for each dataset, refer to Appendix B.1.

Baselines. We consider 15 unsupervised and (semi-)supervised

graph and hypergraph embedding methods as competitors. Deep-

walk [51], Node2vec [23], DGI [61], GRACE [85], GMI [50], Hy-

per2vec [27], LBSN [73], and TriCL [35] are unsupervised methods,

and GCN [34], GAT [60], HGNN [20], HNHN [17], AllSet [11],

UniGNN [28], and HyperGCL [64] are (semi-)supervised meth-

ods. For graph embedding methods (i.e., GCN, GAT, Deepwalk,

Node2vec, DGI, GRACE, and GMI), we use the clique expansion of

the hypergraph.
4
For all methods that require node features (i.e.,

GCN, GAT, DGI, GRACE, GMI, HGNN, HNHN, AllSet, UniGNN,

HyperGCL, and TriCL), we use the embeddings obtained by Hy-

per2vec,
5
which lead to the best performance among three alterna-

tives (see Appendix C for detailed results).

Implementations. We simply use 𝑘 = 4 for VilLain and all its

variants and use 𝑘′ = 10 for small datasets (s.t., |𝑉 | < 10, 000)

and 𝑘′ = 100 for large datasets (s.t., |𝑉 | ≥ 10, 000). As discussed

in Section 5.1, to capture diverse structural-label information, we

aggregate embeddings obtained with various numbers of v-labels.

Specifically, we concatenate embeddings obtained using different

numbers of v-labels. For each number ⌈ 𝑑
𝐷
⌉ ∈ {2, 3, · · · , 8} of v-

labels, we learn 𝐷 subspaces and then perform PCA to ensure

that the final embedding is of the target dimension 𝑑 . Refer to

Appendix B.2 for the detailed settings of other baselines.

6.2 Accuracy of VilLain

To verify the quality of the VilLain’s node embeddings, we consider

four downstream tasks on hypergraphs: node classification, node

retrieval, node clustering, and hyperedge prediction. The embed-

ding dimension of all methods, including VilLain, is fixed to 128.

Results including standard deviation is provided in Appendix C.2.

Node Classification.We perform node classification by randomly

and disjointly splitting the dataset into training, validation, and

test sets. For training and validation sets, the labels of 20 nodes

per class are given for all datasets except for Primary and High,

where the labels of 2 nodes are given per class. The remaining

4
The clique expansion is the pairwise graph obtained by replacing each hyperedge

with the clique formed by the nodes in the hyperedge.

5
For Amazon, we use Node2vec since Hyper2vec ran out of time (> 24 hours).

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: VilLain performs best on node classification in terms of accuracy. Each baseline method is designed for either graphs

or hypergraphs and for either semi-supervised or unsupervised settings.

Method DBLP Trivago Amazon Primary High Citeseer Cora Pubmed Rank

GCN 67.37 ± 1.45 38.06 ± 1.49 28.73 ± 4.73 75.63 ± 5.08 96.25 ± 2.55 60.64 ± 3.47 72.96 ± 1.82 77.56 ± 2.58 7.00 ± 2.91

GAT 61.74 ± 1.97 51.52 ± 0.68 30.94 ± 2.13 66.79 ± 4.73 90.58 ± 2.76 49.57 ± 2.64 58.09 ± 2.14 73.67 ± 1.78 11.75 ± 3.83

Deepwalk 29.03 ± 1.43 16.85 ± 0.45 25.43 ± 1.72 84.89 ± 3.67 99.31 ± 0.48 45.10 ± 3.18 56.58 ± 1.88 68.58 ± 2.60 11.62 ± 4.71

Node2vec 29.21 ± 1.89 16.88 ± 0.44 25.27 ± 2.36 83.53 ± 3.09 99.38 ± 0.45 45.37 ± 3.17 59.15 ± 1.84 69.05 ± 3.00 11.00 ± 4.35

DGI 62.37 ± 3.32 73.46 ± 1.22 31.80 ± 1.45 86.66 ± 4.51 92.49 ± 0.60 61.36 ± 2.91 71.23 ± 2.04 77.51 ± 1.38 7.25 ± 3.59

GRACE 71.86 ± 2.51 OOM OOM 63.78 ± 5.12 99.03 ± 0.30 61.16 ± 2.78 73.43 ± 1.81 77.70 ± 1.81 5.50 ± 4.75

GMI 64.19 ± 1.63 OOM OOM 80.10 ± 4.94 96.61 ± 2.63 58.67 ± 2.68 71.31 ± 1.69 75.51 ± 2.77 9.16 ± 1.57

HGNN 66.60 ± 2.18 OOM OOM 88.28 ± 5.02 92.19 ± 3.84 60.91 ± 2.32 72.90 ± 2.00 76.58 ± 2.86 7.50 ± 3.09

HNHN 63.99 ± 2.21 59.52 ± 1.64 28.99 ± 2.63 91.31 ± 2.47 96.83 ± 1.25 59.02 ± 1.63 68.81 ± 1.26 75.33 ± 1.77 7.50 ± 2.39

AllSet 63.67 ± 1.89 36.58 ± 0.93 21.75 ± 1.67 85.94 ± 3.02 95.70 ± 1.66 56.08 ± 1.95 67.73 ± 1.81 74.11 ± 2.04 10.75 ± 1.08

UniGNN 67.16 ± 2.15 69.98 ± 1.60 33.77 ± 3.22 88.88 ± 3.58 95.12 ± 3.97 59.10 ± 2.76 71.44 ± 1.03 74.37 ± 2.10 7.12 ± 3.09

HyperGCL 58.72 ± 1.54 74.99 ± 1.23 22.86 ± 2.01 74.07 ± 6.06 85.79 ± 8.92 57.54 ± 1.61 74.99 ± 1.33 78.44 ± 3.33 8.87 ± 5.18

Hyper2vec 67.18 ± 1.78 75.82 ± 1.45 OOT 92.52 ± 2.45 96.34 ± 1.34 61.50 ± 2.60 71.79 ± 1.63 77.04 ± 1.51 4.85 ± 2.35

LBSN 22.63 ± 2.20 47.99 ± 0.82 11.56 ± 0.90 86.71 ± 3.71 95.87 ± 2.28 45.43 ± 2.15 59.70 ± 1.31 54.89 ± 2.38 11.87 ± 3.21

TriCL 68.18 ± 1.36 OOM OOM 92.67 ± 2.50 98.10 ± 1.02 59.17 ± 3.35 72.35 ± 1.53 78.57 ± 1.88 4.16 ± 1.95

VilLain 77.16 ± 1.26 79.43 ± 1.63 57.95 ± 2.47 93.66 ± 3.93 99.19 ± 0.41 61.53 ± 3.17 75.03 ± 1.38 78.82 ± 1.47 1.25 ± 0.66

Table 3: VilLain performs overall best on hyperedge prediction (in terms of accuracy), node clustering (in terms of normalized

mutual information), and node retrieval (in terms of mean average precision).

Method

Hyperedge Prediction (Acc.) Node Clustering (NMI) Node Retrieval (MAP)

DB TV AZ PR HG CS CR PM Rank DB TV AZ PR HG CS CR PM Rank DB TV AZ PR HG CS CR PM Rank

Deepwalk 63.9 61.3 69.4 83.8 85.9 69.6 67.2 65.9 6.25 0.7 16.7 7.8 85.2 100.0 14.6 23.9 34.4 5.00 21.3 7.5 27.7 81.6 98.7 27.6 29.2 49.0 6.37

Node2vec 64.2 61.4 69.3 83.2 85.4 70.4 66.9 65.8 6.62 0.9 17.0 7.7 83.5 100.0 14.5 23.8 32.8 5.87 21.6 7.1 27.8 81.1 98.6 27.3 29.4 49.4 6.50

DGI 86.1 83.8 90.8 79.1 84.4 79.2 76.3 80.9 3.75 16.6 44.5 13.0 84.4 73.9 29.1 32.1 31.3 5.62 36.1 37.3 31.1 89.7 97.8 43.8 50.6 61.7 3.25

GRACE 85.4 OOM OOM 80.3 87.4 77.9 74.5 79.1 4.00 43.0 OOM OOM 67.6 98.2 33.0 46.0 31.6 5.00 50.2 OOM OOM 61.4 99.5 41.1 54.2 60.9 4.00

GMI 75.6 OOM OOM 82.4 85.9 74.4 69.4 72.3 5.50 27.8 OOM OOM 84.1 93.1 25.3 42.6 18.7 6.50 34.6 OOM OOM 80.0 97.8 35.9 41.6 55.1 6.33

Hyper2vec 71.2 72.4 OOT 76.4 79.6 78.1 71.7 71.5 6.14 43.4 66.3 OOT 92.5 99.3 34.3 45.5 33.6 2.27 35.5 43.1 OOT 85.7 90.7 41.2 46.7 55.6 4.85

LBSN 48.7 89.1 63.7 79.4 87.1 74.3 69.6 66.1 5.87 1.1 39.4 2.7 85.5 97.8 12.1 29.0 4.6 6.50 21.0 19.1 29.1 81.3 93.2 30.6 40.1 43.5 6.62

TriCL 77.4 OOM OOM 84.0 87.8 82.0 76.7 80.5 2.33 38.0 OOM OOM 87.8 98.7 34.4 44.8 33.7 3.00 45.1 OOM OOM 89.9 97.6 42.4 55.0 61.9 3.16

VilLain 81.6 95.1 94.9 83.2 87.8 82.1 79.0 82.8 1.50 46.6 69.4 35.2 85.7 98.7 34.5 50.4 32.7 2.25 60.2 67.2 53.6 91.3 99.0 46.4 58.0 64.4 1.12

nodes are used as the test set. For un- or self-supervised methods

including VilLain, we evaluate the accuracy of logistic regression

using the embeddings obtained from each method. Table 2 shows

the accuracy of all methods in all datasets. VilLain ranks first on

average, showing the best performance. We conjecture that v-label

propagation inherits rich structural properties and also potential

higher-order structure-label relationships, generating high-quality

representations of nodes.

Hyperedge Prediction. The problem of hyperedge prediction is

formulated as a binary classification task, predicting whether the

given hyperedge is real or fake [30, 48, 76]. Given a set 𝐸 of real

hyperedges, we generate a set 𝐸′ of fake hyperedges with the same

hyperedge size distribution by randomly sampling subsets of nodes.

To obtain the embedding of each hyperedge, we apply maxmin

pooling
6
to the embeddings of the nodes in it. For more training

details on hyperedge prediction, refer to Appendix B.4. As shown

in Table 3, VilLain performs the best on average. We conjecture

that VilLain, which captures potential structure-label relations, is

effective for this task because it indirectly relates to labels due to

the high label homogeneity of real hyperedges.

Node Clustering. For the clustering task, we group nodes into the

number of unique ground-truth labels, applying k-means to the

6
We computemaxmin pooling by: elementwise max pooling - elementwisemin pooling.

An alternative pooling method is compared in Appendix C.8.

learned embeddings. Then, we compute the Normalized Mutual

Information (NMI) to assess the quality of clustering. As shown in

Table 3, VilLain outperforms all baseline methods in terms of aver-

age ranks. This indicates that the embeddings learned by VilLain

exhibit meaningful semantic similarities in their distribution.

Node Retrieval. The problem of node retrieval aims to search for

similar nodes of a given query node, using the learned embeddings.

Specifically, we retrieve nodes based on the cosine similarity be-

tween their embeddings and the embedding of the query node.

Then, we compute the Mean Average Precision (MAP), to measure

the retrieval quality. Intuitively, the retrieval is considered to be suc-

cessful if the nodes of the same class as the query node are highly

ranked. For more details regarding the task, refer to Appendix B.3.

As shown in Table 3, VilLain outperforms baseline methods, with a

large margin. These results imply that v-labels, which are virtual
and learned without any ground-truth node labels, are useful for

finding similar nodes of the same class.

6.3 Ablation Study

In this subsection, we conduct ablation studies to verify the effective-

ness of each component of VilLain by comparing its performance

to that of its variants.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

VilLain: Self-Supervised Learning on Hypergraphs without Features via Virtual Label Propagation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 4: VilLain outperforms its three variants, VilLain-S, VilLain-M, and VilLain-L, in four downstream tasks, implying that

VilLain benefits from (1) propagating v-labels in multiple subspaces, (2) aggregating embeddings from various numbers of

v-labels, and (3) reproducing both local and global structure-label patterns for self-supervision.

Method

Node Classification (Accuracy) Hyperedge Prediction (Accuracy) Node Clustering (NMI) Node Retrieval (MAP)

DB TV AZ PR HG CS CR PM DB TV AZ PR HG CS CR PM DB TV AZ PR HG CS CR PM DB TV AZ PR HG CS CR PM

VilLain-S 69.5 OOM OOM 83.1 96.8 59.9 71.0 77.1 79.7 OOM OOM 79.2 86.4 80.9 75.4 78.9 35.7 OOM OOM 88.4 97.9 21.3 30.3 25.8 45.3 OOM OOM 65.3 98.4 41.4 47.2 60.9

VilLain-M 74.2 75.1 54.8 91.6 98.6 61.1 73.7 78.5 80.7 95.0 94.7 83.0 87.5 82.4 79.0 82.6 43.5 65.4 35.3 87.3 98.8 31.9 46.2 34.7 49.2 46.7 50.4 86.1 98.7 44.0 53.7 62.1

VilLain-L 76.9 79.3 56.7 64.5 97.6 61.9 74.1 78.1 81.4 94.9 94.2 76.6 87.4 82.9 78.8 82.1 42.7 66.6 36.2 64.0 96.6 37.1 43.9 33.0 59.3 66.1 51.6 66.1 97.5 46.5 54.9 63.3

VilLain 77.2 79.4 58.0 93.7 99.2 61.5 75.0 78.8 81.6 95.1 94.9 83.2 87.8 82.1 79.0 82.8 46.6 69.4 35.2 85.7 98.7 34.5 50.4 32.7 60.2 67.2 53.6 91.3 99.0 46.4 58.0 64.4

Table 5: VilLain benefits from the long-range propagation of

v-labels. Increasing both the number of v-label propagation

(𝑘 for loss computation and 𝑘′ for embedding generation)

tends to improve the node classification accuracy.

DB TV AZ PR HG CS CR PM Rank

𝑘 = 1 74.25 78.14 52.16 94.67 99.51 60.48 74.96 78.21 3.00

𝑘 = 2 75.76 78.44 55.09 93.43 99.29 60.17 75.15 78.97 2.62

𝑘 = 4 77.16 79.43 57.95 93.66 99.19 61.53 75.03 78.82 2.25

𝑘 = 8 78.22 80.24 59.12 92.47 98.78 62.05 74.24 79.22 2.12

𝑘′ = 1 64.71 60.60 48.46 96.74 99.58 60.62 74.68 77.94 5.62

𝑘′ = 2 65.29 61.59 49.42 96.36 99.57 60.44 74.70 78.18 5.50

𝑘′ = 4 66.64 63.25 50.52 96.33 99.39 60.54 74.77 78.29 5.00

𝑘′ = 8 67.88 65.08 53.22 93.91 99.26 61.29 75.06 78.75 4.50

𝑘′ = 16 70.83 68.28 54.65 94.49 98.86 61.62 74.86 79.12 3.75

𝑘′ = 32 73.20 72.31 55.80 92.57 98.59 61.96 74.68 79.22 4.00

𝑘′ = 64 76.47 76.77 56.42 94.21 98.50 62.42 74.25 78.98 4.00

𝑘′ = 128 77.62 80.63 57.46 88.68 98.09 63.67 74.41 79.37 3.50

Effectiveness of Multi-V-label Learning.To demonstrate the ef-

fectiveness of using multiple subspaces, we consider two variants of

VilLain: (a) VilLain-S learns 𝑑 v-labels in a single embedding space

and (b) VilLain-M learns ⌈𝑑/𝐷⌉ v-labels in 𝐷 subspaces. In Table 4,

we compare VilLain with its two variants on the four considered

tasks. Regarding VilLain-M, we report the average accuracy when

⌈𝑑/𝐷⌉ = {2, 3, · · · , 8}. We first observe that VilLain-M consistently

outperforms VilLain-S, indicating the effectiveness of the multi-

v-label propagation. Additionally, introducing multiple subspaces

enhances the space complexity, as VilLain-M avoids out-of-memory

issues in large hypergraphs like Amazon and Trivago, in contrast to

VilLain-S. This aligns with our space complexity analysis presented

in Section 5. Furthermore, the superior performance of VilLain

over VilLain-M implies that aggregating embeddings from vari-

ous numbers of v-labels (see Section 6.1 for details) captures more

informative potential structure-label relations.

Effectiveness of Loss Functions. To examine the effectiveness of

the designed loss functions, we consider another variant of VilLain,

VilLain-L, which only uses the local loss L
local

to learn v-label

distributions. As shown in Table 4, VilLain, which jointly optimizes

L
local

and L
global

and thus captures both local and global informa-

tion of the input hypergraph, outperforms VilLain-L, demonstrating

the effectiveness of the proposed loss functions. In Appendix C.3,

we analyze when L
global

is particularly beneficial.

Effects of Long-Range V-label Propagation. To examine the ef-

fects of the long-range propagation of v-labels, we test how the

Table 6: VilLain yields informative embeddings even for

unobserved nodes. Fully observed hypergraphs consist of

the entire set 𝑉 of nodes, whereas partially observed hyper-

graphs only contain the subset 𝑉S ⊆ 𝑉 of nodes after remov-

ing 50% of the hyperedges. Despite a performance decrease

compared to its fully observable settings, VilLain outper-

forms its strongest baseline, TriCL in node classification,

even for the set 𝑉 \𝑉S of nodes are not observed in VilLain

but observed in TriCL during training.

Learning/Node Type DB TV AZ CS CR PM

Fully

Observed
VilLain

𝑉S 78.01 80.03 56.77 62.75 75.43 79.21

𝑉 \𝑉S 66.19 76.07 58.74 57.52 73.46 69.62

Partially

Observed
VilLain

𝑉S 76.45 78.66 53.72 62.49 73.79 77.78

𝑉 \𝑉S 65.86 74.71 55.23 56.42 72.27 69.71

Fully

Observed
TriCL

𝑉S 69.20 OOM OOM 60.83 72.94 78.99

𝑉 \𝑉S 55.11 OOM OOM 53.74 70.02 68.60

number of steps 𝑘 (during loss computation) and 𝑘′ (during embed-

ding generation) affect the performance of VilLain in node classifi-

cation. As shown in Table 5, except for Primary and High, which are

the smallest datasets, adopting long-range propagation of v-labels

is beneficial. In particular, we can see that large datasets (e.g., DBLP,

Trivago, and Amazon) benefit from large 𝑘s and 𝑘′s. This tendency
holds in other tasks (i.e., hyperedge prediction, node clustering, and

node retrieval) as shown in Appendix C.6. This implies that the

higher-order label homogeneity, which VilLain aims to reproduce,

positively affects the performance in downstream tasks.

6.4 Further Analysis of VilLain

In this subsection, we summarize additional experimental results, a

part of which is provided in Appendices C and D. Here, we consider

the node classification task for evaluation, unless otherwise stated.

Scalability of VilLain.We test the scalability of VilLain by mea-

suring its training time. In order to test scalability on larger hy-

pergraphs, we upscale Cora using HyperCL [36] by 2
{5.0,5.5,· · · ,8.0}

times. As seen in Figure 4, VilLain scales linearly with the size of the

hypergraph and also the number of propagation steps. In addition,

the training time decreases with an increased number of subspaces,

which is consistent to our time complexity analysis in Section 5.

Performances on Unobserved Nodes. In Section 5.3, we discussed

how VilLain can generate embeddings for nodes that are not ob-

served during training. Instead of using the original hypergraph

𝐺 = (𝑉 , 𝐸), we evaluate how VilLain, after learning embeddings

for the subset 𝑉S of nodes from a partial hypergraph 𝐺S = (𝑉S, 𝐸S),
effectively generates node embeddings for both sets 𝑉S and 𝑉 \𝑉S

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Slope = 0.97

Slope = 1

Slope = 0.99

Slope = 1
Slope = -0.63

Figure 4: The training time (for 100 epochs) of VilLain is

linear in the hypergraph size (i.e.,

∑
𝑒∈𝐸 |𝑒 |) and the number

of steps of v-label propagation (i.e., 𝑘). The training time de-

creases with respect to the number 𝐷 of subspaces, implying

the efficiency of multi-space v-label propagation which is

consistent with the complexity analysis in Section 5.

of nodes. Indeed, due to the utilization of reduced structural infor-

mation, it is natural to expect a degraded quality of node embed-

dings for both 𝑉S and 𝑉 \ 𝑉S sets of nodes in this scenario. This

degradation is empirically shown in Table 6 in comparison to the

fully-observable setting. However, VilLain outperforms its strongest

baseline, TriCL, across six datasets,
7
even when utilizing partial

hypergraphs with 50% of hyperedges removed. TriCL, on the other

hand, employs complete hypergraphs to learn embeddings for both

sets of nodes. This demonstrates the effectiveness of VilLain in

generating informative embeddings for unobserved nodes, as well

as its robustness to the removed hyperedges.

Performance on Less Homophilic Hypergraphs.While VilLain

is rooted in the insights gained from the observations of higher-

order label homogeneity across various real-world hypergraphs (re-

fer to Section 4), it demonstrates a comparable level of performance

also in less homophilic hypergraphs. In Figure 5, we generated

semi-real hypergraphs by (1) selecting two hyperedges uniformly

at random, and (2) interchanging a single node from each.We repeat

this process {100, 200, · · · , 1000} and {1000, 2000, · · · , 10000} times

in Cora and DBLP, respectively, resulting in hypergraphs with a

diverse range of increased hyperedge entropy (i.e., heterophilicity)

and thus less homophilic. From the results, we can observe that the

node classification accuracies of VilLain in Cora and DBLP degrade

with the degree of heterophilicity in the hypergraph. Nonetheless,

its performance remains superior to that of the two strongest base-

lines, Hyper2vec and TriCL, demonstrating its effectiveness in less

homophilic hypergraphs as well.

Sensitivity of Multi-V-label Parameters. We analyze how the

parameters related to multi-v-label propagation affect the perfor-

mance of VilLain, specifically the number 𝐷 of v-label subspaces

and the number ⌈𝑑/𝐷⌉ of v-labels in each subspace. As we can see

in Figure 6, both the number of subspaces (𝐷) and the number of

v-labels in each subspace (⌈𝑑/𝐷⌉) contribute to the improvement in

embedding quality. Empirically, we find that the number of v-labels

per subspace has a stronger impact on the performance of VilLain.

Additional Experimental Results. Due to the space limit, other

experimental results are provided in Appendix C including (1) use-

fulness as input features, (2) improvements from external node

features, (3) alternative aggregation methods for embedding gener-

ation, and (4) comparisons with graph-modeling-based baselines.

Furthermore, in Appendix D, we develop VilLainB, a space-efficient

7
We did not evaluate on Primary and High. Due to their high density, even removing

90% of their hyperedges did not result in any unobserved nodes.

0.25 0.35 0.45 0.55
Avg. Entropy

0.4
0.5
0.6
0.7

Ac
cu

ra
cy

(a) Cora

0.15 0.25 0.35 0.45
Avg. Entropy

0.4
0.5
0.6
0.7

Ac
cu

ra
cy

(b) DBLP

VilLain
Hyper2vec

TriCL

Figure 5: VilLain consistently outperforms Hyper2vec and

TriCL in node classification across varying levels of average

hyperedge entropy (i.e., heterophilicity).

16 32 64 128
of Subspaces

2

4

8

of

 v
-la

be
l

pe
r S

ub
sp

ac
e 69.96 71.59 72.50 74.17

71.25 74.39 74.27 74.87

74.05 74.40 75.29 74.96

(a) Cora

16 32 64 128
of Subspaces

2

4

8

of

 v
-la

be
l

pe
r S

ub
sp

ac
e 65.33 70.45 73.07 75.51

71.66 74.83 76.29 76.75

73.97 76.03 77.28 77.10

(b) DBLP

Figure 6: Both the number of subspaces (𝐷) and the number

of v-labels in each subspace (⌈𝑑/𝐷⌉) are positively correlated

to the node classification accuracy.

variant of VilLain that generates binary node embeddings for hy-

pergraphs. Empirical results demonstrate its superior performance

compared to baseline methods while requiring only 1/32 of the bits

for encoding the node embedding vectors.

7 CONCLUSIONS, LIMITATIONS, AND

FUTURE DIRECTIONS

In this work, we propose VilLain for self-supervised node represen-

tation learning on hypergraphs. VilLain learns node embeddings

that reproduces higher-order label homogeneity in real-world hy-

pergraphs, without requiring external node labels or features. We

summarize our contributions as follows:

• Empirical Findings:Wediscover the higher-order homogeneity

in real-world hypergraphs, which serves as a guiding principle

in the design of VilLain (Section 4).

• Algorithm Design: We develop VilLain, a node embedding

method for hypergraphs that does not require external informa-

tion such as labels or features. It produces versatile embeddings

that are effective for various tasks (Section 5).

• Extensive Experiments: We demonstrate the overall superi-

ority of VilLain over 15 unsupervised and (semi-)supervised

competitors on eight datasets in four tasks (Section 6).

While higher-order label homogeneity is observed in a majority

of real-world hypergraphs, this may not hold in certain hypergraphs

with heterophilic characteristics. Extending VilLain for heterophilic

hypergraphs, thus, can be a promising future work.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

VilLain: Self-Supervised Learning on Hypergraphs without Features via Virtual Label Propagation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES

[1] Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. 2021.

The surprising power of graph neural networks with random node initialization.

In IJCAI.
[2] Réka Albert and Albert-László Barabási. 2002. Statistical mechanics of complex

networks. Reviews of Modern Physics 74, 1 (2002), 47.
[3] Florian Boudin, Ygor Gallina, and Akiko Aa Aizawa. 2020. Keyphrase Generation

for Scientific Document Retrieval. In ACL.
[4] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein.

2022. Improving graph neural network expressivity via subgraph isomorphism

counting. TPAMI 45, 1 (2022), 657–668.
[5] Shaked Brody, Uri Alon, and Eran Yahav. 2021. How Attentive are Graph Atten-

tion Networks?. In ICLR.
[6] Derun Cai, Chenxi Sun, Moxian Song, Baofeng Zhang, Shenda Hong, and

Hongyan Li. 2022. Hypergraph contrastive learning for electronic health records.

In SDM.

[7] Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca,

Thomas Markovich, Nils Hammerla, Michael M Bronstein, and Max Hansmire.

2023. Graph neural networks for link prediction with subgraph sketching. In

ICLR.
[8] Abhra Chaudhuri, Ayan Kumar Bhunia, Yi-Zhe Song, and Anjan Dutta. 2023.

Data-Free Sketch-Based Image Retrieval. In CVPR.
[9] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.

Simple and deep graph convolutional networks. In ICML. PMLR.

[10] Xu Chen, Siheng Chen, Jiangchao Yao, Huangjie Zheng, Ya Zhang, and Ivor W

Tsang. 2020. Learning on attribute-missing graphs. TPAMI 44, 2 (2020), 740–757.
[11] Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. 2021. You are AllSet:

A multiset function framework for hypergraph neural networks. In ICLR.
[12] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive universal

generalized pagerank graph neural network. In ICLR.
[13] Uthsav Chitra and Benjamin Raphael. 2019. Random walks on hypergraphs with

edge-dependent vertex weights. In ICML.
[14] Philip S Chodrow, Nate Veldt, and Austin R Benson. 2021. Generative hypergraph

clustering: From blockmodels to modularity. Science Advances 7, 28 (2021),

eabh1303.

[15] Hejie Cui, Zijie Lu, Pan Li, and Carl Yang. 2022. On positional and structural

node features for graph neural networks on non-attributed graphs. In CIKM.

[16] Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He, Shuxian Bi, Zhaolin Ding,

and Peng Cui. 2021. On the equivalence of decoupled graph convolution network

and label propagation. InWWW.

[17] Yihe Dong, Will Sawin, and Yoshua Bengio. 2020. HNHN: Hypergraph networks

with hyperedge neurons. arXiv preprint arXiv:2006.12278 (2020).
[18] Dheeru Dua, Casey Graff, et al. 2017. UCI machine learning repository. (2017).

[19] Chi Thang Duong, Thanh Dat Hoang, Ha The Hien Dang, Quoc Viet Hung

Nguyen, and Karl Aberer. 2019. On node features for graph neural networks.

arXiv preprint arXiv:1911.08795 (2019).
[20] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. 2019. Hy-

pergraph neural networks. In AAAI.
[21] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. 2019.

Predict then propagate: Graph neural networks meet personalized pagerank. In

ICLR.
[22] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural message passing for quantum chemistry. In ICML. PMLR.

[23] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable feature learning for

networks. In KDD.
[24] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NeurIPS.
[25] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen

Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets

for machine learning on graphs. In NeurIPS.
[26] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,

and Jure Leskovec. 2020. Strategies for pre-training graph neural networks. In

ICLR.
[27] Jie Huang, Chuan Chen, Fanghua Ye, Jiajing Wu, Zibin Zheng, and Guohui Ling.

2019. Hyper2vec: Biased randomwalk for hyper-network embedding. InDASFAA
Workshops.

[28] Jing Huang and Jie Yang. 2021. Unignn: a unified framework for graph and

hypergraph neural networks. In IJCAI.
[29] Yuchi Huang, Qingshan Liu, and Dimitris Metaxas. 2009. Video object segmen-

tation by hypergraph cut. In CVPR.
[30] Hyunjin Hwang, Seungwoo Lee, Chanyoung Park, and Kijung Shin. 2022. Ahp:

Learning to negative sample for hyperedge prediction. In SIGIR.
[31] TaeHyun Hwang, Ze Tian, Rui Kuangy, and Jean-Pierre Kocher. 2008. Learning

on weighted hypergraphs to integrate protein interactions and gene expressions

for cancer outcome prediction. In ICDM.

[32] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. 1999. Multi-

level hypergraph partitioning: Applications in VLSI domain. VLSI 7, 1 (1999),

69–79.

[33] Eun-Sol Kim, Woo Young Kang, Kyoung-Woon On, Yu-Jung Heo, and Byoung-

Tak Zhang. 2020. Hypergraph attention networks for multimodal learning. In

CVPR.
[34] Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with

graph convolutional networks. In ICLR.
[35] Dongjin Lee and Kijung Shin. 2023. I’m me, we’re us, and I’m us: Tri-directional

contrastive learning on hypergraphs. In AAAI.
[36] Geon Lee, Minyoung Choe, and Kijung Shin. 2021. How do hyperedges overlap

in real-world hypergraphs?-patterns, measures, and generators. In WWW.

[37] Geon Lee, Jihoon Ko, and Kijung Shin. 2020. Hypergraph motifs: concepts,

algorithms, and discoveries. VLDB 13, 11 (2020), 2256–2269.

[38] Seongwon Lee, Suhyeon Lee, Hongje Seong, and Euntai Kim. 2023. Revisiting

Self-Similarity: Structural Embedding for Image Retrieval. In CVPR.
[39] Pan Li, YanbangWang, Hongwei Wang, and Jure Leskovec. 2020. Distance encod-

ing: Design provably more powerful neural networks for graph representation

learning. In NeurIPS.
[40] Zhonghang Li, Chao Huang, Lianghao Xia, Yong Xu, and Jian Pei. 2022. Spatial-

temporal hypergraph self-supervised learning for crime prediction. In ICDE.
[41] Xiaorui Liu, Jiayuan Ding, Wei Jin, Han Xu, Yao Ma, Zitao Liu, and Jiliang Tang.

2021. Graph neural networks with adaptive residual. In NeurIPS.
[42] Rossana Mastrandrea, Julie Fournet, and Alain Barrat. 2015. Contact patterns

in a high school: a comparison between data collected using wearable sensors,

contact diaries and friendship surveys. PloS one 10, 9 (2015), e0136497.
[43] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a feather:

Homophily in social networks. Annual Review of Sociology 27, 1 (2001), 415–444.

[44] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[45] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying recommendations

using distantly-labeled reviews and fine-grained aspects. In EMNLP.
[46] Hoang Nt and Takanori Maehara. 2019. Revisiting graph neural networks: All

we have is low-pass filters. arXiv preprint arXiv:1905.09550 (2019).
[47] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-

metric transitivity preserving graph embedding. In KDD.
[48] Prasanna Patil, Govind Sharma, and M Narasimha Murty. 2020. Negative sam-

pling for hyperlink prediction in networks. In PAKDD.
[49] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. 2020.

Geom-gcn: Geometric graph convolutional networks. In ICLR.
[50] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang

Xu, and Junzhou Huang. 2020. Graph representation learning via graphical

mutual information maximization. InWWW.

[51] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In KDD.
[52] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie

Tang. 2019. NetSMF: Large-scale network embedding as sparse matrix factoriza-

tion. InWWW.

[53] Emanuele Rossi, Henry Kenlay, Maria I Gorinova, Benjamin Paul Chamberlain,

Xiaowen Dong, and Michael M Bronstein. 2022. On the unreasonable effective-

ness of feature propagation in learning on graphs with missing node features. In

LoG. PMLR.

[54] Ryan Rossi and Nesreen Ahmed. 2015. The network data repository with inter-

active graph analytics and visualization. In AAAI.
[55] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. 2021. Random features

strengthen graph neural networks. In SDM. SIAM.

[56] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan

Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[57] Juliette Stehlé, Nicolas Voirin, Alain Barrat, Ciro Cattuto, Lorenzo Isella, Jean-

François Pinton, Marco Quaggiotto, Wouter Van den Broeck, Corinne Régis,

Bruno Lina, et al. 2011. High-resolution measurements of face-to-face contact

patterns in a primary school. PloS one 6, 8 (2011), e23176.
[58] Jiankai Sun, Bortik Bandyopadhyay, Armin Bashizade, Jiongqian Liang, P Sa-

dayappan, and Srinivasan Parthasarathy. 2019. Atp: Directed graph embedding

with asymmetric transitivity preservation. In AAAI.
[59] Shuo Sun, Suzanna Sia, and Kevin Duh. 2020. Clireval: Evaluating machine

translation as a cross-lingual information retrieval task. In ACL.
[60] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph attention Networks. In ICLR.
[61] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,

and R Devon Hjelm. 2019. Deep graph infomax. In ICLR.
[62] Changlin Wan, Muhan Zhang, Wei Hao, Sha Cao, Pan Li, and Chi Zhang. 2021.

Principled hyperedge prediction with structural spectral features and neural

networks. arXiv preprint arXiv:2106.04292 (2021).
[63] Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. 2022. Equivariant and

stable positional encoding for more powerful graph neural networks. In ICLR.
[64] Tianxin Wei, Yuning You, Tianlong Chen, Yang Shen, Jingrui He, and Zhangyang

Wang. 2022. Augmentations in hypergraph contrastive learning: Fabricated and

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

generative. In NeurIPS.
[65] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. 2019. Simplifying graph convolutional networks. In ICML. PMLR.

[66] Xiangping Wu, Qingcai Chen, Wei Li, Yulun Xiao, and Baotian Hu. 2020.

AdaHGNN: Adaptive hypergraph neural networks for multi-label image classifi-

cation. In MM.

[67] Lianghao Xia, Chao Huang, Yong Xu, Jiashu Zhao, Dawei Yin, and Jimmy Huang.

2022. Hypergraph contrastive collaborative filtering. In SIGIR.
[68] Lianghao Xia, Chao Huang, and Chuxu Zhang. 2022. Self-supervised hypergraph

transformer for recommender systems. In KDD.
[69] Xin Xia, Hongzhi Yin, Junliang Yu, Qinyong Wang, Lizhen Cui, and Xiangliang

Zhang. 2021. Self-supervised hypergraph convolutional networks for session-

based recommendation. In AAAI.
[70] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful

are graph neural networks?. In ICLR.
[71] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand

Louis, and Partha Talukdar. 2019. HyperGCN: a new method of training graph

convolutional networks on hypergraphs. In NeurIPS.
[72] Naganand Yadati, Vikram Nitin, Madhav Nimishakavi, Prateek Yadav, Anand

Louis, and Partha Talukdar. 2020. Nhp: Neural hypergraph link prediction. In

CIKM.

[73] Dingqi Yang, Bingqing Qu, Jie Yang, and Philippe Cudre-Mauroux. 2019. Revis-

iting user mobility and social relationships in lbsns: a hypergraph embedding

approach. In WWW.

[74] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-

supervised learning with graph embeddings. In ICML. PMLR.

[75] Jaemin Yoo, Hyunsik Jeon, Jinhong Jung, and U Kang. 2022. Accurate node

feature estimation with structured variational graph autoencoder. In KDD.
[76] Se-eun Yoon, Hyungseok Song, Kijung Shin, and Yung Yi. 2020. How much and

when do we need higher-order information in hypergraphs? a case study on

hyperedge prediction. InWWW.

[77] Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. 2021.

Identity-aware graph neural networks. In AAAI.
[78] Seongjun Yun, Seoyoon Kim, Junhyun Lee, Jaewoo Kang, and Hyunwoo J Kim.

2021. Neo-gnns: Neighborhood overlap-aware graph neural networks for link

prediction. In NeurIPS.
[79] Junwei Zhang, Min Gao, Junliang Yu, Lei Guo, Jundong Li, and Hongzhi Yin. 2021.

Double-scale self-supervised hypergraph learning for group recommendation.

In CIKM.

[80] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural

networks. In NeurIPS.
[81] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. 2021. Labeling

trick: A theory of using graph neural networks for multi-node representation

learning. In NeurIPS.
[82] Ruochi Zhang, Yuesong Zou, and Jian Ma. 2020. Hyper-SAGNN: a self-attention

based graph neural network for hypergraphs. In ICLR.
[83] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. 2006. Learning with

hypergraphs: Clustering, classification, and embedding. In NeurIPS.
[84] Yu Zhu, Ziyu Guan, Shulong Tan, Haifeng Liu, Deng Cai, and Xiaofei He. 2016.

Heterogeneous hypergraph embedding for document recommendation. Neuro-
computing 216 (2016), 150–162.

[85] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.

Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131
(2020).

[86] Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. 2021.

Neural bellman-ford networks: A general graph neural network framework for

link prediction. In NeurIPS.

A DETAILS ON TIME/SPACE COMPLEXITY

In this section, we provide details on the time and space complexity

analysis provided in Section 5.

A.1 Details on Time Complexity

Time complexity for v-label propagation. Sincewe adoptmean-

pooling aggregation of
𝑑
𝐷

v-labels for both nodes and hyperedges

in each subspace, it takes 𝑂

(
𝑑
𝐷

∑
𝑒∈𝐸 |𝑒 |

)
. Thus, for 𝐷 subspaces,

it takes:

𝑂

(
𝑑

∑︁
𝑒∈𝐸

|𝑒 |
)
time (8)

for each step of propagation.

Time complexity for loss computation. In VilLain, there are

three losses, L
local

, J
cls
, and J

dst
that are computed to optimize X̃.

• For L
local

, the entropy of the assignment over
𝑑
𝐷

v-labels at each

node and each hyperedge at each step needs to be computed, and

this takes 𝑂

(
𝑑
𝐷
(|𝑉 | + |𝐸 |)

)
time for each subspace. Thus, for 𝐷

subspaces, it takes:

𝑂 (𝑑 (|𝑉 | + |𝐸 |)) time (9)

for each propagation step.

• For J
cls
, the entropy of the global assignment over

𝑑
𝐷

v-labels

needs to be computed at each step, and this takes𝑂

(
𝑑
𝐷
(|𝑉 | + |𝐸 |)

)
time for each subspace. Thus, for 𝐷 subspaces, it takes:

𝑂 (𝑑 (|𝑉 | + |𝐸 |)) time (10)

for each propagation step.

• For J
dst

, x̄(ℓ)
1

, · · · , x̄(ℓ)
𝑑/𝐷 and ȳ(ℓ)

1
, · · · , ȳ(ℓ)

𝑑/𝐷 are required, and it

takes 𝑂

((
𝑑
𝐷

)
2

|𝑉 |
)
time and 𝑂

((
𝑑
𝐷

)
2

|𝐸 |
)
time, respectively, to

compute them for each subspace. Thus, for 𝐷 subspaces, it takes:

𝑂

(
𝑑2

𝐷
(|𝑉 | + |𝐸 |)

)
time (11)

for each propagation step.

Thus, from Eq. (8)-(11), the time complexity including (a) v-label

propagation and (b) loss computation is:

𝑂

(
𝑘𝑑

∑︁
𝑒∈𝐸

|𝑒 | + 𝑘𝑑2

𝐷
(|𝑉 | + |𝐸 |)

)
.

Time complexity for embedding generation.To generate node

embeddings using Eq. (3), which requires the mean-pooling propa-

gation of v-labels for 𝑘′ steps, it takes:

𝑂
(
𝑘′𝑑 (|𝑉 | + |𝐸 |)

)
time.

A.2 Details on Space Complexity

Space complexity for v-label propagation. During its v-label

propagation, VilLain stores assignment matrices of nodes X(ℓ)

and hyperedges Y(ℓ)
of

𝑑
𝐷

v-labels in 𝐷 subspaces which requires:

𝑂 (𝑘𝑑 (|𝑉 | + |𝐸 |)) space

for ℓ = 1, · · · , 𝑘 steps.

Space complexity for loss computation. The losses L (ℓ)
local

and

J (ℓ)
cls

at the ℓ th step can be computed directly from X(ℓ)
and Y(ℓ)

,

without requiring additional storage space. On the other hand, to

compute J (ℓ)
dst

at the ℓ th step, x̄(ℓ)
1

and ȳ(ℓ)
1

are used, which are

computed based on the pairwise cosine similarity between 𝑑/𝐷
v-labels, requiring 𝑂

(
𝑑2

𝐷
(|𝑉 | + |𝐸 |)

)
space for 𝐷 subspaces. Thus,

the total space required for ℓ = 1, · · · , 𝑘 steps is;

𝑂

(
𝑘𝑑2

𝐷
(|𝑉 | + |𝐸 |)

)
.

Note that unlike GNN-based methods [17, 20], VilLain does not

have any additional learnable parameters in each layer.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

VilLain: Self-Supervised Learning on Hypergraphs without Features via Virtual Label Propagation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Space complexity for embedding generation.To generate node

embeddings,X(ℓ)
and hyperedge embeddings Y(ℓ)

for ℓ = 1, · · · , 𝑘′
steps are used, and thus 𝑂 (𝑘′𝑑 (|𝑉 | + |𝐸 |)) space is required.

B DETAILS ON EXPERIMENTAL SETTINGS

Here, we provide detailed information on experimental settings.

B.1 Details of Datasets

The statistics of the datasets we used are shown in Table 1.

Preprocessing For all datasets, we use the largest connected com-

ponent of the original hypergraph. We process the huge Amazon

by remaining nodes that are from the 10 most frequently appeared

labels. Then, we randomly sample 1% of the nodes from each label.

Ground-truth labels Here, we provide how the ground-truth la-

bels of each dataset are assigned. In Primary and High, each node

is a person (e.g., student or teacher), and each hyperedge indicate a

group interaction among them. If a person is a teacher, then he or

she is labeled as a teacher. Otherwise, students are labeled based

on the classroom they belong to. In Citeseer, Cora, and Pubmed,

which are co-citation hypergraphs, each node is a paper and each

hyperedge is a paper that cited the paper. In these hypergraphs,

nodes are assigned by their categories. In DBLP, which is a collabo-

ration hypergraph, each node is a paper and each hyperedge is the

set of papers written by the same author. Nodes are labeled by their

categories. In Trivago, each node is a hotel and each hyperedge is a

set of hotels that were clicked in aWeb browsing session. Each node

is labeled by the location, specifically, the country where the hotel

is located. In Amazon, each node is a product, and each hyperedge

is a set of products that were co-purchased. Labels of the nodes are

assigned by the product categories.

B.2 Baselines & Hyperparameters

In this subsection, we discuss the hyperparameters that are used

for each method. The implementations we used to run baseline

methods are listed in Table 7. Since we consider the unsupervised

setting, specifically, without using any labels, the models used for

evaluation should be selected without validating on hold-out la-

beled data. Thus, for unsupervised baseline methods, we either

used their default hyperparameter settings or try to find the set-

tings that generally work well across all datasets. However, for

(semi-)supervised methods, we use the validation set to tune their

hyperparameters.

In VilLain, we fix the number of propagation steps for training

to 𝑘 = 4, and for inference, we use 𝑘′ = 10 for small datasets (i.e.,

Primary, High, Cora, Citeseer, Pubmed) and 𝑘′ = 100 for large

datasets (i.e., DBLP, Amazon, and Trivago). The learning rate is

fixed to 0.01, and the explained variance ratio of the PCA used in

VilLain is fixed to 0.99, throughout the experiments.

For Deepwalk [51] and Node2vec [23], we use the default hy-

perparameters. Specifically, we set the number of walks to 10, the

length of each walk to 80, the window size to 5, and the learning

rate to 0.05. For 𝑝 and 𝑞 in Node2vec, we use 1 for both.

For DGI [61], we use the PReLu for the activation function and

set the learning rate to 0.001, as given as default.

For GRACE [85], we use the ReLU for the activation function

and the number of GCN layers is set to 2. The learning rate and

Table 7: Open source links to the baseline source codes.

Method Github Link

GCN https://pytorch-geometric.readthedocs.io

GAT https://pytorch-geometric.readthedocs.io

Deepwalk https://github.com/benedekrozemberczki/karateclub

Node2vec https://github.com/benedekrozemberczki/karateclub

DGI https://github.com/PetarV-/DGI

GRACE https://github.com/CRIPAC-DIG/GRACE

GMI https://github.com/zpeng27/GMI

HGNN https://github.com/iMoonLab/HGNN

HNHN https://github.com/twistedcubic/HNHN

AllSet https://github.com/jianhao2016/AllSet

UniGNN https://github.com/OneForward/UniGNN

HyperGCL https://github.com/weitianxin/HyperGCL

Hyper2vec https://github.com/jeffhj/NHNE

TriCL https://github.com/wooner49/TriCL

the weight decay rate are set to 0.001 and 0.00001, respectively.

Regarding augmentations (e.g., edge drop and feature drop), all

rates are set to 0.2. The dimension of the projection head is set to

be the same as the hidden dimension.

For GMI [50], we use the PReLU for the activation function. The

learning rate is set to 0.001 without weight decaying. There are

three additional hyperparameters 𝛼 , 𝛽 , and 𝛾 that determine the

weights of the local and global mutual information, and they are

set to 𝛼 = 0.8, 𝛽 = 1.0, and 𝛾 = 1.0, as the default values provided

by the authors.

For HyperGCL [64], we use their default hyperparameters. The

number of epochs is set to 500, the augmentation ratio is set to 0.3,

the temperature is set to 0.3, and the dropout rate is set to 0.2.

For Hyper2vec [27], we use their default hyperparameters. The

number of walks is set to 10 and the length of each walk is set to

20. The size of the window is 5 and two additional parameters 𝑝

and 𝑞 are both set to 1.

For LBSN [73], the number of negative samples and the learning

rate are set to 10 and 0.01, respectively.

For TriCL [35], we set the number of GCN layers to 1 since

it was given as default hyperparameters for most datasets. The

learning rate and the weight decaying rate are set to 0.0005 and

0.00001, respectively. Regarding the data augmentation, the drop

rates for node features and the incidence matrix are both set to 0.4.

Three temperature hyperparameters, 𝜏𝑛 , 𝜏𝑔 , and 𝜏𝑚 are all set to

0.5, and two weight hyperparameters𝑤𝑔 and𝑤𝑚 are set to 4 and 1,

respectively.

B.3 Node Retrieval Protocol

To perform the node retrieval task, we sample min(|𝑉 |, 1000) query
nodes from the hypergraph uniformly at random. For each query

node, we rank the nodes, excluding the query node, based on the

cosine similarity between their learned embeddings and the that

of the query node. Then, we measure the Mean Average Precision

(MAP), which is commonly employed in information retrieval tasks

(e.g., computer vision [8, 38] or natural language processing [3, 59]).

Here, we define nodes with labels same as that of the query node as

the ground-truth. Thus, the MAP yields a higher score when nodes

belonging to the same class as the query node are ranked highly.

11

https://pytorch-geometric.readthedocs.io
https://pytorch-geometric.readthedocs.io
https://github.com/benedekrozemberczki/karateclub
https://github.com/benedekrozemberczki/karateclub
https://github.com/PetarV-/DGI
https://github.com/CRIPAC-DIG/GRACE
https://github.com/zpeng27/GMI
https://github.com/iMoonLab/HGNN
https://github.com/twistedcubic/HNHN
https://github.com/jianhao2016/AllSet
https://github.com/OneForward/UniGNN
https://github.com/weitianxin/HyperGCL
https://github.com/jeffhj/NHNE
https://github.com/wooner49/TriCL

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 8: The number of label propagation steps required

for the average entropy of the hyperedges in the real-world

hypergraphs to reach 𝜖 of that of the hyperedges in the ran-

domized hypergraphs.

PR HG CS CR PM DB TV AZ

𝜖 = 0.9 6 15 140 31 16 832 812 22

𝜖 = 0.99 15 34 456 102 43 2,813 2,234 47

𝜖 = 0.999 22 47 ∞ 161 70 4,046 3,409 59

B.4 Hyperedge Prediction Protocol

To perform the hyperedge prediction task, we first split the orig-

inal hypergraph 𝐺 = (𝑉 , 𝐸) into two sub-hypergraphs 𝐺train =

(𝑉train, 𝐸train) and 𝐺test = (𝑉test, 𝐸test) where 𝐸 = 𝐸train ∪ 𝐸test and

𝐸train ∩ 𝐸test = ∅. We also ensure that all nodes are contained in

𝐺train (i.e., 𝑉train = 𝑉) so that embeddings of all nodes in 𝐺 are

learned. Given a train ratio 𝛾 , we set the number of hyperedges

in 𝐺train and 𝐺test to be divided based on it, i.e., |𝐸train | : |𝐸test | =
𝛾 : 1 − 𝛾 . Specifically, we set 𝛾 = 0.80 for all datasets except for

Amazon, which is relatively very sparse, and thus we set 𝛾 = 0.95.

Once we obtain node embeddings of all nodes 𝑉 , we generate

sets of fake hyperedges 𝐸fake
train

and 𝐸fake
test

as counterparts of true

hyperedges 𝐸train and 𝐸test. Specifically, for each true hyperedge

𝑒 ∈ 𝐸train (or 𝐸test), we randomly sample |𝑒 | nodes from 𝑉 and

create 𝑒′ ∈ 𝐸fake
train

(or 𝐸fake
test

). Then, a logistic regression classifier is

trained on the 𝐸train ∪ 𝐸fake
train

and the performance of the hyperedge

prediction is evaluated on 𝐸test ∪ 𝐸fake
test

.

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional experimental results that are

not covered in the main context.

C.1 Higher-Order Homogeneity

We examine the number of steps of label propagation required

for the average entropy of the hyperedges in the real-world hy-

pergraphs to reach 𝜖 of that of the hyperedges in the randomized

hypergraphs. For example, it requires 3,409 steps of label prop-

agation to reach 0.999 of the average entropy of random hyper-

graphs, as shown in Table 8. These results support Observation 2,

i.e., real-world hypergraphs exhibit not only the hyperedge-level

label homogeneity but also the higher-order homogeneity.

C.2 Full Results

We provide the full results on the three considered downstream

tasks: node classification (Table 16), hyperedge prediction (Ta-

ble 17), node clustering (Table 18), and node retrieval (Table 19).

In these tables, we include the results of the space-efficient ver-

sion, VilLainB (see Appendix D). For VilLainB, we consider two

variants, VilLain
128

B
and VilLain

256

B
, which generate binary embed-

dings that cost 128 and 256 bits, respectively, for each embedding

vector. We set the number of v-labels in each subspace to 4 for

both variants. Note that VilLain
128

B
and VilLain

256

B
require only

1/32 and 1/16 of the space used by the other methods, respectively.

We include the standard deviation in the tables. In node classifica-

tion, hyperedge prediction, and node retrieval tasks, on average,

Table 9: Density (i.e., |𝐸 |/|𝑉 |) and overlapness (i.e.,∑
𝑒∈𝐸 |𝑒 |/|𝑉 |) of each dataset. Primary exhibits exceptionally

high density and overlapness compared to other datasets.

PR HG CS CR PM DB TV AZ

Density 52.495 23.908 0.803 1.130 2.079 0.522 1.350 0.122

Overlapness 126.979 55.633 2.755 3.457 9.049 2.510 4.207 1.622

Table 10: VilLain benefits from input node features in node

classification. When utilizing node features, it ranks highest

on average among its feature-requiring baselines across four

datasets where node features are provided.

Method DBLP Citeseer Cora Pubmed Rank

GCN 84.45 ± 1.25 64.60 ± 3.00 76.06 ± 2.29 74.92 ± 2.90 5.25 ± 2.62

GAT 77.07 ± 1.63 50.39 ± 3.40 59.79 ± 2.08 73.96 ± 2.13 11.00 ± 1.15

DGI 85.64 ± 1.13 68.53 ± 2.91 77.50 ± 2.04 75.62 ± 2.82 3.50 ± 2.38

GRACE 85.63 ± 1.05 61.33 ± 2.78 71.16 ± 1.81 77.47 ± 1.57 5.75 ± 3.30

GMI 80.85 ± 1.49 57.09 ± 2.68 74.73 ± 1.69 76.38 ± 2.21 8.00 ± 2.44

HGNN 84.36 ± 1.70 64.28 ± 2.53 75.63 ± 1.39 76.63 ± 2.44 5.00 ± 0.81

HNHN 74.44 ± 1.98 58.53 ± 3.31 67.87 ± 3.51 69.38 ± 3.47 10.75 ± 1.25

AllSet 83.67 ± 1.53 57.88 ± 3.14 70.07 ± 3.23 75.24 ± 2.93 9.00 ± 1.15

UniGNN 84.22 ± 1.57 63.79 ± 3.72 74.44 ± 2.50 76.99 ± 2.82 5.75 ± 1.89

HyperGCL 76.12 ± 6.04 63.30 ± 2.11 73.01 ± 3.68 82.62 ± 3.25 6.75 ± 4.19

TriCL 86.59 ± 0.88 64.53 ± 3.17 79.03 ± 0.63 76.60 ± 1.71 2.75 ± 2.06

VilLain 85.68 ± 0.85 68.77 ± 1.82 76.54 ± 1.44 78.25 ± 2.41 2.00 ± 0.81

VilLain and VilLainB show the best performance. In the node clus-

tering task, VilLain show the second-best performance. Notably,

VilLain
128

B
and VilLain

256

B
, which require substantially less num-

ber of bits for embeddings than the other, highly rank on average.

Moreover, it is worthwhile to notice that the proposed methods

outperform (semi-)supervised methods (e.g., HGNN and AllSet),

which are trained specifically for the node classification task. We

conjecture that v-label propagation inherits rich structural proper-

ties and also potential higher-order structure-label relationships,

generating high-quality representations of nodes.

C.3 When Lglobal is Important

As shown in Table 4 in Section 6.3, VilLain outperforms VilLain-L

in most datasets. Notably, this performance advantage is particu-

larly significant in Primary, and in this subsection, we analyze the

reasons behind this improvement and explore when the inclusion

of L
global

is particularly beneficial. We hypothesize that VilLain-L

faces difficulty in learning distinctive v-label distributions, with

a single v-label accounting for nearly 100% of nodes in Primary,

regardless of the predefined number of v-labels. This challenge may

arise due to the dataset’s unique characteristic of densely connected

nodes. This is supported by the measured density (i.e., |𝐸 |/|𝑉 |) and
overlapness (i.e.,

∑
𝑒∈𝐸 |𝑒 |/|𝑉 |) of the hypergraphs in Table 9.

C.4 Improvements from Node Features

External node features, if available, are useful and typically enhance

method performance. VilLain can be extended to incorporate node

features by introducing |𝑉 | additional hyperedges, where each hy-

peredge is a group of the 𝑘-nearest neighbors of each node based

on cosine similarity between node features. Then, it learns v-label

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

VilLain: Self-Supervised Learning on Hypergraphs without Features via Virtual Label Propagation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 11: The average accuracy over all feature-requiring methods (e.g., GCN, HGNN, and TriCL) using different input features.

Hyper2vec is the most useful input feature, compared to learnable embeddings and Node2vec.

Method DBLP Trivago Amazon Primary High Citeseer Cora Pubmed Rank

Learnable 21.87 ± 3.72 6.75 ± 6.64 13.88 ± 5.73 61.71 ± 24.20 74.19 ± 31.24 41.73 ± 9.26 44.80 ± 13.02 55.11 ± 11.28 2.87 ± 0.33

Node2vec 36.21 ± 5.07 25.11 ± 11.47 26.63 ± 5.75 81.87 ± 10.21 95.97 ± 4.92 53.37 ± 4.18 54.81 ± 6.48 71.32 ± 5.34 1.62 ± 0.48

Hyper2vec 63.63 ± 6.06 55.51 ± 23.03 OOT 81.79 ± 11.54 92.60 ± 6.48 57.94 ± 3.27 70.05 ± 3.93 74.60 ± 4.85 1.28 ± 0.45

Table 12: HGNN and TriCL yield unsatisfactory performance with learnable features and random features, while input features

learned by Hyper2vec demonstrate significantly better accuracy. VilLain outperforms them by a large margin.

Method DBLP Primary High Citeseer Cora Pubmed Rank

HGNN

Learnable Features 21.47 ± 2.28 76.71 ± 3.36 79.58 ± 3.48 42.34 ± 2.11 43.02 ± 2.33 54.66 ± 2.76 4.67 ± 0.47

Random Features 21.24 ± 1.91 78.43 ± 2.36 83.12 ± 3.65 43.04 ± 3.39 43.26 ± 2.44 54.41 ± 3.46 4.33 ± 0.47

Hyper2vec 66.60 ± 2.18 88.28 ± 5.02 92.19 ± 3.84 60.91 ± 2.32 72.90 ± 2.00 76.58 ± 2.86 2.67 ± 0.45

TriCL

Learnable Features 19.31 ± 1.11 31.86 ± 2.64 30.34 ± 3.75 24.94 ± 1.62 25.10 ± 2.22 38.74 ± 2.25 6.50 ± 0.50

Random Features 18.96 ± 1.20 31.84 ± 3.49 38.33 ± 4.42 25.89 ± 2.28 24.29 ± 1.74 39.69 ± 1.93 6.50 ± 0.50

Hyper2vec 68.18 ± 1.36 92.67 ± 2.50 98.10 ± 1.02 59.17 ± 3.35 72.35 ± 1.53 78.57 ± 1.88 2.33 ± 0.45

VilLain 77.16 ± 1.26 93.66 ± 3.93 99.19 ± 0.41 61.53 ± 3.17 75.03 ± 1.38 78.82 ± 1.47 1.00 ± 0.00

distributions on an augmented hypergraph with |𝑉 | nodes and
|𝑉 | + |𝐸 | hyperedges. As shown in Table 10, VilLain benefits from

using node features, outperforming its feature-requiring baselines

in terms of average ranks when using 𝑘 = 3.

We would like to emphasize that our simple approach to utilizing

external node features is distinguished from how other baseline

methods utilize them (i.e., projecting and propagating them through

edges), potentially making it a suboptimal choice. However, it is

crucial to note that VilLain is primarily designed for scenarios

where node features are unavailable and thus is tailored to perform

best in such cases. Furthermore, it is important to note that in

our other experiments, we used topological node features obtained

through Hyper2vec, instead of external features for the baselines

that require input node features.

C.5 Usefulness as Input Features

We evaluate the usefulness of the methods as an input of the feature-

requiring methods (i.e., GCN, GAT, DGI, GRACE, GMI, HGNN,

HNHN, AllSet, UniGNN, HyperGCL, and TriCL). Specifically, we

train these models using three different input features including

a learnable one, which is trained together with the models. As

shown in Table 11, using Hyper2vec yields the best accuracy in

node classification, and thus we use their embeddings for input

features of feature-requiring methods.

In addition, in Table 12, we present a comparison of node classi-

fication accuracies of HGNN and TriCL, which are semi-supervised

and self-supervised GNN methods for hypergraphs, respectively.

We utilize different input features across the considered datasets,

except for those that result in out-of-memory issues. We can see

that GNNs with learnable features and random features yield unsat-

isfactory performance, while input features learned by Hyper2vec

demonstrate significantly better accuracy. Most importantly, Vil-

Lain outperforms them by a large margin.

C.6 Effects of Long-Range V-label Propagation

To examine the effects of the long-range propagation of v-labels,

we test how the number of steps 𝑘 (during training) and 𝑘′ (during
inference) affect the performance of VilLain in the three considered

tasks in Tables 20 and 21, respectively. Except for Primary and High,

which are the smallest datasets, adopting long-range propagation

of v-labels is beneficial for node classification, node retrieval, and

hyperedge prediction. In particular, we can see that large datasets

(e.g., DBLP, Trivago, and Amazon) benefit from large 𝑘s and 𝑘′s.

C.7 Aggregation Method for Embedding

Generation

As discussed in Section 5.1, we aggregate embeddings obtained

with various numbers of v-labels. While the aggregation method is

flexible, we concatenate embeddings obtained using different num-

bers of v-labels, specifically, for each number ⌈ 𝑑
𝐷
⌉ ∈ {2, 3, · · · , 8}

of v-labels, we learn 𝐷 subspaces and then perform PCA to ensure

that the final embedding is of the target dimension 𝑑 . In Table 13,

we compare the performance with VilLain when applying mean-

pooling, instead of PCA, to the embeddings from different v-label

numbers, for the embedding aggregation. Across three different

downstream tasks, the concatenate-then-PCA outperforms mean-

pooling on average.

C.8 Hyperedge Embedding Method for

Hyperedge Prediction

To obtain the embedding of each hyperedge, we apply maxmin

pooling, i.e., elementwise max pooling - elementwise min pool-

ing, to the embeddings of the nodes in it. In Table 14, we test the

effectiveness of maxmin pooling compared to mean pooling for

hyperedge prediction. For both VilLain and TriCL [35], which is

the strongest baseline, maxmin pooling is more effective than mean

pooling across all datasets.

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Table 13: To aggregate embeddings obtained from various numbers of v-labels in each subspace, concatenating the embeddings

and applying PCA (PCA) outperforms averaging the embeddings (mean) in the three considered downstream tasks.

Method DBLP Trivago Amazon Primary High Citeseer Cora Pubmed Rank

N
C
S

Mean 74.56 ± 1.14 77.23 ± 1.35 56.36 ± 2.23 93.88 ± 3.94 98.95 ± 0.70 62.70 ± 2.78 74.38 ± 1.31 79.03 ± 1.64 1.62 ± 0.48

PCA 77.16 ± 1.26 79.43 ± 1.63 57.95 ± 2.47 93.66 ± 3.93 99.19 ± 0.41 61.53 ± 3.17 75.03 ± 1.38 78.82 ± 1.47 1.37 ± 0.48

H
P Mean 80.37 ± 0.97 95.11 ± 0.55 94.81 ± 0.37 82.40 ± 0.89 87.21 ± 0.67 82.66 ± 0.95 79.44 ± 0.57 83.10 ± 0.70 1.62 ± 0.48

PCA 81.61 ± 0.52 95.12 ± 0.37 94.91 ± 0.36 83.19 ± 0.56 87.79 ± 0.68 82.08 ± 1.42 78.95 ± 0.79 82.79 ± 0.79 1.37 ± 0.48

N
C
T Mean 46.32 ± 1.36 65.77 ± 0.32 34.77 ± 0.50 85.90 ± 1.30 98.72 ± 0.00 34.04 ± 0.86 48.38 ± 0.95 32.62 ± 0.02 1.75 ± 0.43

PCA 46.58 ± 0.62 69.35 ± 0.32 35.24 ± 0.48 85.67 ± 1.88 98.72 ± 0.00 34.53 ± 0.45 50.38 ± 2.25 32.73 ± 0.00 1.12 ± 0.22

N
R Mean 49.35 ± 0.00 43.84 ± 0.00 51.26 ± 0.72 86.68 ± 0.00 98.78 ± 0.00 43.95 ± 0.10 52.76 ± 0.30 63.12 ± 0.37 2.00 ± 0.00

PCA 60.15 ± 0.55 67.23 ± 0.72 53.64 ± 0.47 91.26 ± 0.00 98.99 ± 0.00 46.37 ± 0.00 57.96 ± 0.07 64.43 ± 0.07 1.00 ± 0.00

Table 14: To obtain the embedding of each hyperedge, maxmin-pooling is more effective than mean-pooling in all datasets in

both VilLain and TriCL (the strongest considered baseline method).

Method DBLP Trivago Amazon Primary High Citeseer Cora Pubmed Rank

VilLain

Mean 52.55 ± 1.13 59.36 ± 1.52 64.99 ± 2.34 57.54 ± 1.79 56.83 ± 1.81 54.03 ± 2.20 56.89 ± 2.38 57.56 ± 0.99 2.00 ± 0.00

Maxmin 81.61 ± 0.52 95.12 ± 0.37 94.91 ± 0.36 83.19 ± 0.56 87.79 ± 0.68 82.08 ± 1.42 78.95 ± 0.79 82.79 ± 0.79 1.00 ± 0.00

TriCL

Mean 53.60 ± 0.89 OOM OOM 63.84 ± 0.97 59.29 ± 1.08 61.33 ± 2.40 68.28 ± 1.50 59.69 ± 1.34 2.00 ± 0.00

Maxmin 77.40 ± 0.68 OOM OOM 83.00 ± 0.63 87.78 ± 0.52 81.96 ± 0.91 76.69 ± 0.70 80.45 ± 0.75 1.00 ± 0.00

0 500 1000 1500 2000
Training Epoch

2

3

4

5

Lo
ca

l L
os

s

2

1

Gl
ob

al
 L

os
s

(a) L
local

and L
global

0 500 1000 1500 2000
Training Epoch

2.5

5.0

7.5

10.0

12.5

Lo
ca

l L
os

s

(b) L
local

0 500 1000 1500 2000
Training Epoch

4

2
Gl

ob
al

 L
os

s

(c) L
global

L = 2

L = 3

L = 4

L = 5

Figure 7: Losses with respect to training epochs in VilLain. (a) The two losses L
local

and L
global

are jointly optimized in VilLain.

(b) Optimization with smaller numbers of v-labels is easier to optimize L
local

. (c) On the other hand, optimization with larger

numbers of v-labels is easier to optimize L
global

.

Table 15: VilLain, applied to hypergraphs, outperforms the recent graph-based baseline methods (i.e., GATv2, GCNII, and

GPRGNN) across benchmark graph datasets.

Graph Type Model Cora Citeseer Pubmed Avg. Rank

Graph

GATv2 70.58 ± 1.4 52.76 ± 2.4 72.92 ± 2.9 3.33 ± 0.47

GCNII 71.37 ± 2.4 56.47 ± 1.6 74.63 ± 2.0 2.00 ± 0.00

GPRGNN 69.60 ± 2.0 56.38 ± 2.2 71.44 ± 1.6 3.66 ± 0.47

Hypergraph VilLain 75.03 ± 1.38 61.53 ± 3.17 78.82 ± 1.47 1.00 ± 0.00

C.9 Comparison with Graph-Modeling-Based

Methods

In Section 6, we applied GNNs to pairwise graphs which are trans-

formed from hypergraphs. For this transformation, we adopted

clique expansion, which is a popular approach to transform hy-

pergraphs into graphs [72, 83, 84]. However, such clique-expanded

graphs are often different from graphs conventionally used for

GNN benchmarks. Specifically, for the citation datasets (e.g., Cora,

Pubmed, and Citeseer), each edge joins co-cited graphs in clique-

expanded graphs, while each edge in GNN-benchmark graphs joints

a pair of citing and cited papers. Thus, we evaluate the performance

of well-established GNN models, specifically GATv2 [5], GCNII [9],

and GPRGNN [12], when applied to the original structures of the

graph datasets. We consider the setting without features, which our

paper focuses on and thus use embeddings obtained from Node2vec

as their input features. As shown in Table 15, VilLain outperforms

GNN competitors in node classification, even when they use graphs

modeled with the same semantics as hypergraphs, instead of clique

expansion. This demonstrates the effectiveness of employing hy-

pergraph modeling and VilLain for learning embeddings from its

structure.

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

VilLain: Self-Supervised Learning on Hypergraphs without Features via Virtual Label Propagation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

C.10 Loss of VilLain

We examine how losses of VilLain decrease with training epochs.

As discussed in Section 5, VilLain optimizes two losses L
local

and

L
global

that aim to capture the local and global structural informa-

tion of the hypergraph, respectively. As shown in Figure 7a, the

two losses L
local

and L
global

jointly decrease as VilLain is trained.

In terms of the number 𝐿 = ⌈𝑑/𝐷⌉ of v-labels in each subspace, the

decrease of L
local

is facilitated by smaller 𝐿. Intuitively, a smaller

number of v-labels is more likely to lead to homogeneous hyper-

edges. On the other hand, L
global

decreases faster with a larger

number of v-labels in each subspace since more diverse v-labels are

more likely to be distinctive from each other.

D VILLAINB: SPACE-EFFICIENT BINARY

EMBEDDING

As hypergraphs grow in size, so does the space required to store

the embeddings. Specifically, a continuous 𝑑-dimensional vector

consisting of 𝑑 real numbers requires 32𝑑 bits if float-32 is used to

represent each real number. To reduce the space requirement, we

propose VilLainB, a space-efficient version of VilLain that produces

binary node embeddings for hypergraphs. Specifically, we binarize

the continuous vector Z⟨𝑡 ⟩
𝑖

of node 𝑣𝑖 in each 𝑡 th subspace obtained

by VilLain, which is a probabilistic distribution over 𝑑/𝐷 v-labels,

to a one-hot vector Ẑ⟨𝑡 ⟩
𝑖

∈ {0, 1}𝑑/𝐷 as:

Ẑ⟨𝑡 ⟩
𝑖

= one-hot
(
arg max𝑗

(
Z⟨𝑡 ⟩
𝑖, 𝑗

))
.

Then, the final binarized embedding Ẑ𝑖 ∈ {0, 1}𝑑 is obtained by

concatenating the binarized embeddings from the 𝐷 subspaces.

To encode a 𝑑/𝐷-dimensional one-hot vector in each subspace,

⌈log
2

𝑑
𝐷
⌉ bits are required. Hence, encoding a final binarized vec-

tor, which is the concatenation of 𝐷 one-hot vectors, requires

⌈𝐷 log
2

𝑑
𝐷
⌉ bits. Note that, 𝐷 log

2

𝑑
𝐷

< 32𝑑 always holds for any

positive integers 𝑑 and 𝐷 (≤ 𝑑).

In Tables 16, 17, 18, and 19, we include the performance of

VilLainB. While requiring a substantially smaller number of bits to

encode embeddings, VilLainB outperforms baseline methods in the

considered four downstream tasks.

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

Table 16: Full results on node classification (in terms of accuracy). VilLain and VilLainB outperform the existing (hyper)graph

representation learning methods.

Method DBLP Trivago Amazon Primary High Citeseer Cora Pubmed Rank

GCN 49.65 ± 2.91 18.53 ± 3.61 19.08 ± 2.43 89.54 ± 2.49 89.82 ± 4.99 53.35 ± 3.76 63.71 ± 2.73 70.89 ± 1.60 12.62 ± 2.64

GAT OOM OOM OOM 58.48 ± 7.12 76.94 ± 9.60 51.06 ± 4.29 62.74 ± 3.07 61.66 ± 5.27 16.60 ± 1.35

Deepwalk 29.03 ± 1.43 16.85 ± 0.45 25.43 ± 1.72 84.89 ± 3.67 99.31 ± 0.48 45.10 ± 3.18 56.58 ± 1.88 68.58 ± 2.60 13.00 ± 5.04

Node2vec 29.21 ± 1.89 16.88 ± 0.44 25.27 ± 2.36 83.53 ± 3.09 99.38 ± 0.45 45.37 ± 3.17 59.15 ± 1.84 69.05 ± 3.00 12.37 ± 5.09

DGI 62.37 ± 3.32 73.46 ± 1.22 31.80 ± 1.45 86.66 ± 4.51 92.49 ± 0.60 61.36 ± 2.91 71.23 ± 2.04 77.51 ± 1.38 8.37 ± 3.87

GRACE 71.86 ± 2.51 OOM OOM 63.78 ± 5.12 99.03 ± 0.30 61.16 ± 2.78 73.43 ± 1.81 77.70 ± 1.81 6.50 ± 4.85

GMI 64.19 ± 1.63 OOM OOM 80.10 ± 4.94 96.61 ± 2.63 58.67 ± 2.68 71.31 ± 1.69 75.51 ± 2.77 10.66 ± 2.05

HGNN 66.60 ± 2.18 OOM OOM 88.28 ± 5.02 92.19 ± 3.84 60.91 ± 2.32 72.90 ± 2.00 76.58 ± 2.86 8.66 ± 3.19

HNHN 63.99 ± 2.21 59.52 ± 1.64 28.99 ± 2.63 91.31 ± 2.47 96.83 ± 1.25 59.02 ± 1.63 68.81 ± 1.26 75.33 ± 1.77 8.87 ± 2.08

AllSet 63.67 ± 1.89 36.58 ± 0.93 21.75 ± 1.67 85.94 ± 3.02 95.70 ± 1.66 56.08 ± 1.95 67.73 ± 1.81 74.11 ± 2.04 11.75 ± 1.19

UniGNN 67.16 ± 2.15 69.98 ± 1.60 33.77 ± 3.22 88.88 ± 3.58 95.12 ± 3.97 59.10 ± 2.76 71.44 ± 1.03 74.37 ± 2.10 8.37 ± 2.91

HyperGCL 58.72 ± 1.54 74.99 ± 1.23 22.86 ± 2.01 74.07 ± 6.06 85.79 ± 8.92 57.54 ± 1.61 74.99 ± 1.33 78.44 ± 3.33 9.37 ± 5.67

Hyper2vec 67.18 ± 1.78 75.82 ± 1.45 OOT 92.52 ± 2.45 96.34 ± 1.34 61.50 ± 2.60 71.79 ± 1.63 77.04 ± 1.51 5.85 ± 2.84

LBSN 22.63 ± 2.20 47.99 ± 0.82 11.56 ± 0.90 86.71 ± 3.71 95.87 ± 2.28 45.43 ± 2.15 59.70 ± 1.31 54.89 ± 2.38 13.62 ± 3.27

TriCL 68.18 ± 1.36 OOM OOM 92.67 ± 2.50 98.10 ± 1.02 59.17 ± 3.35 72.35 ± 1.53 78.57 ± 1.88 5.44 ± 2.13

VilLain
128

B
67.99 ± 1.16 64.93 ± 1.76 52.37 ± 1.82 95.63 ± 0.28 99.32 ± 0.17 60.83 ± 2.82 74.40 ± 1.38 77.57 ± 1.61 4.25 ± 1.98

VilLain
256

B
70.39 ± 1.76 69.26 ± 1.45 52.40 ± 2.03 95.15 ± 2.04 99.14 ± 0.29 60.27 ± 2.97 74.46 ± 1.88 78.00 ± 1.20 4.00 ± 1.73

VilLain 77.16 ± 1.26 79.43 ± 1.63 57.95 ± 2.47 93.66 ± 3.93 99.19 ± 0.41 61.53 ± 3.17 75.03 ± 1.38 78.82 ± 1.47 1.62 ± 1.11

Table 17: Full results on hyperedge prediction (in terms of accuracy). VilLain and VilLainB (see Appendix D) outperform the

existing (hyper)graph representation learning methods.

Method DBLP Trivago Amazon Primary High Citeseer Cora Pubmed Rank

Deepwalk 63.90 ± 0.94 61.27 ± 1.14 69.36 ± 0.74 83.79 ± 0.68 85.87 ± 0.73 69.55 ± 1.63 67.18 ± 1.32 65.90 ± 0.62 8.00 ± 2.87

Node2vec 64.20 ± 0.79 61.43 ± 0.81 69.29 ± 0.70 83.15 ± 0.86 85.36 ± 0.64 70.35 ± 1.44 66.94 ± 1.57 65.75 ± 0.77 7.87 ± 2.36

DGI 86.05 ± 0.60 83.83 ± 0.70 90.82 ± 0.65 79.06 ± 0.99 84.38 ± 0.77 79.15 ± 0.94 76.33 ± 0.97 80.92 ± 0.74 5.37 ± 2.95

GRACE 85.43 ± 0.76 OOM OOM 80.32 ± 0.77 87.42 ± 0.46 77.88 ± 1.31 74.52 ± 0.78 79.05 ± 0.75 5.00 ± 1.82

GMI 75.60 ± 0.71 OOM OOM 82.43 ± 0.68 85.90 ± 0.60 74.41 ± 1.25 69.40 ± 1.38 72.34 ± 0.70 7.16 ± 1.21

Hyper2vec 71.19 ± 1.01 72.36 ± 1.08 OOT 76.41 ± 0.92 79.57 ± 0.85 78.05 ± 1.76 71.65 ± 1.54 71.48 ± 0.88 8.14 ± 1.95

LBSN 48.68 ± 1.08 89.08 ± 0.68 63.65 ± 1.60 79.43 ± 0.80 87.05 ± 0.60 74.29 ± 1.64 69.63 ± 0.98 66.10 ± 0.77 7.62 ± 2.34

TriCL 77.40 ± 0.76 OOM OOM 83.99 ± 0.70 87.78 ± 0.44 81.96 ± 1.42 76.69 ± 0.79 80.45 ± 0.67 3.66 ± 1.69

VilLain
128

B
79.39 ± 0.78 93.49 ± 0.66 92.97 ± 0.60 79.76 ± 0.54 86.05 ± 0.51 82.48 ± 1.29 78.92 ± 1.27 81.42 ± 0.79 3.87 ± 2.08

VilLain
256

B
79.44 ± 0.68 93.90 ± 0.75 92.64 ± 0.52 79.81 ± 0.75 86.35 ± 0.65 83.03 ± 1.18 79.95 ± 1.35 80.69 ± 0.71 3.37 ± 1.93

VilLain 81.61 ± 0.52 95.12 ± 0.37 94.91 ± 0.36 83.19 ± 0.56 87.79 ± 0.68 82.08 ± 1.42 78.95 ± 0.79 82.79 ± 0.79 1.87 ± 0.92

Table 18: Full results on node clustering (in terms of normalized mutual information). VilLain and VilLainB (see Appendix D)

outperform the existing (hyper)graph representation learning methods.

Method DBLP Trivago Amazon Primary High Citeseer Cora Pubmed Rank

Deepwalk 0.70 ± 0.05 16.70 ± 0.21 7.75 ± 0.03 85.15 ± 0.39 100.00 ± 0.00 14.62 ± 1.73 23.87 ± 1.83 34.35 ± 0.33 6.50 ± 3.60

Node2vec 0.91 ± 0.03 16.96 ± 0.54 7.73 ± 0.13 83.47 ± 0.70 100.00 ± 0.00 14.52 ± 0.82 23.80 ± 1.21 32.83 ± 0.07 7.50 ± 3.20

DGI 16.63 ± 0.01 44.50 ± 1.68 13.01 ± 0.95 84.43 ± 1.68 73.88 ± 0.95 29.09 ± 0.61 32.07 ± 0.79 31.27 ± 0.00 7.50 ± 2.06

GRACE 42.96 ± 0.11 OOM OOM 67.59 ± 1.12 98.17 ± 0.18 33.04 ± 1.33 46.04 ± 2.44 31.55 ± 0.11 6.16 ± 3.02

GMI 27.80 ± 2.61 OOM OOM 84.08 ± 0.54 93.10 ± 0.26 25.33 ± 1.72 42.60 ± 3.56 18.71 ± 0.01 8.50 ± 1.25

Hyper2vec 43.40 ± 0.94 66.33 ± 0.27 OOT 92.48 ± 0.35 99.34 ± 0.30 34.28 ± 0.30 45.53 ± 1.05 33.62 ± 0.13 2.57 ± 0.90

LBSN 1.05 ± 0.00 39.41 ± 0.12 2.68 ± 0.33 85.53 ± 0.55 97.80 ± 0.24 12.14 ± 0.43 28.96 ± 0.30 4.62 ± 0.59 8.50 ± 1.87

TriCL 38.00 ± 0.02 OOM OOM 87.83 ± 1.22 98.74 ± 0.00 34.41 ± 0.02 44.75 ± 0.30 33.74 ± 0.01 3.66 ± 1.37

VilLain
128

B
35.77 ± 1.92 56.51 ± 0.41 31.94 ± 0.13 89.40 ± 0.04 98.72 ± 0.00 31.60 ± 0.73 44.99 ± 1.84 32.40 ± 0.00 4.75 ± 1.56

VilLain
256

B
35.90 ± 0.92 58.85 ± 0.40 31.23 ± 0.16 89.76 ± 1.18 98.72 ± 0.00 32.34 ± 1.79 49.08 ± 1.23 33.43 ± 0.02 3.62 ± 1.21

VilLain 46.58 ± 0.62 69.35 ± 0.32 35.24 ± 0.48 85.67 ± 1.88 98.72 ± 0.00 34.53 ± 0.45 50.38 ± 2.25 32.73 ± 0.00 2.62 ± 2.11

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

VilLain: Self-Supervised Learning on Hypergraphs without Features via Virtual Label Propagation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

Table 19: Full results on node retrieval (in terms of mean average precision). VilLain and VilLainB (see Appendix D) outperform

the existing (hyper)graph representation learning methods.

Method DBLP Trivago Amazon Primary High Citeseer Cora Pubmed Rank

Deepwalk 21.34 ± 0.24 7.47 ± 0.11 27.71 ± 0.17 81.62 ± 0.00 98.72 ± 0.00 27.61 ± 0.07 29.24 ± 0.14 48.95 ± 0.19 8.37 ± 1.99

Node2vec 21.61 ± 0.20 7.09 ± 0.07 27.78 ± 0.17 81.07 ± 0.00 98.58 ± 0.00 27.29 ± 0.05 29.42 ± 0.15 49.39 ± 0.21 8.50 ± 1.65

DGI 36.06 ± 0.37 37.32 ± 0.13 31.13 ± 0.38 89.73 ± 0.00 97.81 ± 0.00 43.78 ± 0.10 50.64 ± 0.30 61.65 ± 0.36 4.75 ± 1.29

GRACE 50.22 ± 0.60 OOM OOM 61.41 ± 0.00 99.49 ± 0.00 41.09 ± 0.08 54.17 ± 0.36 60.94 ± 0.36 5.33 ± 3.19

GMI 34.63 ± 0.33 OOM OOM 80.00 ± 0.00 97.78 ± 0.00 35.89 ± 0.07 41.62 ± 0.28 55.10 ± 0.31 8.33 ± 0.74

Hyper2vec 35.47 ± 0.41 43.11 ± 0.48 OOT 85.74 ± 0.00 90.70 ± 0.00 41.21 ± 0.09 46.67 ± 0.27 55.62 ± 0.19 6.57 ± 2.44

LBSN 21.01 ± 0.09 19.05 ± 0.14 29.11 ± 0.37 81.30 ± 0.00 93.22 ± 0.00 30.60 ± 0.09 40.09 ± 0.26 43.50 ± 0.39 8.62 ± 2.05

TriCL 45.11 ± 0.56 OOM OOM 89.91 ± 0.00 97.64 ± 0.00 42.37 ± 0.10 54.98 ± 0.26 61.94 ± 0.25 4.66 ± 2.13

VilLain
128

B
47.27 ± 0.54 35.39 ± 0.76 50.34 ± 0.53 89.65 ± 0.00 99.21 ± 0.00 43.33 ± 0.10 53.57 ± 0.29 62.50 ± 0.35 3.87 ± 1.05

VilLain
256

B
53.78 ± 0.58 42.36 ± 0.62 50.61 ± 0.52 90.03 ± 0.00 99.22 ± 0.00 44.35 ± 0.09 56.11 ± 0.30 61.51 ± 0.35 2.50 ± 1.00

VilLain 60.15 ± 0.55 67.23 ± 0.72 53.64 ± 0.47 91.26 ± 0.00 98.99 ± 0.00 46.37 ± 0.10 57.96 ± 0.27 64.43 ± 0.36 1.37 ± 0.99

Table 20: Effects of 𝑘s in node classification (NCS), hyperedge prediction (HP), and node clustering (NCT) node retrieval (NR).

VilLain benefits from the long-range propagation during training.

Method DBLP Trivago Amazon Primary High Citeseer Cora Pubmed Rank

N
C
S

𝑘 = 1 74.25 ± 1.05 78.14 ± 1.89 52.16 ± 2.36 94.67 ± 2.47 99.51 ± 0.39 60.48 ± 3.17 74.96 ± 1.04 78.21 ± 2.18 3.00 ± 1.22

𝑘 = 2 75.76 ± 1.41 78.44 ± 1.84 55.09 ± 2.55 93.43 ± 3.84 99.29 ± 0.39 60.17 ± 3.69 75.15 ± 1.30 78.97 ± 1.38 2.62 ± 0.85

𝑘 = 4 77.16 ± 1.26 79.43 ± 1.63 57.95 ± 2.47 93.66 ± 3.93 99.19 ± 0.41 61.53 ± 3.17 75.03 ± 1.38 78.82 ± 1.47 2.25 ± 0.43

𝑘 = 8 78.22 ± 1.20 80.24 ± 1.89 59.12 ± 2.58 92.47 ± 4.00 98.78 ± 0.69 62.05 ± 3.52 74.24 ± 1.49 79.22 ± 1.73 2.12 ± 1.45

H
P

𝑘 = 1 80.72 ± 0.68 94.60 ± 0.56 93.81 ± 0.48 83.51 ± 0.64 87.54 ± 0.63 81.51 ± 1.28 77.23 ± 0.91 81.80 ± 0.79 3.50 ± 1.00

𝑘 = 2 81.22 ± 0.61 94.82 ± 0.48 94.79 ± 0.44 83.36 ± 0.72 87.69 ± 0.55 82.02 ± 1.22 78.80 ± 0.90 82.29 ± 0.59 2.75 ± 0.43

𝑘 = 4 81.61 ± 0.52 95.12 ± 0.37 94.91 ± 0.36 83.19 ± 0.56 87.79 ± 0.68 82.08 ± 1.42 78.95 ± 0.79 82.79 ± 0.79 2.00 ± 0.50

𝑘 = 8 81.97 ± 0.72 95.24 ± 0.49 95.27 ± 0.26 82.99 ± 0.56 87.39 ± 0.47 82.62 ± 1.13 79.13 ± 0.82 82.94 ± 0.49 1.75 ± 1.29

N
C
T

𝑘 = 1 43.36 ± 1.66 65.28 ± 0.28 32.66 ± 0.22 90.40 ± 1.86 98.72 ± 0.00 32.29 ± 2.06 44.14 ± 2.38 33.96 ± 0.24 2.87 ± 1.45

𝑘 = 2 45.50 ± 1.10 67.06 ± 0.52 33.13 ± 0.44 87.70 ± 1.65 98.72 ± 0.00 34.16 ± 1.78 47.38 ± 2.13 33.95 ± 0.27 2.50 ± 0.70

𝑘 = 4 46.58 ± 0.62 69.35 ± 0.32 35.24 ± 0.48 85.67 ± 1.88 98.72 ± 0.00 34.53 ± 0.45 50.38 ± 2.25 32.73 ± 0.00 2.12 ± 0.59

𝑘 = 8 48.35 ± 0.06 71.44 ± 0.28 36.97 ± 0.07 84.61 ± 1.19 98.72 ± 0.00 35.16 ± 0.42 50.52 ± 0.94 32.52 ± 0.00 1.75 ± 1.29

N
R

𝑘 = 1 55.55 ± 0.63 57.90 ± 0.74 48.44 ± 0.52 91.07 ± 0.00 99.30 ± 0.00 43.78 ± 0.11 53.84 ± 0.27 62.94 ± 0.33 3.50 ± 1.00

𝑘 = 2 58.42 ± 0.61 63.12 ± 0.70 51.61 ± 0.42 91.35 ± 0.00 99.10 ± 0.00 45.07 ± 0.11 55.98 ± 0.27 63.60 ± 0.35 2.62 ± 0.69

𝑘 = 4 60.15 ± 0.55 67.23 ± 0.72 53.64 ± 0.47 91.26 ± 0.00 98.99 ± 0.00 46.37 ± 0.10 57.96 ± 0.27 64.43 ± 0.36 1.87 ± 0.59

𝑘 = 8 62.75 ± 0.48 69.08 ± 0.58 56.01 ± 0.64 90.69 ± 0.00 98.70 ± 0.00 47.68 ± 0.10 57.72 ± 0.25 63.64 ± 0.37 2.00 ± 1.22

17

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

Table 21: Effects of 𝑘′s in node classification (NCS), hyperedge prediction (HP), and node clustering (NCT) node retrieval (NR).

VilLain benefits from the long-range propagation at inference (i.e., embedding generation).

Method DBLP Trivago Amazon Primary High Citeseer Cora Pubmed Rank

N
C
S

𝑘′ = 1 64.71 ± 1.98 60.60 ± 1.54 48.46 ± 3.45 96.74 ± 0.79 99.58 ± 0.20 60.62 ± 2.94 74.68 ± 1.57 77.94 ± 1.84 5.62 ± 2.86

𝑘′ = 2 65.29 ± 1.91 61.59 ± 1.62 49.42 ± 2.76 96.36 ± 2.19 99.57 ± 0.21 60.44 ± 3.03 74.70 ± 1.58 78.18 ± 1.75 5.50 ± 2.29

𝑘′ = 4 66.64 ± 2.19 63.25 ± 1.63 50.52 ± 2.45 96.33 ± 1.99 99.39 ± 0.21 60.54 ± 3.28 74.77 ± 1.75 78.29 ± 2.14 5.00 ± 1.58

𝑘′ = 8 67.88 ± 1.79 65.08 ± 1.55 53.22 ± 3.74 93.91 ± 2.57 99.26 ± 0.38 61.29 ± 3.30 75.06 ± 1.44 78.75 ± 1.91 4.50 ± 1.41

𝑘′ = 16 70.83 ± 1.70 68.28 ± 1.38 54.65 ± 3.63 94.49 ± 3.05 98.86 ± 0.79 61.62 ± 3.28 74.86 ± 1.34 79.12 ± 1.44 3.75 ± 0.82

𝑘′ = 32 73.20 ± 1.60 72.31 ± 1.65 55.80 ± 2.41 92.57 ± 3.78 98.59 ± 1.42 61.96 ± 3.50 74.68 ± 1.30 79.22 ± 1.69 4.00 ± 1.65

𝑘′ = 64 76.47 ± 1.30 76.77 ± 1.71 56.42 ± 2.59 94.21 ± 3.34 98.50 ± 2.31 62.42 ± 2.93 74.25 ± 1.99 78.98 ± 1.68 4.00 ± 2.29

𝑘′ = 128 77.62 ± 1.26 80.63 ± 1.36 57.46 ± 2.04 88.68 ± 4.90 98.09 ± 1.90 63.67 ± 3.26 74.41 ± 1.76 79.37 ± 1.92 3.50 ± 3.24

H
P

𝑘′ = 1 77.77 ± 0.57 91.46 ± 0.57 93.11 ± 0.56 82.05 ± 0.92 87.45 ± 0.65 82.14 ± 0.97 79.63 ± 0.84 82.09 ± 0.70 6.75 ± 1.92

𝑘′ = 2 77.86 ± 0.57 91.53 ± 0.61 93.39 ± 0.75 82.30 ± 0.56 87.74 ± 0.61 82.39 ± 1.59 79.29 ± 0.87 82.27 ± 0.56 5.25 ± 1.98

𝑘′ = 4 78.58 ± 0.86 92.51 ± 0.82 93.77 ± 0.77 82.89 ± 0.84 87.53 ± 0.55 81.79 ± 1.24 78.28 ± 0.79 82.12 ± 0.82 5.87 ± 1.83

𝑘′ = 8 79.06 ± 0.83 92.31 ± 0.61 94.07 ± 0.51 82.86 ± 0.79 87.69 ± 0.66 82.23 ± 1.19 78.35 ± 0.93 82.46 ± 0.65 5.00 ± 1.11

𝑘′ = 16 79.87 ± 0.63 92.97 ± 0.44 94.59 ± 0.39 83.06 ± 0.71 87.55 ± 0.62 82.16 ± 0.97 78.87 ± 0.89 82.49 ± 0.75 4.12 ± 1.45

𝑘′ = 32 80.39 ± 0.53 93.80 ± 0.60 95.15 ± 0.38 82.89 ± 0.84 87.28 ± 0.45 82.74 ± 1.15 79.29 ± 0.84 82.92 ± 0.65 3.25 ± 1.56

𝑘′ = 64 81.06 ± 0.47 94.58 ± 0.61 95.15 ± 0.42 82.78 ± 0.85 87.70 ± 0.44 83.03 ± 0.92 79.51 ± 0.78 82.75 ± 0.55 2.62 ± 0.99

𝑘′ = 128 81.89 ± 0.87 95.15 ± 0.49 95.21 ± 0.36 81.91 ± 0.77 87.04 ± 0.70 83.42 ± 1.19 80.23 ± 0.85 83.00 ± 0.55 2.75 ± 3.03

N
C
T

𝑘′ = 1 29.62 ± 1.44 48.38 ± 0.50 31.74 ± 0.05 93.08 ± 0.05 98.72 ± 0.00 33.04 ± 1.07 48.93 ± 2.07 32.36 ± 0.00 5.25 ± 2.72

𝑘′ = 2 30.30 ± 1.57 49.05 ± 0.33 31.74 ± 0.40 93.09 ± 0.01 98.72 ± 0.00 33.79 ± 0.53 49.78 ± 1.39 32.30 ± 0.00 4.87 ± 2.75

𝑘′ = 4 30.26 ± 1.88 50.24 ± 0.32 31.81 ± 0.45 91.95 ± 1.25 98.72 ± 0.00 33.95 ± 0.78 48.40 ± 1.85 32.31 ± 0.48 4.87 ± 1.76

𝑘′ = 8 30.39 ± 1.45 51.75 ± 0.75 33.62 ± 0.03 86.48 ± 1.53 98.72 ± 0.00 34.78 ± 0.54 50.74 ± 1.88 32.77 ± 0.01 3.50 ± 1.73

𝑘′ = 16 31.90 ± 1.66 54.59 ± 0.27 34.29 ± 0.05 84.45 ± 1.26 98.72 ± 0.00 34.97 ± 0.68 48.65 ± 1.49 32.61 ± 0.00 3.62 ± 1.11

𝑘′ = 32 35.63 ± 1.87 58.75 ± 0.66 34.05 ± 0.46 83.87 ± 0.32 98.42 ± 0.19 35.54 ± 1.93 47.49 ± 0.47 32.98 ± 0.00 4.25 ± 2.10

𝑘′ = 64 44.85 ± 1.29 64.91 ± 0.36 35.40 ± 0.58 84.87 ± 0.32 97.65 ± 0.00 37.41 ± 0.76 45.56 ± 1.05 32.65 ± 0.00 3.87 ± 2.52

𝑘′ = 128 47.62 ± 0.05 70.88 ± 0.30 35.66 ± 0.61 83.92 ± 0.38 98.09 ± 0.00 36.68 ± 0.22 44.35 ± 0.87 32.12 ± 0.00 4.37 ± 3.15

N
R

𝑘′ = 1 44.77 ± 0.54 31.08 ± 0.79 51.00 ± 0.42 91.94 ± 0.00 99.41 ± 0.00 45.47 ± 0.11 57.46 ± 0.26 63.04 ± 0.33 5.50 ± 2.39

𝑘′ = 2 45.34 ± 0.55 30.95 ± 0.82 50.25 ± 0.41 91.95 ± 0.00 99.35 ± 0.00 45.62 ± 0.11 57.51 ± 0.26 63.15 ± 0.34 5.25 ± 2.33

𝑘′ = 4 46.06 ± 0.60 33.43 ± 0.83 48.84 ± 0.45 91.72 ± 0.00 99.22 ± 0.00 45.05 ± 0.10 56.59 ± 0.27 63.21 ± 0.34 5.75 ± 2.04

𝑘′ = 8 48.00 ± 0.57 36.56 ± 0.77 51.32 ± 0.40 91.41 ± 0.00 99.06 ± 0.00 46.25 ± 0.10 57.79 ± 0.26 63.46 ± 0.35 4.25 ± 0.96

𝑘′ = 16 50.65 ± 0.58 40.19 ± 0.65 51.19 ± 0.39 91.01 ± 0.00 98.79 ± 0.00 46.77 ± 0.10 58.04 ± 0.26 63.50 ± 0.36 4.00 ± 1.22

𝑘′ = 32 54.32 ± 0.59 46.72 ± 0.76 54.67 ± 0.37 90.89 ± 0.00 98.49 ± 0.00 47.09 ± 0.10 58.23 ± 0.25 63.31 ± 0.37 3.37 ± 1.65

𝑘′ = 64 58.34 ± 0.58 60.01 ± 0.77 53.54 ± 0.48 90.88 ± 0.00 98.33 ± 0.00 47.10 ± 0.10 58.29 ± 0.26 62.97 ± 0.36 3.62 ± 2.64

𝑘′ = 128 61.23 ± 0.53 70.75 ± 0.79 52.60 ± 0.42 90.88 ± 0.00 98.29 ± 0.00 46.80 ± 0.10 58.28 ± 0.26 62.76 ± 0.36 4.12 ± 2.84

18

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Motivating Observations
	5 Proposed Method
	5.1 VilLain: Virtual Label Propagation
	5.2 Self-Supervision Objectives
	5.3 Extension to Unobserved Nodes

	6 Experimental Results
	6.1 Experimental Settings
	6.2 Accuracy of VilLain
	6.3 Ablation Study
	6.4 Further Analysis of VilLain

	7 Conclusions, Limitations, and Future Directions
	References
	A Details on Time/Space Complexity
	A.1 Details on Time Complexity
	A.2 Details on Space Complexity

	B Details on Experimental Settings
	B.1 Details of Datasets
	B.2 Baselines & Hyperparameters
	B.3 Node Retrieval Protocol
	B.4 Hyperedge Prediction Protocol

	C Additional Experimental Results
	C.1 Higher-Order Homogeneity
	C.2 Full Results
	C.3 When Lglobal is Important
	C.4 Improvements from Node Features
	C.5 Usefulness as Input Features
	C.6 Effects of Long-Range V-label Propagation
	C.7 Aggregation Method for Embedding Generation
	C.8 Hyperedge Embedding Method for Hyperedge Prediction
	C.9 Comparison with Graph-Modeling-Based Methods
	C.10 Loss of VilLain

	D VilLainB: Space-Efficient Binary Embedding

