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Abstract

Interpretability researchers face a universal question: without access to ground truth labels,
how can the faithfulness of an explanation to its model be determined? Despite immense
efforts to develop new evaluation methods, current approaches remain in a pre-paradigmatic
state: fragmented, difficult to calibrate, and lacking cohesive theoretical grounding. Observ-
ing the lack of a unifying theory, we propose a novel evaluative criterion entitled Generalised
Explanation Faithfulness (GEF) which is centered on explanation-to-model alignment,
and integrates existing perturbation-based evaluations to eliminate the need for singular,
task-specific evaluations. Complementing this unifying perspective, from a geometric
point of view, we reveal a prevalent yet critical oversight in current evaluation practice:
the failure to account for the learned geometry, and non-linear mapping present in the
model, and explanation spaces. To solve this, we propose a general-purpose, threshold-free
faithfulness evaluator GEF that incorporates principles from differential geometry, and
facilitates evaluation agnostically across tasks, and interpretability approaches. Through
extensive cross-domain benchmarks on natural language processing, vision, and tabular
tasks, we provide first-of-its-kind insights into the comparative performance of various
interpretable methods. This includes local linear approximators, global feature visualisation
methods, large language models as post-hoc explainers, and sparse autoencoders. Our
contributions are important to the interpretability and AI safety communities, offering a
principled, unified approach for evaluation.

� https://github.com/annahedstroem/GEF

1 Introduction

Explaining the general behaviour, and predictions of machine learning (ML) models, particularly those func-
tioning as black boxes, is critical, especially in domains such as healthcare, finance, and law. Driven by the
urgency to comply with regulations like the EU AI Act, and GDPR, the interpretability (or eXplainable
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AI (XAI)) research community has produced a plethora of interpretable methods in recent years (Baehrens
et al., 2010; Zeiler & Fergus, 2014a; Lundberg & Lee, 2017; Bykov et al., 2022; Fel et al., 2024; Lieberum
et al., 2024). Simultaneously, the rise of large-scale, multi-tasking large language models (LLMs) (or “foun-
dation models”) (OpenAI, 2023; Mesnard et al., 2024) has spurred a significant shift in the interpretability
landscape, with the mechanistic interpretability community producing a new generation of methods specifi-
cally designed to decompose, and reverse-engineer these increasingly black-box models (Elhage et al., 2022;
Conmy et al., 2023; Bykov et al., 2023; Bills et al., 2023; Templeton et al., 2024). Despite this immense
activity, consensus is lacking whether existing methods are of sufficient quality or trustworthy (Adebayo
et al., 2018; Ghassemi et al., 2021; Bordt & von Luxburg, 2024; Bhattacharjee & von Luxburg, 2024). Since
black-box models lack ground truth explanation labels (Bellido & Fiesler, 1993; Benitez et al., 1997), the
universal question: “how faithful is the explanation to the model it seeks to explain?” remains difficult to
answer. The prevalence of disagreements within the interpretability community about which methods1 work,
and under what conditions (Neely et al., 2021; Watson et al., 2022; Krishna et al., 2022; Koenen & Wright,
2024) signals that the challenge of evaluation is still unsolved.

To approximate explanation quality (Agarwal et al., 2022b; Hedström et al., 2023b), researchers commonly
use perturbation-based evaluations, where robustness (Montavon et al., 2018; Alvarez-Melis & Jaakkola,
2018b; Yeh et al., 2019; Nguyen & Martinez, 2020; Dasgupta et al., 2022), sensitivity (Adebayo et al., 2018;
Hedström et al., 2024), and faithfulness (Bach et al., 2015; Samek et al., 2017; Ancona et al., 2018; Rieger
& Hansen, 2020; Dasgupta et al., 2022; Bhatt et al., 2020; Rong et al., 2022) are well-embraced criteria to
examine the relationship between explanation, and model outputs under perturbation, albeit with different
emphases. Here, robustness, and sensitivity criteria refer to making small or large perturbations (e.g.,
adding noise to the input or randomising model parameters), and then measuring corresponding changes
in the explanation output. Faithfulness criterion generally measures how much the model’s performance
degrades when inputs, such as tokens or pixels, are cumulatively perturbed according to the explanation
values. Significant changes in model behaviour are interpreted as indicators of explanation faithfulness.

Lack of Cohesive, Unified Theory. Despite repeated attempts to define, and measure faithfulness (Mon-
tavon et al., 2018; Jacovi & Goldberg, 2020; Bhatt et al., 2020; Turpin et al., 2023; Lanham et al., 2023; Agar-
wal et al., 2024), fragmented mathematical terminology makes it an ongoing, and unresolved matter (Bordt
& von Luxburg, 2024). What exactly is explanation faithfulness, and how do robustness, and sensitivity
evaluations differ from it? From a conceptual standpoint, although these evaluations share common steps—
such as perturbing the inputs or the model parameters, measuring the effects, and interpreting the functional
outcomes—the overwhelming number of evaluation methods under these distinct criteria (Lakkaraju et al.,
2022), and the absence of a cohesive, unified theory makes it difficult to answer such seemingly straightfor-
ward questions. To better understand these evaluations’ shared attributes, assumptions, and outcomes, a
mathematical discussion is required. In Section 2, we propose a unifying perspective that formalises robust-
ness, sensitivity, and faithfulness evaluations, providing a principled Generalised Explanation Faithfulness
(GEF) definition in Section 3 to substitute singular evaluations.

Ignoring the Impact of Geometry. Alongside the lack of a cohesive, unified theory, most perturbation-
based evaluations (Section 2.1.2)—while well-intended, and intuitive—often rely on overly simplistic as-
sumptions about the underlying geometry of both model, and explanation spaces. When perturbations are
introduced, the functional outcomes of models, and explanations are frequently compared using direct dis-
tance measures or correlation coefficients (Alvarez-Melis & Jaakkola, 2018b; Yeh et al., 2019; Ancona et al.,
2018; Bhatt et al., 2020; Nguyen & Martinez, 2020; Agarwal et al., 2022a). From a geometric perspective,
this overlooks a simple yet critical fact: that a uniform perturbation such as input noise or parameter shifts
can affect non-linear systems in highly non-uniform ways. Only in a linear system, the perturbation effects
would be uniform. By neglecting the geometric differences (e.g., differences in curvatures) between the
model, and explanation spaces, current evaluations risk misjudging how faithful the explanation is w.r.t. its
underlying model. For fair measurements across non-linear systems, perturbation effects must be measured
in the context of the distinct geometric structures of the respective manifolds (Lee, 2012). In Section 4, we

1Throughout this work, we use the terms “interpretable methods” and “explanation methods” interchangeably, without
implying a difference in their scope or function.
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examine these geometric factors, and introduce a solution that accounts for the intrinsic geometry of each
space, thereby improving current evaluation practice.

To address the research gaps in unified theory (Section 3), and the neglected impact of geometry (Section 4),
our work offers a fourfold contribution.

(C1) In the absence of cohesive theory, we systematise common steps in numerous perturbation-based
evaluation algorithms (Section 2), and provide a unifying evaluative criterion for robustness, sensi-
tivity, and faithfulness evaluations (Section 3).

(C2) To account for geometric discrepancies in many evaluation methods, we propose a solution based on
differential geometry that ensures fair measurements across non-linear mappings (Section 4).

(C3) Recognising the need for a general-purpose, threshold-free, task-agnostic faithfulness evaluators, we
provide GEF and Fast-GEF methods, serving distinct compute budgets (Section 5).

(C4) Observing the lack of cross-domain insights on the faithfulness across distinct explanation approaches
such as local, global, LLM as an explainer, and sparse autoencoders (SAEs), we perform extensive
experiments across vision, tabular, and natural language processing (NLP) tasks (Section 6).

Our contributions carry substantial importance to the interpretability (and related) communities. The
reliability of individual explanation methods, and XAI as a field is already under hot debate, thus it is not
only timely but relevant to provide clarity on the matter of explanation faithfulness. As we enter a new
era of interpretability, it is of utmost importance to revisit, and revise existing evaluation approaches. We
hope this work will clarify how best to approach and perform faithfulness evaluation, ultimately empowering
researchers to confidently select and develop new interpretable methods.

2 Interpretability Evaluation: Where Are We Now?

In this section, we present the scope of this work. We begin by outlining preliminaries to estimate explanation
quality, followed by a description of the general workflow of perturbation-based evaluation. Finally, we
mathematically formalise robustness, sensitivity, and faithfulness evaluation, revealing critical assumptions
that are essential for their validity. Complete notation tables are provided in Appendix A.9.

2.1 Preliminaries

Let fθ : X → Y be a differentiable neural network (NN) that maps inputs x ∈ RD to predictions y ∈ RC of C
classes. By functionally mapping x ∈ X to y ∈ Y with parameters θ such that y = f(x; θ), a trained model
fθ is obtained, which we refer to as f . Here, θ includes weights, and biases, and exists in parameter space
Θ ∈ RW for a fixed architecture in function space fθ ∈ F . The model f may represent NN architectures
ranging from simple feedforward MLPs, CNNs to highly parameterised transformer-based models.

Local Explanations. To interpret a specific model prediction (i.e., logit) y := yc of a class c ∈ [1, 2, . . . C],
we may employ a local method. Let ϕL : F × X × Y → RV be a local explanation function that takes an
input, and logit pair, and assigns importance scores to a subset (or all) of its input features such that

e = ϕL(f, x, y; λ), (1)
where e ∈ RV is the explanation output, parameterised by λ.

A broad variety of local explanation approaches fall within the scope of our work, e.g., gradient-based (Si-
monyan & Zisserman, 2015; Smilkov et al., 2017; Sundararajan et al., 2017; Bykov et al., 2022; Krishna
et al., 2023; Selvaraju et al., 2020), back-propagation-based (Bach et al., 2015; Shrikumar et al., 2017),
model-agnostic (Zeiler & Fergus, 2014a; Lundberg & Lee, 2017), local surrogate (Ribeiro et al., 2016a),
attention-based (Chefer et al., 2021; Covert et al., 2022), or prototypical explanation methods (Simonyan &
Zisserman, 2015). More recent approaches (Krishna et al., 2023; Kroeger et al., 2023) that leverage separate
LLMs as the explanation function ϕ to interpret local predictions in a post-hoc manner, are also within the
scope of this work.
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Global Explanations. To study the model f from a global point of view, an explanation is produced
independent of a specific instance, i.e., x. Here, a global explanation method ϕG : F × Y → RV takes a
trained model f , and generates an explanation e ∈ RV for specific neural activation associated with a target
class c. Here, c us represented by logit y such that

e = ϕG(f, y; κ), (2)

where ϕG is parameterised by κ. Here ϕG may be variants of activation-maximisation (or “feature visualisa-
tion”) which provide either natural, or synthetic data points of maximal activation (Berkes & Wiskott, 2006;
Erhan et al., 2009; Olah et al., 2017; Nguyen, 2020; Fel et al., 2024) or concept-based explanations Bykov
et al. (2023). Recently, trained SAEs Bricken et al. (2023); Lieberum et al. (2024); Huben et al. (2024)
have emerged as an alternative formulation for ϕG, aiming to produce interpretable “monosemantic” feature
encodings at the layer level, providing insight into a model’s intermediate representations.

For convenience, we let ϕ ∈ E denote ϕL, and ϕG although they formally reside in different spaces. To
avoid label leakage (Jethani et al., 2023), we use the predicted class (and not the true class) to generate the
explanation e.

2.1.1 Estimate Explanation Quality

Without ground truth explanation labels, the task of estimating the quality of an explanation ϕ is non-
trivial. To approximate explanation quality, researchers rely on metric-based heuristics (or “metrics”).
Following Hedström et al. (2023a), we define a general evaluation function Ψτ : E × X × F × Y → R

q = Ψ(ϕ, x, f, y; τ) (3)

which returns a quality estimate q ∈ R, indicating the quality of a given explanation, parameterised by
τ . When global explanations ϕG are evaluated, x is omitted from Equation 3. Unless required, we omit
hyperparameters τ, λ, κ, ζ for notational convenience.

2.1.2 Related Works

Within approaches that evaluate explanation quality by approximation, we concentrate on those that examine
the functional relationship between the explanation, and the model through means of perturbation, i.e.,
assessing qualities such as robustness, sensitivity, and faithfulness. These are briefly introduced below, and
mathematically formalised in Section 2.3.

Robustness. Robustness (also referred to as “continuity”, and “stability”) methods evaluate the explana-
tion function’s resilience to infinitesimal input noise, and is a widely used evaluation technique (Yeh et al.,
2019; Montavon et al., 2018; Alvarez-Melis & Jaakkola, 2018b; Nguyen & Martinez, 2020; Agarwal et al.,
2022a; Dasgupta et al., 2022). Most commonly, robustness is evaluated by first perturbing an input sample,
then generating the explanation for the perturbed input, and finally comparing this explanation to the orig-
inal explanation. Higher similarity between the original, and perturbed explanation indicates higher quality.
Existing robustness measures differ in how noise is applied to the input (e.g., using a Gaussian (Alvarez-
Melis & Jaakkola, 2018b; Yeh et al., 2019) or a uniform distribution (Agarwal et al., 2022a)), and how
explanation similarity is measured (e.g., Yeh et al. (2019) computes difference with Monte-Carlo sampling,
and Alvarez-Melis & Jaakkola (2018b); Agarwal et al. (2022a) rely on variants of a Lipschitz constant).

Sensitivity. Sensitivity (or “randomisation”) methods (Adebayo et al., 2018; Hedström et al., 2024) act
complementary to robustness, and assesses a critical, and perhaps indisputable evaluative quality: that the
explanation function ϕ should be sensitive to a randomisation of model parameters. Existing sensitivity
measures differ in how the change in the explanation outputs is measured (e.g., Adebayo et al. (2018)
relies on Structural Similarity Index (SSIM), and Hedström et al. (2024) uses discrete entropy calculations),
and how perturbation is applied (e.g., Adebayo et al. (2018) randomises model parameters layer-by-layer
in a top-down fashion, and Hedström et al. (2024) uses bottom-up or full parameter randomisation). The
sensitivity criterion asks that the explanation should change significantly when the model parameters are
randomised, whether layer-by-layer (Adebayo et al., 2018) or entirely (Hedström et al., 2024).
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Faithfulness. Faithfulness (or “fidelity”) methods (Bach et al., 2015; Samek et al., 2017; Montavon et al.,
2018; Ancona et al., 2018; Rieger & Hansen, 2020; Dasgupta et al., 2022; Bhatt et al., 2020; Rong et al.,
2022; Atanasova et al., 2023; Blücher et al., 2024; Chuang et al., 2024) evaluate explanations by gradually
perturbing the input based on the importance of pixels or tokens indicated by the explanation, and observing
the resulting degradation in model performance. Mehthods differ in how model responses are reported (with
logits (Alvarez-Melis & Jaakkola, 2018a; Yeh et al., 2019; Bhatt et al., 2020) or softmax probabilities (Mon-
tavon et al., 2018; Ancona et al., 2018; Rieger & Hansen, 2020; Nguyen & Martinez, 2020; Dasgupta et al.,
2022; Rong et al., 2022)), how perturbations are ordered (ascending (Arya et al., 2019; Nguyen & Martinez,
2020) or descending (Bach et al., 2015; Samek et al., 2017; Rong et al., 2022)), and in the general approach
to perturbation (whether using single-pixel changes (Bach et al., 2015), patch-based masking with a con-
stant value (Samek et al., 2017), or linear interpolation (Rong et al., 2022)). Faithfulness methods typically
aggregate model responses into a single quality estimate, such as AUC (Bach et al., 2015; Samek et al.,
2017; Rong et al., 2022). For faithfulness to be considered fulfilled, the model’s performance should rapidly
decrease as perturbations are applied—the steeper the degradation, the higher the explanation quality.

Beyond approximation techniques, interpretability researchers have explored alternative ways to evaluate
explanation quality, such as using human judgment (Zeiler & Fergus, 2014b; Ribeiro et al., 2016b), and
restricting tasks to synthetic or toy environments (Guidotti, 2021; Carmichael & Scheirer, 2023). While such
approaches complement evaluation methods that approximate explanation quality, they lack scalability, and
generalisability to real-world scenarios, and are not covered in this work.

2.2 Perturbation-based Evaluation

A key observation is that robustness, sensitivity, and faithfulness evaluations generally rely on three common
steps. First, a perturbation is applied to either the input (e.g., by adding infinitesimal noise) or the model
parameters (e.g., by randomisation). Second, the effect of the perturbation is measured on the output of
either the explanation function ϕ or the model f . Third, an interpretation is made to assess whether this
change in functional outputs is acceptable given a criterion, such as requiring the distance in explanation
outputs to be small when the perturbation is small. We refer to Figure 1 for an illustration.

Figure 1: An overview of the “perturb, measure, and interpret” evaluation methodology (Section 2.3).

To facilitate mathematical unification (Section 4), and further insights (Section 5), we next formalise the
three steps of perturbation-based evaluation. Therefore, some general notation for perturbation (Eqs 4-5),
and measurement (Definition 1) is introduced. By systematising evaluation, we can advance our conceptual
understanding, especially in clarifying how existing methods differ, and what attributes are shared.

2.2.1 Step 1. Perturbation

First, a perturbation is initiated. This is typically done either on the model parameter space in large
magnitudes, e.g., by randomising weights, or on the input in small magnitudes, e.g., by adding Gaussian
noise. Alternatively, perturbations can be applied cumulatively, such as by masking pixels or regions of
pixels, or by replacing tokens in textual inputs. To accommodate diverse evaluation methods across different
data modalities, we follow Hedström et al. (2023a), and define a general perturbation function that can be
applied on any real-valued space S ⊆ {X , Θ, Y}. Let PS : S → S be a perturbation function of s ∈ S with
parameters ω ∈ R such that

PS(s; ω) = ŝ, (4)

where ∀ŝ, s ∈ S, and ŝ ̸= s. For brevity, we may omit ω such that PS(s) := PS(s; ω). With Equation 4,
we may, e.g., generate a perturbed instance ŝ with input perturbation, i.e., x̂ = PX (x) or model parameter
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randomisation, i.e., θ̂ = PΘ(θ). Since robustness, sensitivity, and faithfulness evaluations require distinct
perturbation magnitudes, we let ξ denote the difference between s, and ŝ as follows

δ(s, ŝ) = ξ, (5)

where δ : S×S → R is a general discrepancy function, e.g., an ℓp-norm, cosine distance or Pearson correlation.

2.2.2 Step 2. Measurement

As a second step, the impact of the perturbation is measured on relevant functions. Common approaches
include measuring the distance between explanation outputs or recording the change in model responses
under random or cumulative masking guided by the explanation output. We define a general approach to
measure the perturbation impact on a separate function (e.g., the impact of input perturbation on the model
function) below.

Definition 1 (Functional Distortion) Let s, ŝ ∈ S denote instances in space S ⊆ {X , Θ, Y}, before, and
after perturbation, respectively. Let k : S → H denote a separate function that maps s, ŝ to a distinct
space H ⊆ {F , E} from S. Then, perturbation impact in function k is measured by functional distortion
Dk : S × S → R as follows

Dk(s, ŝ) = δ(k(s), k(ŝ)), (6)
where k(s) = h with h ∈ H, and δ : H × H → R.

Model, and Explanation Distortion. With Definition 1, we can flexibly apply perturbation in one
space, and then evaluate the effect in a different space2. For example, assume we have applied perturbation
on the input space, i.e., x̂ = PX (x) (Equation 4), and therefore have two instances x, and x̂. Then, to
measure the perturbation impact on the model function f , we follow Definition 1, and set k = f where
h = y. Evaluating Df (x, x̂) from Equation 6 effectively means that we compare model evaluations on
perturbed, and non-perturbed inputs, i.e., δ(y, ŷ) with ŷ = fc(x̂; θ) for the same class c. Alternatively,
to measure perturbation impacts on the explanation function ϕ, we set k = ϕ where h = e. Evaluating
Dϕ(x, x̂), practically means that we compute δ(e, ê) where ê = ϕ(x̂, . . .) is the explanation w.r.t. perturbed
input x̂. For comparability, ê is generated w.r.t. the same class c as its non-perturbed counterpart e.
Similarly, to compute functional distortion after parameter perturbation, i.e., θ̂ = PΘ(θ), we compute
Df (θ, θ̂), and Dϕ(θ, θ̂) using logit ŷ = f(x; θ̂), and explanation ê = ϕ(fθ̂, . . .), respectively. To generalise
the notation across different perturbation types, we let Df , and Dϕ denote the model, and explanation
distortion quantities, respectively.

2.2.3 Step 3. Interpretation

In the final step of the evaluation workflow (Figure 1), the distortion quantities are examined separately
according to their evaluative criteria. For example, if robustness is evaluated, generally low values for Dϕ are
expected, assuming perturbation magnitude ξ is small. Conversely, if sensitivity is evaluated, high values for
Dϕ are expected, assuming perturbation magnitude ξ is large. If faithfulness is evaluated, model distortion
Df is anticipated to increase as perturbation is cumulatively applied according to the explanation function
output. Notably, a key limitation of this step is the need for thresholds to be set by researchers in order
to distinguish between low-, and high-quality evaluation outcomes, which has shown could be adversarially
manipulated (Wickstrøm et al., 2024).

2.3 Formalising Robustness, Sensitivity, and Faithfulness

Equipped with a general perturbation function PS (Equation 4), and its magnitude ξ (Equation 5) as well
as a measure to compute functional distortion of the explanation, and model functions (Definition 1), we can
combine a wide variety of existing evaluation techniques into general formalisations of robustness, sensitivity,

2While both the perturbation magnitude ξ (Equation 5), and the distortion Dk (Equation 6) use the discrepancy function
δ(·, ·), their outputs differ. Notably, ξ expresses the discrepancy between the original, and perturbed instance, and Dk measures
the discrepancy in a distinct space from the perturbation space.

6



Published in Transactions on Machine Learning Research (02/2025)

and faithfulness evaluation methods (cf. Section 2.1.1). Based on these three main criteria (Definitions 2-4),
we show that the validity of each explanation criterion critically depends on fulfilling a separate, implicit
model assumption (Assumptions 1-3).

We proceed by presenting a definition of explanation robustness, absorbing the spirit of numerous existing
robustness methods3 (Yeh et al., 2019; Montavon et al., 2018; Alvarez-Melis & Jaakkola, 2018b; Nguyen &
Martinez, 2020; Agarwal et al., 2022a).

Definition 2 (Explanation Robustness) Let x̂ = PX (x) be a perturbed input, and ΨRO be a quality
estimator to yield robustness estimates qRO ∈ R such that qRO = Dϕ(x, x̂). Given thresholds α, εRO

Dϕ
∈ R+,

an explanation function ϕ is robust if the perturbation magnitude ξRO ≤ α:

qRO ≤ εRO
Dϕ

. (7)

For an explanation function ϕ to be considered robust, the estimator ΨRO should yield low values, i.e.,
qRO ≤ εRO

Dϕ, reflecting minor differences between the original explanation e, and the perturbed explanation
ê. Since the stability expectations of the explanation function ϕ are dictated by the robustness of f (Yeh
et al., 2019; Chalasani et al., 2020; Agarwal et al., 2022a; Tan & Tian, 2023), it would be false to expect ϕ
to exhibit robustness if its underlying model is not robust. Consequently, the validity of Equation 7 depends
on the fulfillment of model robustness (Assumption 1).

Assumption 1 (Model Robustness) Given an input perturbation PX of magnitude ξRO, and thresholds
α, εRO

Df
∈ R+, ξRO ≤ α, the model distortion (Equation 6) is bounded by Df (x, x̂) ≤ εRO

Df
.

In line with works of Adebayo et al. (2018); Hedström et al. (2024), we define explanation sensitivity in the
following.

Definition 3 (Explanation Sensitivity) Let θ̂ = PΘ(θ) create a model fθ̂ with perturbed parameters,
and ΨSE be a quality estimator that yields sensitivity estimates qSE ∈ R such that qSE = Dϕ(θ, θ̂). Given
thresholds α, εSE

Dϕ
∈ R+, an explanation function ϕ is sensitive if the perturbation magnitude ξSE > α:

qSE > εSE
Dϕ

. (8)

For ϕ to be considered sensitive to randomness, the differences between explanations should be substantial,
meaning ΨSE yields high estimates, i.e., qSE > εSE

Df
, reflecting significant discrepancies between e, and ê.

This expectation that qSE should be large is based on the assumption that the model responded strongly
to the perturbation. Similar to how explanation robustness depends on the stability of f , the emphasis
on a large qSE assumes a different model response. Therefore, the validity of the sensitivity evaluation
(Equation 8) depends on model sensitivity (Assumption 2).

Assumption 2 (Model Sensitivity) Given a parameter perturbation PΘ of magnitude ξSE, and thresh-
olds α, εSE

Df
∈ R+, ξSE > α, the model distortion (Equation 6) is bounded by Df (θ, θ̂) > εSE

Df
.

With various existing interpretations of explanation faithfulness (Section 2.1.2), we focus on common criteria
to combine these interpretations into a single definition below.

Definition 4 (Explanation Faithfulness) Let x̂z = PX (x; z) denote the input after the zth perturbation
for z ∈ [1, Z], where PX progressively masks the top-z features according to the indices given by argmax(e),
with perturbation magnitudes ξz satisfying ξ1 ≤ ξ2 ≤ . . . ≤ ξZ . A quality estimator ΨF A yields a vector of
faithfulness estimates qF A ∈ RZ with entries qF A

z = f(x̂z, θ), where the overall faithfulness score qF A ∈ R
is obtained by aggregating these estimates via a function ν : RZ → R:

qF A = ν(q̂F A). (9)
3Some algorithmic details are omitted in the definition. For completeness, mathematical definitions are provided for each

evaluation method in Appendix A.4.5.
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When ν is defined using AUC, a faithful explanation is expected to produce low aggregated scores qF A

(Equation 9). The conventional expectation in faithfulness evaluation (Bach et al., 2015; Samek et al., 2017;
Rong et al., 2022) is that significant distortions should occur early, as the “more important features” are
removed first. To ensure that the faithfulness score is solely driven by the quality of ϕ, and not by other
factors, such as out-of-distribution samples (OOD) (Hase et al., 2021; Hesse et al., 2024), non-linear feature
effects or artifacts introduced by cumulative perturbations (Hooker et al., 2019; Brunke et al., 2020; Hase
et al., 2021; Rong et al., 2022; Brocki & Chung, 2022), the model distortion to these perturbations should
be monotonically non-decreasing, i.e., satisfy model faithfulness (Assumption 3).

Assumption 3 (Model Faithfulness) Given Z cumulative perturbations PX of magnitudes ξz with ξ1 ≤
ξ2 ≤ · · · ≤ ξZ the corresponding model distortions (Equation 6) are: D1

f ≤ D2
f ≤ · · · ≤ DZ

f with Dz
f =

Df (x, x̂z).

2.4 Model Assumptions in Practice

Evaluations under Definitions 2-4 typically assume that model distortions are proportional to perturbation
magnitudes, i.e., that larger perturbations lead to greater distortions, and smaller perturbations result in
lesser distortions. This naturally raises the question: with commonly used perturbation techniques for evalu-
ating robustness (e.g., additive Gaussian noise), sensitivity (e.g., layer-wise randomisation), and faithfulness
(e.g., cumulative input masking, does this assumption hold in practice? In Appendix A.5, we extensively
analyse the extent to which Assumptions 1-3 hold versus fail across various explanation methods, and NN
models.

Notably, we find that Assumptions 1-3 are systematically violated in practice. While this is expected due
to the inherent non-linearity embedded in f , it has significant consequences for the validity of existing eval-
uations (Definitions 2-4). Evaluation outcomes may be misleading when explanation robustness is enforced
for models that fundamentally lack it (Chalasani et al., 2020; Tan & Tian, 2023; Agarwal et al., 2022a),
or when faithfulness scores are attributed to explanation quality without considering OOD scenarios (Hase
et al., 2021; Hesse et al., 2024). In Section 3.3, we propose a mitigation strategy to address this issue.

3 A Unifying Perspective

With clear definitions of robustness, sensitivity, and faithfulness evaluations (Section 2.3), we may now
explore their shared attributes, and outcomes. In the following, we discuss the unifying aspects of these eval-
uations, and introduce a novel definition to evaluate faithfulness, which integrates these distinct evaluations
into a single criterion of explanation quality.

3.1 Unifying Attributes

Upon formalising the evaluation criteria (Definitions 2-4), a notable observation is that robustness, sensitivity,
and faithfulness exhibit common attributes. Each of the evaluative criteria (1) introduces a perturbation of
a specific magnitude ξ, (2) measures the functional effect, and (3) interprets the results, i.e., the quality
estimate q. Also, the evaluation is performed under distinct model assumptions about its distortion Df . We
refer to Table 1 for a summary of these findings.

In Figure 2 (A), we illustrate these theoretical similarities on a graph, with axes corresponding to the shared
attributes ξ, and q. Here, we can observe that robustness evaluation (green) involves minimal perturbation
with a small difference in expected explanation output (or low q). Sensitivity (red) employs substantial
perturbation, expecting a significant difference in explanation output (or high q). Faithfulness (blue) uses
cumulative perturbation of Z steps, evaluating the corresponding variations in model output. By placing
the different perspective of explanation quality onto Figure 2 (A), and thereafter examining the positions
of the post-perturbed instances ŝ ∈ S, we can advance our understanding of how the criteria relate to one
another: specifically, that diverse evaluation methods can be unified under a shared conceptual framework.
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Table 1: A concise overview of the attributes of the robustness, sensitivity, and faithfulness evaluations. The last row presents
our unified evaluation proposal (Def 5), whose theory and practical implementation are described in Section3 and Section5,
respectively.

Evaluation (Ψ) Step 1. Perturbation; Step 2. Measurement Step 3. Interpretation Model Assumptions
(Definitions 2-4) Magnitude (Equations 4-5) (Definition 6) (Equation 7-9) (Assumptions 1-3)

Robustness (ΨRO) PX (x); ξRO ≤ α Dϕ(x, x̂) qRO ≤ εRO
Dϕ

Df ≤ εRO
Df

Sensitivity (ΨSE) PΘ(θ); ξSE > α Dϕ(θ, θ̂) qSE > εSE
Dϕ

Df > εSE
Df

Faithfulness (ΨF A) PX (x, z); ξF A
1 ≤ ξF A

2 ≤ · · · ≤ ξF A
Z f(x̂z, θ) qF A = ν(q̂F A) D1

f ≤ D2
f ≤ · · · ≤ DZ

f

Unified (ΨGEF ) PΘ(θ, z); ξGEF
1 ≤ ξGEF

2 ≤ · · · ≤ ξGEF
Z Dϕ(θ, θ̂), and Df (θ, θ̂) ρ(df , dϕ) ≈ 1 None

3.2 Unifying Outcomes

Another point of unification emerges when considering the outcomes of these evaluation criteria, and how
they interact in practice. In Figure 2 (B), similar to the traditional confusion matrix (in ML) or contingency
table (in statistics), we provide a visual representation of the possible model, and explanation outcomes, post-
perturbation. Although model, and explanation outcomes are typically continuous in reality—for conceptual
clarity, we classify them into four distinct quadrants: true positive (TP), true negative (TN), false positive
(FP), and false negative (FN). A key benefit of discretising evaluation outcomes in this way, is that we can
distinguish between aligned, and misaligned explanation behaviour:

• Aligned outcomes (TP + TN). The green quadrant represents outcomes where the explanation, and
model agree, indicating explanation robustness, i.e., e = ê, and y = ŷ, and satisfying Assumption 1.
Conversely, the red quadrant contains outcomes where both explanation, and model outputs differ,
reflecting explanation sensitivity, i.e., e ̸= ê, and y ̸= ŷ, and satisfying Assumption 2. Explanation
faithfulness is achieved when evaluation outcomes are aligned over Z steps (Assumption 3).

• Misaligned outcomes (FP + FN). The orange quadrants highlight misalignment between ϕ, and f .
The top-left quadrant shows explanation dissimilarity despite prediction stability (i.e., y = ŷ, and
e ̸= ê), failing Assumption 2. The bottom-right quadrant shows explanation similarity despite a
prediction change (i.e., y ̸= ŷ, and e = ê), failing Assumption 1.

Figure 2: Intuition behind the relationship between robustness, sensitivity, and faithfulness evaluations. (A) illustrates the
shared attributes, i.e., perturbation magnitude ξ, and quality estimate q that unifies robustness (green), sensitivity (red), and
faithfulness (blue) evaluations. (B) displays a confusion matrix of discretised model, and explanation outcomes, with green,
and red quadrants indicating aligned behaviour, and orange quadrants showing misalignment. (C) shows our proposed GEF
criteria (Definition 5) which measures explanation to model alignment over diverse evaluation perspectives.

Explanation Faithfulness is Alignment. Our analysis reveals that evaluation according to Definitions 2-
4, fundamentally concerns the alignment between the explanation, and the model’s behaviour, whether
across single (Definitions 2-3) or multiple (Definition 4) perturbation steps. A key observation is that
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existing robustness, and sensitivity measures provide a limited view of isolated model conditions: robustness
evaluates alignment when the model’s predictions remain stable (TP quadrant), while sensitivity evaluates
alignment when predictions change (TN quadrant). Faithfulness (Definition 4) evaluates alignment over Z
steps, assuming non-decreasing, monotonic model responses under cumulative perturbations (Assumption 3).
These singular perspectives require strict adherence to specific model conditions, and consequently fail to
evaluate the full behaviour of the explanation function. Next, we propose a unifying criterion for faithfulness
evaluation. We refer to Figure 2 (C) for an illustration.

3.3 Unifying Criteria

We extend, and generalise the current faithfulness criterion (Definition 4) by integrating the robustness, and
sensitivity evaluations into a combined criterion, that is free from restrictive model assumptions. Using a
series of Z perturbations, we measure explanation alignment across a spectrum of model outcomes—from
cases where model predictions remain consistent, i.e., y = ŷ, to those where predictions diverge, i.e., y ̸= ŷ.
In this way, a generalised definition of explanation faithfulness is obtained.

Definition 5 (Generalised Explanation Faithfulness) Let df = [D1
f , D2

f , . . . , DZ
f ] and ϕ =

[D1
ϕ, D2

ϕ, . . . , DZ
ϕ ] be the model, and explanation distortion vectors, where Dz

f , and Dz
ϕ are distortion quan-

tities of the zth step along a perturbation path z ∈ [1, Z], from robustness at z = 1 to sensitivity at z = Z
such that ∀y, ŷ ∈ Y :

(z = 1 : y = ŷ) and (z = Z : y ̸= ŷ),

where ŷ, and y are perturbed versus unperturbed model outputs, respectively. Let ΨGEF be a quality estimator
that yields estimates qGEF ∈ R via the correlation coefficient ρ : RZ × RZ → R such that qGEF = ρ(df ,ϕ ).
An explanation function ϕ ∈ E is faithful to f ∈ F if:

qGEF ≈ 1. (10)

With Equation 10, we define a quality estimator ΨGEF that yields values ranging between [−1, 1], with
a value of 1 implying perfect generalised faithfulness, 0 suggesting an absence of it, and −1 an inverse
relationship. GEF estimation is, therefore, threshold-free in the sense that the correlation coefficient directly
indicates the quality of the explanation, eliminating the need for arbitrary cut-offs. Note that in Definition 5,
we implicitly rely on predicted class c to generate the perturbed logit ŷ as the target for the explanation, and
model distortion. In Appendix A.1.2, we discuss a broader application of GEF where the targets ŷ, and y are
replaced by any cth neuron within a layer l ∈ [1, L] of a feed-forward model. Moreover, Definition 5 applies
to a wide range of explanation functions, as discussed in Section 2.1. The choice of ρ, and perturbation
applied to construct the distortion vectors depends on the practical implementation (Section 5.2).

Remarks. Our definition shares similarities with faithfulness estimation (Definition 4) in that it assesses
explanation quality along a perturbation path. However, it fundamentally differs by focusing on general
alignment rather than a specific scenario of measuring the magnitude of model response to cumulative input
perturbation. A key benefit of our proposal is that we use the model distortion to anchor the expectations
of the explanation distortion, and as such, eliminate the need to rely on arbitrary thresholds. In this way,
the evaluation will be grounded in the exact functional response of the model, and thus resilient to OOD
scenarios: expecting small explanation distortions only when model distortions are small, and vice-versa.

Theoretical Benefits. A good faithfulness measure should assign low scores to unfaithful explanations,
and high scores to faithful explanations. In Appendix A.1.3, we prove that a linear model f = θx+c where θ
acts as the explanation, attains a perfect faithfulness score, i.e., qGEF = 1 with GEF. Conversely, unfaithful
explanations are penalised by GEF. For instance, constant explanations that generate no distortion, i.e.,
Dϕ(e, ê) = 0, pass the conventional robustness test qRO ≤ εRO

Dϕ
(Definition 2), but correctly fails in the

GEF formulation. Similarly, random explanations (e.g., generated by uniform sampling, i.e., êi ∼ U(0, 1))
produce maximal distortion (Binder et al., 2022), and thus generally pass the sensitivity test, i.e., qSE > εSE

Dϕ

(Definition 3) but fails in our definition. We provide proofs for both cases in Appendix A.1.1, and outline
empirical evidence in (Section 4.2).
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4 A Geometric Perspective

With an advanced understanding of explanation faithfulness (Section 3), we can more systematically study
the behaviour of the explanation function. Without assuming the restricted model conditions (Assump-
tions 1-3) are met, which are often violated in practice (Appendix A.5), we can more objectively measure
the true explanation function behaviour. We can formalise questions such as: do explanation functions in
real-world evaluation scenarios align or misalign with their model? How do different types of perturbation
impact model and explanation functions? In the following, and in Appendix A.6, we empirically exam-
ine such questions across common explanation methods (Section 2.1) for different NN models. Guided by
differential geometry, we provide theoretical considerations on the impact of geometry (Section 4.2).

4.1 Explanation Alignment Patterns

To empirically analyse whether explanation functions are aligned with their model, we study how the dis-
tortions of various local, and global explanation functions, and models change under perturbation. Here, we
use additive Gaussian noise, i.e., νi ∼ N (0, σ) to generate perturbed inputs x̂i = x + νi, with a standard
deviation σ increasing until the model behaves randomly (i.e., with an accuracy equal to 1/C) using Z = 10
perturbation steps. We refer to Table 2 in Section 6 for details regarding datasets, and models, and to
Appendix A.6 for extended results.

Figure 3: Model (x-axis), and explanation distortions (y-axis) under varying levels of additive Gaussian input noise for vision,
and tabular tasks. The scatter points represent individual samples, coloured by perturbation magnitude (z=1, z=5, z=9),
with overlapping contours highlighting the relative alignment patterns. The top, and bottom rows represent GradientSHAP
(SHAP-G), and Gradient (GRAD) explanations, respectively.

Figure 3 (top, and bottom) presents the results, which can be interpreted as a continuous analogue of
the confusion matrix presented in Section 3.2. The scatter points, coloured by perturbation magnitude,
reveal that ϕ, and f rarely align fully. Instead, the relative alignment varies with both the model, and the
explanation functions. Here, we include GradientSHAP (SHAP-G) (Lundberg & Lee, 2017), and Gradient
(GRAD) (Morch et al., 1995; Baehrens et al., 2010)) on top, and bottom rows in Figure 3, respectively,
with more results in Appendix A.6). The overlapping contours (e.g., Avila results in Figure 3) underscore
a simple but nonetheless systematically overlooked aspect of perturbation-based evaluation (Section 2.3):
that a uniform perturbation of its inputs may affect highly non-linear systems in a non-uniform way. If the
effects were uniform, the system would likely be linear.

4.2 The Impact of Geometry

By considering the geometric nature of the spaces these functions inhabit, we can understand the observed
misalignment better. In differential geometry, each space—whether it is the model output space Y or the
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explanation output space E—can be viewed as a manifold with its unique geometric characteristics (Lee,
2012). When a perturbation is applied, a new point on these manifolds may be accessed, and then, when
functional distortion (Definition 1) is computed in each space, we are effectively computing a distance
between two points on each manifold. For example, with model parameter perturbation, i.e., θ̂ = PΘ(θ)
(Equation 4) we obtain perturbed model outputs ŷ (or, a logit ŷ) given ŷ = fθ̂(x). From this, model
distortion (Definition 1) is calculated using, e.g., Euclidean distance between the original, and the perturbed
instance.

A key observation is that, when distances in two different spaces are directly compared, we ignore the fact that
manifolds have their own separate geometric characteristics which are distinct, where distances in one space
not necessarily reflect equivalent distances in another. In direct comparisons such as correlation (Ancona
et al., 2018; Bhatt et al., 2020) or Lipschitz calculations (Alvarez-Melis & Jaakkola, 2018a; Agarwal et al.,
2022a), a global flat metric is assumed. We refer to Figure 4 (A), and (B) for an illustration of the problem
of ignoring the impact of geometry. As a result, the quality estimation of the explanation may be misleading.

Figure 4: An illustration of the relationship between the manifolds of the model, and explanation. (A) shows how the explanation
function maps between the model, and explanation spaces, Y, and E. (B) displays the problem with directly comparing
distortions across spaces, assuming a global flat metric. (C) illustrates the pullback operation using metric tensor g to adjust
distortions in E for comparison in Y.

4.3 Reconciling Geometric Discrepancies

To enable a geometrically sound comparison between explanation, and model distortion, the aim is to
recompute Dϕ to incorporate the non-linear mappings used in generating explanations. This can be achieved
by mapping the distortion from the explanation space E to the model space Y, effectively “pulling back” the
measured distance into Y (see Ch. 11 of Lee (2012) for further details). Guided by differential geometry, we
create a metric tensor g that serves as this pullback onto Y. This process is illustrated as g(ê) in Figure 4
(C).

To construct the metric tensor g, we consider an infinitesimal neighbourhood around the parameter pertur-
bation θ + du, for a fixed x, and y. By applying a first-order Taylor expansion in this neighbourhood, we
obtain

ϕ(fθ+du, . . .) ≈ e + Jf du, (11)

where Jf ∈ RV ×C is the Jacobian for fixed input x, with elements Ji,j = ∂ei

∂fj
. We use fj as shorthand

for fj(x). Effectively, θ + du yields a new perturbed model fθ̂ which is computed with model parameter
perturbation (Section 5.1). With Equation 11, we can compute the elements of the pullback tensor g ∈ RV ×V

as the sum of the resulting changes in each explanation element ev w.r.t. the changes in each model element
fj

gi,j(e) =
V∑

v=1

∂ev

∂fi

∂ev

∂fj
. (12)

Thus, Equation 12 captures the sensitivity of ϕ to model output changes, with g corresponding to the
squared Jacobian g = J⊤

f Jf . In this way, we can obtain a more reliable measurement of distances in the
pseudo-Riemannian manifold (Y, g) of space Y.
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With the pullback metric tensor g in place, we can measure explanation distortion that is equivalent to
computing the path length under the induced parameter changes in the “pulled-back” space

Dϕ := L(γ) =
∫ 1

0

dγ(t)
dt

⊤
gγ(t)

dγ(t)
dt

dt, (13)

where γ(t) is a path between endpoints e, ê ∈ E derived from the original, and perturbed models, respectively.
Here, t denotes the step size. Now, we replace our original definition of explanation distortion Dϕ = δ(e, ê)
(Definition 1) with the total accumulated distortion along the path, i.e., Equation 13. Here, longer paths
correspond to greater distortions. Upon taking this geometric perspective, we can study Y using extrinsically-
defined geometry, and contrast it with the simpler assumption of a flat, intrinsic Euclidean metric. As a
result, Dϕ, and Df are more fairly compared in the same space.

5 Method: From Theory to Practice

While our unified theory (Section 3), and solution to reconcile geometric discrepancies in measurement
(Section 4), provide first steps towards resolving issues in perturbation-based evaluation, many practical
concerns remain regarding the choice of perturbation. In this section, describe how to reliably translate
our theory (Definition 5) to practice—we propose a general-purpose, task-agnostic perturbation technique
based on model parameter scaling (Section 5.1), and introduce the full evaluation algorithms, i.e., GEF and
Fast-GEF(Section 5.2).

5.1 Selecting Perturbation Strategy

While all perturbation-based evaluations inherently require parameterisation, input-based perturbation (Def-
initions 2 and 4), has proven particularly challenging to calibrate (Sturmfels et al., 2020; Haug et al., 2021).
Without ground truth labels, selecting parameters such as patch size, pixel, or token replacement strategies
is typically based on researchers’ judgment. Small changes to input parameters have been shown to signifi-
cantly impact evaluation outcomes (Brunke et al., 2020; Brocki & Chung, 2022; Rong et al., 2022; Blücher
et al., 2024), raising concerns about reliability.

Moreover, perturbing on the input space is not only impractical from a practitioner’s standpoint but also
compromises impartiality—if parameters must be adjusted for each model, and dataset, how can task-specific
confounds be controlled? In Appendix A.5.1, we provide empirical evidence for the existence of confounds
in faithfulness evaluations (Definition 4).

Researchers need a general-purpose, dataset, and architecture-agnostic perturbation strategy that facilitates
evaluation across distinct explanation approaches (e.g., local, and global methods), and magnitudes, i.e., ξ.
Following Bykov et al. (2022), we propose a simple perturbation strategy in the following.

Model Parameter Scaling. Introduce perturbations ∀z ∈ [1, Z] by scaling parameters θ ∈ RW with
Gaussian noise ηi ∼ N (1, σ2

z1), and σ2
z ∈ R+ such that θ̂z = θ · ηi, yielding a perturbed model fθ̂z

.

By systematically perturbing model parameters instead of the input, from low to high magnitudes with
incremental increases of σ2

z , ranging from robustness at z = 1 to sensitivity at z = Z, explanation behaviour
is evaluated comprehensively, and agnostically across tasks. With ξ := δ(f(x), fθ̂z

(x)) (Equation 5), we can
measure the perturbation impact at each zth step so that robustness, i.e., y = ŷ, and sensitivity, i.e., y ̸= ŷ
criteria are fulfilled (Definition 5). Our approach contrasts with the model parameter randomisation proce-
dure of Adebayo et al. (2018), which proposes layer-wise randomisation in a top-down order, an approach
that faces methodological concerns (Sundararajan & Taly, 2018; Binder et al., 2022; Kokhlikyan et al., 2021;
Yona & Greenfeld, 2021). For an illustration of how model parameter scaling affects the classifier’s decision
boundary, we refer to Fig. 1 of Bykov et al. (2022).
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5.2 Introducing GEF Evaluator

From an algorithmic perspective, three steps are necessary to perform the evaluation. First, given a model,
and a test set of input-output pairs, we generate perturbed models fθ̂1

, . . . , fθ̂Z
given Z sets of parameters

θ̂1, . . . , θ̂Z along a perturbation path (see Algorithm 1, line 6). Then, for each model fθ̂z
, we compute the

model, and explanation distortion quantities, i.e., Dz
f , and Dz

ϕ, using the pullback tensor g (lines 7, 9, and
10). Finally, distortion vectors are constructed, and correlated using ρ(df , dϕ) (lines 14, and 15). Due to the
stochastic nature of model perturbation, we repeat this process M times to average out the effects. We refer
to Figure 5, and Algorithm 1 for an overview of the steps involved. An ablation study on hyperparameter
choices is provided in Appendix A.7.

Figure 5: The three steps of GEF evaluation (Algorithm 1) to estimate generalised explanation faithfulness (Definition 5).

Practical Benefits. Our proposed evaluation (Algorithm 1) provides several practical benefits. First,
anchoring, negates the need to rely on arbitrary thresholds in evaluation, e.g., when determining a permissible
value for the evaluations themselves (Equations 7, 8, and 9) or what perturbation magnitude leads to model
alignment for a particular task. Second, perturbing via model parameter scaling, at varying intensities
combines distinct criteria of explanation quality into a single unified evaluation metric (Section 3.3) that is
agnostic to the data, model, and explanation approach. Third, the pullback metric calculation provides a
geometrically grounded faithfulness measurement, capturing the true functional impacts of the explanation
w.r.t. its model.

Algorithm 1 GEF Evaluator
1: Require: Model f , explanation function ϕ, input-prediction pairs x, y ∈ X, Y with X ⊆ X , Y ⊆ Y
2: Parameters: Integers Z, M, T, K, correlation measure ρ
3: for x, y in range(X, Y ) do
4: e← ϕ(f, y, . . .)
5: for z in range(Z) do
6: ŷ ← fθ̂z

(x)
7: Dz

f ← δ(y, ŷ) // Equation (6)
8: if Fast-GEF then
9: Dz

ϕ ← δ(e, ê) with ê← ϕ(fθ̂z
, . . .) // Equation (6)

10: else
11: Dz

ϕ ← compute_path_length(fθ̂z
, x, y, T, K) // Equation (13)

12: end if
13: end for
14: Construct: df ← [D1

f , D2
f , . . . , DZ

f ], and ϕ ← [D1
ϕ, D2

ϕ, . . . , DZ
ϕ ]

15: Calculate: qGEF ← ρ(df ,ϕ )
16: Return: qGEF

17: end for

Implementation Details. Unless stated otherwise, we use Euclidean distance for δ in the functional
distortion calculations (Definition 1), and define ρ using Spearman Rank Correlation, assessing the degree of
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monotonic relationship between the distortion quantities. For the experiments, we set Z = 5 (see discussion
of the influence of Z in Appendix A.1.4) but it is a choice that can be flexibly updated in the open-source
implementation. In Appendix A.2, we provide further details on the implementation, including how to
generate the perturbation path (line 2), and how to tune parameters (line 2). This also includes information
on how we compute the path length (line 11); where we follow an approximation procedure outlined in
Equations 18, and 19.

5.3 Balancing Computational Constraints

While the pullback operation ensures a fair geometric comparison of distortion quantities, its use of high-
dimensional Jacobian calculations, and integral steps (Equation 12) also increases computational demands.
To accommodate evaluation contexts involving large model architectures or high-dimensional explanations,
we offer an alternative method. For a faster yet naive approximation of explanation quality, we omit the
pullback operation, and instead define Dϕ according to Equation 6. This approach, entitled Fast-GEF, is
less computationally demanding, and complements the exact approach with pullback, entitled GEF, providing
a geometrically sound quality estimate.

Choosing between GEF or Fast-GEF. Users can choose between these methods based on their specific
computational constraints and demands for accurate quality estimates. We recommend using GEF wherever
possible due to its ability to account for manifold-specific distortions. However, Fast-GEF provides a com-
putationally efficient alternative that is suitable for large-scale tasks or resource-constrained environments.
Empirical results show that while the GEF or Fast-GEF may diverge in individual estimates (Appendix A.6),
they often share categorical rankings of explanation methods (Appendix A.8.2).

6 Experiments

Our experiments aim to answer the following questions:

(Q1) Are unified, GEF and Fast-GEF evaluations more empirically reliable than competitive singular ap-
proaches?

(Q2) How does generalised faithfulness of local, and global explanation methods compare across distinct
data domains?

(Q3) How faithful are LLMs as a top-K token post-hoc explainer for NLP classifications?

(Q4) Are SAEs generally faithful, and does more capacity in their width improve their faithfulness?

To answer these questions, we select a diverse set of datasets, model architectures on tabular, vision, and
NLP classification tasks. See Table 2 for an overview. Our experiments evaluate the faithfulness of various
explanation approaches, as detailed below.

Global, and Local Methods. For global methods, we include feature visualisation techniques with dif-
ferent regularisation, and optimization procedures: Deep-Viz (DV) (Yosinski et al., 2015), Magnitude Con-
strained Optimization (MACO) (Fel et al., 2024), and Fourier preconditioning (FO) (Olah et al., 2017).
Optimization steps are set to 50, 100, and 250, otherwise, default values are used as provided in the respec-
tive publications ((Fel et al., 2024), and (Nguyen, 2020)). For local methods, two variants of Layer-wise
Relevance Propagation (LRP), the ε-rule (LRP-ε) (Bach et al., 2015) with ε = 1e−6, and the z+-rule
(LRP-z+) (Montavon et al., 2017) are employed. Also, we include several gradient-based approaches such
as Gradient (GRAD) (Morch et al., 1995; Baehrens et al., 2010), Saliency (SAL) (Simonyan et al., 2014),
Input×Gradient (IXG) (Shrikumar et al., 2016), GradCAM (G-CAM) (Selvaraju et al., 2020), Guided Back-
propagation (GBPG) (Springenberg et al., 2015), SmoothGrad (SMG) (Smilkov et al., 2017) with 10 noisy
samples, and noise level 0.1/(xmax − xmin), Integrated Gradients (INT-G) (Sundararajan et al., 2017) with
10 iterations, and zero baseline. For NLP tasks, we evaluate LayerIntegratedGradients (L-INTG) explana-
tions w.r.t. the first embedding layer. Two Shapley-based algorithms (Lundberg & Lee, 2017) are included:
GradientSHAP (SHAP-G) with 10 samples, and PartitionShap (SHAP-P) for NLP tasks.
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LLM-x Methods. An emerging research area in explainability uses separate LLMs to generate post-hoc
attributions for important features of a given model (Bills et al., 2023; Kroeger et al., 2023; Krishna et al.,
2023; Amara et al., 2024). We create LLM-x explanations by prompting Gemma-2B-IT (Mesnard et al., 2024)
to rank the top-K most important tokens given a textual input, which is then parsed, decoded, and mapped
to input tokens, producing binary attribution vectors. LLM prompts describe the model’s classification
task, and prediction certainty before, and after model perturbation (Section 5.1). The temperature is set
to 0 for deterministic outputs. Varying synonyms, the order of tokens, and the number of top-K values
to {5, 10} contribute to the robustness of our findings. The full explanation methodology is described in
Appendix A.4.4 with an illustration in Figure A.2.

Sparse Autoencoders. SAEs have lately come forth as an interpretability method for understanding the
internal representations of LLMs (Templeton et al., 2024; Huben et al., 2024). In our work, we generate SAE
explanations using Gemma-Scope (Lieberum et al., 2024), pretrained on the residual block representations
of the Gemma-2-2B model. Explanations are saved for all 26 layers at both 16K, and 65K widths. Given
the sparsity of the explanation vectors, we use cosine distance to compute explanation distortion, defined as
1 − u·v

|u||v| , as it effectively measures similarity regardless of magnitude. Appendix A.4.4 provides a detailed
description of the generation process for each SAE explanation.

Control Variants We also evaluate the faithfulness of two control variants: a random explanation (RAN)
sampled from a uniform distribution, êi ∼ U(1, 0), and a top-K control variant (RAN-K ) with K non-zero
attributions, each equal to 1. Unless specified, all experiments evaluate 250 explanations for the logit of the
predicted class. For comparability, global, and local explanations are normalised by dividing the attribution
map by the square root of its average second-moment estimate (Equation 21) (Binder et al., 2022), with
further explanation preprocessing details provided in Appendix A.4.4. For metric implementation, and
meta-evaluation, we use the Quantus (Hedström et al., 2023b), and MetaQuantus (Hedström et al., 2023a)
libraries, respectively. Further experimental details for Q1, Q2, and Q3 are provided in Appendix A.8.1,
A.8.4, and A.8.5, respectively.

Table 2: An overview of datasets, and models, with references in Appendix A.4. A semicolon separates models used per dataset.

Modality Dataset (n. classes) Model (size) Acc. % Source Expl. dim Task

Text
SMS Spam (2) BERT-TINY FT (4.4M) 98.0 HF 128 Spam
IMDb (2) Pythia FT (7.6M); Gemma-2 (2B) 86.4; 95.6 HF 512 Sentiment
SST-2 (2) BERT-tiny FT (4.4M) 98.0 HF 59 Sentiment

Vision

ImageNet-1K (1000) ResNet18 (11.7M) 89.1 Torchvision 50176 Object
PATH (9) MedCNN (235.2K) 84.3 Local 784 Pathology
Derma (7) MedCNN (234.9K) 73.2 Local 784 Dermatology
MNIST (10) LeNet (61.7K) 97.7 Local 784 Digit
fMNIST (10) LeNet (61.7K) 87.7 Local 784 Fashion

Tabular
Adult (2) 3-layer MLP (11.7K); LR (28) 84.6; 83.3 OpenXAI 13 Income
Compas (2) 3-layer MLP (11.1K); LR (16) 85.0; 85.3 OpenXAI 7 Recidivism
Avila (12) 2-layer MLP (3.5K) 80.8 Local 10 Letter

6.1 Measuring Empirical Reliability

To investigate the empirical reliability of GEF and Fast-GEF evaluations compared to singular approaches,
we perform meta-evaluation, which is the practice of evaluating the evaluation method itself. To this end,
we adopt the meta-evaluation methodology from Hedström et al. (2023a), which bypasses the lack of ground
truth labels by focusing on metric consistency (“does this evaluation method produce similar results under
consistent conditions?”). For this, two practical meta-evaluative tests are performed: the Input Perturbation
Test (IPT), and the Model Perturbation Test (MPT). Each test returns a meta-consistency (MC) score (see
Equation 20), which ranges between [0, 1]. Higher values indicate greater reliability. Full meta-evaluation
scoring methodology is provided in Appendix A.3. As a sanity check, we also show in Appendix A.8.3 that
our proposed evaluators assign low scores to different random control variants, where other metrics fail to
do so.

16



Published in Transactions on Machine Learning Research (02/2025)

Setup. We benchmark three evaluation methods per criterion. In the robustness category, we include Rela-
tive Input Stability (RIS), Relative Representation Stability (RRS), Relative Ouput Stability (ROS) (Agarwal
et al., 2022a). In the sensitivity category, we include Model Parameter Randomisation Test (MPRT) (Ade-
bayo et al., 2018), Smooth MPRT (sMPRT), and Efficient MPRT (EMPRT) (Hedström et al., 2024). In the
faithfulness category, we include Faithfulness Correlation (FC) (Bhatt et al., 2020), Pixel-Flipping (PF) (Bach
et al., 2015), and Region-Perturbation (Samek et al., 2017). All metrics are mathematically described in
Appendix A.4.5. To ensure comparability with the original publication (Hedström et al., 2023a), we run
meta-evaluation on the same set of tasks, which includes ImageNet (Russakovsky et al., 2015), MNIST (Le-
Cun et al., 2010) and fMNIST (Xiao et al., 2017) datasets with architectures such as ResNets (He et al.,
2016) and LeNets (LeCun et al., 1998) architectures. Each metric evaluates GRAD, SAL, G-CAM, SHAP-G
explanations. Further results, and details are provided in Tables A.1, and A.2, and Appendix A.8.5.

Results. Figure 6 (A) shows that our proposed unified methods (GEF and Fast-GEF) achieve the highest
overall MC scores, averaged over both MPT, and IPT tests. Our unified methods significantly outperform
the most comparable evaluation approach, the faithfulness metrics, which also use Z perturbation steps, with
average MC scores of 0.733 compared to 0.601. Although no evaluation method achieves a perfect score (i.e.,
MC=1), the unified methods still perform comparably to robustness metrics, and surpass sensitivity metrics,
with average scores of 0.727, and 0.673, respectively. These results are encouraging as they show that unified
methods can achieve high reliability, even when explanation behaviour is evaluated under multiple model
conditions, unlike robustness, and sensitivity metrics that focus on a single perspective. While the ROS
metric has the highest individual score, this is not statistically significant, and it only offers a limited view of
explanation quality. Figure 6 (B) shows that unified metrics excel in MPT, while robustness metrics perform
slightly better in IPT. These score differences correspond to robustness metrics using input perturbations,
and unified metrics relying on model perturbations. Further details are provided in Appendix A.8.4.

Figure 6: Meta-evaluation, and comparison to established explanation evaluation methods. (A) shows the mean MC scores
across MPT, and IPT, aggregated over all datasets, with the error bars showing the standard deviation. (B) displays MC scores
aggregated by the test type, and dataset, where the size of the scatter point denotes the standard deviation. GEF scores are
computed for fMNIST, and MNIST datasets due to computational constraints.

6.2 Cross-Evaluating Local, and Global Methods

While local, and global explanations serve distinct purposes, and provide different insights w.r.t. their model,
it is beneficial to compare them side-by-side in a unified view, as they often rely on similar methodological
components, such as network gradients (LeCun et al., 1998; Olah et al., 2017). The absence of general-
purpose evaluations has however so far prevented such comparison. GEF and Fast-GEF effectively fill this gap,
facilitating a first, cross-domain comparative faithfulness benchmarking between global, and local methods.
Extended results are provided in Appendix A.8.4.

Figures 7 and 8 provide an overview of cross-domain results for tabular, and vision tasks. For all tabular
tasks, GEF estimates are computed. For vision tasks, due to the high computational cost of global methods,
Fast-GEF is used to allow for a fair comparison to local methods. As shown in Figure 7, no explanation
method is perfectly faithful to its model (i.e., no score equals 1) nor consistently outperforms others across
tested tasks. This variation aligns with most benchmarking studies of local linear approximation methods,
which rarely identify a single winning method (Hedström et al., 2024; Hesse et al., 2024). Among tested
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global feature visualisation methods, MACO generally outperforms FO variants, consistent with Fel et al.
(2024). Comparing the faithfulness scores of DV, MACO, and FO reveals that more optimisation steps do not
necessarily result in higher explanation faithfulness. All tested methods significantly outperform the random
baseline (RAN), which serves as the theoretical lower bound. As expected, RAN produces faithfulness scores
centered around zero. In Figure 8 (A), and (B), we observe that RAN explanation distortion quantities are
flat, i.e., independent of the model distortion. Tables A.4, and A.5 in Appendix A.8 present the result of
Figure 7.

Figure 7: GEF and Fast-GEF results on (A) local across tabular, and (B) local versus global methods across vision tasks. The
error bar shows the standard error, i.e., σ√

N
, where σ is the standard deviation, and N is the sample size.

Figure 8: Fast-GEF results for vision tasks. (A), and (B) plot the model, and explanation distortion for ImageNet (ResNet18),
and Path (MedCNN) along the perturbation path with Z = 5 perturbation steps. Here, global methods (DV, MACO, FO) are
selected with 250 optimisation steps. (C) displays the distribution of Fast-GEF scores for local, and global methods, aggregated
over all vision tasks. (D) reports the aggregated difference in explanation distortion between start z = 1, and end z = 5.

Local Methods are Moderately Aligned. Despite local methods showing imperfect, and highly varying
scores across tested models, and datasets, most GEF estimates in tabular tasks, and Fast-GEF estimates in vi-
sion exceed 0.5, suggesting that the explanation retains some alignment with its model. This is not surprising
given that parameter scaling directly effects the model’s curvature, to which local gradient-based methods
are highly sensitive (Dombrowski et al., 2019), thereby instantaneously influencing their responsiveness to
perturbation.

Figure 7 (A) shows that some local methods produce distortion outputs nearly monotonically related to its
model, particularly at lower magnitudes (i.e., a z ≤ 3). This finding nuances studies by Adebayo et al.
(2018), which provide single-point sensitivity estimates, conclusively reporting low reactivity to parameter
randomisation in local methods. Corroborating recent rebuttal works (Yona & Greenfeld, 2021; Sundararajan
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& Taly, 2018; Binder et al., 2022) that challenges stark claims of method failure (Adebayo et al., 2018), we
find that gradient-based methods are moderately faithful.

Global Methods are Constrained by Regulariser. Figure 8 (C) shows aggregate Fast-GEF scores,
indicating that global feature visualisation methods typically are less faithful compared to local linear ap-
proximation methods. These differences in faithfulness estimates may be attributed to the global methods’
inherent reliance on optimisation procedure (Olah et al., 2017), and NN’s ability to retain its learned features
despite perturbation via parameter perturbation (Binder et al., 2022). For reference, DV applies multiple
regularisation techniques directly to the image, such as Gaussian blur, and cropping regions based on norm,
and pixel contribution, while MACO, and FO regularise the frequency domain representation, with MACO
adding an extra layer of regularisation via a predefined magnitude template. As observed in Figure 8 (A),
and (B), despite model perturbation, explanation distortions stay relatively flat, with lower distortion deltas
compared to most local methods, as displayed in Figure 7 (D). A strongly regularised optimisation procedure
may inherently limit the faithfulness of global methods, in favour of a maximally activated neuron response.

6.3 Evaluating LLMs as Post-hoc Explainers

While researchers have recently begun exploring the potential of using LLMs as post-hoc explainers, there is
still limited theoretical understanding, and empirical evidence on the general faithfulness of such approach.
Can an LLM which is inherently decoupled from the model it seeks to explain, provide faithful outcomes?
In our evaluation, we prompt Gemma-2B-IT for a top-K token explanation for a given input, and prediction
pair for datasets characterised by short tokenized lengths, i.e., 59 for SST-2, and 128 for SMS Spam. The
post-processed binary explanation vectors are then evaluated with GEF and Fast-GEF. See Appendix A.8.5
for further details, and extended results.

Figure 9: GEF (with M=3), and Fast-GEF results on different top-K explanation NLP tasks. (A) shows the percentage improve-
ment in GEF scores relative to RAN, aggregated over all tasks, with error bars showing the standard error. (B) shows the results
in the form of box plots for the two datasets with SST-2 (left), and SMS Spam (right). (C), and (D) show the distribution of
Fast-GEF scores for top-5, and top-10 explanations respectively, both aggregated over all tasks.

LLM-x Explanations Comparable to Random. Our GEF and Fast-GEF results in Figure 9 (A), and
(B) show that Gemma-2B-IT as an explainer is (i) significantly less faithful than local methods such as
SHAP-P, and L-INTG, and (ii) similarly unfaithful as random explainers RAN-5 or RAN-10, on both SST-
2, and SMS Spam classification tasks. Figure 9 (C), and (D) demonstrate that these findings generalise
over both top-5, and top-10 tokens tasks, aggregated over both datasets. Our results, showing that LLM-x
explanations are not more faithful than random, differ from the encouraging results reported by Kroeger
et al. (2023), who found GPT-4 to be as faithful as local methods in identifying top-K tokens for tabular
tasks. This divergence may naturally stem from variations in the experimental setup, including the specific
explanation task, LLM used, methodology to evaluate faithfulness, and prompting strategies, however, it
also underscores that the faithfulness of LLM-x is still an open research question. To fully understand the
potential of LLMs as explainers, further research with additional LLMs would be beneficial.

6.4 Measuring Faithfulness of Sparse Autoencoders

SAEs are gaining attention for their claimed ability to construct interpretable “monosemantic” features of a
given layer of an LLM. Yet, their general faithfulness remains underexplored (Makelov et al., 2024; Mallen
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& Belrose, 2024). To this end, we evaluate SAE explanations for Gemma-2-2B model on N = 250 samples
on the IMDb dataset (Maas et al., 2011). Here, the Gemma-2-2B model is repurposed as a binary classifier
by extracting the logits of the “positive” or “negative” classes at the final token position of the prompt.
Appendix A.4.4 provides more details.

High Faithfulness Independent of SAE Width. Figure 10 (A) demonstrate that the SAE explanations
generally are faithful w.r.t. the model’s intermediate representations. Fast-GEF scores are consistently above
0.75 except for fluctuations in layers 1, and 16 − 19. No significant difference is observed between 16K, and
65K widths, suggesting that the width of the encoding, i.e., the capacity of the SAE, does not correlate with
explanation faithfulness. Moreover, Figure 10 (B) shows that although sparsity of the latent activations
decreases in later layers, it does not influence its faithfulness (i.e., ρ = 0.023, computed with Spearman
Rank correlation). This suggests that a higher activation in SAE latents does not necessarily relate to its
measured faithfulness. This raises the question of whether the faithfulness of SAE explanations is inherently
scalable within different statistical or qualitative contexts where SAEs are studied. Figure 10 (C)-(G) further
illustrates how explanation distortions vary across layers, with values (y-axis) increasing in the middle layers.

Figure 10: Fast-GEF results for SAE explanations on IMDb dataset, using Z = 5 perturbation levels, and M = 3 models.
(A) shows Fast-GEF faithfulness scores across layers. (B) shows the sparsity as defined by L1 distance against the Fast-GEF
indicating no relationship. (C)-(G) illustrates how SAE distortions develop across model layers, coloured by perturbation level.

7 Discussion: Where Are We Going?

With the evolving landscape of interpretability, redefining both the conceptual framework, and the geometric
foundations of explanation faithfulness is important. Our work puts forward a long-overdue unification of
robustness, sensitivity, and faithfulness evaluations, providing a novel, and urgently needed, revised approach
(Definition 5) to evaluate the direct alignment between explanation, and model functions (Section 3). In this
work, we address the fundamental flaws of many existing evaluations: a systematic overlook of the intrinsic
geometry of non-linear spaces (Section 4). Our solution offers a threshold-free, fair comparison of functional
distortions, making our approach not just another evaluation method but a necessary foundation for future
interpretability research (Section 5).

Novel, Empirical Insights. In a first-ever cross-domain faithfulness benchmarking of global, and local
explanations on vision, tabular, and NLP tasks (Section 6), we learn that tested local explanation methods
generally are moderately faithful. We find that global feature visualisation methods are comparatively
less faithful, which is an important understanding considering the recent evidence pointing to their general
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susceptibility to adversarial manipulation (Geirhos et al., 2023; Bareeva et al., 2024a). While it would be
valuable to compare our findings with existing studies, to our knowledge, there is no direct study on the
faithfulness of feature visualisations. Existing evaluations focus on the alignment with human preferences or
improvement on a downstream task (Borowski et al., 2021; Zimmermann et al., 2021; Krishna et al., 2023;
Bareeva et al., 2024b) or similarity to natural samples of the explained class (Fel et al., 2024). Our findings
on generalised faithfulness thus provide complementary insights into the quality of feature visualisation as
model explainers.

Additionally, due to the recent interest LLMs as potential post-hoc explainers (Krishna et al., 2023; Kroeger
et al., 2023), we study their faithfulness. We find no improved faithfulness compared to random explanations,
and encourage more investigation on this question. Finally, we observe that residual stream SAEs on Gemma-
2-2B exhibit generally high faithfulness, with the width having limited influence (i.e., 16K or 65K). Further
investigation is required to fully understand the potential of SAEs, and LLM-x as generally faithful explainers.

7.1 Limitations

While the results in our paper allow us to claim that our proposed method is more sound geometrically
(Section 4), more reliable empirically (Section 6.1), and easier to use practically (Section 5), our evaluation
alone does not imply that the explanation quality is sufficient. Without ground truth labels, we cannot
assess the statistical validity of an explanation function. An explanation may be estimated to be generally
faithful but still lack intrinsic value (Bhattacharjee & von Luxburg, 2024) or interpretable qualities (Bordt
& von Luxburg, 2024). The need for a thorough, application-grounded assessment of explanation quality
that asserts value on a downstream task (Krishna et al., 2023; Lanham et al., 2023) is not eliminated when
using GEF. Evaluation using synthetic models with known ground truth (Carmichael & Scheirer, 2023) could
complement our proposal.

7.2 Future Work

There are several exciting geometric, and empirical questions worth exploring. The geometric considera-
tions in GEF suggest a deeper examination of the computational trade-offs of computing accurate pullbacks
on individual explanation functions, specifically in comparing global versus local methods. In future work,
there is opportunity to build on the growing body of research in ML that draws from geometry, and related
topics in higher mathematics to deepen our understanding of NNs, and problems to which they are ap-
plied (Stephenson et al., 2021; Burns & Tang, 2023; Papamarkou et al., 2024). Recent theoretical studies on
LLMs, and transformer models (Hoogland et al., 2024; Burns, 2024) have illustrated how neural activations
may arrive at, and utilise “superpositional” encoding strategies (Elhage et al., 2022), which prominently
feature considerations or findings of a geometric or topological nature. Continued development of general
frameworks, and theories that conceptualise NNs in terms of geometry, and topology (Bianchini & Scarselli,
2014; Hauser & Ray, 2017; Naitzat et al., 2020; Benfenati & Marta, 2023a;b; Burns & Fukai, 2023) will
likely facilitate a deeper understanding of both explanations, and evaluations, particularly in relation to the
underlying mathematical characteristics of data, optimisation processes, and learned functions.

Recent advances in manifold geometry have introduced tools to analyse how input data modulates internal
processing through perturbations (Kvinge et al., 2023). Exploring how explanation faithfulness varies with
training data, and how it intersects with the geometric characteristics of the model presents an exciting
direction. We also expect models optimised with non-Euclidean methods (Fei et al., 2023) to reveal stronger
differences between GEF and Fast-GEF, providing new opportunities to study the interplay between geometry,
and faithfulness in explainability.

Lastly, we plan to expand our benchmarking scope to include natural activation-maximisation explana-
tions (Borowski et al., 2021), concept-based explanations like INVERT (Bykov et al., 2023), and non-
classification tasks. Given that pullback calculations can be computationally prohibitive for high-dimensional
explanations, and highly parameterised models, exploring ways to speed up the Jacobian calculation (Equa-
tion 19), and employ adaptive noise schedules would be valuable.
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Broader Impact Statement

Interpretability, or XAI, is widely acknowledged as essential for responsible ML. This paper critically ex-
amines current evaluation methods from unifying, and geometric perspectives, and proposes improvements.
While negative societal impacts are improbable, overreliance on any single evaluation method is not advised.
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Appendix

The Appendix is organised as follows theoretical considerations (Section A.1), implementation notes for GEF
and Fast-GEF (Section A.2), details on the MetaQuantus framework (Section A.3), the general experimen-
tal setup (Section A.4), analysis of model assumptions (Section A.5), alignment patterns extended results
(Section A.6), ablation experimental results (Section A.7), extended results from individual experiments
(Section A.8), and notation tables (Section A.9).

A.1 Theoretical Considerations

The following subsections provide detailed proofs, extensions, and discussions surrounding the GEF criterion.

A.1.1 GEF: Penalising Random Explanations

Following the discussion in Section 3, a quality estimator should be able to identify unfaithful explanations.
In the following, we show that our proposed GEF criterion (Definition 5) recognise two specific types of
unfaithful explanations: constant, and random explanations, which is independent of its model, by design.

Corollary 1 (Penalising Unfaithful Explanations) Let ΨGEF be a quality estimator that yields esti-
mates qGEF ∈ R, with qGEF = 0 indicating a lack of generalised faithfulness. To be a valid measure of
explanation quality, ΨGEF should assign low scores to both (I) constant, and (II) random explanations

Constant (I): ∀ê : e = ê ⇒ qGEF = 0
Random (II): ∀ê : ê ∼ U(0, 1) ⇒ qGEF = 0

where ê, and e are perturbed, and unperturbed explanations, and U(0, 1) denotes a uniform distribution. The
GEF estimate qGEF = ρ(df , dϕ) (Definition 5) assigns low scores in the first, and the second case.

Proof. In case (I), the explanation does not change across perturbations, leading to an explanation dis-
tortion vector dϕ that contains only zeros

∀ê, z ∈ [1, Z] : e = ê ⇒ Dz
ϕ = 0,

whereas the model’s distortion vector df will contain non-zero values due to perturbations

∀z ∈ [1, Z] : Dz
f ̸= 0.

Consequently, the correlation coefficient ρ(df , dϕ) will be zero with qGEF = 0.

In case (II), the explanation distortion Dz
ϕ will be approximately uniform across all perturbation steps since

each perturbation is independently drawn from the same distribution:

∀ê, z, j ∈ [1, Z], z ̸= j : ê ∼ U(0, 1) ⇒ Dz
ϕ ≈ Dj

ϕ,

whereas the model distortion Dz
f will vary according to the degree of the perturbation

∀ê, z, j ∈ [1, Z], z ≥ j : ê ∼ U(0, 1) ⇒ Dj
f ≥ Dz

ϕ.

The lack of correlation between df , and dϕ results in a quality measure qGEF that is equal to zero. This
completes the proof.

A.1.2 GEF: Extension

To extend the applicability of GEF (Definition 5) to global methods that explain any neuron within a
model, we adopt Kopf et al. (2024), and view the model f as a composition of two functions, F : X → G,
and L : G → Y, such that f = L◦F . Here G ⊂ Rc×w∗×h∗ , where c ∈ N is the number of neurons in the layer,
and w∗, h∗ ∈ N represent the width, and height of the feature map, respectively. The function F , is referred
to as the feature extractor. We redefine the model function as a chosen feature extractor, and replace y in
Definition 5 with the activation of the cth neuron such that i.e., y = Fc(x, θ) : X → Rw∗×h∗ . While the
model’s output space Y is replaced by G, we similarly define the perturbed instance ŷ.
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A.1.3 GEF: Derivation of Linear Case

Our definition of GEF is based on the observation that any distortion present in the model output space
Y, should be mirrored in the explanation space E . Since neural networks are non-linear functions, a fair
distortion in Y, and E , requires the introduction of the pullback (Section 4).

In the case of a linear model, however, the relationship between the distortion quantities Df , and Dϕ can
be derived analytically. Here, the explanation is based on the first-order Taylor term, which is a linear
approximation of the model’s behaviour, forming the foundation of many established explanation methods
(e.g., Montavon et al. (2017)). We proceed to derive this relationship explicitly below.

Proof. Consider f to be a linear model of the form f(x; θ) = θx + c. The explanation is the parameter
vector θ. We can derive the expected distortion Df := Eθ̂m

[(f(x; θ) − f(x; θ̂m))2] (see Equation 6) where
m ∈ [1, M ] denotes the number of perturbed models for a fixed perturbation magnitude ξ, i.e., a step z.

Dz
f = (θx + c)2 − 2(θx + c)Eθ̂m

[
(θ̂mx + c)

]
+ Eθ̂m

[
(θ̂mx + c)2

]
Dz

f = θ2x2 + 2cθx + 2c2 − 2x(θx + c)Eθ̂m

[
θ̂m

]
− 2c(θx + c) + Eθ̂m

[
θ̂2

mx2 + 2cθ̂mx
]

Dz
f =θ2x2 − 2x(θx + c)Eθ̂m

[
θ̂m

]
+ 2cxEθ̂m

[
θ̂m

]
+ x2Eθ̂m

[
θ̂2

m

]
,

Dz
f = θ2x2 − 2θx2Eθ̂m

[
θ̂m

]
+ x2Eθ̂m

[
θ̂2

m

]
. (14)

For the explanation distortion, a similar decomposition can be performed

Dz
ϕ = θ2 − 2θEθ̂m

[
θ̂m

]
+ Eθ̂m

[
θ̂2

m

]
. (15)

By combining Equation 14 and 15, we arrive at

Dz
ϕ = 1

x2 Dz
f , (16)

We can construct the distortion vectors dϕ, and df , and for each entry Equation 16 holds. When ρ is
defined as the Pearson correlation coefficient, we find the distortion of the model df , and the distortion of
the explanation function dϕ to be perfectly correlated

ρ(dϕ, df ) = covξ (df , dϕ)√
Varξ(df )

√
Varξ(dϕ)

,

which is equal to

ρ(dϕ, df ) = 1/x2Varξ(df )
1/x2Varξ(df ) = 1. (17)

This proves that in a simplified scenario, the key assumption of correlated distortion quantities holds, i.e.,
the model parameters θ provide a perfectly faithful explanation. Since monotonicity is a weaker condition
than linearity, Equation 17 also holds when ρ is defined as the Spearman Rank correlation coefficient.

A.1.4 GEF: Influence of Z

The parameter Z represents the number of steps in the perturbation path, and consequently dictates how
finely the model’s response will be captured by the GEF criterion (Definition 5). As such, selecting an
appropriate value for Z is critical because it affects the interpretation of the results. A higher Z allows for
a finer evaluation of how well an explanation aligns with the model’s behaviour under varying conditions.
When using Spearman’s rank correlation coefficient as our measure of ρ, a larger Z generally stabilises the
faithfulness score due to the reduction in confidence intervals with more samples (i.e., CI ∼ 1

Z ) (Bonett &
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Figure A.1: Model distortion (normalised by its maximum value) with (A) showing Z = 2 perturbation steps, and (B) showing
Z = 20 perturbation steps.

Wright, 2000). Nonetheless, this assumes a monotonic response from both the model, and the explanation,
which may not be realistic (Section 4). If the model itself is not monotonic across perturbations, expecting
the explanation to behave monotonically is also unrealistic.

Figure A.1 (A) (Z = 2), and (B) (Z = 20) demonstrate the violation of the monotonicity assumption,
as we observe large error bars, and divergent behaviour for Z = 20, indicating non-monotonic responses.
Accordingly, a moderate value of Z (Zar, 2005) is advised for meaningful measurement.

A.2 Notes on GEF and Fast-GEF Implementation

In the following, we provide details on the GEF algorithm.

A.2.1 Generate Perturbation Path

To generate the perturbation path of length Z, satisfying y ̸= ŷ, ∀y, ŷ ∈ Y, we computationally find the
minimum noise level σ2

z at z = Z, such that the perturbed model’s accuracy (ACC) approximates 1
C , where

C is the number of classes, within a threshold, i.e., ϵ ≪ 1. Here, ACC = 1
N

∑N
i=1 (f(Xi; θ) = Yi) where

N is the number of samples in the test set, denoted X. This is achieved by progressively increasing σ2,
and applying it to the model according to Section 5.1, which process concludes when the model’s accuracy
satisfies the condition |ACC − 1

C | < ϵ, thereby determining perturbation level for subsequent evaluation.

Compute Path Length. For a more faithful estimate of explanation distortion, for each step z ∈ [0, Z],
we compute Dϕ, defined as the path length L(γ). We replace the integral in Equation 13 with a sum over
T steps:

L(γ) =
T∑

t=1
deT

t (Jf (êt)T Jf (êt))det, (18)

where det ∈ RV denotes the feature-wise difference in explanations i.e., (e − êt) with ϕ(fθ̂t
, . . .) = êt, and

Jf (êt) ∈ RV ×C is the Jacobian for fixed x, and fθ̂t
. To numerically approximate this Jacobian, for each

step t ∈ [0, T ], we perturb the neural activations (i.e., logits ŷ) by adding infinitesimal noise. In practice,
we sample from a Gaussian distribution υk ∼ N (0, 0.001) such that ŷk = ŷ + υk, k ∈ [1, K] times. After
each perturbation, we recalculate the corresponding explanation ϕ(ŷk, . . .) = êk. Elements of the Jacobian
Jf (êt) are then computed as feature-wise difference between e, and êk:

∂ei

∂fj
≈ lim

K→∞

1
K

K∑
k=1

(ej − êj,k)ν−1
k . (19)

where i, j refers to the indices of the Jacobian Jf (êt).

Unless specified otherwise, we set M , Z, T , and K to 5 in all experiments. Please find Appendix A.7 for an
ablation study motivating these hyperparameters.
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A.3 Notes on MetaQuantus framework

For meta-evaluation, a two-step process is employed. First, two types of controlled perturbations are in-
troduced: minor, and disruptive. These are designed to evaluate the metric’s resilience to noise (NR),
and its sensitivity to adversarial conditions (AR), respectively. Specifically, these perturbations are applied
in both the input, and model spaces, resulting in two distinct tests: the Input Perturbation Test (IPT),
and the Model Perturbation Test (MPT)4. Second, the effects of the perturbations are measured in two
meta-evaluative criteria: intra-consistency (IAC), and inter-consistency (IEC). Here, IAC refers to mea-
suring the similarity in score distributions post-perturbation, and IEC refers to the occurrence of categorical
ranking changes within a set of distinct explanation methods5. Each metric is then assigned a summarised
meta-consistency score, denoted as MC ∈ [0, 1]:

MC =
(

1
|m∗|

)
m∗T m where m =


IACNR

IACAR

IECNR

IECAR

 , (20)

with m∗ ∈ R4 representing an ideal quality estimator, essentially a vector of ones. A higher MC score,
approaching 1, indicates superior reliability according to the defined evaluation criteria. Metrics that demon-
strate both resilience to minor perturbations, and reactivity to disruptive changes achieve higher MC scores.
We refer to the original publication (Hedström et al., 2023a) for further details on the elements in the
meta-evaluation vector m (Equation 20), and the framework in general.

A.4 General Experimental Setup

Here, we describe the models, datasets, tooling, hardware, explanation, and evaluation methods in this work.

A.4.1 Models, and Datasets

We employ various models for vision, text, and tabular tasks in our experiments. See Table 2.

• For vision classification, we use ImageNet-1K for object recognition (Russakovsky et al., 2015) with
ResNet18 (He et al., 2016); Pathology, and Derma for medical image analysis with proposed Med-
CNN architecture (Yang et al., 2023); and MNIST (LeCun et al., 2010), and fMNIST, (Xiao et al.,
2017) for digit, and fashion recognition with LeNet (LeCun et al., 1998).

• For text classification, we use SMS Spam (Almeida et al., 2011) with a tiny, fine-tuned BERT
model (Romero, 2024); IMDb (Maas et al., 2011) with Pythia (AlignmentResearch, 2024); and
SST-2 (Socher et al., 2013) with a tiny, fine-tuned BERT model (VityaVitalich, 2023).

• For tabular classification, we use Adult (Becker & Kohavi, 1996) and, COMPAS (ProPublica, 2016),
with 3-layer MLP; and Avila (Stefano et al., 2018) with 2-layer MLP.

All models that are not publicly accessible are released at GitHub repository at https://github.com/
annahedstroem/GEF.

A.4.2 Tooling

Several libraries, and open-source implementations enabled this work, including transformers (Wolf et al.,
2020), OpenXAI (Agarwal et al., 2022b), Captum (Kokhlikyan et al., 2020), Zennit (Anders et al., 2021),

4For the IPT, independent, and identically distributed (i.i.d.) additive uniform noise is applied, defined as x̂i = x + νi,
where νi ∼ U(α, β). For the MPT, multiplicative Gaussian noise is applied to all network weights, represented as θ̂i = θ · νi
with νi ∼ N (µ, σ2). The hyperparameters α, β, µ, σ2a follow the specifications of the original study (Hedström et al., 2023a).

5IAC provides a normalised p-value derived from the non-parametric Wilcoxon signed-rank test (Wilcoxon, 1945), comparing
the original, and perturbed score distributions. For NR, similar distributions are expected, whereas for AR, the distributions
are anticipated to differ. IEC counts ranking changes within explanation methods post-perturbation, with an ideal metric
showing consistent rankings under minor noise (NR), and altered rankings under disruptive noise (AR).
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Shap (Lundberg & Lee, 2017), Activation-Maximization (Nguyen, 2020), and Horama (Fel et al., 2024).
For metric implementation, and meta-evaluation, we use the Quantus (Hedström et al., 2023b), and
MetaQuantus (Hedström et al., 2023a) libraries, respectively.

A.4.3 Hardware

The experiments were conducted using two hardware configurations: a cluster with four Tesla V100S-PCIE-
32GB GPUs, each offering 32 GB of memory, and a DGX-2 system featuring eight NVIDIA A100-SXM4-
40GB GPUs, each with 40 GB of memory. Both setups support the NVIDIA driver version 535.161.07, and
CUDA 12.2.

A.4.4 Explanation Methods

All the hyperparameters of the individual explanations methods, are listed in the main manuscript. Concern-
ing the preprocessing, the signs of the attributions are maintained, unless the method algorithmically relies
on it such as SAL. Note, that not every explanation method is suitable or intended to be used for all data
modalities, and/ or model architectures. For example, GradCAM explanations are primarily designed for
convolutional neural networks (CNN) models, and global feature visualisation methods are generally applied
to vision tasks. We only report GEF and Fast-GEF results where appropriate.

Normalisation. We perform normalisation using the square root of the mean of the squared values (as
detailed in the Appendix of (Binder et al., 2022)). This approach introduces less variance compared to
normalisation techniques like scaling by the maximum value. It is defined as follows

norm(e) = eh,w(
1

HW

∑
h′,w′ e2

h′,w′

)1/2 , (21)

where H, and W represent the height, and width, respectively, and êh,w denotes the explanation value at
the pixel location (h, w)6.

LLM-x Methodology. In the following, we describe the methodology used to produce LLM-x explana-
tions. An illustration is provided in Figure A.2.

Figure A.2: A high-level overview of the three-step LLM-x methodology.

To generate LLM-x explanations, we use Gemma-2B-IT (Mesnard et al., 2024) as the explainer. For each
instance, we create a prompt describing the task, softmax confidence before, and after perturbation, and
the class labels. The prompt template introduces the task (e.g., classifying sms messages or sentiment
analysis), and uses synonyms for model descriptions (e.g., “AI”, “machine learning”), and perturbation
types (e.g., “adversarially manipulated”, perturbed with noise”) to vary language. The softmax
change is calculated, and added to the template and is described in the context of the model getting "more"

6This normalisation method ensures that the mean squared distance from zero of each explanation score equals one. Unlike
other normalisation techniques that constrain attribution values to a predefined range—making them suitable for visualisa-
tion—this method retains a metric useful for comparing the distances across different explanation methods.
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or "less" certain of a class label. The LLM is asked to return the top-K important tokens in a structured
JSON format, ranking tokens from 1 to K. The temperature is set to 0 for deterministic outputs.

After prompting, invalid or non-JSON outputs are removed. The LLM-ranked tokens are normalised by
lowercasing, removing punctuation. Then, these tokens (or words) are encoded with the original model’s
tokeniser. Binary explanation vectors are created by matching the LLM-ranked tokens to the original input
tokens, with a value of 1 for matching tokens, and 0 otherwise.

For full details, including the code, and prompt template, we refer to our GitHub repository at https:
//github.com/annahedstroem/GEF.

SAE Methodology. SAEs are designed to create sparse, interpretable representations of the internal
activations of a LLM, while preserving their reconstruction. The activations of a given layer l, i.e., fθ(x)
are encoded into a sparse latent vector z(x), with latent dimensions larger than the internal representation,.
Then, these decoded representations are reconstructed such that g(z) ≈ fθ(x). This process is defined by
the encoder and decoder functions

z(fθ(x)) := σ (Wencfθ(x) + benc) , (22)
g(z) := Wdecz + bdec, (23)

where σ enforces sparsity through activation functions like ReLU or JumpReLU (Lieberum et al., 2024),
using L1 or L0 regularisation during training. The SAE explanations are generated by performing a forward
pass through the SAE encodings, and storing the activated values of z.

A.4.5 Evaluation Methods

Next, we mathematically define the evaluation methods (or “metrics”) used in this work (Section 6.1).

Faithfulness. Within the faithfulness category, we evaluate three metrics, including, Faithfulness Correla-
tion (FC) (Bhatt et al., 2020), Pixel-Flipping (PF) (Bach et al., 2015), and Region-Perturbation (RP) (Samek
et al., 2017). FC is defined as follows

ΨFC = corr
S∈|S|⊆d

(∑
i∈S

ϕ(x, f, ŷ; λ)i, f(x) − f
(
x[xs=xs]

))
, (24)

where |S| ⊆ D is a subset of indices of a sample x, x is the chosen baseline value, and x[xs=xs] are the
masked input, with randomly chosen indices.

PF returns a vector of prediction scores pi corresponding to pixel replacements i ∈ n, which are sorted in
descending order by the highest relevant pixel in the explanation ϕ(x, f, ŷ; λ). To return one evaluation score
per input sample, we calculate the area under the curve (AUC) as follows

ΨPF =
n∑

i=1
(ŷi + ŷi+1) · pi+1 − pi

2 (25)

where pi, and pi+1 are the prediction values of the ith, and (i + 1)th perturbation step, and ŷi, and ŷi+1 the
corresponding network prediction.

RP follows the most-relevant-first perturbation strategy, creating consecutive perturbed samples ŷi, ŷi+1 such
that for ŷi perturbed pixels correspond to larger respective explanation values than the pixel perturbed in
ŷi+1. Across each perturbation curve, the area over the curve (AOC) is calculated, and averaged across
multiple masked inputs x̂ as follows

ΨRP = 1
L + 1E(x̂)

(
L∑

k=1
(ŷ0 + ŷk)

)
, (26)

where L is the number of perturbed features in the input.
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Robustness. Within the robustness category, we evaluate three metrics, including, Relative Input Stability
(RIS), Relative Representation Stability (RRS), Relative Ouput Stability (ROS) (Agarwal et al., 2022a). RIS
extends (Alvarez-Melis & Jaakkola, 2018b), which is a measure of how much the explanation changes w.r.t.
the input under slight perturbation x̂ = x + ui. The change is measured as the lp norm, and the RIS metric
only considers perturbations that result in the same model prediction, i.e., f(x) = f(x̂). It is defined as
follows

ΨRIS = max
x̂

∥∥∥ϕ(x,f,ŷ;λ)−ϕ(x̂,f,ŷ;λ)
ϕ(x,f,ŷ;λ)

∥∥∥
p

max
(∥∥x−x̂

x

∥∥
p

, ϵmin

) , ∀x̂ ∈ Nϵ; f(x) = f(x̂) (27)

where ϵmin > 0 ensures a non-zero denominator.

In contrast to the RIS metric, RRS considers the internal representation of the model L(·) (e.g., an output
embedding), while maintaining similar perturbation conditions

ΨRRS = max
x̂

∥∥∥ϕ(x,f,ŷ;λ)−ϕ(x̂,f,ŷ;λ)
ϕ(x,f,ŷ;λ)

∥∥∥
p

max
(∥∥∥Lx−Lx̂

Lx

∥∥∥
p

, ϵmin

) , ∀x̂ ∈ Nϵ; f(x) = f(x̂) (28)

where ϵmin > 0 ensures a non-zero denominator.

ROS makes similar adaptations as the RRS metric, assumes however that the model’s internal representations
are not accessible. Instead the output logits h(x), and h(x̂) are assessed

ΨROS = max
x̂

∥∥∥ϕ(x,f,ŷ;λ)−ϕ(x̂,f,ŷ;λ)
ϕ(x,f,ŷ;λ)

∥∥∥
p

max
(

∥h(x) − h(x̂)∥p , ϵmin

) , ∀x̂ ∈ Nϵ; f(x) = f(x̂) (29)

where ϵmin > 0 ensures a non-zero denominator.

Sensitivity. Within the sensitivity category, we evaluate three metrics, including, Model Parameter Ran-
domisation Test (MPRT) (Adebayo et al., 2018), Smooth Model Parameter Randomisation Test (sMPRT),
Efficient Model Parameter Randomisation (eMPRT) (Hedström et al., 2024). MPRT measures the simi-
larity between the original explanation el, and the explanation ê := ϕ(x, f̂ t

l , y) of the perturbed model f̂ t
l

randomised in a top-down fashion up to layer l ∈ [L, L − 1, . . . , 1]

q̂MPRT = ρ(e, êl), (30)

with similarity function ρ : RD × RD 7→ R.

sMPRT computes a quality estimate q̂ ∈ R between explanations ei := ϕ(x̂i, f, y; λ), and êl,i := ϕ(x̂i, f̂ b
l , y; λ)

averaged over i ∈ [1, N ] where êl,i corresponds to the perturbed model f̂ b
l randomised in a bottom-down

fashion up to layer l ∈ [1, 2, . . . , L]

q̂sMPRT = ρ

(
1
N

N∑
i=1

ei,
1
N

N∑
i=1

êl,i

)
, (31)

with x̂i = x + ηi, and ηi ∼ N (0, σ) with ||ηi||p ≤ ϵ holding with high probability, for σ, ϵ ∈ R.

eMPRT measures the relative rise in the complexity of the explanation from a fully randomised model f̂
such that ê := ϕ(x, f̂ , y; λ):

q̂eMPRT = c(ê) − c(e)
c(e) (32)

where c : RD 7→ R is a complexity function, e.g., discrete entropy.
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A.5 Analysing Violations of Model Assumptions

To understand whether perturbation techniques commonly employed for robustness, sensitivity, and faithful-
ness evaluations generally fulfill the critical assumptions of model distortion (Assumptions 1-3), we performed
several experiments. To investigate how often model robustness, sensitivity, and faithfulness (Assumptions 1-
3) hold versus fail in practice, we set up a simple experiment that tracks model, and explanation distortions,
i.e., Df , and Dϕ, while applying perturbation commonly used in evaluation such as additive Gaussian noise
for robustness evaluation, top-down, and bottom-up layer-by-layer parameter randomisation for sensitivity
evaluation, and cumulative masking for faithfulness evaluation.

Figure A.3: Impact of model distortion (y-axis) over common perturbation types in robustness, sensitivity, and faithfulness
evaluations, across different datasets, and NN architectures. (A), (B), and (C) depict the distribution of model distortions
across different perturbation magnitudes of additive Gaussian noise for ImageNet (ResNet18), Path (MedCNN), and Avila
(2-layer MLP), respectively. (D), (E), and (F) show the average, and standard deviation of model distortions over layer-wise
top-down, and bottom-up randomisation for the same datasets (as indicated by colour). (G), and (H) display model distortions
for randomly chosen MNIST (solid line), and fMNIST (dashed line) samples (LeNet) under cumulative perturbations using
different patch sizes (1 × 1, 2 × 2, 4 × 4, 8 × 8), and baseline replacement strategies (black, white, mean).

Model Robustness Under Additive Noise. To understand the extent to which model robustness
(Assumption 1) is generally satisfied for robustness evaluation (Definition 2), we examine Figure A.3 (A),
(B), and (C), and Figure A.4 (A) and (B). Here, the distribution of Df is visualised over Z = 10 input
perturbation steps, showing how model distortion varies with increasing input perturbation magnitude, using
additive Gaussian noise, i.e., , νi ∼ N (0, σ) to generate perturbed inputs x̂i = x + νi, with σ increasing
until the model behaves randomly (i.e., accuracy = 1/C). While the average trend (blue line) indicates that
larger perturbation causes higher model distortion, sample-wise exceptions frequently appear. In Figure A.5,
random sample trajectories reveal both correlated and uncorrelated patterns between perturbation levels and
model distortions. This is a key observation, as it implies that model robustness cannot be assured by a
general threshold without inspecting each evaluation sample individually.

Model Sensitivity Under Layer-by-Layer Randomisation. For sensitivity evaluations (Definition 3)
to be meaningful, the model distortion caused by perturbation must be significant (Assumption 2). To test
this practice, we perform consecutive layer-wise model parameter randomisation; in both a top-down (Ade-
bayo et al., 2018), and bottom-up (Hedström et al., 2024) manner. From Figure A.3 (E), (F), and (G),
and Figure A.4 (D) and (E), we observe that, although model distortion generally increases with layer-wise
randomisation, there are exceptions of non-monotonicity (see, e.g., Path, and Avila results in Figure A.3 (E),
and (F), respectively). The high standard deviation (see the error bars) suggests that layer-wise randomisa-
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Figure A.4: Impact of model distortion (y-axis) over common perturbation types in robustness, sensitivity, and faithfulness
evaluations, across different datasets, and NN architectures. (A), and (B) depict the distribution of model distortions across
different perturbation magnitudes of additive Gaussian noise for MNIST (LeNet), and COMPAS (2-layer MLP), respectively.
(D), and (E) show the average, and standard deviation of model distortions over layer-wise top-down, and bottom-up randomi-
sation for the same datasets (as indicated by colour). (C), and (F) display model distortions for randomly chosen MNIST (solid
line), and fMNIST (dashed line) samples (LeNet) under cumulative perturbations using different patch sizes (1x1, 2x2, 4x4,
8x8 ), and baseline replacement strategies (black, white, mean).

Figure A.5: Sample-wise trajectories of model distortion (y-axis) across different perturbation magnitudes of additive Gaussian
noise. Each panel includes line plots across N = 10 samples, showing both correlated and uncorrelated outcomes.

tion fails to predictably dictate the degree of model distortion, undermining the assumption that significant
model distortions will always occur in sensitivity evaluations.

Model Faithfulness Under Cumulative Input Perturbation. To investigate whether model distor-
tion increases monotonically under cumulative input perturbation (Assumption 3), we measure Df using a
standard “pixel-flipping” faithfulness procedure (Bach et al., 2015). By randomising the perturbation order,
the resulting faithfulness curve should reflect only the model’s response; any deviation from a linear trend
suggests that Assumption 3 is failed. Observing Figure A.3 (D), and (H), and Figure A.4 (C) and (F), we
see that neither patch size (top) nor replacement strategy (bottom) induces monotonic non-decreasing model
behaviour. While these results are expected due to the model’s inherent nonlinearity, and OOD effects (Hase
et al., 2021; Hesse et al., 2024), it is not accounted for in the faithfulness evaluation itself (Definition 4).
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When genuine signals (i.e., explanation quality) are not decoupled from noise (i.e., non-monotonic model
behaviour), interpretations may become biased (Hooker et al., 2019; Brocki & Chung, 2022; Brunke et al.,
2020).

Together, these results reveal how easily, and systematically Assumptions 1-3 are violated by perturbation
strategies commonly applied in practice (Section 2.1.1). Our findings are consequential as they demon-
strate that the validity of existing robustness, sensitivity, and faithfulness evaluations (Definitions 2-4) are
frequently undermined. As displayed in Figure A.3, there are many sample-wise exceptions where the per-
turbation magnitude, and the model distortion quantity are not strictly monotonically related, challenging
the assumption that increased perturbations lead to proportionally greater distortions, and vice-versa.

A.5.1 Issues with Cumulative Input Perturbation

If small changes in input parameters, cause large variations in evaluation outcomes, evaluation reliability
is compromised. Corroborating previous studies (Brunke et al., 2020; Brocki & Chung, 2022; Rong et al.,
2022), the varied faithfulness curves in Figure A.3 (G), and (H), and Figure A.4 (C) and (F), demonstrate
how input parameter choices, such as patch size or pixel value, can drastically influence the evaluation
outcomes across tasks, i.e., act as evaluation confounds (cf. the same parameter for MNIST solid line vs.
fMNIST dotted line). These variations between tasks expose a simple, yet systematically overlooked issue
in faithfulness evaluations: that parameter choices to perturb the input inherently introduce task-specific
biases to the evaluation. Attempts to mitigate these biases—using inverse curves (Blücher et al., 2024) or
assessing the OOD impact of perturbations (Qiu et al., 2021; Haug et al., 2021)—fail to address the core
problem: that evaluation methods (Section 2.1.2) that require input parameters to be tuned according to its
task, are inherently biased, impeding impartial comparisons across tasks, and explanation approaches.

A.6 Alignment Patterns, and Extended Results

Figure A.6 provides complementary results to Figure 3 in the main manuscript. The scatter points are
coloured by perturbation magnitude up to Z = 10, using additive Gaussian noise. The varying but consistent
overlaps of points of high and low perturbation magnitudes alongside the almost uniform distribution along
the y-axis, illustrate that perturbation effects are not guaranteed to have a proportional effect on the model
and explanation functions. Thus, using the perturbation magnitude as an indicator of the magnitude of
which the explanation should change (as done in existing evaluations, see Definitions 2-3) is not reliable.

Figure A.6: Model (x-axis), and explanation distortions (y-axis) under varying levels of additive Gaussian input noise for vision
and tabular tasks, as indicated in the titles. Scatter points represent individual samples, coloured by perturbation magnitude
(Z = 10), with overlapping contours highlighting the relative alignment patterns. The individual plots contain SHAP-G, GRAD,
and SAL explanations, as indicated by the y-axis labels.
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Next, we show the change in the relationship between model distortion and explanation distortion when
comparing the commonly used input perturbations with model perturbation (Fast-GEF) and when mea-
suring explanation distortion and model distortion on the same geometry (GEF). Figure A.7 illustrates the
relationship of model and explanation distortion across these three cases from left to right. Each contour
plot includes N = 10 samples per perturbation magnitudes from Z = 1 to Z = 5. The scatter points are
colored to one of three increasing perturbation magnitudes (Z = 1 to Z = 3). We can observe the distortion
quantities across tasks with increasing model complexity, from a simpler tabular task (first row) to a highly
parameterised model for a vision task (last row).

As expected, the first column (input perturbation) coincides with Figure A.6 and yields the same findings.
However, in the following two columns, we can observe how Fast-GEF and GEF behave in practice. Most
notably we observe that the alignment between model and explanation distortion changes from less complex
to more complex tasks. Furthermore, we find that Fast-GEF tends to generate higher coherence compared
to input perturbation, except for ImageNet, and that GEF yields the most coherent distortions. While these
findings appear to support both our approaches, it is important to note that without access to ground truth,
it is unclear whether the contour plots should necessarily show stronger coherence (i.e., post-perturbed
correlation), as it depends on the relationship between the explanation and model functions.

Figure A.7: Each plot shows the model (x-axis), and explanation distortions (y-axis) under different types of noise for Gradient
(GRAD) explanation. The first column shows distortion outcomes after applying additive Gaussian input noise. The second
and third columns show distortion outcomes after applying model parameter scaling (Section 5.1). The second column computes
explanation distortion using Fast-GEF and the third column computes distortion using GEF (i.e., with pullback mechanism).
Scatter points represent individual samples, coloured by perturbation magnitude (z=1, z=2, z=3), with Z = 5 number of steps.

42



Published in Transactions on Machine Learning Research (02/2025)

A.7 Ablation Study

To better understand the influence of the hyperparameters, on the proposed GEF evaluation method, we
conducted an ablation study. We employed two tasks, i.e., a tabular dataset (Avila) using a 2-layer MLP
model with SAL explanations and a vision dataset (MNIST) using a LeNet model with 250 random expla-
nations, sampled from a uniform distribution, i.e., êi = U(0, 1). For each hyperparameter, i.e., the number
of perturbed models M , the length of the perturbation path Z, the number of summation steps T , and the
number of samples K, we enumerated over values from 0 to 20, while fixing the others at a default value of
10. For each configuration, we recorded mean (solid line) and standard deviation (shaded area) of the model
distortion, explanation distortion, Jacobian quantity, and the mean computation time.

Figure A.8: Ablation study results across hyperparameters M , Z, T , and K for two tasks: (left) Saliency explanation on Avila
(2-layer MLP), and (right) Random explanation on MNIST (LeNet). The mean value (solid line) and variance (shaded area)
are reported. The time analysis is measured in seconds.

Figure A.8 demonstrates the results for both the tabular (left) and the vision task (right). As can be
observed by the converging values of the standard deviation and means, the hyperparameters are resilient to
key parameter changes once parameter values reach 5 or higher. The Jacobian variance reflects the curvature
captured in its estimate. While the variance increases for parameter values above 5, the mean stabilises,
indicating diminishing returns in capturing additional curvature. At parameter values of 5, the majority
of the curvature is already captured, providing a practical trade-off between computational efficiency and
quality of approximation. Considering computational time, all parameters lead to a linear, non-negligible
increase. Among them, Z and M are identified as the primary drivers of time. Based on these experimental
findings, setting K = T = Z = M = 5 balances computational efficiency and stability of the quality estimate.

A.8 Experiments, and Extended Results

This section provides descriptions of experimental setups, and extended results, including meta-evaluations,
and agreement between different scoring methods. Additionally, we present further results for random control
variant sanity checks, cross-domain benchmarking, and LLM-x methodology, and extended results.

A.8.1 Meta-Evaluation

To employ the scoring methodology (Section A.3), we used the pre-existing test suite available in the
MetaQuantus library7 with their pre-defined hyperparameters.

MetaQuantus Hyperparameters. We applied these metrics over K = 5 perturbations, conducting 3
iterations with the test configurations specified in the library for two different sets of explanation methods,
namely {GRAD, G-CAM}, and {SAL, SHAP-G}, which were evaluated by each metric. The explanation

7Find the library at https://github.com/annahedstroem/MetaQuantus/.
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method groups were created by randomly selecting methods from the complete set of available methods,
ensuring consistency across various experimental setups, such as dataset, and model combinations. In terms
of choosing K, and the number of iterations, we followed the recommendations from the original study to
keep the standard deviation between different sets relatively low. To ensure a fair comparison across metrics,
all shared hyperparameters were assigned the same values.

Metrics Hyperparameters. All metrics have been implemented in Quantus (Hedström et al., 2023b).
Different hyperparameters were chosen for the individual metrics based on the dataset. For the robustness
metrics, we use 5 noisy samples, and employ additive Gaussian noise such that ν ∼ N (0, 0.001). For the
faithfulness metrics, we use 28 features per perturbation step, and a patch size of 7 for the MNIST, and
fMNIST datasets. For ImageNet, we set the number of features to 896, and the patch size to 28. For FC,
similar to the robustness metrics, we let it run 5 times. For the sensitivity metrics, namely MPRT, and
sMPRT, we use a noise magnitude of 0.01 for each sample, and sMPRT uses 5 samples in its calculation.
For all sensitivity metrics, we use the Spearman rank correlation coefficient.

Table A.1: MC scores and standard deviation for unified, and faithfulness methods listed in A.4.5 for ImageNet, MNIST, and
fMNIST datasets. The final row shows the mean score for each metric across the datasets. Values range between [0, 1], with
higher values indicating better outcomes. Due to computational constraints, GEF scores are only computed for fMNIST, and
MNIST datasets.

Unified Faithfulness
GEF Fast-GEF PF FC RP

ImageNet nan ± nan 0.78 ± 0.02 0.63 ± 0.01 0.51 ± 0.02 0.63 ± 0.06
MNIST 0.75 ± 0.07 0.74 ± 0.03 0.61 ± 0.04 0.63 ± 0.03 0.59 ± 0.03
fMNIST 0.71 ± 0.07 0.71 ± 0.03 0.63 ± 0.01 0.50 ± 0.04 0.58 ± 0.09
Mean 0.73 ± 0.07 0.74 ± 0.03 0.62 ± 0.02 0.56 ± 0.03 0.59 ± 0.06

Table A.2: MC scores and standard deviation for sensitivity, and robustness methods listed in A.4.5 for ImageNet, MNIST,
and fMNIST datasets. The final row shows the mean score for each metric across the datasets. Values range between [0, 1],
with higher values indicating better outcomes.

Sensitivity Robustness
MPRT sMPRT eMPRT RIS ROS RRS

ImageNet 0.71 ± 0.02 0.69 ± 0.04 0.71 ± 0.02 0.72 ± 0.06 0.76 ± 0.07 0.75 ± 0.04
MNIST 0.63 ± 0.02 0.66 ± 0.04 0.76 ± 0.03 0.73 ± 0.02 0.70 ± 0.09 0.74 ± 0.09
fMNIST 0.63 ± 0.01 0.67 ± 0.05 0.67 ± 0.05 0.70 ± 0.02 0.77 ± 0.06 0.70 ± 0.03
Mean 0.64 ± 0.02 0.67 ± 0.04 0.71 ± 0.03 0.72 ± 0.03 0.74 ± 0.07 0.73 ± 0.05

Extended Results. In Tables A.1, and A.2, we provide the corresponding results for Figure 6.

A.8.2 Agreement between GEF, and Fast-GEF

To determine whether the simpler, computationally efficient Fast-GEF method can serve as an alternative
to the more exact but computationally intensive GEF method, we compare the agreement between their
respective faithfulness estimates. For a subset of explanation methods, and tasks (see Table 2), we thus
compute scores, and rank explanation methods from R1 to RN. While it is expected that estimates from the
two methods differ, a high agreement in a categorical ranking would make Fast-GEF a practical alternative
in resource-constrained environments.

Results. Figure A.9 (A) visually compares how GEF and Fast-GEF ranks (x-axis) each explanation method
in terms of increases (y-axis), highlighting the relative agreement between them. The explanations in the
tabular, and text tasks show perfect ranking agreement. In the MNIST vision task, with minimal nominal
differences, GRAD, and SHAP-G methods disagree in their ranking (R1, and R2), but such disagreement
can be expected acknowledging the algorithmic similarity between these explanation methods. In the Derma
vision task, the same pattern is observed, yet with a slightly larger difference for the global method FO-50.
Interestingly, we observe that nominal differences are pronounced for global methods (DV-50, and FO-50),
and that Fast-GEF tends to generate slightly lower faithfulness estimates cf. GEF.
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Figure A.9: (A) to (E) illustrates the GEF scores of GEF and Fast-GEF (with M = 1) for various explanation methods, and tasks.
Explanation methods are ranked between R1 to RN, in descending order.

A.8.3 Scoring Control Variants

Next, we validate that both GEF and Fast-GEF assign low faithfulness scores to different control variant
explanations. In our sanity checks, we evaluate explanations generated by uniform sampling, i.e., êi ∼
U(0, 1), a constant value, i.e., êi = 0, and with a model-independent Sobel filter. For non-random reference,
we evaluate GRAD explanations for the predicted class of the Derma task (see Table 2) (Sobel et al.,
1968). For comparability, we extend this sanity check exercise to one metric per evaluative criteria, i.e., FC
(faithfulness), MPRT (sensitivity), and RIS (robustness). Hyperparameters are provided in Appendix A.8.1.

Table A.3: Evaluation scores of Derma (MedCNN) explanations for three random, and one regular (GRAD) explanation. The
arrow (↑, ↓) indicates whether higher or lower values are better. A nan value indicates that no score is produced.

Explanation GEF (↑) Fast-GEF (↑) FC (↑) MPRT (↓) RIS (↓)

Control Var. Constant nan ± nan nan ± nan nan ± nan nan ± nan 0.11 ± 0.29
Control Var. Random Uniform -0.01 ± 0.30 -0.01 ± 0.22 -0.00 ± 0.51 -0.00 ± 0.04 3.21 ± 2.89
Control Var. Sobel Filter nan ± nan nan ± nan -0.01 ± 0.50 1.00 ± 0.00 82197.21 ± 132718.26
GRAD 0.47 ± 0.23 0.48 ± 0.15 -0.05 ± 0.49 0.01 ± 0.04 1764.60 ± 10007.26

Results. Table A.3 presents the results. Some metrics produce no values (nan), e.g., when correlating
identical vectors, and by that identify the unfaithful explanation. Fast-GEF, and GEF consistently assign
low scores to random explanations, and high scores to non-random GRAD explanations, indicating their
ability to identify the control explanations. Conversely, other metrics fail at least in one random test, either
showing little discrepancy between regular, and control variants or even giving higher scores to the control.
For instance, MPRT, and RIS score random uniform explanations as good or better than regular ones.

A.8.4 Cross-Domain Benchmarking

Extended Results. We benchmark various local, and global explanation methods with GEF and Fast-GEF.
In Figure A.10, we extend the results in Figure 8.

The results presented in Figure 7 are provided in Tables A.4, and A.5.

A.8.5 LLM-x

In the following, we provided extended results of the LLM-x experiments.

Extended Results. The results presented in Figure 9 are provided in Tables A.6, and A.7.
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Figure A.10: Fast-GEF results for vision tasks. (A), (B), and (C) plot the model and explanation distortion for Derma
(MedCNN), and fMNIST (LeNet), and MNIST (LeNet) along the perturbation path with Z = 5 perturbation steps. The size
of the scatter point represents each perturbation steps, from 1 to 5.

Table A.4: GEF results on local methods for tabular tasks. Mean faithfulness scores, and standard errors are reported, with
higher values indicating better quality.

Task Adult Adult Avila Compas Compas
(3-layer MLP) LR (2-layer MLP) (3-layer MLP) LR

Lo
ca

l
Me

th
od

s

SMG 0.86 ± 0.00 0.69 ± 0.00 0.72 ± 0.01 0.81 ± 0.01 0.73 ± 0.01
SHAP-G 0.78 ± 0.00 0.84 ± 0.01 0.75 ± 0.01 0.84 ± 0.00 0.66 ± 0.01
SAL 0.84 ± 0.00 0.76 ± 0.00 0.69 ± 0.01 0.75 ± 0.01 0.70 ± 0.01
RAN -0.00 ± 0.02 0.00 ± 0.02 0.00 ± 0.02 0.02 ± 0.02 0.02 ± 0.02
LRP-ε 0.66 ± 0.01 0.61 ± 0.01 0.52 ± 0.01 0.74 ± 0.01 0.59 ± 0.01
LRP-z+ 0.79 ± 0.00 0.75 ± 0.00 0.66 ± 0.01 0.78 ± 0.00 0.70 ± 0.01
IXG 0.84 ± 0.00 0.77 ± 0.01 0.69 ± 0.01 0.74 ± 0.00 0.72 ± 0.00
INTG 0.82 ± 0.00 0.82 ± 0.00 0.69 ± 0.01 0.81 ± 0.00 0.80 ± 0.00
GRAD 0.86 ± 0.00 0.74 ± 0.00 0.69 ± 0.01 0.81 ± 0.01 0.67 ± 0.01
GBP 0.80 ± 0.00 0.60 ± 0.01 0.68 ± 0.01 0.78 ± 0.01 0.70 ± 0.01

Table A.5: Fast-GEF result on local methods for vision tasks. Mean faithfulness scores, and standard errors are reported, with
higher values indicating better quality.

Task Derma fMNIST Imagenet-1k MNIST Path
MedCNN LENET Resnet18 LENET MedCNN

Lo
ca

l
Me

th
od

s

SMG 0.61 ± 0.01 0.69 ± 0.01 0.63 ± 0.01 0.73 ± 0.01 0.63 ± 0.02
SHAP-G 0.49 ± 0.01 0.74 ± 0.01 0.69 ± 0.01 0.77 ± 0.01 0.60 ± 0.01
SAL 0.67 ± 0.01 0.76 ± 0.01 0.71 ± 0.01 0.74 ± 0.01 0.65 ± 0.01
RAN 0.01 ± 0.01 0.00 ± 0.01 -0.00 ± 0.01 -0.00 ± 0.01 -0.01 ± 0.01
LRP-ε 0.45 ± 0.01 0.70 ± 0.01 0.35 ± 0.01 0.73 ± 0.01 0.66 ± 0.01
LRP-z+ 0.74 ± 0.01 0.73 ± 0.01 0.91 ± 0.00 0.73 ± 0.01 0.71 ± 0.01
IXG 0.73 ± 0.01 0.72 ± 0.01 0.64 ± 0.01 0.73 ± 0.01 0.71 ± 0.01
INTG 0.49 ± 0.01 0.73 ± 0.01 0.78 ± 0.01 0.77 ± 0.01 0.71 ± 0.01
GRAD 0.54 ± 0.01 0.76 ± 0.01 0.71 ± 0.01 0.79 ± 0.01 0.66 ± 0.01
GBP 0.63 ± 0.01 0.76 ± 0.01 0.85 ± 0.01 0.77 ± 0.01 0.64 ± 0.01

Gl
ob

al
Me

th
od

s

MACO-50 0.16 ± 0.02 0.47 ± 0.02 0.29 ± 0.02 0.29 ± 0.02 0.42 ± 0.01
MACO-250 0.30 ± 0.02 0.54 ± 0.01 0.31 ± 0.01 0.31 ± 0.02 0.40 ± 0.01
MACO-100 0.24 ± 0.01 0.52 ± 0.01 0.31 ± 0.01 0.41 ± 0.01 0.45 ± 0.01
FO-50 0.17 ± 0.02 0.42 ± 0.01 0.22 ± 0.02 0.26 ± 0.02 0.35 ± 0.01
FO-250 0.36 ± 0.01 0.38 ± 0.02 0.19 ± 0.02 0.15 ± 0.02 0.31 ± 0.01
FO-100 0.28 ± 0.01 0.36 ± 0.02 0.23 ± 0.02 0.21 ± 0.02 0.27 ± 0.01
DV-50 0.38 ± 0.01 0.54 ± 0.02 0.26 ± 0.02 0.36 ± 0.02 0.45 ± 0.01
DV-250 0.44 ± 0.01 0.50 ± 0.01 0.40 ± 0.02 0.40 ± 0.02 0.48 ± 0.01
DV-100 0.43 ± 0.02 0.49 ± 0.02 0.40 ± 0.02 0.43 ± 0.02 0.51 ± 0.01
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Table A.6: Fast-GEF results on LLM-x, and local methods for top-K tasks. Mean faithfulness scores, and standard errors are
reported, with higher values indicating better quality.

Task SMS Spam SST2
BERT-TINY FT BERT-TINY FT

Lo
ca

l
Me

th
od

s

SHAP-P-5 0.62 ± 0.01 0.75 ± 0.01
SHAP-P-10 0.62 ± 0.01 0.75 ± 0.01
RAN-5 0.08 ± 0.01 -0.08 ± 0.01
RAN-10 0.03 ± 0.01 -0.10 ± 0.01
LLM-X-5 0.06 ± 0.02 0.05 ± 0.02
LLM-X-10 0.05 ± 0.02 0.08 ± 0.02
L-INTG-5 0.58 ± 0.01 0.77 ± 0.01
L-INTG-10 0.58 ± 0.01 0.77 ± 0.01

Table A.7: Fast-GEF results on LLM-x, and local methods for top-K tasks. Mean faithfulness scores, and standard errors are
reported, with higher values indicating better quality.

Task SMS Spam SST2
BERT-TINY FT BERT-TINY FT

LLM-X -4.25 ± 8.42 -3.73 ± 7.72
L-INTG 195.49 ± 2.91 238.15 ± 2.98
SHAP-P 185.95 ± 3.06 230.27 ± 3.75

A.9 Notation Tables

All notations used in this paper is provided in the following.

Spaces, and Elements
X , x The input space X ⊆ RD with a sample x ∈ X
F , θ The model space F ⊆ RU with parameters θ ∈ F
Y, y The function output space Y ⊆ RC with logits y ∈ Y; y = [y1, . . . , yC ]T for C classes yc ∈

y∀c ∈ [1, C]
E , e The explanation space E ⊆ RV with an explanation e ∈ F
Q, q The evaluation space Q ⊆ RM with a quality estimate q ∈ Q
S, s A set of spaces S ⊂ {X ,F ,Y, E ,Q} where S ⊆ RS ,S ∈ N with s ∈ S
H, h A subset of spaces H ⊆ {F , E} with h ∈ H
ŝ, x̂, θ̂, ŷ, ê A sample, input, parameters, logit, explanation, post-perturbation.

Functions
f A classifier function f : X → Y with f(x; θ) = y (we refer fθ as f), parameterised by θ

ϕL A local explanation function ϕL : F × X × Y → RV with ϕL(f, x, y; λ) = e, parameterised by
λ

ϕG A global explanation function ϕG : F × Y → RV with ϕG(f, y; κ) = e, parameterised by κ

ϕ Collectively, denoting ϕL, and ϕG although they formally reside in different spaces
Ψ An evaluation function Ψ : E × X × F × Y → R with Ψ(e, x, f, y; τ) = q, parameterised by τ

PS A perturbation function P : S → S where P(s; ω) on space S
δ A general discrepancy function δ : S × S → R with δ(s, ŝ) = ξ, parameterised by ω ∈ R
k A separate mapping function k : S → H mapping s, ŝ to a distinct space H
Dk A functional distortion Dk : S × S → R with Dk(s, ŝ) = δ(k(s), k(ŝ))
ρ A correlation function with ρ : RZ × RZ → R
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Constants
C The number of classes
D The dimension of the input
W The dimension of the parameter vector
V The dimension of the explanation outputs
Z The number of perturbation steps
K The number of samples to approximate the Jacobian
T The number of integral steps between two points, e, and ê

M The number of models to average over in GEF, and Fast-GEF

Variables
ξ The perturbation magnitude defined as the discrepancy δ(s, ŝ) = ξ between ŝ, and s

Df The model distortion Df across parameter- Df (θ, θ̂), and input perturbation Df (x, x̂)
Dϕ The explanation distortion Dϕ across parameter- Dϕ(θ, θ̂), and input perturbation Dϕ(x, x̂)
εRO

Dk
The implicit upper boundary value with εRO ∈ R+, and k ∈ {ϕ, f} used in robustness

εSE
Dk

The implicit lower boundary value with εSE ∈ R+, and k ∈ {ϕ, f} used in sensitivity
α A boundary value for the perturbation magnitude, with α ∈ R+

ηi The Gaussian noise matrix with ηi ∼ N (0, σ2
i 1)

σ2
z The covariance scale of a Gaussian distribution with σ2

z ∈ R+ at zth perturbation
Jf The network Jacobian for fixed input x, and model f , with Jf ∈ RV ×C , and elements Ji,j = ∂ei

∂fj

g Pullback metric tensor based on the elementwise Jacobian with g ∈ RV ×V

z Index of perturbation steps with z ∈ [1, Z]
Dz

f The model distortion at perturbation step z with Dz
f := Dz

f (θ, θ̂z)
Dz

ϕ The explanation distortion at perturbation step z with Dz
ϕ := Dz

f (θ, θ̂z)
df The vector of model distortion with Z steps, df = [D1

f , D2
f , . . . , DZ

f ]
dϕ The vector of explanation distortion with Z steps, dϕ = [D1

ϕ, D2
ϕ, . . . , DZ

ϕ ]
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