

000 001 002 003 004 005 CAVINR: COORDINATE-AWARE ATTENTION FOR 006 VIDEO IMPLICIT NEURAL REPRESENTATIONS 007

008 **Anonymous authors**
009
010 Paper under double-blind review
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 Implicit Neural Representations (INRs) have emerged as a compelling paradigm,
029 with Neural Representations for Videos (NeRV) achieving remarkable compres-
030 sion ratios by encoding videos as neural network parameters. However, existing
031 NeRV-based approaches face fundamental scalability limitations: computa-
032 tionally expensive per-video optimization through iterative gradient descent and con-
033 volutional architectures with shared kernel parameters that provide weak pixel-
034 level control and limit global dependency modeling essential for high-fidelity re-
035 construction. We introduce CAVINR, a pure transformer framework that funda-
036 mentally departs from convolutional approaches by leveraging persistent cross-
037 attention mechanisms. CAVINR introduces three contributions: a transformer
038 encoder that compresses videos into compact video tokens encoding spatial tex-
039 tures and temporal dynamics; a coordinate-attentive decoder utilizing persistent
040 weights and cross-attention between coordinate queries and video tokens; and
041 temperature-modulated attention with block query processing that enhances re-
042 construction fidelity while reducing memory complexity. Comprehensive exper-
043 iments demonstrate CAVINR’s superior performance: 6–9 dB PSNR improve-
044 ments over state-of-the-art methods, $10^5 \times$ encoding acceleration compared to
045 gradient-based optimization, 85–95% memory reduction, and 7.5× faster conver-
046 gence with robust generalization across diverse video content, enabling practical
047 deployment for large-scale video processing applications.
048

1 INTRODUCTION

049 Video representation poses a significant challenge in computer vision due to the substantial computa-
050 tional and storage requirements of high-dimensional video data. The growth of video content across
051 streaming platforms, autonomous systems, and multimedia applications has created demanding re-
052 quirements for efficient video representation and processing that are far more complex than static
053 image processing. Traditional video compression standards like H.264/AVC Wiegand et al. (2003)
054 and HEVC Sullivan et al. (2012) use handcrafted codecs that struggle to balance compression ratios
055 with reconstruction quality, while requiring substantial computational resources for high-resolution
056 video processing. Recent research has investigated representing videos as Implicit Neural Repres-
057 entations (INRs) Chen et al. (2021a); Li et al. (2022b); Kim et al. (2022) , where videos are encoded
058 as neural network parameters, enabling compact storage while supporting downstream tasks such
059 as super-resolution and denoising. The NeRV series Chen et al. (2021a; 2022a; 2023) Introduced
060 this approach by using frame index as input to convolutional networks to generate frames, achiev-
061 ing significant speed improvements over coordinate-based methods while maintaining competitive
062 compression ratios and visual quality. However, NeRV-based methods face important scalability
063 challenges that limit practical deployment. The primary limitation comes from computationally
064 expensive per-video optimization through iterative gradient descent, making encoding costly for
065 large-scale applications. Since videos are encoded once but reconstructed repeatedly during play-
066 back and processing, both reconstruction quality and inference speed are important performance
067 factors. Recent acceleration efforts through MetaNeRV Guo et al. (2025) and FastNeRV Chen et al.
068 (2024) use meta-learning and transformer-based hypernetworks, but remain limited by the inherent
069 constraints of convolutional operations. Shared kernel parameters provide limited pixel-level con-
070 trol, while local connectivity prevents effective global dependency modeling, resulting in suboptimal
071 video quality, slow convergence, and insufficient reconstruction fidelity for demanding applications.
072

073 We present **CAVINR** (Coordinate-Aware Attention for Video Implicit Neural Representation), a
074 transformer-based framework that addresses the limitations of convolutional approaches by using
075 cross-attention mechanisms with persistent parameters. The method creates direct correspondences
076 between compressed video representations and spatial coordinate queries, improving computational
077

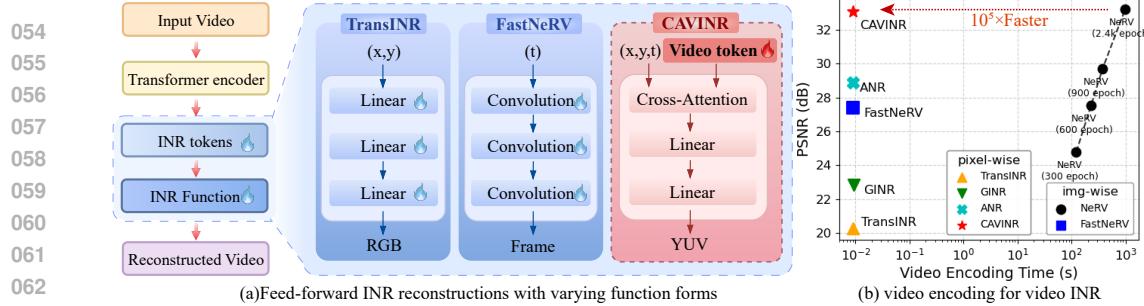


Figure 1: **Framework Comparison and Encoding Speed.** (a) Feed-forward INR approaches: TransINR and FastNeRV generate video-specific parameters requiring independent weight replacement, while CAVINR employs shared transformer weights with video-specific tokens for efficient cross-attention reconstruction. (b) Encoding efficiency: CAVINR achieves $10^5\times$ faster encoding than gradient-based NeRV Chen et al. (2021a) baseline through feed-forward processing.

efficiency and enabling precise pixel-level control through the global modeling capabilities of transformer architectures. The CAVINR framework consists of three main components: a **transformer encoder** that generates compact *video tokens* encoding spatial texture information and temporal dynamics, a **coordinate decoder** with fixed weights that applies cross-attention between coordinate queries and the video token representations, and an **adaptive attention module** that uses temperature scaling and block-based query processing to improve reconstruction performance while maintaining memory efficiency. Figure 1 compares our approach with existing methods. While conventional techniques require video-specific weight generation, CAVINR uses shared transformer weights with video-specific tokens through cross-attention, achieving $10^5\times$ faster encoding than gradient-based NeRV with better reconstruction quality. The contributions of this work are summarized as follows:

- We propose the CAVINR architecture for learning video implicit neural representations, achieving a $10^5\times$ speedup in encoding compared to conventional gradient-based optimization methods while delivering superior reconstruction quality.
- We introduce a coordinate-attentive decoder with persistent weights and temperature-modulated attention, establishing direct correspondences between video tokens and spatial coordinates for both computational efficiency and reconstruction fidelity.
- We design comprehensive architectural innovations including a convolution-based tokenizer, axis-adaptive position encoding, and temperature-modulated cross-attention that collectively enhance spatial-temporal modeling capabilities and representation accuracy.
- Comprehensive experiments demonstrate $6 - 9$ dB PSNR improvements over existing methods, $85 - 95\%$ memory reduction, and $7.5\times$ faster convergence with consistent performance across diverse video content.

2 RELATED WORK

Implicit Neural Representations. Implicit neural representations offer a compact approach to signal encoding, storing images, and videos directly within neural network parameters Dupont et al. (2021); Chen et al. (2022b). The foundational coordinate-based methods Tancik et al. (2020); Sitzmann et al. (2020) pioneered this field by using multilayer perceptrons to map spatial-temporal coordinates to signal values, demonstrating remarkable performance in applications such as novel view synthesis Mildenhall et al. (2020) and image super-resolution Chen et al. (2021b). Building on this foundation, NeRV Chen et al. (2021a) proposed frame-wise implicit representations that generate entire frames directly from temporal indices through convolutional architectures. Several follow-up works have improved reconstruction quality through various strategies: E-NeRV Li et al. (2022c) applies spatial-temporal decomposition, HNeRV Chen et al. (2023) combines hybrid variational autoencoders. Despite these advances, coordinate-based methods still achieve superior representation accuracy in many scenarios Chen et al. (2022c); Kim et al. (2022); Aiyetigbo et al. (2025).

Hypernetwork-Based Video INR Representations. Hypernetworks Ha et al. (2017) offer a flexible framework for generating adaptive model parameters based on input data. Early work in neural representations explored weight modulation using latent vectors Park et al. (2019); Mescheder et al.

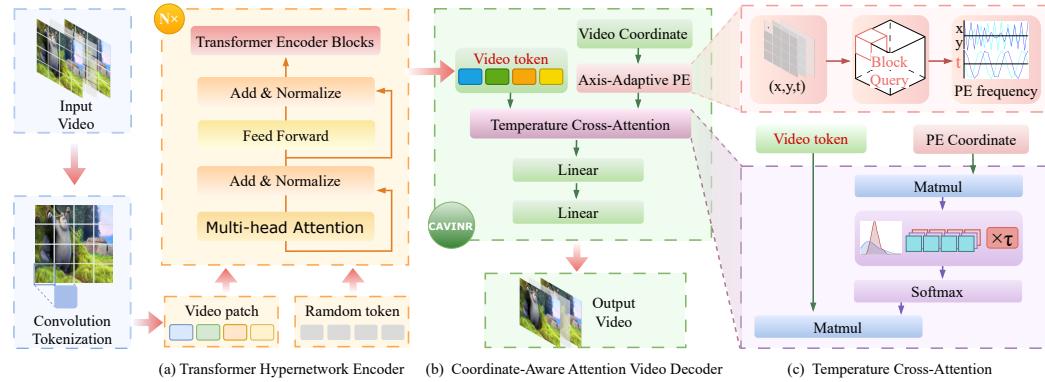


Figure 2: CAVINR Framework. (a) The Transformer Hypernetwork Encoder extracts compact video tokens from input video sequences. (b) The Coordinate-Aware Attention Video Decoder maps spatiotemporal coordinates to pixel values by first applying Axis-Adaptive Position Embedding to coordinate queries, then using (c) Temperature-Modulated Cross-Attention between position-embedded coordinates and video tokens to reconstruct the final video.

(2019), while recent approaches employ transformer architectures to directly produce parameters for implicit neural representations. Several methods follow this paradigm, including TransINR Chen & Wang (2022), GINR Kim et al. (2023a), FastNeRV Chen et al. (2024), and ANR Zhang et al. (2024), which utilize transformer-based hypernetworks for content-adaptive weight generation. These techniques build upon convolution concepts Chen et al. (2020); Yang et al. (2019) to enable instance-specific parameter synthesis. However, existing hypernetwork methods rely on convolutional priors that constrain their capacity to model global dependencies. Our approach addresses this limitation by integrating persistent decoder weights with transformer-based cross-attention mechanisms.

Neural Video Compression. Traditional video codecs such as H.265/HM HM, H.266/VTM VTM, and ECM ECM remain widely used in current applications, though they suffer from high computational complexity and limited compression efficiency. Learning-based compression methods Rippel et al. (2019); Agustsson et al. (2020); Maiya et al. (2023) achieve better rate-distortion performance but introduce significant decoding latency that limits their practical deployment. **Neural video coding has evolved along two distinct paradigms.** The DCVC family Li et al. (2021); Sheng et al. (2022); Li et al. (2022a; 2023; 2024); Jia et al. (2025) represents compression-oriented methods that prioritize bitrate efficiency and real-time coding speed for transmission applications, achieving **competitive performance with traditional codecs through conditional coding and entropy modeling**. Implicit neural representations offer an alternative by encoding videos as neural network parameters. NeRV Chen et al. (2021a) introduced this concept, demonstrating competitive performance through model compression while supporting GPU-accelerated decoding. DNeRV He et al. (2023) incorporates entropy coding while preserving speed benefits. **These representation-oriented methods prioritize reconstruction quality and downstream task support over bitrate optimization.** Building on the **representation paradigm**, our approach **targets quality-first applications** by introducing coordinate-attentive decoding and memory-efficient attention mechanisms, achieving **superior reconstruction fidelity** within practical computational constraints.

Temperature-Modulated Attention Mechanisms. Temperature scaling provides an effective approach for controlling the sharpness of attention distributions in various machine learning tasks. In natural language processing, Zhang et al. (2021) showed that attention smoothing improves abstractive summarization, while SACT Lin et al. (2018) enhanced machine translation quality using self-adaptive temperature scaling. Computer vision tasks have also benefited from temperature modulation. Zhou et al. (2023) improved image inpainting by using temperature-scaled attention to better leverage contextual information. We apply *temperature-modulated cross-attention* to coordinate-based video reconstruction. While previous work has focused on self-attention mechanisms, our method adjusts temperature parameters in cross-attention to better optimize interactions between coordinate queries and video tokens. This design enhances reconstruction quality while preserving computational efficiency, addressing the core challenge in neural video representation: precise coordinate-content alignment for high-quality decoding.

162 **3 METHODS**

163 **3.1 PROBLEM STATEMENT**

165 Let $V \in \mathbb{R}^{T \times C \times H \times W}$ denote a video sequence of length T , where each frame contains C channels
 166 with spatial resolution $H \times W$. The objective of video implicit neural representation (INR) is to
 167 construct a parametric function f_θ that encodes the entire video V within its learned parameters θ .

168 NeRV-based networks learn a direct mapping from frame index to corresponding RGB images,
 169 enabling video reconstruction through:

170
$$\hat{V}_t = f_\theta(t) \quad \forall t \in [1, T] \quad (1)$$

172 where \hat{V}_t denotes the reconstructed frame at time t , and the optimized weights θ constitute the
 173 implicit video representation that parametrically encodes the complete visual content.

174 However, existing implicit neural representations can only encode a single video per model,
 175 which significantly limits their practical use. To improve encoding efficiency in video INR, Fast-
 176 NeRV Chen et al. (2024) proposes a hypernetwork g_ϕ that generates parametric weights $\theta' = g_\phi(V)$
 177 directly from input video data. These generated weights are then loaded into the NeRV decoder
 178 f_θ for video reconstruction. Although FastNeRV substantially reduces video encoding time, it has
 179 important limitations that lead to reduced reconstruction quality in the decoded outputs.

180 **3.2 OVERALL WORKFLOW**

181 We propose a pure transformer architecture that addresses both efficiency and accuracy bottlenecks
 182 in neural video representations through synergistic encoding-decoding co-design. Our framework
 183 improve conventional hypernetworks through two key components: (1) a transformer encoder g_ϕ
 184 that compresses input video V into compact latent tokens $\mathbf{T}_v = g_\phi(V)$ via spatiotemporal patch
 185 aggregation, and (2) a weight-static decoder f_ψ that reconstructs frames $\hat{V} = f_\psi(\mathbf{T}_v, \Omega)$ through
 186 cross-attention mechanisms conditioned on coordinate queries. Reconstruction operates within the
 187 continuous spatiotemporal coordinate space:

188
$$\Omega = \{(x, y, t) \mid 0 \leq x \leq W, 0 \leq y \leq H, 0 \leq t \leq T\}. \quad (2)$$

190 Position embeddings for each coordinate $(x, y, t) \in \Omega$ serve as queries in the cross-attention mechanism.
 191 The cross-attention layer retrieves relevant information from video tokens \mathbf{T}_v , then processes
 192 these signals through instance-agnostic MLP layers to generate pixel values. Both the cross-attention
 193 layer and MLP use persistent weights shared across all videos, enabling efficient decoding without
 194 per-video optimization.

195 As shown in Figure 2, our framework enables three fundamental advances: (1) end-to-end optimi-
 196 zation through reconstruction loss minimization $\mathcal{L}(V, \hat{V})$ with generalization across video in-
 197 stances, (2) decoding across all spatiotemporal coordinates via persistent network weights, and (3)
 198 enhanced reconstruction fidelity through pixel-level control. The training objective minimizes the
 199 mean squared error between the original and reconstructed videos:

200
$$\mathcal{L} = \frac{1}{|\Omega|} \sum_{(x, y, t) \in \Omega} \|V_{x, y, t} - \hat{V}_{x, y, t}\|_2^2 \quad (3)$$

203 **3.3 TRANSFORMER HYPERNETWORK ENCODER**

204 Inspired by generalizable INR methods for images Kim et al. (2023b); Zhang et al. (2024) and
 205 videos Chen et al. (2024), we employ a transformer network with L encoder layers as a hypernetwork
 206 g_ϕ to generate compact video representations. Our approach introduces a learnable convolutional
 207 video tokenizer that replaces explicit patch extraction with learned spatial abstractions.

208 **Convolutional Tokenization** Unlike conventional methods employing unfold operations with linear
 209 projections, our convolutional tokenizer directly incorporates spatial abstraction during tokenization.
 210 The input video V generates initial patch tokens $\mathbf{P} \in \mathbb{R}^{N_p \times d}$, where N_p indicates spatiotemporal
 211 patch count and d the token dimension.

212 **Token Compression** The transformer processes a set of randomly initialized learnable tokens $\mathbf{R} \in$
 213 $\mathbb{R}^{N \times d}$ through successive attention layers to produce compressed video tokens $\mathbf{T}_v \in \mathbb{R}^{N \times d}$:

214
$$\mathbf{T}_v = \text{Softmax} \left(\frac{\mathbf{Q} \mathbf{K}^\top}{\sqrt{d}} \right) \mathbf{V}, \quad \text{where} \quad \begin{cases} \mathbf{Q} = \psi(\mathbf{R}) \\ \mathbf{K}, \mathbf{V} = \psi(\mathbf{P}) \end{cases} \quad (4)$$

216 where ψ denotes learned linear projections, and $N \ll N_p$.
 217

218 This design offers several advantages over previous methods: it provides pixel-level control and local
 219 connectivity for better reconstruction quality, enables dynamic token allocation based on attention
 220 mechanisms, and creates a unified representation of spatial and temporal features through progressive
 221 compression. The resulting position-aware tokens \mathbf{T}_v serve dual roles as content descriptors
 222 and reconstruction operators, supporting stable cross-attention operations with fixed transformer
 223 weights during decoding.

224 3.4 COORDINATE-AWARE ATTENTION VIDEO DECODER

225 Unlike conventional hypernetworks Chen & Wang (2022); Chen et al. (2024) that suffer from com-
 226 putational redundancy through layer-specific weight generation, our architecture establishes direct
 227 video correspondences via cross-attention mechanisms. Our persistent decoder reconstructs video
 228 frames through coordinate-to-token attention, transforming latent tokens $\mathbf{T}_v \in \mathbb{R}^{N \times d}$ into pixel
 229 values via unified spatiotemporal mapping.

230 **Axis-Adaptive Positional Encoding** The decoding process begins with multi-frequency positional
 231 encoding of normalized coordinates. Given input coordinates $\mathbf{x} = (h, w, t) \in [0, 1]^3$, we implement
 232 stratified frequency projection $\gamma : \mathbb{R}^3 \rightarrow \mathbb{R}^{6k}$:

$$233 \gamma(\mathbf{x}) = [\cos(\pi\mathbf{v}) \parallel \sin(\pi\mathbf{v})] \quad (5)$$

234 where the intermediate vector $\mathbf{v} \in \mathbb{R}^{3k}$ is computed through coordinate-wise frequency modulation:

$$236 \mathbf{v} = \mathbf{x} \otimes \mathbf{w} \in \mathbb{R}^{3k} \quad \text{and} \quad \mathbf{w} = \left[\sigma^{\frac{i}{k-1}} \right]_{i=0}^{k-1} \in \mathbb{R}^k \quad (6)$$

239 Here, k specifies the number of frequency components per coordinate dimension, σ is the frequency
 240 scaling factor controlling the wavelength range, and \otimes denotes element-wise multiplication broad-
 241 casted across coordinate dimensions.

242 Our decoder employs axis-adaptive spectral encoding to address the intrinsic disparity between spa-
 243 tial and temporal video dimensions. Unlike conventional coordinate encoding methods that apply
 244 uniform frequency distributions, we implement differentiated frequency allocation:

$$245 \mathbf{v} = [h \otimes \mathbf{w}_s, w \otimes \mathbf{w}_s, t \otimes \mathbf{w}_t] \quad (7)$$

247 where the spatial-temporal frequency vectors are defined as:

$$249 \mathbf{w}_s = [\sigma_s^{i/(k_s-1)}]_{i=0}^{k_s-1} \text{ with } k_s = \lfloor 4k/3 \rfloor, \mathbf{w}_t = [\sigma_t^{i/(k_t-1)}]_{i=0}^{k_t-1} \text{ with } k_t = \lfloor k/3 \rfloor \quad (8)$$

251 This spectral stratification principle allocates higher frequency components to spatial dimensions for
 252 edge preservation while using lower frequency components for temporal encoding, addressing the
 253 spatial-temporal frequency disparity in video data.

254 **Cross-Attention Reconstruction** The encoded coordinates interact with video tokens through
 255 cross-attention:

$$256 \mathbf{F} = \text{Softmax} \left(\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d}} \right) \mathbf{V}, \quad \begin{cases} \mathbf{Q} = \phi(\gamma(\mathbf{x})) \\ \mathbf{K}, \mathbf{V} = \phi(\mathbf{T}_v) \end{cases} \quad (9)$$

258 where ϕ represents learnable projections establishing dynamic content-coordinate correlations. The
 259 resultant feature vector \mathbf{F} undergoes nonlinear refinement through a shallow MLP:

$$261 \hat{v} = \text{MLP}(\mathbf{F}) \quad (10)$$

263 Crucially, all decoder parameters remain static across video instances, enabling: (1) parallel pro-
 264 cessing of coordinate grids for arbitrary resolutions, (2) joint modeling of local textures and global
 265 motion, and (3) hardware-friendly memory access patterns through weight persistence.

266 **Block Query Processing** To address the quadratic memory bottleneck in attention mechanisms, we
 267 implement chunked query processing that restricts each coordinate query's attention to local $M \times M$
 268 windows, reducing memory complexity from $\mathcal{O}(H * W * T)$ to $\mathcal{O}(M^2)$ where $M \ll H$. This
 269 spatial-temporal constraint leverages video coherence through non-overlapping sliding windows,
 maintaining reconstruction fidelity while significantly reducing memory requirements.

Table 1: **CAVINR vs SOTA.** CAVINR shows better quality in reconstructing videos across datasets, as measured by PSNR and SSIM. ‘F’ refers to frame number, $\#\hat{\theta}'$ is the size of video-specific weights or video token size. Training time is measured in ‘GPU hrs’.

Methods	F	Encoder size	INR size ↓	$\#\hat{\theta}'$ ↓	Epoch	GPU hrs ↓	PSNR ↑			SSIM ↑				
							Train	K400	SthV2	UCF101	Train	K400	SthV2	UCF101
TransINR Chen & Wang (2022)	4	48.0M	99k	25k	150	63	23.7	22.1	24.6	22.1	0.659	0.631	0.728	0.622
GINR Kim et al. (2022)	4	47.6M	139.4k	25.6k	150	65	24.5	23.2	25.9	23.1	0.685	0.66	0.744	0.66
FastNeRV Chen et al. (2024)	4	47.6M	85.6k	24.1k	150	9	26.6	26.6	29.4	26	0.756	0.754	0.816	0.752
CAVINR(ours)	4	45.5M	86.4K	27k	20	5	31.4	31.5	31.9	31.5	0.924	0.922	0.925	0.923
CAVINR(ours)	4	45.5M	86.4K	27k	150	39	35.3	33.5	36.0	34.8	0.955	0.946	0.956	0.955
TransINR Chen & Wang (2022)	8	48.0M	99k	25k	150	119	22.3	20.3	22.8	20.7	0.626	0.595	0.703	0.591
GINR Kim et al. (2022)	8	47.6M	139.4k	25.6k	150	123	23.9	22.8	25.3	22.7	0.671	0.65	0.737	0.651
FastNeRV Chen et al. (2024)	8	47.6M	85.6k	24.1k	150	11	25.8	25.8	28.5	25.2	0.732	0.727	0.795	0.723
CAVINR(ours)	8	46.3M	86.4K	27k	20	9	28.8	28.6	28.9	28.7	0.896	0.893	0.897	0.895
CAVINR(ours)	8	46.3M	86.4K	27k	150	70	33.1	31.1	30.5	29.8	0.939	0.927	0.916	0.913
TransINR Chen & Wang (2022)	16	48.0M	99k	25k	150	234	21.5	18.4	21.1	19.2	0.615	0.555	0.678	0.561
GINR Kim et al. (2022)	16	47.6M	139.4k	25.6k	150	242	22.9	21.7	24.2	21.7	0.647	0.624	0.72	0.625
FastNeRV Chen et al. (2024)	16	47.6M	85.6k	24.1k	150	15	23.6	23.2	25.9	22.9	0.657	0.642	0.731	0.642
CAVINR(ours)	16	47.9M	86.4K	27k	20	17	27.3	27.1	27.4	27.3	0.872	0.869	0.873	0.872
CAVINR(ours)	16	47.9M	86.4K	27k	150	128	31.5	29.0	29.1	29.3	0.923	0.907	0.910	0.911

Temperature-Modulated Attention Enhancement While the coordinate-based cross-attention mechanism enables video token reconstruction, we observe that reconstruction fidelity can be further improved. Inspired by localized attention mechanisms Zhang et al. (2024), we enhance the decoder’s representational capacity through temperature-modulated attention.

Traditional localized attention layers (LAL) implement threshold-based attention weight filtering:

$$\text{LAL} = \text{Norm} \left(\text{ReLU} \left(\text{Softmax} \left(\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d}} \right) - m \right) \right) \mathbf{V} \quad (11)$$

where threshold m suppresses weak attention weights below a boundary. However, this recomputation introduces significant computational overhead and memory consumption.

To preserve the benefits of enhanced attention focus while improving computational efficiency, we introduce a temperature parameter τ to modulate attention distribution sharpness:

$$\mathbf{F} = \text{Softmax} \left(\frac{\mathbf{Q}\mathbf{K}^\top}{\tau \cdot \sqrt{d}} \right) \mathbf{V}, \quad \begin{cases} \mathbf{Q} = \phi(\gamma(\mathbf{x})) \\ \mathbf{K}, \mathbf{V} = \phi(\mathbf{T}_v) \end{cases} \quad (12)$$

By adjusting τ , we control the concentration of attention across spatiotemporal locations: lower values sharpen attention distribution (similar to LAL’s thresholding effect). CAVINR achieves comparable representational enhancement to LAL while maintaining computational efficiency through direct integration into the standard softmax operation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Our evaluation employs three benchmark video datasets following the protocol established in Chen et al. (2024). Kinetics-400 (K400) Kay et al. (2017) serves as the primary training corpus, containing 240K videos spanning 400 action classes. For computational efficiency while maintaining class diversity, we utilize a curated subset of 10,000 videos (25 per class). Evaluation is performed on the test sets of K400, Something-Something V2 Goyal et al. (2017) (20K motion-centric videos) and UCF101 Soomro et al. (2012) (3.5K human-action videos).

Implementation Details. All experiments employ standardized video inputs at 256×256 resolution with temporal sampling of 4, 8, and 16 frames. The preprocessing pipeline consists of three stages: (1) aspect ratio preservation via shorter-side resizing to 256px, (2) center cropping for spatial alignment, and (3) uniform temporal sampling for consistency across sequences.

Our transformer hypernetwork processes 16×16 spatiotemporal patches through 6 encoder layers with hidden dimension 384, generating compact latent tokens for the decoding process. The coordinate-attentive decoder combines a single transformer block with a 2-layer MLP, mapping coordinate embeddings to YUV color values through SiLU-activated Elfwing et al. (2018) projections. Training employs the AdamW optimizer Loshchilov & Hutter (2017) with initial learning rate 10^{-4} . All models are implemented in PyTorch Paszke et al. (2019) and trained on 8 NVIDIA A800 GPUs with Intel Xeon Gold 6430 CPUs @ 2.1GHz. Video fidelity is quantified through PSNR and SSIM metrics, computed frame-wise and averaged across temporal sequences.

324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 Table 2: **CAVINR vs ANR** Zhang et al. (2024). CAVINR shows better quality in reconstructing videos across datasets, as measured by PSNR and SSIM. Our method takes up less memory and trains faster, and can converge to a better performance.

Methods	F	Token length N	$\#\hat{\theta}$	Epoch	Memory per-batch \downarrow	GPU hrs \downarrow	PSNR \uparrow			SSIM \uparrow				
							Train	K400	SthV2	UCF101	Train	K400	SthV2	UCF101
ANR-S	4	384	27k	150	18G	75	31.9	29.9	32.0	31.0	0.933	0.919	0.934	0.929
CAVINR-S	4	384	27k	150	2.6G	39	35.3	33.5	36.0	34.8	0.955	0.946	0.956	0.955
ANR-M	4	512	36k	150	23G	85	32.2	30.8	33.1	32.2	0.942	0.930	0.942	0.939
CAVINR-M	4	512	36k	150	2.7G	41	35.8	34.0	36.6	35.4	0.960	0.952	0.960	0.960
ANR-L	4	768	54k	150	34G	132	33.69	31.25	33.46	32.91	0.947	0.934	0.946	0.946
CAVINR-L	4	768	54k	150	2.7G	52	37.7	36.1	38.9	38.0	0.970	0.965	0.972	0.973
ANR-S	8	384	27k	150	35G	178	30.9	28.3	29.8	29.3	0.921	0.901	0.914	0.907
CAVINR-S	8	384	27k	150	3.9G	70	33.1	31.1	30.5	29.8	0.939	0.927	0.916	0.913
ANR-M	8	512	36k	150	46G	205	31.4	28.4	29.9	29.2	0.924	0.899	0.913	0.908
CAVINR-M	8	512	36k	150	4G	84	33.6	31.19	32.89	32.57	0.943	0.931	0.939	0.943
ANR-L	8	768	54k	150	74G	344	33.5	32.0	33.4	32.9	0.945	0.936	0.944	0.946
CAVINR-L	8	768	54k	150	4G	92	34.9	32.9	34.9	34.6	0.954	0.930	0.952	0.956

Figure 3: **Qualitative Comparison.** Visualizations for INR encoding methods: TransINR Chen & Wang (2022) (Top line), GINR Kim et al. (2023a) (Second line), FastNeRV Chen et al. (2024) (Third line), and CAVINR (Bottom, ours). Our method excels in reconstructing videos with superior fidelity and fine details. Best viewed digitally and zoomed in.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Table 1 presents comprehensive comparisons against leading INR methods including TransINR Chen & Wang (2022), GINR Kim et al. (2022), and FastNeRV Chen et al. (2024) across different frames (4, 8, and 16).

Reconstruction Quality. CAVINR demonstrates substantial improvements in reconstruction fidelity across all evaluation scenarios. At 4-frame resolution, our method achieves 35.3 dB PSNR on training data and maintains strong generalization with 33.5 dB on K400, 36.0 dB on SthV2, and 34.8 dB on UCF101, representing improvements of 8.7, 6.9, 6.6, and 8.8 dB respectively over the strongest baseline FastNeRV. Similar performance gains are observed across 8-frame and 16-frame configurations, with consistent SSIM improvements exceeding 0.1 across all datasets.

Training Efficiency. Our method demonstrates improved training efficiency, achieving better performance than baseline methods in just 20 epochs compared to their requirement of 150 epochs for convergence. This corresponds to a $7.5\times$ reduction in training time while maintaining competitive performance across all evaluation metrics. When CAVINR is trained for the full 150-epoch duration, the performance gains become more substantial, indicating both faster convergence and better final results compared to existing methods.

Computational Cost. CAVINR achieves superior reconstruction quality while maintaining computational efficiency comparable to existing methods. With 45.5–47.9M parameters, our model remains within the size range of current approaches while delivering improved performance. Train-

Table 3: **Ablation Study.** Evaluation of individual component contributions in CAVINR. Each component provides improvements in reconstruction quality and computational efficiency.

RGB to YUV	Block Query	Convolution Tokenizer	Axis-Adaptive-Embedding	Temperature Transformer	Memory per-batch ↓	GPU hrs ↓	PSNR ↑			SSIM ↑				
							Train	K400	SthV2	UCF	Train	K400	SthV2	UCF
					35G	178	26.9	25.3	26.3	26.2	0.668	0.579	0.612	0.602
✓					35G	178	27.8	26.5	27.4	27.2	0.726	0.693	0.708	0.701
✓	✓				18G	178	27.8	26.5	27.4	27.2	0.726	0.693	0.708	0.701
✓	✓	✓			18G	172	28.2	27.7	28.4	28.5	0.821	0.793	0.813	0.802
✓	✓		✓		18G	180	28.8	27.8	28.5	28.8	0.825	0.804	0.816	0.812
✓	✓			✓	3.9G	70	31.1	29.3	30.9	30.4	0.888	0.879	0.860	0.871
✓	✓	✓	✓	✓	3.9G	70	33.1	31.1	32.8	32.3	0.939	0.927	0.935	0.938

ing efficiency is most apparent in the 4-frame configuration, where CAVINR converges in 39 GPU hours compared to FastNeRV’s 150-epoch protocol.

Visual Quality. Figure 3 shows CAVINR’s performance across different video sequences. Compared to TransINR, GINR, and FastNeRV, our method produces sharper details, preserves textures more effectively, and maintains better color accuracy. These improvements are particularly evident in sequences with rapid motion or fine textural patterns, where our approach generates cleaner edges and reduces visual artifacts.

4.3 MEMORY EFFICIENCY ANALYSIS

Table 2 presents a comprehensive comparison with the transformer-based method ANR Zhang et al. (2024), examining memory usage and computational efficiency across three model scales (Small, Medium, Large) and varying temporal resolutions. While ANR achieves competitive results in image reconstruction, for comprehensive evaluation, we implement video reconstruction experiments to compare its performance against our method.

Memory Reduction. The combination of block query processing and temperature-scaled attention mechanisms yields substantial memory efficiency improvements. CAVINR consistently maintains memory usage between 2.6–4.0 GB per batch across training configurations, while ANR requires 18–74 GB—corresponding to an 85–95% reduction in memory consumption. The memory advantage increases with model scale and temporal sequence length. For instance, ANR-L processing 8 frames demands 74 GB, whereas CAVINR only needs 4 GB for the same configuration.

Training Speed. The memory efficiency directly translates to accelerated training. CAVINR-L with 4 frames requires only 52 GPU hours compared to ANR-L’s 132 hours, achieving 2.5× speedup while delivering superior reconstruction quality (37.7 vs 33.69 dB PSNR). This pattern holds consistently across all model configurations.

Scalability. The performance advantages of CAVINR become more pronounced with increased model capacity. CAVINR-L achieves the highest reconstruction quality while maintaining practical memory requirements, demonstrating excellent scalability properties that enable deployment of larger models within memory constraints.

4.4 ABLATION STUDY

Table 3 presents a comprehensive ablation study evaluating five key components in our CAVINR framework: RGB-to-YUV color space conversion, block query processing, convolutional tokenizer, spatiotemporal embedding, and temperature-modulated attention.

Individual Component Analysis. Starting from a baseline of 26.9 dB PSNR (35G memory, 178 GPU hours), RGB-to-YUV conversion delivers the first significant gain (+0.9 dB PSNR, +0.058 SSIM), validating perceptually-motivated color space representation. Block query processing maintains reconstruction quality while achieving 49% memory reduction (35G→18G). The convolutional tokenizer adds +0.4 dB PSNR and reduces training time to 172 hours, demonstrating superior learnable spatial abstraction over traditional patch methods.

Spatiotemporal Enhancement. Spatiotemporal embedding provides consistent improvements (+1 dB PSNR, +0.1 SSIM), confirming the value of explicit temporal modeling. Temperature-modulated attention yields the most dramatic gains: +2.3 dB PSNR with substantial efficiency improvements (memory: 3.9G, training time: 70 hours).

Synergistic Effects. The complete CAVINR framework achieves 33.1 dB PSNR and 0.939 SSIM—cumulative improvements of +6.2 dB and +0.271 SSIM over baseline. This shows strong component synergy that delivers both superior reconstruction quality and computational efficiency.

Table 4: **Video Compression Comparison.** Rate-distortion analysis comparing CAVINR with traditional codecs and neural compression methods (FastNeRV). CAVINR demonstrates favorable quality-size tradeoffs and flexible bit allocation while delivering competitive processing speeds.

	AV1	H.264			FastNeRV				CAVINR (ours)					
	CRF 60	CRF 35	CRF 40	CRF 45	8 bits	7 bits	6 bits	5 bits	4 bits	8 bits	7 bits	6 bits	5 bits	4 bits
Size(KB) ↓	21.9	20.4	13.1	8.7	23.7	20.7	17.7	14.7	11.6	26.9	23.6	20.2	16.9	13.5
PSNR ↑	32.4	32.8	30.0	27.3	28.4	28.3	28.1	27.5	25.6	32.99	32.89	32.51	31.20	27.77
SSIM ↑	0.910	0.912	0.860	0.788	0.808	0.807	0.784	0.712	0.802	0.938	0.937	0.933	0.919	0.866
VPS ↑	313	447	460	485	5175				125					

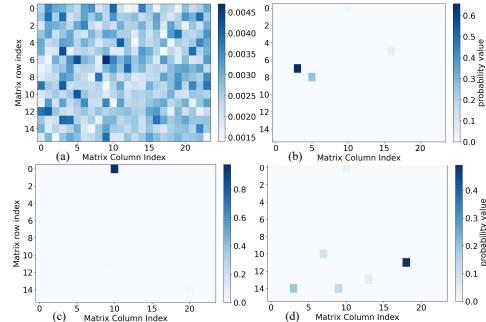


Figure 4: Token probability distribution visualizations.

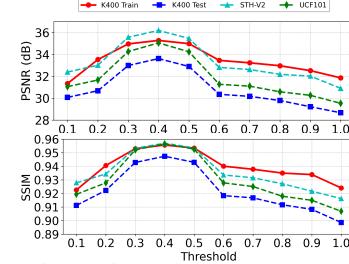


Figure 5: τ -dependent results.

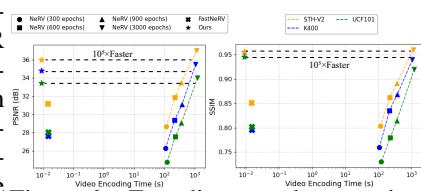


Figure 6: Encoding speed comparison across datasets.

Encoding Efficiency. Figure 6 illustrates the substantial efficiency improvements achieved by our feed-forward approach over gradient-based optimization methods. CAVINR delivers encoding speeds $10^5 \times$ faster than the NeRV baseline across multiple datasets, reducing video encoding from hour-long optimization procedures to millisecond-scale forward passes. This acceleration enables real-time deployment while preserving superior reconstruction fidelity. The encoding speedup results from eliminating iterative weight optimization by using persistent decoder parameters and pre-trained transformer hypernetworks.

4.5 DOWNSTREAM TASK: VIDEO COMPRESSION

Performance Evaluation. We evaluate CAVINR against traditional codecs (H.264, AV1) and neural methods (FastNeRV) using comprehensive rate-distortion analysis presented in Table 4. CAVINR significantly outperforms FastNeRV, achieving 32.51 dB PSNR and 0.933 SSIM at 6 bits (20.2KB) compared to FastNeRV’s performance at 17.7KB. This represents substantial improvements of +4.4 dB PSNR and +0.131 SSIM, validating our coordinate-attentive decoding approach. Against traditional codecs, CAVINR’s 6-bit configuration substantially outperforms H.264 CRF 40 (30.0 dB PSNR, 0.860 SSIM, 13.1KB) and matches H.264 CRF 35 quality (32.8 dB PSNR, 0.912 SSIM, 20.4KB) at comparable file sizes. Furthermore, CAVINR delivers superior quality with a smaller file size than AV1 CRF 60 (32.4 dB PSNR, 0.910 SSIM, 21.9KB). The flexible bit allocation enables diverse quality-size trade-offs, ranging from aggressive 4-bit compression (27.77 dB PSNR, 0.866 SSIM, 13.5KB) to high-quality 8-bit encoding (32.99 dB PSNR, 0.938 SSIM, 26.9KB), thus accommodating varied application requirements.

Table 5: **CAVINR vs ANR Zhang et al. (2024) with different resolution.** CAVINR shows better quality in reconstructing videos across datasets, as measured by PSNR and SSIM. Our method takes up less memory and trains faster, and can converge to a better performance.

Methods	F	Frame Resolution	# θ'	Epoch	Memory per-batch	GPU hrs	PSNR \uparrow			SSIM \uparrow				
							Train	K400	SthV2	Train	K400	SthV2	UCF101	
ANR-S	4	512	27k	50	64G	275	27.9	27.2	28.0	27.0	0.833	0.819	0.834	0.829
CAVINR-S	4	512	27k	50	5.2G	62	29.3	29.5	29.0	29.8	0.855	0.846	0.856	0.855
ANR-M	4	512	36k	50	76G	285	28.2	27.8	28.1	28.2	0.842	0.830	0.842	0.839
CAVINR-M	4	512	36k	50	5.3G	66	29.8	29.7	29.6	29.9	0.860	0.852	0.860	0.860
ANR-L	4	512	54k	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
CAVINR-L	4	512	54k	50	5.3G	70	30.7	30.1	30.9	30.5	0.870	0.865	0.872	0.873
ANR-S	1	1024	27k	50	64G	278	26.9	27.3	26.8	26.3	0.821	0.801	0.814	0.807
CAVINR-S	1	1024	27k	50	5.2G	64	29.1	29.1	28.5	28.8	0.839	0.827	0.816	0.813
ANR-M	1	1024	36k	50	76G	305	27.4	28.4	27.9	27.2	0.824	0.801	0.813	0.808
CAVINR-M	1	1024	36k	50	5.3G	68	29.6	28.2	29.9	29.7	0.843	0.831	0.839	0.843
ANR-L	1	1024	54k	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
CAVINR-L	1	1024	54k	50	5.3G	71	30.2	29.5	30.4	30.2	0.854	0.840	0.852	0.856

Processing Efficiency and Applications. CAVINR processes 125 videos per second, representing a $41 \times$ reduction compared to FastNerV’s throughput of 5,175 VPS. This slower performance stems from the computational overhead introduced by our attention mechanisms. However, 125 VPS still far exceeds real-time decoding requirements for most practical use cases.

Rate-Distortion Performance. Figure 7 demonstrates CAVINR’s competitive compression efficiency on HEVC class D datasets. Our method achieves PSNR ranging from 30.78 to 36.29 dB across varying bitrates. At 33 dB PSNR, CAVINR (0.062 bpp) outperforms the traditional HM-16.25 codec (0.069 bpp) while maintaining comparable quality to modern learned methods DCVC-FM and DCVC-RT. At higher quality levels around 35 dB, CAVINR continues to demonstrate efficient rate-distortion trade-offs, requiring 0.105 bpp compared to HM-16.25’s 0.116 bpp. These results validate that our feed-forward approach preserves strong compression performance despite eliminating iterative optimization.

4.6 HIGH-RESOLUTION SCALABILITY ANALYSIS

We evaluate CAVINR’s scalability at 512×512 and 1024×1024 resolutions, comparing against ANR Zhang et al. (2024). Table 5 summarizes the results.

Resolution Scaling. At 512 RES with 4 frames, CAVINR-S achieves 29.3 dB PSNR versus ANR-S’s 27.9 dB. The gap increases with model capacity: CAVINR-L reaches 30.7 dB while ANR-L encounters out-of-memory (OOM) errors on 80GB A800 GPUs.

Extreme Resolution. At 1024 RES, CAVINR-S achieves 29.1 dB PSNR using 5.2 GB memory per batch, while ANR-S requires 64 GB—a $12 \times$ reduction. ANR-L fails entirely at this resolution, whereas CAVINR-L processes inputs successfully with 30.2 dB PSNR and 5.3 GB memory. These results validate that block query processing enables coordinate-based reconstruction at resolutions previously infeasible for transformer-based INR methods.

Training Efficiency. At 512 RES, CAVINR-S requires 62 GPU hours compared to ANR-S’s 275 hours ($4.4 \times$ speedup). This advantage persists at 1024 RES: CAVINR completes training in 64-71 GPU hours across all scales, while ANR demands 278-305 hours for smaller models and fails for larger configurations.

5 CONCLUSION

This paper presents CAVINR, a transformer-based framework that enhances video implicit neural representations through coordinate-aware cross-attention mechanisms. By replacing per-video optimization with shared transformer weights and video-specific tokens, our method achieves $10^5 \times$ faster encoding than gradient-based NeRV while delivering 6–9 dB PSNR improvements over existing approaches. Beyond superior reconstruction quality, CAVINR provides substantial efficiency gains: 85–95% memory reduction compared to current techniques and $7.5 \times$ faster convergence with consistent performance across diverse video datasets. These advantages position CAVINR as a solution for large-scale video processing applications where both quality and efficiency are paramount.

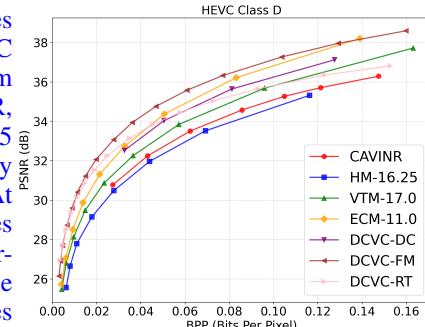


Figure 7: Rate-distortion comparison on HEVC class D sequences.

540 ETHICS STATEMENT
541

542 This work presents purely theoretical and computational research. The study does not involve any
543 human subjects, human data collection, biological experiments, or interaction with living systems.
544 All analyses are conducted on publicly available benchmark datasets or synthetic data, and no new
545 datasets are released as part of this work. The methodologies and findings presented are of a fun-
546 damental nature and do not raise foreseeable risks of misuse, harmful applications, or significant
547 societal impacts requiring specific ethical mitigation. There are no potential conflicts of interest,
548 discriminatory biases, or privacy/security concerns directly arising from the research described in
549 this paper. The authors confirm that this research adheres to the principles outlined in the ICLR
550 Code of Ethics and standard academic integrity practices.

551
552 REPRODUCIBILITY STATEMENT
553

554 To ensure reproducibility, we provide detailed implementation information in the appendix. The
555 convolutional tokenization approach and axis-adaptive positional encoding scheme are described in
556 full. We present the theoretical basis for our cross-attention mechanism and temperature-modulated
557 attention optimization. All hyperparameter settings and training procedures are documented, includ-
558 ing optimizer configurations and learning rate schedules. We provide quantitative computational
559 complexity analysis compared to baseline methods. The data processing pipelines and standardized
560 preprocessing steps are described for all benchmark datasets. Code will be released upon publica-
561 tion.

562
563 REFERENCES

564 ECM. <https://vcgit.hhi.fraunhofer.de/ecm/ECM>.
565
566 HM. <https://vcgit.hhi.fraunhofer.de/jvet/HM>.
567
568 VTM. https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM.
569
570 Edward H Adelson and James R Bergen. Spatiotemporal energy models for the perception of mo-
571 tion. *Journal of the Optical Society of America A*, 2(2):284–299, 1985.
572
573 Eirikur Agustsson, David Minnen, Nick Johnston, Johannes Balle, Sung Jin Hwang, and George
574 Toderici. Scale-space flow for end-to-end optimized video compression. In *CVPR*, June 2020.
575
576 Mary Aiyyetigbo, Wanqi Yuan, Feng Luo, and Nianyi Li. Implicit neural representation for video
577 and image super-resolution. *arXiv preprint arXiv:2503.04665*, 2025.
578
579 Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
580 In *International Conference on Machine Learning*, pp. 214–223. PMLR, 2017.
581
582 Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid.
583 Vivit: A video vision transformer. In *ICCV*, pp. 6836–6846, 2021.
584
585 Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
586 learning to align and translate. In *International Conference on Learning Representations*, 2015.
587
588 Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, and Abhinav Shrivastava. NeRV:
589 Neural representations for videos. In *NeurIPS*, 2021a.
590
591 Hao Chen, A Gwilliam Matthew, Bo He, Ser-Nam Lim, and Abhinav Shrivastava. CNeRV: Content-
592 adaptive neural representation for visual data. In *BMVC*, 2022a.
593
594 Hao Chen, Matthe Gwilliam, Ser-Nam Lim, and Abhinav Shrivastava. HNeRV: Neural represen-
595 tations for videos. In *CVPR*, 2023.
596
597 Hao Chen, Saining Xie, Ser-Nam Lim, and Abhinav Shrivastava. Fast encoding and decoding for
598 implicit video representation. In *ECCV*, pp. 402–418. Springer, 2024.

594 Yinbo Chen and Xiaolong Wang. Transformers as meta-learners for implicit neural representations.
 595 In *ECCV*, 2022.

596

597 Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image representation with local
 598 implicit image function. In *CVPR*, pp. 8628–8638, 2021b.

599

600 Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and Zicheng Liu. Dynamic
 601 convolution: Attention over convolution kernels. In *CVPR*, pp. 11030–11039, 2020.

602

603 Zeyuan Chen, Yinbo Chen, Jingwen Liu, Xingqian Xu, Vedit Goel, Zhangyang Wang, Humphrey
 604 Shi, and Xiaolong Wang. Videoinr: Learning video implicit neural representation for continuous
 605 space-time super-resolution. In *CVPR*, pp. 2047–2057, 2022b.

606

607 Zeyuan Chen, Yinbo Chen, Jingwen Liu, Xingqian Xu, Vedit Goel, Zhangyang Wang, Humphrey
 608 Shi, and Xiaolong Wang. Videoinr: Learning video implicit neural representation for continuous
 609 space-time super-resolution. *CVPR*, 2022c.

610

611 Thomas M Cover and Joy A Thomas. *Elements of Information Theory*. John Wiley & Sons, 2nd
 612 edition, 2006.

613

614 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 615 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 616 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
 617 arXiv:2010.11929*, 2020.

618

619 Grant Duffy, Paul P Cheng, Neal Yuan, Bryan He, Alan C Kwan, Matthew J Shun-Shin, Kevin M
 620 Alexander, Joseph Ebinger, Matthew P Lungren, Florian Rader, et al. High-throughput precision
 621 phenotyping of left ventricular hypertrophy with cardiovascular deep learning. *JAMA cardiology*,
 622 7(4):386–395, 2022.

623

624 Emilien Dupont, Adam Goliński, Milad Alizadeh, Yee Whye Teh, and Arnaud Doucet. Coin: Com-
 625 pression with implicit neural representations. In *ICLR workshop*, 2021.

626

627 Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
 628 function approximation in reinforcement learning. *Neural networks*, 107:3–11, 2018.

629

630 David J Field. Relations between the statistics of natural images and the response properties of
 631 cortical cells. *Journal of the Optical Society of America A*, 4(12):2379–2394, 1987.

632

633 Rafael C Gonzalez and Richard E Woods. *Digital image processing*. Pearson, New York, 4th edition,
 634 2017.

635

636 Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne West-
 637 phal, Heuna Kim, Valentin Haenel, Ingo Fründ, Peter Yianilos, Moritz Mueller-Freitag, Florian
 638 Hoppe, Christian Thurau, Ingo Bax, and Roland Memisevic. The “something something” video
 639 database for learning and evaluating visual common sense. In *ICCV*, 2017.

640

641 Jialong Guo, Jiangchao Yao, Zhihua Wang, Jiajun Bu, Haishuai Wang, et al. Metanerv: Meta neu-
 642 ral representations for videos with spatial-temporal guidance. *arXiv preprint arXiv:2501.02427*,
 643 2025.

644

645 David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In *ICLR*, 2017.

646

647 Bo He, Xitong Yang, Hanyu Wang, Zuxuan Wu, Hao Chen, Shuaiyi Huang, Yixuan Ren, Ser-Nam
 648 Lim, and Abhinav Shrivastava. Towards scalable neural representation for diverse videos. In
 649 *CVPR*, 2023.

650

651 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
 652 *NIPS Deep Learning and Representation Learning Workshop*, 2015.

653

654 ITU-R. Studio encoding parameters of digital television for standard 4:3 and wide-screen 16:9 aspect
 655 ratios. Technical Report Recommendation ITU-R BT.601-7, International Telecommunication
 656 Union, 2011. Originally published 1995.

648 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
 649 *International Conference on Learning Representations*, 2017.
 650

651 Zhaoyang Jia, Bin Li, Jiahao Li, Wenxuan Xie, Linfeng Qi, Houqiang Li, and Yan Lu. Towards
 652 practical real-time neural video compression. 2025.

653 Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
 654 narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action
 655 video dataset. *arXiv preprint arXiv:1705.06950*, 2017.

656 Chiheon Kim, Doyup Lee, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Generalizable implicit
 657 neural representations via instance pattern composers. *CVPR*, 2023a.

658 Chiheon Kim, Doyup Lee, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Generalizable implicit
 659 neural representations via instance pattern composers. In *CVPR*, pp. 11808–11817, 2023b.

660 Subin Kim, Sihyun Yu, Jaeho Lee, and Jinwoo Shin. Scalable neural video representations with
 661 learnable positional features. *NeurIPS*, 2022.

662 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
 663 lutional neural networks. In *Advances in Neural Information Processing Systems*, volume 25, pp.
 664 1097–1105, 2012.

665 Didier Le Gall and Ali Tabatabai. Learned video compression. In *ICCV*, pp. 3059–3068. IEEE,
 666 2020.

667 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 668 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

669 Jiahao Li, Bin Li, and Yan Lu. Deep contextual video compression. 2021.

670 Jiahao Li, Bin Li, and Yan Lu. Hybrid spatial-temporal entropy modelling for neural video com-
 671 pression. *Proceedings of the 30th ACM International Conference on Multimedia*, 2022a.

672 Jiahao Li, Bin Li, and Yan Lu. Neural video compression with diverse contexts. In *IEEE/CVF
 673 Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, Canada, June
 674 18-22, 2023*, 2023.

675 Jiahao Li, Bin Li, and Yan Lu. Neural video compression with feature modulation. In *IEEE/CVF
 676 Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June
 677 17-21, 2024*, 2024.

678 Zizhang Li, Mengmeng Wang, Huajin Pi, Kechun Xu, Jianbiao Mei, and Yong Liu. E-nerv: Expe-
 679 dite neural video representation with disentangled spatial-temporal context. *ECCV*, 2022b.

680 Zizhang Li, Mengmeng Wang, Huajin Pi, Kechun Xu, Jianbiao Mei, and Yong Liu. E-nerv: Expe-
 681 dite neural video representation with disentangled spatial-temporal context. In *ECCV*, pp. 267–
 682 284. Springer, 2022c.

683 Junyang Lin, Xu Sun, Xuancheng Ren, Muyu Li, and Qi Su. Learning when to concentrate or
 684 divert attention: Self-adaptive attention temperature for neural machine translation. *arXiv preprint
 685 arXiv:1808.07374*, 2018.

686 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 687 Swin transformer: Hierarchical vision transformer using shifted windows. *ICCV*, 2021.

688 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 689 arXiv:1711.05101*, 2017.

690 Shishira R Maiya, Sharath Girish, Max Ehrlich, Hanyu Wang, Kwot Sin Lee, Patrick Poirson,
 691 Pengxiang Wu, Chen Wang, and Abhinav Shrivastava. Nirvana: Neural implicit representations
 692 of videos with adaptive networks and autoregressive patch-wise modeling. In *Proceedings of the
 693 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14378–14387, 2023.

694 St'ephane Mallat. *A Wavelet Tour of Signal Processing*. Academic Press, 2nd edition, 1999.

702 Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
 703 Occupancy networks: Learning 3d reconstruction in function space. In *CVPR*, June 2019.
 704

705 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
 706 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In *ECCV*, pp.
 707 405–421. Springer, 2020.

708 Pietro Morerio, Jacopo Cavazza, Riccardo Volpi, René Vidal, and Vittorio Murino. Curriculum
 709 dropout. In *ICCV*, pp. 3544–3552, 2017.

710 Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? In
 711 *Advances in Neural Information Processing Systems*, volume 32, 2019.

712 Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
 713 DeepSDF: Learning continuous signed distance functions for shape representation. In *CVPR*,
 714 June 2019.

715 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 716 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 717 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 718 Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
 719 learning library. In *NeurIPS*, 2019.

720 Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. Regularizing
 721 neural networks by penalizing confident output distributions. In *International Conference on
 722 Learning Representations*, 2017.

723 Charles A Poynton. *Digital video and HD: algorithms and interfaces*. Morgan Kaufmann, Burling-
 724 ton, MA, 2nd edition, 2012.

725 Oren Rippel, Sanjay Nair, Carissa Lew, Steve Branson, Alexander G. Anderson, and Lubomir Bour-
 726 dev. Learned video compression. In *ICCV*, 2019.

727 Daniel L Ruderman. The statistics of natural images. *Network: Computation in Neural Systems*, 5
 728 (4):517–548, 1994.

729 David Salomon. *Data compression: the complete reference*. Springer Science & Business Media,
 730 New York, 3rd edition, 2004.

731 Claude E Shannon. A mathematical theory of communication. *The Bell System Technical Journal*,
 732 27(3):379–423, 1948.

733 Xihua Sheng, Jiahao Li, Bin Li, Li Li, Dong Liu, and Yan Lu. Temporal context mining for learned
 734 video compression. *IEEE Transactions on Multimedia*, 2022.

735 Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wet-
 736 zstein. Implicit neural representations with periodic activation functions. In *NeurIPS*, 2020.

737 Khurram Soomro, Amir Roshan Za4mir, and Mubarak Shah. Ucf101: A dataset of 101 human
 738 actions classes from videos in the wild. *arXiv preprint arXiv:1212.0402*, 2012.

739 Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand. Overview of the high
 740 efficiency video coding (hevc) standard. *IEEE Transactions on circuits and systems for video
 741 technology*, 22(12):1649–1668, 2012.

742 Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
 743 Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let net-
 744 works learn high frequency functions in low dimensional domains. In *NeurIPS*, 2020.

745 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 746 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*, pp. 5998–6008,
 747 2017.

748 Brian A Wandell. *Foundations of vision*. Sinauer Associates, Sunderland, MA, 1995.

756 Tianchen Wang, Zhihe Li, Meiping Huang, Jian Zhuang, Shanshan Bi, Jiawei Zhang, Yiyu Shi,
757 Hongwen Fei, and Xiaowei Xu. Echocp: An echocardiography dataset in contrast transthoracic
758 echocardiography for patent foramen ovale diagnosis. In *MICCAI*, pp. 506–515. Springer, 2021.
759

760 Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. Overview of the h.264/avc
761 video coding standard. *IEEE Transactions on circuits and systems for video technology*, 2003.

762 Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan Ngiam. Condconv: Conditionally parame-
763 terized convolutions for efficient inference. *NeurIPS*, 32, 2019.

764 Shengqiang Zhang, Xingxing Zhang, Hangbo Bao, and Furu Wei. Attention temperature matters in
765 abstractive summarization distillation. *arXiv preprint arXiv:2106.03441*, 2021.

766 Shuyi Zhang, Ke Liu, Jingjun Gu, Xiaoxu Cai, Zhihua Wang, Jiajun Bu, and Haishuai Wang. Atten-
767 tion beats linear for fast implicit neural representation generation. In *ECCV*, pp. 1–18. Springer,
768 2024.

769 Xiang Zhou, Yuan Zeng, and Yi Gong. Learning to scale temperature in masked self-attention for
770 image inpainting. *arXiv preprint arXiv:2302.06130*, 2023.

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 **A APPENDIX**811 **A.1 VIDEO TOKENIZATION METHODS**

812 We compare two paradigms for converting video data into spatiotemporal tokens: the conventional
 813 unfold-based method and our proposed convolutional tokenizer. Given an input video tensor $\mathbf{V} \in \mathbb{R}^{T \times C \times H \times W}$, both methods partition frames into patches but diverge fundamentally in projection
 814 strategies. This tokenization approach builds upon the success of patch-based representations in
 815 vision transformers Dosovitskiy et al. (2020) and extends these concepts to video domains Arnab
 816 et al. (2021).

817 **Baseline Unfold Tokenizer.** The baseline unfold tokenizer first merges batch and temporal dimensions ($\mathbf{V}' \in \mathbb{R}^{T \times C \times H \times W}$), then extracts patches via unfold operations with patch size $P \times P$ Dosovitskiy et al. (2020):

$$818 \mathbf{V}_{\text{unfold}} = \text{unfold}(\mathbf{V}') \in \mathbb{R}^{T \times (C \cdot P^2) \times L} \quad (13)$$

819 where L denotes patches per frame. Complex reshaping operations follow: temporal separation,
 820 permutation, and flattening to $\mathbf{V}_{\text{flat}} \in \mathbb{R}^{(L \cdot T) \times (C \cdot P^2)}$. Finally, a linear layer projects patches to
 821 D -dimensional tokens:

$$822 \mathbf{Z} = \text{Linear}(C \cdot P^2 \rightarrow D)(\mathbf{V}_{\text{flat}}) \quad (14)$$

823 This method incurs high computational overhead from explicit patch-vector construction and intermediate tensor manipulations.

824 **Proposed Convolutional Tokenizer.** Our proposed convolutional tokenizer replaces unfold operations with learnable convolutional projections:

$$825 \mathbf{V}_{\text{conv}} = \text{Conv2d}(C \rightarrow D, \text{kernel_size} = P, \text{stride} = P)(\mathbf{V}') \quad (15)$$

826 where $\mathbf{V}_{\text{conv}} \in \mathbb{R}^{T \times D \times H' \times W'}$ and $H' = \lfloor H/P \rfloor$, $W' = \lfloor W/P \rfloor$. We then flatten spatial dimensions and restore temporal structure:

$$827 \mathbf{Z} = \text{reshape}(\text{flatten}(\mathbf{V}_{\text{conv}})) \in \mathbb{R}^{(T \cdot H' \cdot W') \times D} \quad (16)$$

828 This approach provides several key advantages: computational efficiency through eliminating costly
 829 reshaping operations via unified patch extraction and projection, enhanced learnability by enabling
 830 adaptive optimization of spatial feature extraction compared to static unfold operations Liu et al.
 831 (2021), and implementation simplicity by reducing tokenization to three streamlined operations
 832 while avoiding error-prone permutations. While both methods generate $T \cdot (H/P) \cdot (W/P)$ tokens, our approach better aligns with modern architectures that leverage convolutional inductive
 833 biases for vision tasks LeCun et al. (1998); Krizhevsky et al. (2012).

834 **A.2 AXIS-ADAPTIVE POSITIONAL ENCODING**

835 Our Axis-Adaptive Positional Encoding (AAPE) addresses a fundamental limitation in existing co-
 836 ordinate encoding methods: the assumption that spatial and temporal dimensions require identical
 837 frequency characteristics. Video data exhibits distinct spectral properties across different dimensions—spatial information concentrates in higher frequencies for texture preservation, while tempo-
 838 ral information resides primarily in lower frequencies due to motion coherence constraints.

839 **Frequency Scaling Parameter Selection.** The frequency scaling parameter σ selection follows
 840 from the Nyquist-Shannon sampling theorem applied to natural video content Mallat (1999). For
 841 video resolution $H \times W \times T$, we determine the optimal spatial and temporal frequency parameter
 842 as:

$$843 \sigma_{\text{spatial}} = 2 \times \max(H, W), \sigma_{\text{temporal}} = 2 \times T. \quad (17)$$

844 This relationship ensures that positional encoding captures spatial frequencies up to the effective
 845 bandwidth of the video representation. When σ equals the video resolution, the encoding ap-
 846 proaches critical sampling and may introduce aliasing artifacts. Large values ($\sigma_s \geq 1024$) lead
 847 to high-frequency dominance, which reduces sensitivity to coarse spatial structures—a known issue
 848 in harmonic analysis Tancik et al. (2020); Mildenhall et al. (2020). Based on empirical evaluation,
 849 $\sigma_s = 512$ offers a good balance between fine-detail discrimination and stable coarse-scale represen-
 850 tation for 256×256 videos.

864 **Adaptive Frequency Allocation.** We differentially allocate frequency components based on information density. Spatial dimensions receive increased allocation:

$$865 \quad k_s = \lfloor 4k/3 \rfloor \quad (18)$$

866 enabling capture of fine details, edges, and textures critical for video quality. Temporal dimensions
867 receive reduced allocation:

$$868 \quad k_t = \lfloor k/3 \rfloor \quad (19)$$

869 reflecting lower temporal resolution and different coherence characteristics compared to spatial dimensions.

870 **Spectral Stratification Principle.** Natural images exhibit power-law spectral decay with most information
871 in low-to-medium frequencies Field (1987); Ruderman (1994). Our spatial encoding with
872 $\sigma^{i/(k_s-1)}$ provides logarithmic frequency spacing matching this distribution. Video temporal dynamics
873 operate at lower frequencies due to frame rate limitations and motion coherence Adelson &
874 Bergen (1985). Our temporal encoding provides attenuated progression suitable for temporal pattern
875 capture.

876 The frequency allocation strategy follows information-theoretic principles. Spatial dimensions exhibit high mutual information with visual content due to rich spatial structure, while temporal dimensions show lower mutual information due to redundancy and coherence. Our encoding distributes available representational capacity ($6k$ dimensions) according to information content, following rate-distortion optimization principles Cover & Thomas (2006).

884 A.3 CROSS-ATTENTION CONVERGENCE ANALYSIS

885 We establish theoretical justification for cross-attention superiority over dynamic weight generation in video implicit neural representation. Under Lipschitz continuity assumptions Arjovsky et al.
886 (2017), cross-attention converges faster than dynamic weight methods. Let $f_\theta(x)$ denote traditional
887 dynamic weight generation Sitzmann et al. (2020) and $g_\phi(T_v, x)$ denote our cross-attention mechanism
888 with video tokens T_v and coordinate queries x .

889 Dynamic weight generation updates as:

$$890 \quad \theta^{(t+1)} = \theta^{(t)} - \eta \nabla_\theta L(f_\theta(x), y) \quad (20)$$

891 Cross-attention updates as:

$$892 \quad \phi^{(t+1)} = \phi^{(t)} - \eta \nabla_\phi L(g_\phi(T_v, x), y) \quad (21)$$

893 The cross-attention formulation maintains persistent weights ϕ while enabling content-adaptive
894 reconstruction through attention mechanisms. This leads to more stable optimization land-
895 scapes Dosovitskiy et al. (2020) and provides implicit regularization preventing overfitting to spe-
896 cific video instances Morerio et al. (2017). The cross-attention operation:

$$897 \quad \text{Attention}(Q, K, V) = \text{softmax} \left(\frac{QK^T}{\sqrt{d}} \right) V \quad (22)$$

898 inherently normalizes influence across video tokens, providing regularization effects absent in direct
899 weight modulation approaches Vaswani et al. (2017)–Bahdanau et al. (2015).

900 A.4 TEMPERATURE-MODULATED ATTENTION

901 We derive the optimal temperature parameter τ through information-theoretic analysis Hinton et al.
902 (2015)–Jang et al. (2017). Temperature-modulated attention controls attention distribution en-
903 tropy Shannon (1948):

$$904 \quad H(\tau) = - \sum_i p_i(\tau) \log p_i(\tau) \quad (23)$$

905 where $p_i(\tau) = \frac{\exp(a_i/\tau)}{\sum_j \exp(a_j/\tau)}$. The optimal temperature balances attention focus and coverage:

$$906 \quad \tau^* = \arg \min_\tau \mathcal{L}_{\text{recon}} + \lambda \cdot \mathcal{R}_{\text{entropy}}(\tau) \quad (24)$$

907 where $\mathcal{R}_{\text{entropy}}(\tau) = |H(\tau) - H_{\text{target}}|$ penalizes deviations from target entropy Pereyra et al.
908 (2017). Empirical validation across multiple datasets identifies $\tau^* \approx 0.4$ as optimal, achieving
909 superior reconstruction quality while maintaining computational efficiency Müller et al. (2019).

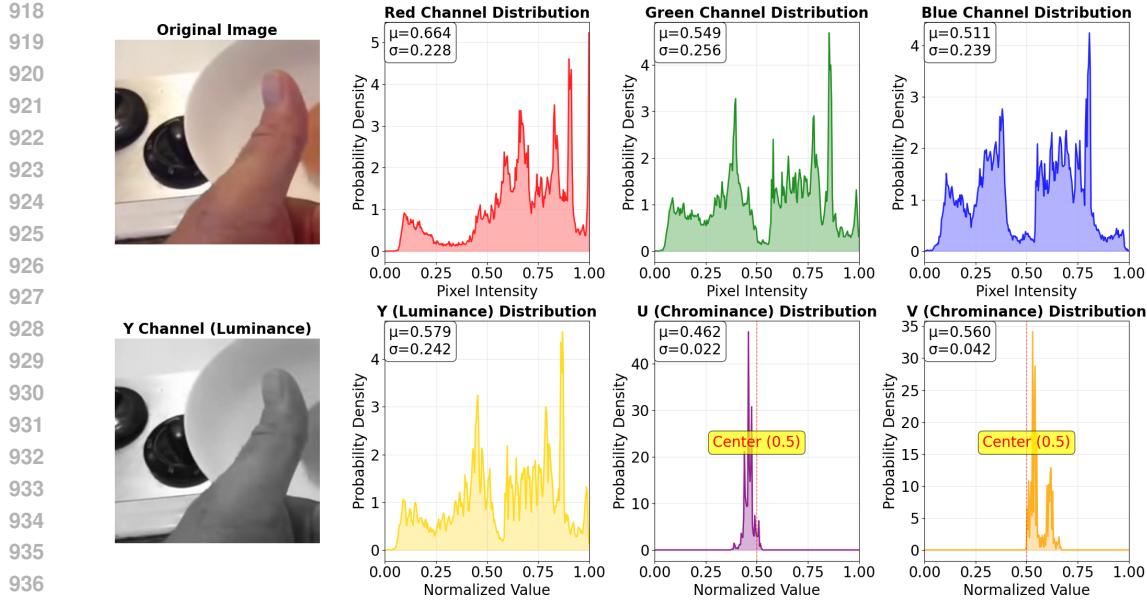


Figure 8: **RGB vs YUV** RGB channels show discrete distributions across the full range $[0, 1]$, while YUV U & V channels concentrate around 0.5, enabling efficient compression.

A.5 COLOR SPACE OPTIMIZATION

We adopt the YUV color space instead of RGB to exploit the statistical properties of natural video content for efficient tokenization. The RGB-to-YUV transformation follows ITU-R BT.601 standard ITU-R (2011):

$$\begin{aligned} Y &= 0.299 \cdot R + 0.587 \cdot G + 0.114 \cdot B \\ U &= -0.169 \cdot R - 0.331 \cdot G + 0.500 \cdot B + 128 \\ V &= 0.500 \cdot R - 0.419 \cdot G - 0.081 \cdot B + 128 \end{aligned} \quad (25)$$

where Y represents luminance information, while U and V encode chrominance information.

Unlike RGB channels with discrete distributions across the full intensity range Gonzalez & Woods (2017), YUV demonstrates asymmetric statistical properties. The luminance channel Y maintains broad distributions capturing structural information Poynton (2012), while chrominance channels U and V concentrate around neutral values (0.5 normalized) Salomon (2004) as shown in Figure 8. This asymmetry enables adaptive compression where fewer token dimensions encode chrominance due to limited dynamic range, while luminance receives primary representational capacity.

Our YUV-based tokenization achieves information density optimization by prioritizing the most informative luminance channel, perceptual alignment with human visual sensitivity favoring luminance over chrominance Wandell (1995), and computational efficiency through reduced chrominance dimensionality. We implement channel-wise adaptive allocation where luminance utilizes $\alpha \cdot D$ dimensions ($\alpha = 0.6$) while chrominance channels share the remaining $(1 - \alpha) \cdot D$ dimensions equally, achieving superior compression ratios while preserving visual quality compared to RGB approaches Le Gall & Tabatabai (2020).

A.6 DETAILED TRAINING CONFIGURATION

As detailed in Table 6 (Complete Hyperparameter Settings), our CAVINR model implementation incorporates carefully tuned architectural and training parameters across multiple components.

CAVINR Architecture: The model uses a token dimension of 72 with a token length of 384, implemented with six encoder layers, each containing six attention heads with 64-dimensional heads. The multi-layer perceptron (MLP) components have a hidden dimension of 768 and a feed-forward

Table 6: Complete Hyperparameter Settings

Parameter	Value
CAVINR Architecture	
Token dimension (d)	72
Token length	384
Number of encoder layers (L)	6
Number of attention heads	6
Head dimension	64
MLP hidden dimension	768
Feed-forward dimension	3072
Sigma parameter (σ)	256
Number of groups (n_groups)	64
Block query size (M)	64
Temperature parameter (τ)	0.4
Transformer Encoder Parameters	
Input dimension	3
Output dimension	3
Output bias	0.5
Network depth	2
Hidden dimension	72
PE dimension	24
PE sigma	512
Number of frames	4
Activation function	SiLU
Rescale	False
Training Parameters	
Optimizer	AdamW
Learning rate	1e-4
Weight decay	1e-5
Batch size	2
Total epochs	150
Warmup epochs	10
LR schedule	Cosine annealing
Data Processing	
Input resolution	256×256
Frame sampling	Uniform
Color space	YUV
Normalization	[0, 1]

dimension of 3072. Key parameters include a sigma parameter $\sigma = 256$, $n_groups = 64$, block query size $M = 64$, and temperature parameter $\tau = 0.4$.

Transformer Encoder Configuration: The transformer encoder processes 3-dimensional input and output with an output bias of 0.5. The network consists of 2 layers with a hidden dimension of 72. Positional encoding uses PE dimension 24 and PE sigma 512, processing 4 frames with Swish activation and no rescaling.

Training Setup: We use the AdamW optimizer with a learning rate of 1×10^{-4} and weight decay of 1×10^{-5} . Training uses a batch size of 2 for 150 epochs, with 10 warmup epochs followed by cosine annealing learning rate scheduling for stable convergence.

Data Processing: Input videos are processed at 256×256 resolution with uniform frame sampling. Frames are converted to the YUV color space and normalized to $[0, 1]$ for consistent input scaling across the dataset.

1026 Table 7: Computational complexity comparison for single frame reconstruction. FLOPs (Floating
 1027 Point Operations) and MACs (Multiply-Accumulate Operations) are measured in billions (G) for
 1028 standard video resolution.

1030 Method	1031 FLOPs (G)	1032 MACs (G)	1033 Architecture Type
1034 NeRV	1.30	0.65	Convolutional
1035 ANR	239.73	119.45	Transformer-based
1036 CAVINR (Ours)	31.92	15.95	Temperature Attention

1035 A.7 COMPUTATIONAL COMPLEXITY ANALYSIS

1038 We conduct a comprehensive computational complexity analysis comparing CAVINR with baseline
 1039 approaches. Table 7 presents computational requirements for reconstructing a single video frame
 1040 across different methods.

1041 The analysis shows key trade-offs between architectural approaches in neural video representation.
 1042 NeRV achieves high efficiency at 1.30 GFLOPs per frame through direct coordinate-to-pixel map-
 1043 ping using learned convolutional layers, avoiding attention mechanism overhead entirely. However,
 1044 this efficiency limits global dependency modeling and reduces reconstruction quality for complex
 1045 video content. ANR requires significantly higher computation at 239.73 GFLOPs—approximately
 1046 $184\times$ more than NeRV. This overhead results from the transformer architecture’s need to recal-
 1047 culate attention weights for each spatial-temporal coordinate during reconstruction. The quadratic
 1048 complexity of self-attention creates computational bottlenecks that become especially problematic
 1049 at high resolutions, where coordinate queries scale quadratically with spatial dimensions. CAVINR
 1050 strikes a middle ground at 31.92 GFLOPs, reducing computational complexity by approximately
 1051 $7.5\times$ compared to ANR while maintaining attention-based representational capabilities. This effi-
 1052 ciency gain comes from our temperature-modulated attention mechanism, which reduces compu-
 1053 tation through simplified attention weight calculation, efficient spatial-temporal token interactions
 1054 enabled by axis-adaptive positional encoding, and optimized attention patterns that lower memory
 1055 bandwidth requirements during forward passes.

1056 **Memory Scaling Properties.** Memory complexity patterns differ substantially across methods.
 1057 Traditional NeRV approaches scale as $O(N_{\text{params}} \times N_{\text{videos}})$ for weight storage, requiring individual
 1058 networks per video sequence. This scaling becomes prohibitive for large video collections. CAVINR
 1059 achieves $O(N_{\text{tokens}} \times d + N_{\text{params}}^{\text{fixed}})$ complexity through shared decoder weights, significantly reducing
 1060 memory requirements for multi-video scenarios where $N_{\text{params}}^{\text{fixed}} \ll N_{\text{params}} \times N_{\text{videos}}$.

1061 **Forward Pass Analysis.** NeRV requires $O(H \times W \times T \times N_{\text{params}})$ operations for coordinate-wise
 1062 convolutions, while CAVINR needs $O(H \times W \times T \times N_{\text{tokens}} + N_{\text{tokens}} \times d^2)$ for cross-attention
 1063 operations. Despite the quadratic term in token interactions, reduced token count and optimized
 1064 attention computation yield practical efficiency gains, particularly for high-resolution videos where
 1065 $N_{\text{tokens}} \ll H \times W \times T$.

1066 **Training Efficiency.** Per-video optimization requires $O(E \times B \times N_{\text{params}})$ where E represents
 1067 epochs and B represents batch size. CAVINR achieves $O(B \times N_{\text{shared}})$ where $N_{\text{shared}} \ll N_{\text{params}}$,
 1068 enabling more efficient multi-video training. This shared parameter approach reduces training time
 1069 by $7.5\times$ compared to gradient-based optimization methods while achieving superior reconstruction
 1070 quality.

1071 **Scalability Considerations.** Our block query processing technique addresses the quadratic mem-
 1072 ory bottleneck inherent in attention mechanisms. By restricting coordinate queries to local $M \times M$
 1073 windows, we reduce memory complexity from $O((HWT)^2)$ to $O(M^2 \times \frac{HWT}{M^2}) = O(HWT)$,
 1074 enabling practical processing of high-resolution, long-sequence videos within reasonable computa-
 1075 tional constraints while preserving reconstruction quality.

1076 While CAVINR cannot match the raw efficiency of purely convolutional approaches like NeRV,
 1077 it provides compelling trade-offs by achieving substantial computational savings over transformer-
 1078 based methods while delivering superior reconstruction quality. This efficiency enables practical
 1079 deployment of attention-based neural video representation in resource-constrained environments
 where both quality and computational efficiency are critical.

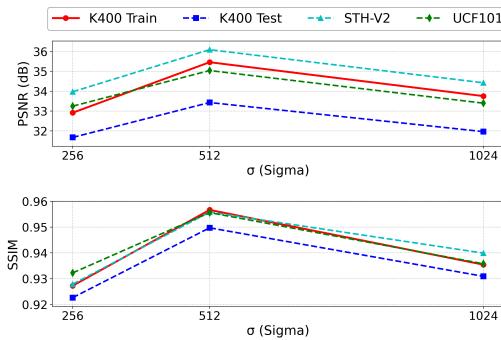


Figure 9: **Sigma Parameter.** PSNR/SSIM performance across training and test sets at varying σ : Insufficient dimensionality ($\sigma = 256$) limits representational quality, excessive dimensionality ($\sigma = 1024$) introduces noise, while $\sigma = 512$ achieves optimal capacity-representation balance.

A.8 HYPERPARAMETER SENSITIVITY ANALYSIS

To validate our architectural design choices, we analyze four key hyperparameters that affect CAV-INR performance: sigma dimension, encoder depth, MLP depth, and batch size.

Sigma Parameter Analysis. Figure 9 shows how feature dimension σ affects reconstruction quality through an inverted-U relationship. Low dimensionality ($\sigma = 256$) limits representational capacity, degrading PSNR and SSIM across datasets. High dimensionality ($\sigma = 1024$) introduces excessive parameters that cause overfitting and noise amplification, particularly evident in test set degradation. The optimal value ($\sigma = 512$) balances representational capacity with generalization, achieving peak performance across K400 Train, K400 Test, STH-V2, and UCF101.

Encoder Depth Optimization. Figure 10 shows monotonic improvement with encoder depth L . Shallow architectures ($L = 6$) provide insufficient hierarchical feature extraction, while progressive increases to $L = 8$ and $L = 10$ yield consistent gains through enhanced multi-scale representations. Peak performance at $L = 12$ reflects improved feature hierarchy construction, with gains most apparent in complex temporal datasets like STH-V2.

MLP Depth Impact. Figure 11 shows a positive relationship between MLP depth and performance. Shallow networks (depth=2) have limited non-linear transformation capacity, which restricts complex video-to-coordinate mapping. Moderate depths (3-4 layers) provide gradual improvements, while depth=5 achieves the best expressiveness, effectively capturing complex spatial-coordinate relationships.

Batch Size Sensitivity. Figure 12 reveals inverse correlation between batch size and performance. Small batches (size=2) enable precise gradient estimation crucial for coordinate-based learning, while larger batches progressively degrade performance through gradient over-smoothing that reduces optimization dynamics. Batch size 16 performs the poorest, confirming that coordinate-based neural video representations require small-batch training.

The analysis indicates that our architectural choices are appropriate, with consistent patterns across different video datasets.

A.9 CROSS-DOMAIN RECONSTRUCTION

We assess CAVINR’s reconstruction through zero-shot inference across diverse video domains using models trained exclusively on K400 data. The evaluation encompasses medical imaging datasets—EchoCP Wang et al. (2021) (30 patients with PFO diagnosis videos) and EchoNet-LVH Duffy et al. (2022) (12,000 parasternal-long-axis echocardiography videos).

A.9.1 QUALITATIVE ANALYSIS

Figure 13 shows a visual comparison of reconstruction quality on echocardiographic sequences. The results highlight differences in each method’s ability to handle medical imaging challenges, including high noise levels and complex anatomical structures.

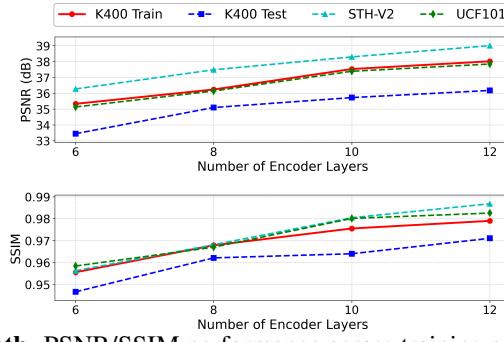


Figure 10: **Encoder Depth.** PSNR/SSIM performance across training and test sets at varying layer depth L : Shallow architecture ($L = 6$) limits hierarchical feature extraction, intermediate depths ($L = 8, 10$) show progressive improvements, while $L = 12$ achieves optimal performance through deeper feature hierarchies.

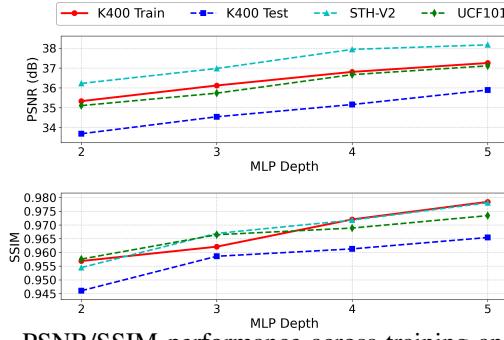


Figure 11: **MLP Depth.** PSNR/SSIM performance across training and test sets at varying MLP depths: Shallow networks (Depth = 2) limit non-linear transformations, moderate depths (Depth = 3, 4) enhance feature mapping complexity, while Depth = 5 achieves maximum expressiveness.

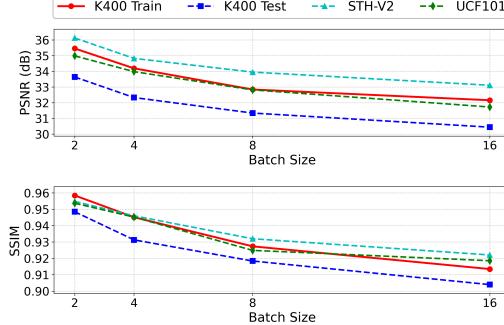


Figure 12: **Batch Size.** PSNR/SSIM performance across training and test sets at varying batch sizes: Large batches (Size = 16) cause over-smoothed gradients, limiting optimization, medium batches (Size = 4, 8) reduce gradient noise at convergence cost, while Size = 2 achieves optimal gradient estimation precision.

FastNeRV produces blurred outputs that obscure important anatomical details, struggling with cardiac wall boundaries and tissue textures essential for clinical assessment. The method exhibits significant loss of high-frequency information, reducing the diagnostic clarity needed for medical applications. ANR shows improvement with better reconstruction of anatomical features and improved handling of ultrasound noise characteristics. However, fine details and subtle tissue variations remain poorly resolved, particularly in regions with complex echogenicity patterns.

CAVINR achieves better reconstruction quality, preserving fine anatomical details while maintaining consistent performance across varying noise conditions. The method effectively balances noise suppression with detail preservation, producing reconstructions that closely match ground truth quality. CAVINR’s advantages are particularly apparent in challenging low signal-to-noise regions where other methods struggle to maintain adequate image quality.

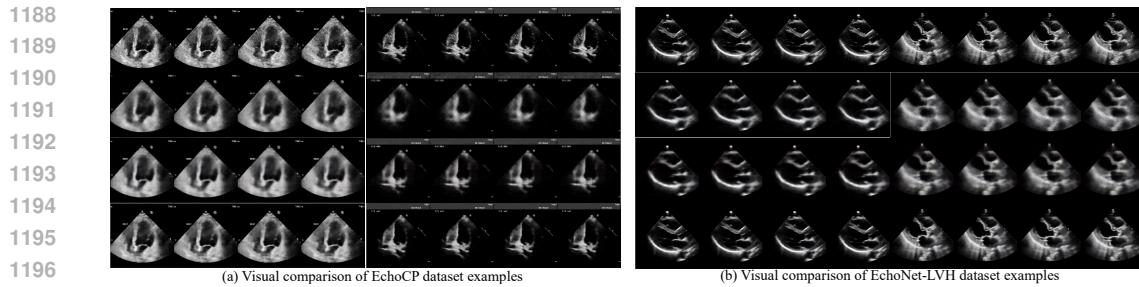


Figure 13: **Qualitative Comparison.** Visualizations for Cross-Domain reconstruction: Ground Truth (**Top line**), FastNeRV Chen et al. (2024) (**Second line**), ANR Zhang et al. (2024) (**Third line**), and CAVINR (**Bottom**, ours). Our method excels in reconstructing medical videos with fine details. Best viewed digitally and zoomed in.

Table 8: Comparative Performance of Video Reconstruction Methods on Medical Imaging Datasets

Dataset	Method	PSNR (dB) \uparrow	SSIM \uparrow	PSNR Gain	SSIM Gain
EchoCP	FastNeRV	20.53	0.607	-	-
	ANR	24.40	0.784	+3.87	+0.177
	CAVINR	26.85	0.864	+6.32	+0.257
EchoNet-LVH	FastNeRV	22.88	0.684	-	-
	ANR	27.45	0.835	+4.57	+0.151
	CAVINR	29.64	0.916	+6.76	+0.232

A.9.2 QUANTITATIVE RESULTS

Table 8 presents a comprehensive quantitative evaluation of the three reconstruction methods across two medical imaging datasets. The results demonstrate CAVINR’s substantial superiority over existing approaches in both objective metrics.

On the EchoCP dataset, CAVINR achieves a PSNR of 26.85 dB and SSIM of 0.864, representing improvements of 6.32 dB and 0.257 respectively compared to FastNeRV, and 2.45 dB and 0.080 improvements over ANR. For the larger EchoNet-LVH dataset, CAVINR attains even more pronounced gains with 29.64 dB PSNR and 0.916 SSIM, corresponding to 6.76 dB and 0.232 improvements over FastNeRV, and 2.19 dB and 0.081 improvements over ANR.

CAVINR consistently outperforms FastNeRV across both datasets, achieving average gains of 6.54 dB in PSNR and 0.245 in SSIM. These significant improvements demonstrate its efficacy in overcoming key challenges specific to medical video reconstruction—notably enhancing noise resilience while preserving diagnostically relevant image features.

A.10 COMPARISON WITH NEURAL VIDEO COMPRESSION

We compare encoding and decoding speeds against neural video codecs DCVC-DC Li et al. (2023), DCVC-FM Li et al. (2024), and DCVC-RT Jia et al. (2025). Table 9 reports speeds in frames per second (fps) across multiple GPUs.

Encoding Speed. CAVINR achieves the fastest encoding across all configurations. On 1080p videos, CAVINR encodes at 247.0 fps on A100, outperforming DCVC-RT (125.2 fps, 1.97 \times) and DCVC-DC (3.3 fps, 74.8 \times). This advantage results from feed-forward processing that avoids iterative optimization and complex entropy coding pipelines.

Decoding Speed. CAVINR decodes at 7.7 fps on A100 for 1080p, lower than DCVC-RT’s 112.8 fps. This difference reflects architectural trade-offs: DCVC-RT uses optimized convolutional decoders for parallel frame generation, while CAVINR performs cross-attention for pixel-level reconstruction. Nevertheless, 7.7 fps exceeds requirements for video archival and offline processing applications.

Hardware and Resolution Scaling. Performance scales consistently across GPUs from datacenter (A100) to consumer hardware (RTX 2080 Ti). At 720p, CAVINR achieves 12.7 fps decoding on A100 (1.65 \times over 1080p), demonstrating sub-linear complexity growth.

1242 Table 9: **Speed analysis.** The encoding / decoding speed (measured in frames per second, fps) are
 1243 evaluated across various resolutions and devices, including the NVIDIA A100, NVIDIA A6000,
 1244 RTX 4090, and RTX 2080 Ti.

Model	A100	A6000	4090	2080Ti	Model	A100	A6000	4090	2080Ti
DCVC-DC	3.3 / 4.3	1.7 / 2.2	2.3 / 2.9	0.8 / 1.4	DCVC-DC	6.5 / 7.9	3.5 / 4.3	5.5 / 6.7	2.1 / 2.9
DCVC-FM	5.0 / 5.9	3.1 / 3.8	3.7 / 4.4	1.9 / 2.3	DCVC-FM	8.5 / 9.4	5.9 / 6.6	9.3 / 10.4	4.0 / 4.7
DCVC-RT	125.2 / 112.8	70.4 / 63.8	118.8 / 105.3	39.5 / 34.1	DCVC-RT	173.9 / 149.2	147.3 / 132.5	225.1 / 185.2	73.3 / 67.0
CAVINR	247.0 / 7.7	168.4 / 6.5	236.8 / 7.4	94.6 / 3.4	CAVINR	250.0 / 12.7	202.3 / 8.5	240.6 / 12.4	98.5 / 5.4

(a) Coding speed on 1920×1080 videos.(b) Coding speed on 1280×720 videos.

1251 Table 10: **Zero-shot super-resolution comparison between CAVINR and ANR Zhang et al.**
 1252 **(2024).** Models are trained on single frames at 128×128 resolution and evaluated at both native
 1253 resolution and $2 \times$ super-resolution (256×256) without additional training. CAVINR achieves
 1254 superior generalization with **+2.2 dB PSNR improvement** at $2 \times$ upscaling while requiring $12 \times$ less
 1255 training time. SR denotes super-resolution inference.

Methods	Frame Resolution	# $\hat{\theta}'$	Epoch	GPU hrs \downarrow	PSNR \uparrow			SSIM \uparrow				
					Train	K400	SthV2	UCF101	Train	K400		
ANR	128	27k	150	96	33.1	33.2	33.2	33.6	0.933	0.919	0.934	0.929
CAVINR	128	27k	50	8	33.3	33.3	33.4	33.8	0.935	0.926	0.936	0.935
ANR (SR 2 \times)	256	27k	0	0	28.9	29.3	28.8	28.3	0.861	0.841	0.874	0.867
CAVINR (SR 2 \times)	256	27k	0	0	31.1	30.1	31.5	31.8	0.919	0.907	0.916	0.913

A.11 SUPER-RESOLUTION VIA VARIATIONAL COORDINATES

1262 To demonstrate CAVINR’s downstream task capabilities, we conduct zero-shot super-resolution ex-
 1263 periments following the variational coordinate approach from ANR Zhang et al. (2024). Both mod-
 1264 els are trained on single frames at 128×128 resolution and directly evaluated at 256×256 ($2 \times$
 1265 upscaling) without additional training, by querying coordinates on a denser grid.

1266 As shown in Table 10, CAVINR achieves comparable quality at native resolution while requir-
 1267 ing only 8 GPU hours versus ANR’s 96 hours ($12 \times$ speedup). For $2 \times$ super-resolution, CAVINR
 1268 demonstrates significantly better generalization with **+2.2 dB PSNR improvement** on average, val-
 1269 idating that our coordinate-attentive design enables practical downstream applications unavailable
 1270 to autoencoder-based methods.

1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295