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ABSTRACT
Implicit Neural Representations (INRs) have emerged as a compelling paradigm,
with Neural Representations for Videos (NeRV) achieving remarkable compres-
sion ratios by encoding videos as neural network parameters. However, existing
NeRV-based approaches face fundamental scalability limitations: computation-
ally expensive per-video optimization through iterative gradient descent and con-
volutional architectures with shared kernel parameters that provide weak pixel-
level control and limit global dependency modeling essential for high-fidelity re-
construction. We introduce CAVINR, a pure transformer framework that funda-
mentally departs from convolutional approaches by leveraging persistent cross-
attention mechanisms. CAVINR introduces three contributions: a transformer
encoder that compresses videos into compact video tokens encoding spatial tex-
tures and temporal dynamics; a coordinate-attentive decoder utilizing persistent
weights and cross-attention between coordinate queries and video tokens; and
temperature-modulated attention with block query processing that enhances re-
construction fidelity while reducing memory complexity. Comprehensive exper-
iments demonstrate CAVINR’s superior performance: 6-9 dB PSNR improve-
ments over state-of-the-art methods, 105× encoding acceleration compared to
gradient-based optimization, 85−95% memory reduction, and 7.5× faster conver-
gence with robust generalization across diverse video content, enabling practical
deployment for large-scale video processing applications.

1 INTRODUCTION
Video representation poses a significant challenge in computer vision due to the substantial computa-
tional and storage requirements of high-dimensional video data. The growth of video content across
streaming platforms, autonomous systems, and multimedia applications has created demanding re-
quirements for efficient video representation and processing that are far more complex than static
image processing. Traditional video compression standards like H.264/AVC Wiegand et al. (2003)
and HEVC Sullivan et al. (2012) use handcrafted codecs that struggle to balance compression ratios
with reconstruction quality, while requiring substantial computational resources for high-resolution
video processing. Recent research has investigated representing videos as Implicit Neural Represen-
tations (INRs) Chen et al. (2021a); Li et al. (2022b); Kim et al. (2022) , where videos are encoded
as neural network parameters, enabling compact storage while supporting downstream tasks such
as super-resolution and denoising. The NeRV series Chen et al. (2021a; 2022a; 2023) Introduced
this approach by using frame index as input to convolutional networks to generate frames, achiev-
ing significant speed improvements over coordinate-based methods while maintaining competitive
compression ratios and visual quality. However, NeRV-based methods face important scalability
challenges that limit practical deployment. The primary limitation comes from computationally
expensive per-video optimization through iterative gradient descent, making encoding costly for
large-scale applications. Since videos are encoded once but reconstructed repeatedly during play-
back and processing, both reconstruction quality and inference speed are important performance
factors. Recent acceleration efforts through MetaNeRV Guo et al. (2025) and FastNeRV Chen et al.
(2024) use meta-learning and transformer-based hypernetworks, but remain limited by the inherent
constraints of convolutional operations. Shared kernel parameters provide limited pixel-level con-
trol, while local connectivity prevents effective global dependency modeling, resulting in suboptimal
video quality, slow convergence, and insufficient reconstruction fidelity for demanding applications.

We present CAVINR (Coordinate-Aware Attention for Video Implicit Neural Representation), a
transformer-based framework that addresses the limitations of convolutional approaches by using
cross-attention mechanisms with persistent parameters. The method creates direct correspondences
between compressed video representations and spatial coordinate queries, improving computational
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Figure 1: Framework Comparison and Encoding Speed. (a) Feed-forward INR approaches:
TransINR and FastNeRV generate video-specific parameters requiring independent weight replace-
ment, while CAVINR employs shared transformer weights with video-specific tokens for efficient
cross-attention reconstruction. (b) Encoding efficiency: CAVINR achieves 105× faster encoding
than gradient-based NeRV Chen et al. (2021a) baseline through feed-forward processing.

efficiency and enabling precise pixel-level control through the global modeling capabilities of trans-
former architectures. The CAVINR framework consists of three main components: a transformer
encoder that generates compact video tokens encoding spatial texture information and temporal dy-
namics, a coordinate decoder with fixed weights that applies cross-attention between coordinate
queries and the video token representations, and an adaptive attention module that uses tem-
perature scaling and block-based query processing to improve reconstruction performance while
maintaining memory efficiency. Figure 1 compares our approach with existing methods. While
conventional techniques require video-specific weight generation, CAVINR uses shared transformer
weights with video-specific tokens through cross-attention, achieving 105× faster encoding than
gradient-based NeRV with better reconstruction quality. The contributions of this work are summa-
rized as follows:

• We propose the CAVINR architecture for learning video implicit neural representations,
achieving a 105× speedup in encoding compared to conventional gradient-based optimiza-
tion methods while delivering superior reconstruction quality.

• We introduce a coordinate-attentive decoder with persistent weights and temperature-
modulated attention, establishing direct correspondences between video tokens and spatial
coordinates for both computational efficiency and reconstruction fidelity.

• We design comprehensive architectural innovations including a convolution-based tok-
enizer, axis-adaptive position encoding, and temperature-modulated cross-attention that
collectively enhance spatial-temporal modeling capabilities and representation accuracy.

• Comprehensive experiments demonstrate 6− 9 dB PSNR improvements over existing
methods, 85− 95% memory reduction, and 7.5× faster convergence with consistent per-
formance across diverse video content.

2 RELATED WORK
Implicit Neural Representations. Implicit neural representations offer a compact approach to sig-
nal encoding, storing images, and videos directly within neural network parameters Dupont et al.
(2021); Chen et al. (2022b). The foundational coordinate-based methods Tancik et al. (2020); Sitz-
mann et al. (2020) pioneered this field by using multilayer perceptrons to map spatial-temporal coor-
dinates to signal values, demonstrating remarkable performance in applications such as novel view
synthesis Mildenhall et al. (2020) and image super-resolution Chen et al. (2021b). Building on this
foundation, NeRV Chen et al. (2021a) proposed frame-wise implicit representations that generate
entire frames directly from temporal indices through convolutional architectures. Several follow-up
works have improved reconstruction quality through various strategies: E-NeRV Li et al. (2022c)
applies spatial-temporal decomposition, HNeRV Chen et al. (2023) combines hybrid variational au-
toencoders. Despite these advances, coordinate-based methods still achieve superior representation
accuracy in many scenarios Chen et al. (2022c); Kim et al. (2022); Aiyetigbo et al. (2025).

Hypernetwork-Based Video INR Representations. Hypernetworks Ha et al. (2017) offer a flexi-
ble framework for generating adaptive model parameters based on input data. Early work in neural
representations explored weight modulation using latent vectors Park et al. (2019); Mescheder et al.
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Figure 2: CAVINR Framework. (a) The Transformer Hypernetwork Encoder extracts compact video
tokens from input video sequences. (b) The Coordinate-Aware Attention Video Decoder maps spa-
tiotemporal coordinates to pixel values by first applying Axis-Adaptive Position Embedding to coor-
dinate queries, then using (c) Temperature-Modulated Cross-Attention between position-embedded
coordinates and video tokens to reconstruct the final video.

(2019), while recent approaches employ transformer architectures to directly produce parameters for
implicit neural representations. Several methods follow this paradigm, including TransINR Chen &
Wang (2022), GINR Kim et al. (2023a), FastNeRV Chen et al. (2024), and ANR Zhang et al. (2024),
which utilize transformer-based hypernetworks for content-adaptive weight generation. These tech-
niques build upon convolution concepts Chen et al. (2020); Yang et al. (2019) to enable instance-
specific parameter synthesis. However, existing hypernetwork methods rely on convolutional priors
that constrain their capacity to model global dependencies. Our approach addresses this limitation
by integrating persistent decoder weights with transformer-based cross-attention mechanisms.

Neural Video Compression. Traditional video codecs such as H.265/HM HM, H.266/VTM VTM,
and ECM ECM remain widely used in current applications, though they suffer from high computa-
tional complexity and limited compression efficiency. Learning-based compression methods Rippel
et al. (2019); Agustsson et al. (2020); Maiya et al. (2023) achieve better rate-distortion performance
but introduce significant decoding latency that limits their practical deployment. Neural video cod-
ing has evolved along two distinct paradigms. The DCVC family Li et al. (2021); Sheng et al.
(2022); Li et al. (2022a; 2023; 2024); Jia et al. (2025) represents compression-oriented methods
that prioritize bitrate efficiency and real-time coding speed for transmission applications, achieving
competitive performance with traditional codecs through conditional coding and entropy modeling.
Implicit neural representations offer an alternative by encoding videos as neural network parameters.
NeRV Chen et al. (2021a) introduced this concept, demonstrating competitive performance through
model compression while supporting GPU-accelerated decoding. DNeRV He et al. (2023) incorpo-
rates entropy coding while preserving speed benefits. These representation-oriented methods prior-
itize reconstruction quality and downstream task support over bitrate optimization. Building on the
representation paradigm, our approach targets quality-first applications by introducing coordinate-
attentive decoding and memory-efficient attention mechanisms, achieving superior reconstruction
fidelity within practical computational constraints.

Temperature-Modulated Attention Mechanisms. Temperature scaling provides an effective ap-
proach for controlling the sharpness of attention distributions in various machine learning tasks.
In natural language processing, Zhang et al. Zhang et al. (2021) showed that attention smooth-
ing improves abstractive summarization, while SACT Lin et al. (2018) enhanced machine trans-
lation quality using self-adaptive temperature scaling. Computer vision tasks have also benefited
from temperature modulation. Zhou et al. Zhou et al. (2023) improved image inpainting by us-
ing temperature-scaled attention to better leverage contextual information. We apply temperature-
modulated cross-attention to coordinate-based video reconstruction. While previous work has fo-
cused on self-attention mechanisms, our method adjusts temperature parameters in cross-attention
to better optimize interactions between coordinate queries and video tokens. This design enhances
reconstruction quality while preserving computational efficiency, addressing the core challenge in
neural video representation: precise coordinate-content alignment for high-quality decoding.
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3 METHODS
3.1 PROBLEM STATEMENT

Let V ∈ RT×C×H×W denote a video sequence of length T , where each frame contains C channels
with spatial resolution H ×W . The objective of video implicit neural representation (INR) is to
construct a parametric function fθ that encodes the entire video V within its learned parameters θ.

NeRV-based networks learn a direct mapping from frame index to corresponding RGB images,
enabling video reconstruction through:

V̂t = fθ(t) ∀t ∈ [1, T ] (1)

where V̂t denotes the reconstructed frame at time t, and the optimized weights θ constitute the
implicit video representation that parametrically encodes the complete visual content.

However, existing implicit neural representations can only encode a single video per model,
which significantly limits their practical use. To improve encoding efficiency in video INR, Fast-
NeRV Chen et al. (2024) proposes a hypernetwork gϕ that generates parametric weights θ′ = gϕ(V )
directly from input video data. These generated weights are then loaded into the NeRV decoder
fθ for video reconstruction. Although FastNeRV substantially reduces video encoding time, it has
important limitations that lead to reduced reconstruction quality in the decoded outputs.
3.2 OVERALL WORKFLOW
We propose a pure transformer architecture that addresses both efficiency and accuracy bottlenecks
in neural video representations through synergistic encoding-decoding co-design. Our framework
improve conventional hypernetworks through two key components: (1) a transformer encoder gϕ
that compresses input video V into compact latent tokens Tv = gϕ(V ) via spatiotemporal patch
aggregation, and (2) a weight-static decoder fψ that reconstructs frames V̂ = fψ(Tv,Ω) through
cross-attention mechanisms conditioned on coordinate queries. Reconstruction operates within the
continuous spatiotemporal coordinate space:

Ω = {(x, y, t) | 0 ≤ x ≤W, 0 ≤ y ≤ H, 0 ≤ t ≤ T} . (2)

Position embeddings for each coordinate (x, y, t) ∈ Ω serve as queries in the cross-attention mecha-
nism. The cross-attention layer retrieves relevant information from video tokens Tv , then processes
these signals through instance-agnostic MLP layers to generate pixel values. Both the cross-attention
layer and MLP use persistent weights shared across all videos, enabling efficient decoding without
per-video optimization.

As shown in Figure 2, our framework enables three fundamental advances: (1) end-to-end opti-
mization through reconstruction loss minimization L(V, V̂ ) with generalization across video in-
stances, (2) decoding across all spatiotemporal coordinates via persistent network weights, and (3)
enhanced reconstruction fidelity through pixel-level control. The training objective minimizes the
mean squared error between the original and reconstructed videos:

L =
1

|Ω|
∑

(x,y,t)∈Ω

∥Vx,y,t − V̂x,y,t∥22 (3)

3.3 TRANSFORMER HYPERNETWORK ENCODER
Inspired by generalizable INR methods for images Kim et al. (2023b); Zhang et al. (2024) and
videos Chen et al. (2024), we employ a transformer network withL encoder layers as a hypernetwork
gϕ to generate compact video representations. Our approach introduces a learnable convolutional
video tokenizer that replaces explicit patch extraction with learned spatial abstractions.

Convolutional Tokenization Unlike conventional methods employing unfold operations with linear
projections, our convolutional tokenizer directly incorporates spatial abstraction during tokenization.
The input video V generates initial patch tokens P ∈ RNp×d, where Np indicates spatiotemporal
patch count and d the token dimension.

Token Compression The transformer processes a set of randomly initialized learnable tokens R ∈
RN×d through successive attention layers to produce compressed video tokens Tv ∈ RN×d:

Tv = Softmax
(
QK⊤
√
d

)
V, where

{
Q = ψ(R)

K,V = ψ(P)
(4)
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where ψ denotes learned linear projections, and N ≪ Np.

This design offers several advantages over previous methods: it provides pixel-level control and local
connectivity for better reconstruction quality, enables dynamic token allocation based on attention
mechanisms, and creates a unified representation of spatial and temporal features through progres-
sive compression. The resulting position-aware tokens Tv serve dual roles as content descriptors
and reconstruction operators, supporting stable cross-attention operations with fixed transformer
weights during decoding.

3.4 COORDINATE-AWARE ATTENTION VIDEO DECODER
Unlike conventional hypernetworks Chen & Wang (2022); Chen et al. (2024) that suffer from com-
putational redundancy through layer-specific weight generation, our architecture establishes direct
video correspondences via cross-attention mechanisms. Our persistent decoder reconstructs video
frames through coordinate-to-token attention, transforming latent tokens Tv ∈ RN×d into pixel
values via unified spatiotemporal mapping.

Axis-Adaptive Positional Encoding The decoding process begins with multi-frequency positional
encoding of normalized coordinates. Given input coordinates x = (h,w, t) ∈ [0, 1]3, we implement
stratified frequency projection γ : R3 → R6k:

γ(x) = [cos(πv) ∥ sin(πv)] (5)

where the intermediate vector v ∈ R3k is computed through coordinate-wise frequency modulation:

v = x⊗w ∈ R3k and w =
[
σ

i
k−1

]k−1

i=0
∈ Rk (6)

Here, k specifies the number of frequency components per coordinate dimension, σ is the frequency
scaling factor controlling the wavelength range, and ⊗ denotes element-wise multiplication broad-
casted across coordinate dimensions.

Our decoder employs axis-adaptive spectral encoding to address the intrinsic disparity between spa-
tial and temporal video dimensions. Unlike conventional coordinate encoding methods that apply
uniform frequency distributions, we implement differentiated frequency allocation:

v = [h⊗ws, w ⊗ws, t⊗wt] (7)

where the spatial-temporal frequency vectors are defined as:

ws = [σi/(ks−1)
s ]ks−1

i=0 with ks = ⌊4k/3⌋,wt = [σ
i/(kt−1)
t ]kt−1

i=0 with kt = ⌊k/3⌋ (8)

This spectral stratification principle allocates higher frequency components to spatial dimensions for
edge preservation while using lower frequency components for temporal encoding, addressing the
spatial-temporal frequency disparity in video data.

Cross-Attention Reconstruction The encoded coordinates interact with video tokens through
cross-attention:

F = Softmax
(
QK⊤
√
d

)
V,

{
Q = ϕ(γ(x))

K,V = ϕ(Tv)
(9)

where ϕ represents learnable projections establishing dynamic content-coordinate correlations. The
resultant feature vector F undergoes nonlinear refinement through a shallow MLP:

v̂ = MLP(F) (10)

Crucially, all decoder parameters remain static across video instances, enabling: (1) parallel pro-
cessing of coordinate grids for arbitrary resolutions, (2) joint modeling of local textures and global
motion, and (3) hardware-friendly memory access patterns through weight persistence.

Block Query Processing To address the quadratic memory bottleneck in attention mechanisms, we
implement chunked query processing that restricts each coordinate query’s attention to localM×M
windows, reducing memory complexity from O(H ∗ W ∗ T ) to O(M2) where M ≪ H . This
spatial-temporal constraint leverages video coherence through non-overlapping sliding windows,
maintaining reconstruction fidelity while significantly reducing memory requirements.
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Table 1: CAVINR vs SOTA. CAVINR shows better quality in reconstructing videos across datasets,
as measured by PSNR and SSIM. ‘F’ refers to frame number, #θ̂′ is the size of video-specific
weights or video token size. Training time is measured in ‘GPU hrs’.

Methods F Encoder
size

INR
size ↓ #θ̂′ ↓ Epoch GPU

hrs ↓
PSNR ↑ SSIM ↑

Train K400 SthV2 UCF101 Train K400 SthV2 UCF101

TransINR Chen & Wang (2022) 4 48.0M 99k 25k 150 63 23.7 22.1 24.6 22.1 0.659 0.631 0.728 0.622
GINR Kim et al. (2022) 4 47.6M 139.4k 25.6k 150 65 24.5 23.2 25.9 23.1 0.685 0.66 0.744 0.66
FastNeRV Chen et al. (2024) 4 47.6M 85.6k 24.1k 150 9 26.6 26.6 29.4 26 0.756 0.754 0.816 0.752
CAVINR(ours) 4 45.5M 86.4K 27k 20 5 31.4 31.5 31.9 31.5 0.924 0.922 0.925 0.923
CAVINR(ours) 4 45.5M 86.4K 27k 150 39 35.3 33.5 36.0 34.8 0.955 0.946 0.956 0.955
TransINR Chen & Wang (2022) 8 48.0M 99k 25k 150 119 22.3 20.3 22.8 20.7 0.626 0.595 0.703 0.591
GINR Kim et al. (2022) 8 47.6M 139.4k 25.6k 150 123 23.9 22.8 25.3 22.7 0.671 0.65 0.737 0.651
FastNeRV Chen et al. (2024) 8 47.6M 85.6k 24.1k 150 11 25.8 25.8 28.5 25.2 0.732 0.727 0.795 0.723
CAVINR(ours) 8 46.3M 86.4K 27k 20 9 28.8 28.6 28.9 28.7 0.896 0.893 0.897 0.895
CAVINR(ours) 8 46.3M 86.4K 27k 150 70 33.1 31.1 30.5 29.8 0.939 0.927 0.916 0.913
TransINR Chen & Wang (2022) 16 48.0M 99k 25k 150 234 21.5 18.4 21.1 19.2 0.615 0.555 0.678 0.561
GINR Kim et al. (2022) 16 47.6M 139.4k 25.6k 150 242 22.9 21.7 24.2 21.7 0.647 0.624 0.72 0.625
FastNeRV Chen et al. (2024) 16 47.6M 85.6k 24.1k 150 15 23.6 23.2 25.9 22.9 0.657 0.642 0.731 0.642
CAVINR(ours) 16 47.9M 86.4K 27k 20 17 27.3 27.1 27.4 27.3 0.872 0.869 0.873 0.872
CAVINR(ours) 16 47.9M 86.4K 27k 150 128 31.5 29.0 29.1 29.3 0.923 0.907 0.910 0.911

Temperature-Modulated Attention Enhancement While the coordinate-based cross-attention
mechanism enables video token reconstruction, we observe that reconstruction fidelity can be fur-
ther improved. Inspired by localized attention mechanisms Zhang et al. (2024), we enhance the
decoder’s representational capacity through temperature-modulated attention.

Traditional localized attention layers (LAL) implement threshold-based attention weight filtering:

LAL = Norm
(

ReLU
(

Softmax
(
QK⊤
√
d

)
−m

))
V (11)

where threshold m suppresses weak attention weights below a boundary. However, this recomputa-
tion introduces significant computational overhead and memory consumption.

To preserve the benefits of enhanced attention focus while improving computational efficiency, we
introduce a temperature parameter τ to modulate attention distribution sharpness:

F = Softmax
(
QK⊤

τ ·
√
d

)
V,

{
Q = ϕ(γ(x))

K,V = ϕ(Tv)
(12)

By adjusting τ , we control the concentration of attention across spatiotemporal locations: lower
values sharpen attention distribution (similar to LAL’s thresholding effect). CAVINR achieves com-
parable representational enhancement to LAL while maintaining computational efficiency through
direct integration into the standard softmax operation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP
Datasets. Our evaluation employs three benchmark video datasets following the protocol estab-
lished in Chen et al. (2024). Kinetics-400 (K400) Kay et al. (2017) serves as the primary training
corpus, containing 240K videos spanning 400 action classes. For computational efficiency while
maintaining class diversity, we utilize a curated subset of 10,000 videos (25 per class). Evaluation
is performed on the test sets of K400, Something-Something V2 Goyal et al. (2017) (20K motion-
centric videos) and UCF101 Soomro et al. (2012) (3.5K human-action videos).

Implementation Details. All experiments employ standardized video inputs at 256 × 256 resolu-
tion with temporal sampling of 4, 8, and 16 frames. The preprocessing pipeline consists of three
stages: (1) aspect ratio preservation via shorter-side resizing to 256px, (2) center cropping for spatial
alignment, and (3) uniform temporal sampling for consistency across sequences.

Our transformer hypernetwork processes 16 × 16 spatiotemporal patches through 6 encoder lay-
ers with hidden dimension 384, generating compact latent tokens for the decoding process. The
coordinate-attentive decoder combines a single transformer block with a 2-layer MLP, mapping co-
ordinate embeddings to YUV color values through SiLU-activated Elfwing et al. (2018) projections.
Training employs the AdamW optimizer Loshchilov & Hutter (2017) with initial learning rate 10−4.
All models are implemented in PyTorch Paszke et al. (2019) and trained on 8 NVIDIA A800 GPUs
with Intel Xeon Gold 6430 CPUs @ 2.1GHz. Video fidelity is quantified through PSNR and SSIM
metrics, computed frame-wise and averaged across temporal sequences.
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Table 2: CAVINR vs ANR Zhang et al. (2024). CAVINR shows better quality in reconstructing
videos across datasets, as measured by PSNR and SSIM. Our method takes up less memory and
trains faster, and can converge to a better performance.

Methods F Token
length N #θ̂′ Epoch Memory

per-batch ↓
GPU
hrs ↓

PSNR ↑ SSIM ↑
Train K400 SthV2 UCF101 Train K400 SthV2 UCF101

ANR-S 4 384 27k 150 18G 75 31.9 29.9 32.0 31.0 0.933 0.919 0.934 0.929
CAVINR-S 4 384 27k 150 2.6G 39 35.3 33.5 36.0 34.8 0.955 0.946 0.956 0.955
ANR-M 4 512 36k 150 23G 85 32.2 30.8 33.1 32.2 0.942 0.930 0.942 0.939
CAVINR-M 4 512 36k 150 2.7G 41 35.8 34.0 36.6 35.4 0.960 0.952 0.960 0.960
ANR-L 4 768 54k 150 34G 132 33.69 31.25 33.46 32.91 0.947 0.934 0.946 0.946
CAVINR-L 4 768 54k 150 2.7G 52 37.7 36.1 38.9 38.0 0.970 0.965 0.972 0.973
ANR-S 8 384 27k 150 35G 178 30.9 28.3 29.8 29.3 0.921 0.901 0.914 0.907
CAVINR-S 8 384 27k 150 3.9G 70 33.1 31.1 30.5 29.8 0.939 0.927 0.916 0.913
ANR-M 8 512 36k 150 46G 205 31.4 28.4 29.9 29.2 0.924 0.899 0.913 0.908
CAVINR-M 8 512 36k 150 4G 84 33.6 31.19 32.89 32.57 0.943 0.931 0.939 0.943
ANR-L 8 768 54k 150 74G 344 33.5 32.0 33.4 32.9 0.945 0.936 0.944 0.946
CAVINR-L 8 768 54k 150 4G 92 34.9 32.9 34.9 34.6 0.954 0.930 0.952 0.956

Figure 3: Qualitative Comparison. Visualizations for INR encoding methods: TransINR Chen
& Wang (2022) (Top line), GINR Kim et al. (2023a) (Second line), FastNeRV Chen et al. (2024)
(Third line), and CAVINR (Bottom, ours). Our method excels in reconstructing videos with supe-
rior fidelity and fine details. Best viewed digitally and zoomed in.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Table 1 presents comprehensive comparisons against leading INR methods including
TransINR Chen & Wang (2022), GINR Kim et al. (2022), and FastNeRV Chen et al. (2024) across
different frames (4, 8, and 16).

Reconstruction Quality. CAVINR demonstrates substantial improvements in reconstruction fi-
delity across all evaluation scenarios. At 4-frame resolution, our method achieves 35.3 dB PSNR
on training data and maintains strong generalization with 33.5 dB on K400, 36.0 dB on SthV2, and
34.8 dB on UCF101, representing improvements of 8.7, 6.9, 6.6, and 8.8 dB respectively over the
strongest baseline FastNeRV. Similar performance gains are observed across 8-frame and 16-frame
configurations, with consistent SSIM improvements exceeding 0.1 across all datasets.

Training Efficiency. Our method demonstrates improved training efficiency, achieving better per-
formance than baseline methods in just 20 epochs compared to their requirement of 150 epochs for
convergence. This corresponds to a 7.5× reduction in training time while maintaining competitive
performance across all evaluation metrics. When CAVINR is trained for the full 150-epoch duration,
the performance gains become more substantial, indicating both faster convergence and better final
results compared to existing methods.

Computational Cost. CAVINR achieves superior reconstruction quality while maintaining com-
putational efficiency comparable to existing methods. With 45.5–47.9M parameters, our model
remains within the size range of current approaches while delivering improved performance. Train-
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Table 3: Ablation Study. Evaluation of individual component contributions in CAVINR. Each
component provides improvements in reconstruction quality and computational efficiency.

RGB to
YUV

Block
Query

Convolution
Tokenizer

Axis-Adaptive-
Embeding

Temperature
Transformer

Memory
per-batch ↓

GPU
hrs ↓

PSNR ↑ SSIM ↑
Train K400 SthV2 UCF Train K400 SthV2 UCF

35G 178 26.9 25.3 26.3 26.2 0.668 0.579 0.612 0.602

✓ 35G 178 27.8 26.5 27.4 27.2 0.726 0.693 0.708 0.701
✓ 18G 178 27.8 26.5 27.4 27.2 0.726 0.693 0.708 0.701

✓ ✓ ✓ 18G 172 28.2 27.7 28.4 28.5 0.821 0.793 0.813 0.802
✓ ✓ ✓ 18G 180 28.8 27.8 28.5 28.8 0.825 0.804 0.816 0.812
✓ ✓ ✓ 3.9G 70 31.1 29.3 30.9 30.4 0.888 0.879 0.860 0.871

✓ ✓ ✓ ✓ ✓ 3.9G 70 33.1 31.1 32.8 32.3 0.939 0.927 0.935 0.938

ing efficiency is most apparent in the 4-frame configuration, where CAVINR converges in 39 GPU
hours compared to FastNeRV’s 150-epoch protocol.

Visual Quality. Figure 3 shows CAVINR’s performance across different video sequences. Com-
pared to TransINR, GINR, and FastNeRV, our method produces sharper details, preserves textures
more effectively, and maintains better color accuracy. These improvements are particularly evident
in sequences with rapid motion or fine textural patterns, where our approach generates cleaner edges
and reduces visual artifacts.

4.3 MEMORY EFFICIENCY ANALYSIS

Table 2 presents a comprehensive comparison with the transformer-based method ANR Zhang et al.
(2024), examining memory usage and computational efficiency across three model scales (Small,
Medium, Large) and varying temporal resolutions. While ANR achieves competitive results in im-
age reconstruction, for comprehensive evaluation, we implement video reconstruction experiments
to compare its performance against our method.

Memory Reduction. The combination of block query processing and temperature-scaled attention
mechanisms yields substantial memory efficiency improvements. CAVINR consistently maintains
memory usage between 2.6–4.0 GB per batch across training configurations, while ANR requires
18–74 GB—corresponding to an 85–95% reduction in memory consumption. The memory advan-
tage increases with model scale and temporal sequence length. For instance, ANR-L processing 8
frames demands 74 GB, whereas CAVINR only needs 4 GB for the same configuration.

Training Speed. The memory efficiency directly translates to accelerated training. CAVINR-L with
4 frames requires only 52 GPU hours compared to ANR-L’s 132 hours, achieving 2.5× speedup
while delivering superior reconstruction quality (37.7 vs 33.69 dB PSNR). This pattern holds con-
sistently across all model configurations.

Scalability. The performance advantages of CAVINR become more pronounced with increased
model capacity. CAVINR-L achieves the highest reconstruction quality while maintaining practi-
cal memory requirements, demonstrating excellent scalability properties that enable deployment of
larger models within memory constraints.

4.4 ABLATION STUDY

Table 3 presents a comprehensive ablation study evaluating five key components in our CAVINR
framework: RGB-to-YUV color space conversion, block query processing, convolutional tokenizer,
spatiotemporal embedding, and temperature-modulated attention.

Individual Component Analysis. Starting from a baseline of 26.9 dB PSNR (35G memory, 178
GPU hours), RGB-to-YUV conversion delivers the first significant gain (+0.9 dB PSNR, +0.058
SSIM), validating perceptually-motivated color space representation. Block query processing main-
tains reconstruction quality while achieving 49% memory reduction (35G→18G). The convolutional
tokenizer adds +0.4 dB PSNR and reduces training time to 172 hours, demonstrating superior learn-
able spatial abstraction over traditional patch methods.

Spatiotemporal Enhancement. Spatiotemporal embedding provides consistent improvements (+1
dB PSNR, +0.1 SSIM), confirming the value of explicit temporal modeling. Temperature-modulated
attention yields the most dramatic gains: +2.3 dB PSNR with substantial efficiency improvements
(memory: 3.9G, training time: 70 hours).

Synergistic Effects. The complete CAVINR framework achieves 33.1 dB PSNR and 0.939
SSIM—cumulative improvements of +6.2 dB and +0.271 SSIM over baseline. This shows strong
component synergy that delivers both superior reconstruction quality and computational efficiency.
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Table 4: Video Compression Comparison. Rate-distortion analysis comparing CAVINR with
traditional codecs and neural compression methods (FastNeRV). CAVINR demonstrates favorable
quality-size tradeoffs and flexible bit allocation while delivering competitive processing speeds.

AV1
CRF 60

H.264 FastNeRV CAVINR (ours)
CRF 35 CRF 40 CRF 45 8 bits 7 bits 6 bits 5 bits 4 bits 8 bits 7 bits 6 bits 5 bits 4 bits

Size(KB) ↓ 21.9 20.4 13.1 8.7 23.7 20.7 17.7 14.7 11.6 26.9 23.6 20.2 16.9 13.5
PSNR ↑ 32.4 32.8 30.0 27.3 28.4 28.3 28.1 27.5 25.6 32.99 32.89 32.51 31.20 27.77
SSIM ↑ 0.910 0.912 0.860 0.788 0.808 0.807 0.784 0.712 0.802 0.938 0.937 0.933 0.919 0.866

VPS ↑ 313 447 460 485 5175 125

Attention Mechanism Analysis. Figure 4 shows
how attention patterns evolve during training. Ini-
tially, diffuse patterns (a) sharpen into focused
activations (b), while coordinate-specific patterns
(c,d) reveal how different spatial locations acti-
vate distinct token subsets for efficient content-
coordinate mapping. Comparing attention before
and after training demonstrates the emergence
of structured weights that correspond to relevant
video content. This validates our temperature-
modulated model learns to focus on pertinent
information while suppressing irrelevant activa-
tions, achieving both spatial selectivity and se-
mantic coherence.

(a)

(c)

(b)

(d)

Figure 4: Token probability distribution visual-
izations.

Temperature Coefficient Analysis. We evaluate tempera-
ture coefficients τ ranging from 0.1 to 1.0 to optimize at-
tention sharpness, measuring performance using PSNR and
SSIM metrics as shown in Figure 5. Lower temperature val-
ues (τ = 0.1) produce overly concentrated attention that can
miss important contextual information, while higher values
(τ = 1.0) create diffuse patterns that reduce reconstruction
precision. Our analysis shows that τ = 0.4 provides the
best balance, offering focused attention while maintaining
adequate coverage. Figure 5: τ–dependent results.
Encoding Efficiency. Figure 6 illustrates the substantial
efficiency improvements achieved by our feed-forward ap-
proach over gradient-based optimization methods. CAVINR
delivers encoding speeds 105× faster than the NeRV base-
line across multiple datasets, reducing video encoding from
hour-long optimization procedures to millisecond-scale for-
ward passes. This acceleration enables real-time deploy-
ment while preserving superior reconstruction fidelity. The
encoding speedup results from eliminating iterative weight
optimization by using persistent decoder parameters and
pre-trained transformer hypernetworks.

105×Faster
105×Faster

Figure 6: Encoding speed comparison
across datasets.

4.5 DOWNSTREAM TASK: VIDEO COMPRESSION

Performance Evaluation. We evaluate CAVINR against traditional codecs (H.264, AV1) and neural
methods (FastNeRV) using comprehensive rate-distortion analysis presented in Table 4. CAVINR
significantly outperforms FastNeRV, achieving 32.51 dB PSNR and 0.933 SSIM at 6 bits (20.2KB)
compared to FastNeRV’s performance at 17.7KB. This represents substantial improvements of +4.4
dB PSNR and +0.131 SSIM, validating our coordinate-attentive decoding approach. Against tra-
ditional codecs, CAVINR’s 6-bit configuration substantially outperforms H.264 CRF 40 (30.0 dB
PSNR, 0.860 SSIM, 13.1KB) and matches H.264 CRF 35 quality (32.8 dB PSNR, 0.912 SSIM,
20.4KB) at comparable file sizes. Furthermore, CAVINR delivers superior quality with a smaller
file size than AV1 CRF 60 (32.4 dB PSNR, 0.910 SSIM, 21.9KB). The flexible bit allocation en-
ables diverse quality-size trade-offs, ranging from aggressive 4-bit compression (27.77 dB PSNR,
0.866 SSIM, 13.5KB) to high-quality 8-bit encoding (32.99 dB PSNR, 0.938 SSIM, 26.9KB), thus
accommodating varied application requirements.
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Table 5: CAVINR vs ANR Zhang et al. (2024) with different resolution. CAVINR shows better
quality in reconstructing videos across datasets, as measured by PSNR and SSIM. Our method takes
up less memory and trains faster, and can converge to a better performance.

Methods F Frame
Resolution #θ̂′ Epoch Memory

per-batch ↓
GPU
hrs ↓

PSNR ↑ SSIM ↑
Train K400 SthV2 UCF101 Train K400 SthV2 UCF101

ANR-S 4 512 27k 50 64G 275 27.9 27.2 28.0 27.0 0.833 0.819 0.834 0.829
CAVINR-S 4 512 27k 50 5.2G 62 29.3 29.5 29.0 29.8 0.855 0.846 0.856 0.855
ANR-M 4 512 36k 50 76G 285 28.2 27.8 28.1 28.2 0.842 0.830 0.842 0.839
CAVINR-M 4 512 36k 50 5.3G 66 29.8 29.7 29.6 29.9 0.860 0.852 0.860 0.860
ANR-L 4 512 54k OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
CAVINR-L 4 512 54k 50 5.3G 70 30.7 30.1 30.9 30.5 0.870 0.865 0.872 0.873
ANR-S 1 1024 27k 50 64G 278 26.9 27.3 26.8 26.3 0.821 0.801 0.814 0.807
CAVINR-S 1 1024 27k 50 5.2G 64 29.1 29.1 28.5 28.8 0.839 0.827 0.816 0.813
ANR-M 1 1024 36k 50 76G 305 27.4 28.4 27.9 27.2 0.824 0.801 0.813 0.808
CAVINR-M 1 1024 36k 50 5.3G 68 29.6 28.2 29.9 29.7 0.843 0.831 0.839 0.843
ANR-L 1 1024 54k OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
CAVINR-L 1 1024 54k 50 5.3G 71 30.2 29.5 30.4 30.2 0.854 0.840 0.852 0.856

Processing Efficiency and Applications. CAVINR processes 125 videos per second, representing
a 41× reduction compared to FastNeRV’s throughput of 5,175 VPS. This slower performance stems
from the computational overhead introduced by our attention mechanisms. However, 125 VPS still
far exceeds real-time decoding requirements for most practical use cases.

Rate-Distortion Performance. Figure 7 demonstrates
CAVINR’s competitive compression efficiency on HEVC
class D datasets. Our method achieves PSNR ranging from
30.78 to 36.29 dB across varying bitrates. At 33 dB PSNR,
CAVINR (0.062 bpp) outperforms the traditional HM-16.25
codec (0.069 bpp) while maintaining comparable quality
to modern learned methods DCVC-FM and DCVC-RT. At
higher quality levels around 35 dB, CAVINR continues
to demonstrate efficient rate-distortion trade-offs, requir-
ing 0.105 bpp compared to HM-16.25’s 0.116 bpp. These
results validate that our feed-forward approach preserves
strong compression performance despite eliminating itera-
tive optimization.

Figure 7: Rate-distortion comparison
on HEVC class D sequences.

4.6 HIGH-RESOLUTION SCALABILITY ANALYSIS

We evaluate CAVINR’s scalability at 512 × 512 and 1024 × 1024 resolutions, comparing against
ANR Zhang et al. (2024). Table 5 summarizes the results.

Resolution Scaling. At 512 RES with 4 frames, CAVINR-S achieves 29.3 dB PSNR versus ANR-
S’s 27.9 dB. The gap increases with model capacity: CAVINR-L reaches 30.7 dB while ANR-L
encounters out-of-memory (OOM) errors on 80GB A800 GPUs.

Extreme Resolution. At 1024 RES, CAVINR-S achieves 29.1 dB PSNR using 5.2 GB memory
per batch, while ANR-S requires 64 GB—a 12× reduction. ANR-L fails entirely at this resolution,
whereas CAVINR-L processes inputs successfully with 30.2 dB PSNR and 5.3 GB memory. These
results validate that block query processing enables coordinate-based reconstruction at resolutions
previously infeasible for transformer-based INR methods.

Training Efficiency. At 512 RES, CAVINR-S requires 62 GPU hours compared to ANR-S’s 275
hours (4.4× speedup). This advantage persists at 1024 RES: CAVINR completes training in 64-71
GPU hours across all scales, while ANR demands 278-305 hours for smaller models and fails for
larger configurations.

5 CONCLUSION

This paper presents CAVINR, a transformer-based framework that enhances video implicit neural
representations through coordinate-aware cross-attention mechanisms. By replacing per-video op-
timization with shared transformer weights and video-specific tokens, our method achieves 105×
faster encoding than gradient-based NeRV while delivering 6–9 dB PSNR improvements over ex-
isting approaches. Beyond superior reconstruction quality, CAVINR provides substantial efficiency
gains: 85–95% memory reduction compared to current techniques and 7.5× faster convergence with
consistent performance across diverse video datasets. These advantages position CAVINR as a solu-
tion for large-scale video processing applications where both quality and efficiency are paramount.
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ETHICS STATEMENT

This work presents purely theoretical and computational research. The study does not involve any
human subjects, human data collection, biological experiments, or interaction with living systems.
All analyses are conducted on publicly available benchmark datasets or synthetic data, and no new
datasets are released as part of this work. The methodologies and findings presented are of a fun-
damental nature and do not raise foreseeable risks of misuse, harmful applications, or significant
societal impacts requiring specific ethical mitigation. There are no potential conflicts of interest,
discriminatory biases, or privacy/security concerns directly arising from the research described in
this paper. The authors confirm that this research adheres to the principles outlined in the ICLR
Code of Ethics and standard academic integrity practices.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed implementation information in the appendix. The
convolutional tokenization approach and axis-adaptive positional encoding scheme are described in
full. We present the theoretical basis for our cross-attention mechanism and temperature-modulated
attention optimization. All hyperparameter settings and training procedures are documented, includ-
ing optimizer configurations and learning rate schedules. We provide quantitative computational
complexity analysis compared to baseline methods. The data processing pipelines and standardized
preprocessing steps are described for all benchmark datasets. Code will be released upon publica-
tion.
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A APPENDIX

A.1 VIDEO TOKENIZATION METHODS

We compare two paradigms for converting video data into spatiotemporal tokens: the conventional
unfold-based method and our proposed convolutional tokenizer. Given an input video tensor V ∈
RT×C×H×W , both methods partition frames into patches but diverge fundamentally in projection
strategies. This tokenization approach builds upon the success of patch-based representations in
vision transformers Dosovitskiy et al. (2020) and extends these concepts to video domains Arnab
et al. (2021).

Baseline Unfold Tokenizer. The baseline unfold tokenizer first merges batch and temporal dimen-
sions (V′ ∈ RT×C×H×W ), then extracts patches via unfold operations with patch size P ×P Doso-
vitskiy et al. (2020):

Vunfold = unfold(V′) ∈ RT×(C·P 2)×L (13)
where L denotes patches per frame. Complex reshaping operations follow: temporal separation,
permutation, and flattening to Vflat ∈ R(L·T )×(C·P 2). Finally, a linear layer projects patches to
D-dimensional tokens:

Z = Linear(C · P 2 → D)(Vflat) (14)
This method incurs high computational overhead from explicit patch-vector construction and inter-
mediate tensor manipulations.

Proposed Convolutional Tokenizer. Our proposed convolutional tokenizer replaces unfold opera-
tions with learnable convolutional projections:

Vconv = Conv2d(C → D, kernel size = P, stride = P )(V′) (15)

where Vconv ∈ RT×D×H′×W ′
and H ′ = ⌊H/P ⌋, W ′ = ⌊W/P ⌋. We then flatten spatial dimen-

sions and restore temporal structure:

Z = reshape (flatten(Vconv)) ∈ R(T ·H′·W ′)×D (16)

This approach provides several key advantages: computational efficiency through eliminating costly
reshaping operations via unified patch extraction and projection, enhanced learnability by enabling
adaptive optimization of spatial feature extraction compared to static unfold operations Liu et al.
(2021), and implementation simplicity by reducing tokenization to three streamlined operations
while avoiding error-prone permutations. While both methods generate T · (H/P ) · (W/P ) to-
kens, our approach better aligns with modern architectures that leverage convolutional inductive
biases for vision tasks LeCun et al. (1998); Krizhevsky et al. (2012).

A.2 AXIS-ADAPTIVE POSITIONAL ENCODING

Our Axis-Adaptive Positional Encoding (AAPE) addresses a fundamental limitation in existing co-
ordinate encoding methods: the assumption that spatial and temporal dimensions require identical
frequency characteristics. Video data exhibits distinct spectral properties across different dimen-
sions—spatial information concentrates in higher frequencies for texture preservation, while tempo-
ral information resides primarily in lower frequencies due to motion coherence constraints.

Frequency Scaling Parameter Selection. The frequency scaling parameter σ selection follows
from the Nyquist-Shannon sampling theorem applied to natural video content Mallat (1999). For
video resolution H ×W × T , we determine the optimal spatial and temporal frequency parameter
as:

σspatial = 2×max(H,W ), σtemporal = 2× T. (17)

This relationship ensures that positional encoding captures spatial frequencies up to the effective
bandwidth of the video representation. When σ equals the video resolution, the encoding ap-
proaches critical sampling and may introduce aliasing artifacts. Large values (σs ≥ 1024) lead
to high-frequency dominance, which reduces sensitivity to coarse spatial structures—a known issue
in harmonic analysis Tancik et al. (2020); Mildenhall et al. (2020). Based on empirical evaluation,
σs = 512 offers a good balance between fine-detail discrimination and stable coarse-scale represen-
tation for 256× 256 videos.
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Adaptive Frequency Allocation. We differentially allocate frequency components based on infor-
mation density. Spatial dimensions receive increased allocation:

ks = ⌊4k/3⌋ (18)
enabling capture of fine details, edges, and textures critical for video quality. Temporal dimensions
receive reduced allocation:

kt = ⌊k/3⌋ (19)
reflecting lower temporal resolution and different coherence characteristics compared to spatial di-
mensions.

Spectral Stratification Principle. Natural images exhibit power-law spectral decay with most in-
formation in low-to-medium frequencies Field (1987); Ruderman (1994). Our spatial encoding with
σi/(ks−1) provides logarithmic frequency spacing matching this distribution. Video temporal dy-
namics operate at lower frequencies due to frame rate limitations and motion coherence Adelson &
Bergen (1985). Our temporal encoding provides attenuated progression suitable for temporal pattern
capture.

The frequency allocation strategy follows information-theoretic principles. Spatial dimensions ex-
hibit high mutual information with visual content due to rich spatial structure, while temporal di-
mensions show lower mutual information due to redundancy and coherence. Our encoding dis-
tributes available representational capacity (6k dimensions) according to information content, fol-
lowing rate-distortion optimization principles Cover & Thomas (2006).

A.3 CROSS-ATTENTION CONVERGENCE ANALYSIS

We establish theoretical justification for cross-attention superiority over dynamic weight genera-
tion in video implicit neural representation. Under Lipschitz continuity assumptions Arjovsky et al.
(2017), cross-attention converges faster than dynamic weight methods. Let fθ(x) denote traditional
dynamic weight generation Sitzmann et al. (2020) and gϕ(Tv, x) denote our cross-attention mecha-
nism with video tokens Tv and coordinate queries x.

Dynamic weight generation updates as:
θ(t+1) = θ(t) − η∇θL(fθ(x), y) (20)

Cross-attention updates as:
ϕ(t+1) = ϕ(t) − η∇ϕL(gϕ(Tv, x), y) (21)

The cross-attention formulation maintains persistent weights ϕ while enabling content-adaptive
reconstruction through attention mechanisms. This leads to more stable optimization land-
scapes Dosovitskiy et al. (2020) and provides implicit regularization preventing overfitting to spe-
cific video instances Morerio et al. (2017). The cross-attention operation:

Attention(Q,K, V ) = softmax
(
QKT

√
d

)
V (22)

inherently normalizes influence across video tokens, providing regularization effects absent in direct
weight modulation approaches Vaswani et al. (2017)–Bahdanau et al. (2015).

A.4 TEMPERATURE-MODULATED ATTENTION

We derive the optimal temperature parameter τ through information-theoretic analysis Hinton et al.
(2015)–Jang et al. (2017). Temperature-modulated attention controls attention distribution en-
tropy Shannon (1948):

H(τ) = −
∑
i

pi(τ) log pi(τ) (23)

where pi(τ) =
exp(ai/τ)∑
j exp(aj/τ)

. The optimal temperature balances attention focus and coverage:

τ∗ = argmin
τ

Lrecon + λ · Rentropy(τ) (24)

where Rentropy(τ) = |H(τ) − Htarget| penalizes deviations from target entropy Pereyra et al.
(2017). Empirical validation across multiple datasets identifies τ∗ ≈ 0.4 as optimal, achieving
superior reconstruction quality while maintaining computational efficiency Müller et al. (2019).
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Figure 8: RGB vs YUV RGB channels show discrete distributions across the full range [0, 1], while
YUV U&V channels concentrate around 0.5, enabling efficient compression.

A.5 COLOR SPACE OPTIMIZATION

We adopt the YUV color space instead of RGB to exploit the statistical properties of natural video
content for efficient tokenization. The RGB-to-YUV transformation follows ITU-R BT.601 stan-
dard ITU-R (2011):

Y = 0.299 ·R+ 0.587 ·G+ 0.114 ·B
U = −0.169 ·R− 0.331 ·G+ 0.500 ·B + 128

V = 0.500 ·R− 0.419 ·G− 0.081 ·B + 128

(25)

where Y represents luminance information, while U and V encode chrominance information.

Unlike RGB channels with discrete distributions across the full intensity range Gonzalez & Woods
(2017), YUV demonstrates asymmetric statistical properties. The luminance channel Y maintains
broad distributions capturing structural information Poynton (2012), while chrominance channels U
and V concentrate around neutral values (0.5 normalized) Salomon (2004) as shown in Figure 8.
This asymmetry enables adaptive compression where fewer token dimensions encode chrominance
due to limited dynamic range, while luminance receives primary representational capacity.

Our YUV-based tokenization achieves information density optimization by prioritizing the most
informative luminance channel, perceptual alignment with human visual sensitivity favoring lumi-
nance over chrominance Wandell (1995), and computational efficiency through reduced chromi-
nance dimensionality. We implement channel-wise adaptive allocation where luminance utilizes
α · D dimensions (α = 0.6) while chrominance channels share the remaining (1 − α) · D dimen-
sions equally, achieving superior compression ratios while preserving visual quality compared to
RGB approaches Le Gall & Tabatabai (2020).

A.6 DETAILED TRAINING CONFIGURATION

As detailed in Table 6 (Complete Hyperparameter Settings), our CAVINR model implementation
incorporates carefully tuned architectural and training parameters across multiple components.

CAVINR Architecture: The model uses a token dimension of 72 with a token length of 384, im-
plemented with six encoder layers, each containing six attention heads with 64-dimensional heads.
The multi-layer perceptron (MLP) components have a hidden dimension of 768 and a feed-forward
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Table 6: Complete Hyperparameter Settings

Parameter Value
CAVINR Architecture
Token dimension (d) 72
Token length 384
Number of encoder layers (L) 6
Number of attention heads 6
Head dimension 64
MLP hidden dimension 768
Feed-forward dimension 3072
Sigma parameter (σ) 256
Number of groups (n groups) 64
Block query size (M) 64
Temperature parameter (τ ) 0.4
Transformer Encoder Parameters
Input dimension 3
Output dimension 3
Output bias 0.5
Network depth 2
Hidden dimension 72
PE dimension 24
PE sigma 512
Number of frames 4
Activation function SiLU
Rescale False
Training Parameters
Optimizer AdamW
Learning rate 1e-4
Weight decay 1e-5
Batch size 2
Total epochs 150
Warmup epochs 10
LR schedule Cosine annealing
Data Processing
Input resolution 256×256
Frame sampling Uniform
Color space YUV
Normalization [0, 1]

dimension of 3072. Key parameters include a sigma parameter σ = 256, n groups = 64, block
query size M = 64, and temperature parameter τ = 0.4.

Transformer Encoder Configuration: The transformer encoder processes 3-dimensional input
and output with an output bias of 0.5. The network consists of 2 layers with a hidden dimension of
72. Positional encoding uses PE dimension 24 and PE sigma 512, processing 4 frames with Swish
activation and no rescaling.

Training Setup: We use the AdamW optimizer with a learning rate of 1× 10−4 and weight decay
of 1 × 10−5. Training uses a batch size of 2 for 150 epochs, with 10 warmup epochs followed by
cosine annealing learning rate scheduling for stable convergence.

Data Processing: Input videos are processed at 256× 256 resolution with uniform frame sampling.
Frames are converted to the YUV color space and normalized to [0, 1] for consistent input scaling
across the dataset.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 7: Computational complexity comparison for single frame reconstruction. FLOPs (Floating
Point Operations) and MACs (Multiply-Accumulate Operations) are measured in billions (G) for
standard video resolution.

Method FLOPs (G) MACs (G) Architecture Type
NeRV 1.30 0.65 Convolutional
ANR 239.73 119.45 Transformer-based
CAVINR (Ours) 31.92 15.95 Temperature Attention

A.7 COMPUTATIONAL COMPLEXITY ANALYSIS

We conduct a comprehensive computational complexity analysis comparing CAVINR with baseline
approaches. Table 7 presents computational requirements for reconstructing a single video frame
across different methods.

The analysis shows key trade-offs between architectural approaches in neural video representation.
NeRV achieves high efficiency at 1.30 GFLOPs per frame through direct coordinate-to-pixel map-
ping using learned convolutional layers, avoiding attention mechanism overhead entirely. However,
this efficiency limits global dependency modeling and reduces reconstruction quality for complex
video content. ANR requires significantly higher computation at 239.73 GFLOPs—approximately
184× more than NeRV. This overhead results from the transformer architecture’s need to recal-
culate attention weights for each spatial-temporal coordinate during reconstruction. The quadratic
complexity of self-attention creates computational bottlenecks that become especially problematic
at high resolutions, where coordinate queries scale quadratically with spatial dimensions. CAVINR
strikes a middle ground at 31.92 GFLOPs, reducing computational complexity by approximately
7.5× compared to ANR while maintaining attention-based representational capabilities. This effi-
ciency gain comes from our temperature-modulated attention mechanism, which reduces compu-
tation through simplified attention weight calculation, efficient spatial-temporal token interactions
enabled by axis-adaptive positional encoding, and optimized attention patterns that lower memory
bandwidth requirements during forward passes.

Memory Scaling Properties. Memory complexity patterns differ substantially across methods.
Traditional NeRV approaches scale as O(Nparams ×Nvideos) for weight storage, requiring individual
networks per video sequence. This scaling becomes prohibitive for large video collections. CAVINR
achievesO(Ntokens×d+Nfixed

params) complexity through shared decoder weights, significantly reducing
memory requirements for multi-video scenarios where Nfixed

params ≪ Nparams ×Nvideos.

Forward Pass Analysis. NeRV requires O(H ×W × T ×Nparams) operations for coordinate-wise
convolutions, while CAVINR needs O(H ×W × T × Ntokens + Ntokens × d2) for cross-attention
operations. Despite the quadratic term in token interactions, reduced token count and optimized
attention computation yield practical efficiency gains, particularly for high-resolution videos where
Ntokens ≪ H ×W × T .

Training Efficiency. Per-video optimization requires O(E × B × Nparams) where E represents
epochs and B represents batch size. CAVINR achieves O(B × Nshared) where Nshared ≪ Nparams,
enabling more efficient multi-video training. This shared parameter approach reduces training time
by 7.5× compared to gradient-based optimization methods while achieving superior reconstruction
quality.

Scalability Considerations. Our block query processing technique addresses the quadratic mem-
ory bottleneck inherent in attention mechanisms. By restricting coordinate queries to local M ×M
windows, we reduce memory complexity from O((HWT )2) to O(M2 × HWT

M2 ) = O(HWT ),
enabling practical processing of high-resolution, long-sequence videos within reasonable computa-
tional constraints while preserving reconstruction quality.

While CAVINR cannot match the raw efficiency of purely convolutional approaches like NeRV,
it provides compelling trade-offs by achieving substantial computational savings over transformer-
based methods while delivering superior reconstruction quality. This efficiency enables practical
deployment of attention-based neural video representation in resource-constrained environments
where both quality and computational efficiency are critical.
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Figure 9: Sigma Parameter. PSNR/SSIM performance across training and test sets at varying
σ: Insufficient dimensionality (σ = 256) limits representation quality, excessive dimensionality
(σ = 1024) introduces noise, while σ = 512 achieves optimal capacity-representation balance.

A.8 HYPERPARAMETER SENSITIVITY ANALYSIS

To validate our architectural design choices, we analyze four key hyperparameters that affect CAV-
INR performance: sigma dimension, encoder depth, MLP depth, and batch size.

Sigma Parameter Analysis. Figure 9 shows how feature dimension σ affects reconstruction quality
through an inverted-U relationship. Low dimensionality (σ = 256) limits representational capacity,
degrading PSNR and SSIM across datasets. High dimensionality (σ = 1024) introduces excessive
parameters that cause overfitting and noise amplification, particularly evident in test set degradation.
The optimal value (σ = 512) balances representational capacity with generalization, achieving peak
performance across K400 Train, K400 Test, STH-V2, and UCF101.

Encoder Depth Optimization. Figure 10 shows monotonic improvement with encoder depth L.
Shallow architectures (L = 6) provide insufficient hierarchical feature extraction, while progressive
increases to L = 8 and L = 10 yield consistent gains through enhanced multi-scale representations.
Peak performance at L = 12 reflects improved feature hierarchy construction, with gains most
apparent in complex temporal datasets like STH-V2.

MLP Depth Impact. Figure 11 shows a positive relationship between MLP depth and performance.
Shallow networks (depth=2) have limited non-linear transformation capacity, which restricts com-
plex video-to-coordinate mapping. Moderate depths (3-4 layers) provide gradual improvements,
while depth=5 achieves the best expressiveness, effectively capturing complex spatial-coordinate
relationships.

Batch Size Sensitivity. Figure 12 reveals inverse correlation between batch size and performance.
Small batches (size=2) enable precise gradient estimation crucial for coordinate-based learning,
while larger batches progressively degrade performance through gradient over-smoothing that re-
duces optimization dynamics. Batch size 16 performs the poorest, confirming that coordinate-based
neural video representations require small-batch training.

The analysis indicates that our architectural choices are appropriate, with consistent patterns across
different video datasets.

A.9 CROSS-DOMAIN RECONSTRUCTION

We assess CAVINR’s reconstruction through zero-shot inference across diverse video domains using
models trained exclusively on K400 data. The evaluation encompasses medical imaging datasets—
EchoCP Wang et al. (2021) (30 patients with PFO diagnosis videos) and EchoNet-LVH Duffy et al.
(2022) (12,000 parasternal-long-axis echocardiography videos).

A.9.1 QUALITATIVE ANALYSIS

Figure 13 shows a visual comparison of reconstruction quality on echocardiographic sequences.
The results highlight differences in each method’s ability to handle medical imaging challenges,
including high noise levels and complex anatomical structures.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 10: Encoder Depth. PSNR/SSIM performance across training and test sets at varying layer
depth L: Shallow architecture (L = 6) limits hierarchical feature extraction, intermediate depths
(L = 8, 10) show progressive improvements, while L = 12 achieves optimal performance through
deeper feature hierarchies.

Figure 11: MLP Depth. PSNR/SSIM performance across training and test sets at varying MLP
depths: Shallow networks (Depth = 2) limit non-linear transformations, moderate depths (Depth
= 3, 4) enhance feature mapping complexity, while Depth = 5 achieves maximum expressiveness.

Figure 12: Batch Size. PSNR/SSIM performance across training and test sets at varying batch sizes:
Large batches (Size = 16) cause over-smoothed gradients, limiting optimization, medium batches
(Size = 4, 8) reduce gradient noise at convergence cost, while Size = 2 achieves optimal gradient
estimation precision.

FastNeRV produces blurred outputs that obscure important anatomical details, struggling with car-
diac wall boundaries and tissue textures essential for clinical assessment. The method exhibits
significant loss of high-frequency information, reducing the diagnostic clarity needed for medical
applications. ANR shows improvement with better reconstruction of anatomical features and im-
proved handling of ultrasound noise characteristics. However, fine details and subtle tissue variations
remain poorly resolved, particularly in regions with complex echogenicity patterns.

CAVINR achieves better reconstruction quality, preserving fine anatomical details while maintaining
consistent performance across varying noise conditions. The method effectively balances noise sup-
pression with detail preservation, producing reconstructions that closely match ground truth quality.
CAVINR’s advantages are particularly apparent in challenging low signal-to-noise regions where
other methods struggle to maintain adequate image quality.
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(a) Visual comparison of EchoCP dataset examples (b) Visual comparison of EchoNet-LVH dataset examples

Figure 13: Qualitative Comparison. Visualizations for Cross-Domain reconstruction: Ground
Truth (Top line), FastNeRV Chen et al. (2024) (Second line), ANR Zhang et al. (2024) (Third
line), and CAVINR (Bottom, ours). Our method excels in reconstructing medical videos with fine
details. Best viewed digitally and zoomed in.
Table 8: Comparative Performance of Video Reconstruction Methods on Medical Imaging Datasets

Dataset Method PSNR (dB) ↑ SSIM ↑ PSNR Gain SSIM Gain

EchoCP
FastNeRV 20.53 0.607 - -

ANR 24.40 0.784 +3.87 +0.177
CAVINR 26.85 0.864 +6.32 +0.257

EchoNet-LVH
FastNeRV 22.88 0.684 - -

ANR 27.45 0.835 +4.57 +0.151
CAVINR 29.64 0.916 +6.76 +0.232

A.9.2 QUANTITATIVE RESULTS

Table 8 presents a comprehensive quantitative evaluation of the three reconstruction methods across
two medical imaging datasets. The results demonstrate CAVINR’s substantial superiority over ex-
isting approaches in both objective metrics.

On the EchoCP dataset, CAVINR achieves a PSNR of 26.85 dB and SSIM of 0.864, representing
improvements of 6.32 dB and 0.257 respectively compared to FastNeRV, and 2.45 dB and 0.080 im-
provements over ANR. For the larger EchoNet-LVH dataset, CAVINR attains even more pronounced
gains with 29.64 dB PSNR and 0.916 SSIM, corresponding to 6.76 dB and 0.232 improvements over
FastNeRV, and 2.19 dB and 0.081 improvements over ANR.

CAVINR consistently outperforms FastNeRV across both datasets, achieving average gains of 6.54
dB in PSNR and 0.245 in SSIM. These significant improvements demonstrate its efficacy in over-
coming key challenges specific to medical video reconstruction—notably enhancing noise resilience
while preserving diagnostically relevant image features.

A.10 COMPARISON WITH NEURAL VIDEO COMPRESSION

We compare encoding and decoding speeds against neural video codecs DCVC-DC Li et al. (2023),
DCVC-FM Li et al. (2024), and DCVC-RT Jia et al. (2025). Table 9 reports speeds in frames per
second (fps) across multiple GPUs.

Encoding Speed. CAVINR achieves the fastest encoding across all configurations. On 1080p
videos, CAVINR encodes at 247.0 fps on A100, outperforming DCVC-RT (125.2 fps, 1.97×) and
DCVC-DC (3.3 fps, 74.8×). This advantage results from feed-forward processing that avoids itera-
tive optimization and complex entropy coding pipelines.

Decoding Speed. CAVINR decodes at 7.7 fps on A100 for 1080p, lower than DCVC-RT’s 112.8 fps.
This difference reflects architectural trade-offs: DCVC-RT uses optimized convolutional decoders
for parallel frame generation, while CAVINR performs cross-attention for pixel-level reconstruction.
Nevertheless, 7.7 fps exceeds requirements for video archival and offline processing applications.

Hardware and Resolution Scaling. Performance scales consistently across GPUs from datacenter
(A100) to consumer hardware (RTX 2080 Ti). At 720p, CAVINR achieves 12.7 fps decoding on
A100 (1.65× over 1080p), demonstrating sub-linear complexity growth.
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Table 9: Speed analysis. The encoding / decoding speed (measured in frames per second, fps) are
evaluated across various resolutions and devices, including the NVIDIA A100, NVIDIA A6000,
RTX 4090, and RTX 2080 Ti.

Model A100 A6000 4090 2080Ti

DCVC-DC 3.3 / 4.3 1.7 / 2.2 2.3 / 2.9 0.8 / 1.4

DCVC-FM 5.0 / 5.9 3.1 / 3.8 3.7 / 4.4 1.9 / 2.3

DCVC-RT 125.2 / 112.8 70.4 / 63.8 118.8 / 105.3 39.5 / 34.1

CAVINR 247.0 / 7.7 168.4 / 6.5 236.8 / 7.4 94.6 / 3.4

(a) Coding speed on 1920× 1080 videos.

Model A100 A6000 4090 2080Ti

DCVC-DC 6.5 / 7.9 3.5 / 4.3 5.5 / 6.7 2.1 / 2.9

DCVC-FM 8.5 / 9.4 5.9 / 6.6 9.3 / 10.4 4.0 / 4.7

DCVC-RT 173.9 / 149.2 147.3 / 132.5 225.1 / 185.2 73.3 / 67.0

CAVINR 250.0 / 12.7 202.3 / 8.5 240.6 / 12.4 98.5 / 5.4

(b) Coding speed on 1280× 720 videos.

Table 10: Zero-shot super-resolution comparison between CAVINR and ANR Zhang et al.
(2024). Models are trained on single frames at 128 × 128 resolution and evaluated at both native
resolution and 2× super-resolution (256 × 256) without additional training. CAVINR achieves
superior generalization with +2.2 dB PSNR improvement at 2× upscaling while requiring 12× less
training time. SR denotes super-resolution inference.

Methods Frame
Resolution #θ̂′ Epoch GPU

hrs ↓
PSNR ↑ SSIM ↑

Train K400 SthV2 UCF101 Train K400 SthV2 UCF101

ANR 128 27k 150 96 33.1 33.2 33.2 33.6 0.933 0.919 0.934 0.929
CAVINR 128 27k 50 8 33.3 33.3 33.4 33.8 0.935 0.926 0.936 0.935
ANR (SR 2×) 256 27k 0 0 28.9 29.3 28.8 28.3 0.861 0.841 0.874 0.867
CAVINR (SR 2×) 256 27k 0 0 31.1 30.1 31.5 31.8 0.919 0.907 0.916 0.913

A.11 SUPER-RESOLUTION VIA VARIATIONAL COORDINATES

To demonstrate CAVINR’s downstream task capabilities, we conduct zero-shot super-resolution ex-
periments following the variational coordinate approach from ANR Zhang et al. (2024). Both mod-
els are trained on single frames at 128 × 128 resolution and directly evaluated at 256 × 256 (2×
upscaling) without additional training, by querying coordinates on a denser grid.

As shown in Table 10, CAVINR achieves comparable quality at native resolution while requir-
ing only 8 GPU hours versus ANR’s 96 hours (12× speedup). For 2× super-resolution, CAVINR
demonstrates significantly better generalization with +2.2 dB PSNR improvement on average, val-
idating that our coordinate-attentive design enables practical downstream applications unavailable
to autoencoder-based methods.
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