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ABSTRACT

Methods based on ordinary differential equations (ODEs) are widely used to build
generative models of time-series. In addition to high computational overhead due
to explicitly computing hidden states recurrence, existing ODE–based models fall
short in learning sequence data with sharp transitions – common in many real-
world systems – due to numerical challenges during optimization. In this work,
we propose LS4, a generative model for sequences with latent variables evolv-
ing according to a state space ODE to increase modeling capacity. Inspired by
recent deep state space models (S4), we achieve speedups by leveraging a con-
volutional representation of LS4 which bypasses the explicit evaluation of hid-
den states. We show that LS4 significantly outperforms previous continuous-time
generative models in terms of marginal distribution, classification, and prediction
scores on real-world datasets in the Monash Forecasting Repository, and is ca-
pable of modeling highly stochastic data with sharp temporal transitions. LS4
sets state–of–the–art for continuous–time latent generative models, with signifi-
cant improvement of mean squared error and tighter variational lower bounds on
irregularly–sampled datasets, while also being ×100 faster than other baselines
on long sequences.

1 INTRODUCTION

Time series are a ubiquitous data modality, and find extensive application in weather (Hersbach
et al., 2020) engineering disciplines, biology (Peng et al., 1995), and finance (Poli et al., 2019). The
main existing approaches for deep generative learning of temporal data can be broadly categorized
into autoregressive (Oord et al., 2016), latent autoencoder models (Chen et al., 2018; Yildiz et al.,
2019; Rubanova et al., 2019), normalizing flows (de Bézenac et al., 2020), generative adversarial
(Yoon et al., 2019; Yu et al., 2022; Brooks et al., 2022), and diffusion (Rasul et al., 2021). Among
these, continuous-time methods (often based on underlying ODEs) are the preferred approach for
irregularly-sampled sequences because they can make predictions at arbitrary time steps and can
handle sequences of varying lengths. Unfortunately, existing ODE–based methods (Rubanova et al.,
2019; Yildiz et al., 2019) often fall short in learning models for real-world data (e.g., with stiff
dynamics) due to their limited expressivity and numerical instabilities during backward gradient
computation (Hochreiter, 1998; Niesen & Hall, 2004; Zhuang et al., 2020).

A natural way to increase the flexibility of ODE-based models is to increase the dimensionality of
their (deterministic) hidden states. However, that leads to quadratic scaling in the hidden dimension-
ality due to the need of explicitly computing hidden states by unrolling the underlying recurrence
over time, thus preventing scaling to long sequences. An alternative approach to increasing model-
ing capacity is to incorporate stochastic latent variables into the model, a highly successful strategy
in generative modeling (Kingma & Welling, 2013; Chung et al., 2015; Song et al., 2020; Ho et al.,
2020). However, this leads to computational costs, and existing models like latent neural ODE mod-
els (Rubanova et al., 2019) inject stochasticity only at the initial condition of the system. In contrast,
we introduce LS4, a latent generative model where the sequence of latent variables is represented as
the solution of linear state space equations (Chen, 1984). Unrolling the recurrence equation shows
an autoregressive dependence in the sequence of latent variables, the joint of which is highly ex-
pressive in representing time series distributions. The high dimensional structure of the latent space,
being equivalent to that of the input sequence, allows LS4 to learn expressive latent representations
and fit the distribution of sequences produced by a family of dynamical systems, a common setting
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resulting from non–stationarity. We further show how LS4 can learn the dynamics of stiff (Shampine
& Thompson, 2007) dynamical systems where previous methods fail to do so. Inspired by recent
works on deep state space models, or stacks of linear state spaces and non-linearities (Gu et al.,
2020; 2021), we leverage a convolutional kernel representation to solve the recurrence, bypassing
any explicit computations of hidden states via the recurrence equation, which ensures log–linear
scaling in both the hidden state space dimensionality as well as sequence length.

We validate our method across a variety of time series datasets, benchmarking LS4 against an ex-
tensive set of baselines. We propose a set of 3 metrics to measure the quality of generated time
series samples and show that LS4 performs significantly better than baselines on datasets with stiff
transitions and obtains on average 30% lower MSE scores and ELBO. On sequences with ≈ 20K
lengths, our model trains ×100 faster than the baseline methods.

2 RELATED WORK

Rapid progress on deep generative modeling of natural language and images has consolidated dif-
fusion (Ho et al., 2020; Song et al., 2020; Song & Ermon, 2019; Sohl-Dickstein et al., 2015) and
autoregressive techniques (Brown et al., 2020) as the state–of–the–art. Although various approaches
have been proposed for generative modeling of time series and dynamical systems, consensus on the
advantages and disadvantages of each method has yet to emerge.

Deep generative modeling of sequences. All the major paradigms for deep generative modeling
have seen application to time series and sequences. Most relevant to our work are latent continuous–
time autoencoder models proposed by Chen et al. (2018); Yildiz et al. (2019); Rubanova et al.
(2019), where a neural differential equation encoder is used to parametrize as distribution of initial
conditions for the decoder. Massaroli et al. (2021) proposes a variant that parallelizes computation in
time by casting solving the ODE as a root finding problem. Beyond latent models, other continuous–
time approaches are given in Kidger et al. (2020), which develops a GAN formulation using SDEs.

State space models. State space models. (SSMs) are at the foundation of dynamical system the-
ory (Chen, 1984) and signal processing (Oppenheim, 1999), and have also been adapted to deep
generative modeling. Chung et al. (2015); Bayer & Osendorfer (2014) propose VAE variants of
discrete–time RNNs, generalized later by (Franceschi et al., 2020), among others. These models all
unroll the recurrence and are thus challenging to scale to longer sequences.

Our work is inspired by recent advances in deep architectures built as stacks of linear SSMs, notably
S4 (Gu et al., 2021). Similar to S4, our generative model leverages the convolutional representation
of SSMs during training, thus bypassing the need to materialize the hidden state of each recurrence.

3 PRELIMINARIES

We briefly introduce relevant details of continuous-time SSMs and their different representations.
Then we introduce preliminaries of generative models for sequences.

3.1 STATE SPACE MODELS (SSM)

A single-input single-output (SISO) linear state space model is defined by the following differential
equation

d

dt
ht = Aht +Bxt

yt = Cht +Dxt

(1)

with scalar input xt ∈ R, state ht ∈ RN and scalar output yt ∈ R. The system is fully characterized
by the matrices A ∈ RN×N ,B ∈ RN×1,C ∈ R1×N ,D ∈ R1×1. Let x, y ∈ C([a, b],R) be
absolutely continuous real signals on time interval [a, b]. Given an initial condition h0 ∈ RN the
SSM (1) realizes a mapping x 7→ y.

SSMs are a common tool for processing continuous input signals. We consider single input single
output (SISO) SSMs, noting that input sequences with more than a single channel can be processed
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by applying multiple SISO SSMs in parallel, similarly to regular convolutional layers. We use such
SSMs as building blocks to map each input dimension to each output dimension in our generative
model.

Discrete recurrent representation. In practice, continuous input signals are often sampled at time
interval ∆ and the sampled sequence is represented by x = (xt0 , xt1 , . . . , xtL) where tk+1 = tk+∆.
The discretized SSM follows the recurrence

htk+1
= Āhtk + B̄xtk

ytk = Chtk +Dxtk
(2)

where Ā = eA∆, B̄ = A−1(eA∆ − I)B with the assumption that signals are constant during the
sampling interval. Among many approaches to efficiently computing eA∆, Gu et al. (2021) use a
bilinear transform to estimate eA∆ ≈ (I − 1

2A∆)−1(I + 1
2A∆).

This recurrence equation can be used to iteratively solve for the next hidden state htk+1
, allowing

the states to be calculated like an RNN or a Neural ODE (Chen et al., 2018; Massaroli et al., 2020).

Convolutional representation. Recurrent representations of SSM are not practical in training be-
cause explicit calculation of hidden states for every time step requires O(N2L) in time and O(NL)
in space for a sequence of length L1. This materialization of hidden states significantly restricts
RNN-based methods in scaling to long sequences. To efficiently train an SSM, the recurrence equa-
tion can be fully unrolled, assuming zero initial hidden states, as

ht0 = B̄xt0 ht1 = ĀB̄xt1 + B̄xt0 ht2 = Ā2B̄xt2 + ĀB̄xt1 + B̄xt0 . . .
yt0 = CB̄xt0 yt1 = CĀB̄xt1 +CB̄xt0 yt2 = CĀ2B̄xt2 +CĀB̄xt1 +CB̄xt0 . . .

and more generally as,

ytk = CĀkB̄xtk +CĀk−1B̄xk−1 + · · ·+CB̄xt0

For an input sequence x = (xt0 , xt1 , . . . , xtL), one can observe that the output sequence y =
(yt0 , yt1 , . . . , ytL) can be computed using a convolution with a skip connection

y = CK ∗ x+Dx, where K = (B̄, ĀB̄, . . . , ĀL−1B̄, ĀLB̄) (3)

This is the well-known connection between SSM and convolution (Oppenheim & Schafer, 1975;
Chen, 1984; Chilkuri & Eliasmith, 2021; Romero et al., 2021; Gu et al., 2020; 2021; 2022) and
it can be computed very efficiently with a Fast Fourier Transform (FFT), which scales better than
explicit matrix multiplication at each step.

3.2 VARIATIONAL AUTOENCODER (VAE)

VAEs (Kingma & Welling, 2013; Burda et al., 2015) are a highly successful paradigm in learning
latent representations of high dimensional data and is remarkably capable at modeling complex
distributions. A VAE introduces a joint probability distribution between a latent variable z and an
observed random variable x of the form

pθ(x, z) = pθ(x | z)p(z)

where θ represents learnable parameters.

The prior p(z) over the latent is usually chosen as a standard Gaussian distribution, and the con-
ditional distribution pθ(x | z) is defined through a flexible non-linear mapping (such as a neural
network) taking z as input. Such highly flexible non-linear mappings often lead to an intractable
posterior pθ(z | x). Therefore, an inference model with parameters ϕ parametrizing qϕ(z | x)
is introduced as an approximation which allows learning through a variational lower bound of the
marginal likelihood:

log pθ(x) ≥ −DKL(qϕ(z | x)∥p(z)) + Eqϕ(z|x) [log pθ(x | z)] (4)

where DKL(·∥·) is the Kullback-Leibler divergence between two distributions.

1Further explanations in Appendix A.1
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VAE for sequences. Sequence data can be modeled in many different ways since the latent space
can be chosen to encode information at different levels of granularity, i.e. z can be a single variable
encoding entire trajectories or a sequence of variables of the same length as the trajectories. We
focus on the latter.

Given observed sequence variables x≤T up to time T discretized into sequence (xt0 , . . . ,xtL−1
) of

length L where tL−1 = T , a sequence VAE model with parameters θ, λ, ϕ learns a generative and
inference distribution

pθ,λ(x≤tL−1
, z≤tL−1

) =

L−1∏
i=0

pθ(xti | x<ti , z≤ti)pλ(zt | z<ti)

qϕ(z≤tL−1
| x≤tL−1

) =

L−1∏
i=0

qϕ(zti | x≤tti
)

where z≤tL−1
= (zt0 , . . . , ztL−1

) is the corresponding latent variable sequence. The approximate
posterior qϕ is explicitly factorized as a product of marginals due to efficiency reasons we shall
discuss in the next section. Given this form of factorization, the variational lowerbound has been
considered for discrete sequence data (Chung et al., 2015) with the objective

Eqϕ(z≤tL−1
|x≤tL−1

)

[
−

L−1∑
i=0

DKL(qϕ(zti | x≤ti)∥pλ(zi | z<ti)) + log pθ(xti | x<tiz≤ti)

]
(5)

4 METHOD

In this section, we introduce Latent S4 (LS4), a latent variable generative model parameterized using
SSMs. We show how SSMs can parametrize the generative distribution pθ(x≤T |z≤T )pλ(z≤T ), the
prior distribution pλ(z≤T ) and the inference distribution qϕ(z≤T | x≤T ) effectively. For the purpose
of exposition, we can assume zt, xt are scalars at any time step t. Their generalization to arbitrary
dimensions is discussed in Section 4.4.

We first define a structured state space model with two input streams and use this as a building block
for our generative model. It is an SSM of the form

d

dt
ht = Aht +Bxt +Ezt

yt = Cht +Dxt + F zt

(6)

where x, y, z ∈ C([0, T ],R) are continuous real signals on time interval [0, T ]. We denote
H(x, z,A,B,E,h0, t) = Hβ(x, z,h0, t), where β denotes trainable parameters A,B,E, as the
deterministic function mapping from signals x, z to ht, the state at time t, given initial state h0 at
time 0. The above SSM can be compactly represented by

yt = CHβ(x, z,h0, t) +Dxt + F zt (7)

When the continuous-time input signals are discretized into discrete-time sequences
(xt0 , . . . , xtL−1

) and (zt0 , . . . , ztL), the corresponding hidden state at time tk has a convolu-
tional view (assuming D = F = 0 for simplicity)

ytk = CKtk ∗ xtk +CK̂tk ∗ ztk , where Ktk = ĀkB̄, K̂tk = ĀkĒ (8)

which can be evaluated efficiently using FFT. Additionally, A is HiPPO-initialized (Gu et al., 2021)
for all such SSM blocks.

4.1 LATENT SPACE AS STRUCTURED STATE SPACE

The goal of the prior model is to realize a sequence of random variables (zt0 , zt1 , . . . , ztL), which
the prior distribution pλ(z≤tL) models autoregressively. Suppose (zt0 , zt1 , . . . , ztn) is a sequence
of latent variables up to time tn, we define the prior distribution of ztn autoregressively as

pλ(ztn | z<tn) = N (µz,n(z<tn , λ), σ
2
z,n(z<tn , λ)) (9)
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where the mean µz,n and standard deviation σz,n are deterministic functions of previously generated
z<tn parameterized by λ. To parameterize the above distribution, we first define an intermediate
building block, a stack of which will produce the wanted distribution.

LS4 prior block. The forward pass through our SSM is a two–step procedure: first, we consider the
latent dynamics of z on [t0, tn−1] where we simply leverage Equation 6 to define the hidden states
to follow Hβ1(0, z, 0, t). Second, on (tn−1, tn], since no additional z is available in this interval, we
ignore additional input signals in the ODE and only include the last given latent, i.e. ztn−1

, as an
auxiliary signal for the outputs, which can be compactly denoted, with a final GELU non-linearity,
as

yz,n = GELU(Cyz
Hβ1

(0, 0, Hβ2
(0, z[t0,tn−1], htn−1

,0, tn−1)︸ ︷︷ ︸, tn) + Fyz
ztn−1

) (10)

We call this LS4 prior layer, which we use to build our LS4 prior block that is built upon a ResNet
structure with a skip connection, denoted as

LS4prior(z[t0,tn−1], ψ) = LayerNorm(Gyzyz,n + byz ) + ztn−1 (11)

where ψ denotes the union of parameters βi,Cyz
,Fyz

,Gyz
, byz

. We define the final parameters
µz,n and σz,n for the conditional distribution in the autoregressive model as the result of a stack of
LS4 prior blocks. During generation, as an initial condition, zt0 ∼ N (µz,0, σ

2
z,0) where µz,0, σz,0

are learnable parameters, and subsequent latent variables are generated autoregressively. We specify
our architecture in Appendix C and use λ to denote the union of all trainable parameters.

4.2 GENERATIVE MODEL

Given the latent variables, we now specify a decoder that represents the distribution pθ(x≤tL |z≤tL).
Suppose z≤tL is a latent path generated via the latent state space model, the output path x≤tL
also follows the state space formulation. Assuming we have generated (xt0 , . . . , xtn−1

) and
(zt0 , . . . , ztn), the conditional distribution of xtn is parametrized as

pθ(xtn |x<tn , z≤tn) = N (µx,n(x<tn , z≤tn , θ), σ
2
x) (12)

where σx is a pre-defined observation standard deviation and µx,n is a deterministic function of z≤tn
and x<xn .

LS4 generative block. Different from the prior block, both observation and latent sequences are
input into our model, and we define intermediate outputs gx,n and gz,n as

htn = Hβ3(0, ztn−1 , Hβ4(x[t0,tn−1], z[t0,tn−1],0, tn−1), tn)

gx,n = GELU(Cgxhtn +Dgxxtn−1
+ Fgxztn)

gz,n = GELU(Cgzhtn +Dgzxtn−1 + Fgzztn)

(13)

which are used to build a LS4 generative block defined as

ĝx,n = LayerNorm(Ggxgx,n + bgx) + xtn−1

ĝz,n = LayerNorm(Ggzgz,n + bgz ) + ztn
LS4gen(x[t0,tn−1], z[t0,tn], ψ) = (ĝx,n, ĝz,n)

(14)

where ψ denotes all parameters inside the block. Note that the generative block gives two streams
of outputs, which can be used as inputs for the next stack. We then define the final mean value
µx,n as the result of a stack of LS4 generative blocks. The initial condition for generation is given as
xt0 ∼ N (µx,0(z0, θ), σx) where µx,0 exactly follows our formulation while taking only zt0 as input.
The subsequent xtn ’s are generated autoregressively. We specify our architecture in Appendix C and
use θ to denote the union of all trainable parameters.

4.3 INFERENCE MODEL

The latent variable model up to time tn has intractable posterior pθ(z≤tn | x≤tn). Therefore, we
approximate this distribution with qϕ(z≤tn | x≤tn) using variational inference.

We parameterize the inference distribution at time tn to depend only on the observed path x≤tn :

qϕ(zt | x≤tn) = N (µ̂z,tn(x≤tn , ϕ), σ̂
2
z,tn(x≤tn , ϕ)) (15)
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LS4 inference block. The inference block is defined as
ŷz,n = GELU(Cŷz

Hβ5
(x[t0,tn], 0,0, tn−1) +Dŷz

xtn)

LS4inf(x[t0,tn], ψ) = LayerNorm(Gŷz
ŷz,n + bŷz

) + xtn
(16)

Notice that input x is fully present in [t0, tn] unlike in the generative model. µ̂z,t and σ̂z,t are each
a deep stack of our inference blocks similarly defined as before. Here we also justify our choice
of factorizing posterior as a product of marginals as in Equation 5. By having each zt explicitly
depending on x≤tn only, we can leverage the fast convolution operation to obtain all zt in parallel,
thus achieving fast inference time, unlike the autoregressive nature of the prior and generative model.

4.4 LS4: PROPERTIES AND PRACTICE

We highlight some properties of LS4. In particular, we compare in the following proposition the
expressive power of our generative model against structured state space models.
Proposition 4.1. (LS4 subsumes S4.) Given any autoregressive model r(x) with conditionals
r(xn|x<n) parameterized via deep S4 models, there exists a choice of θ, λ, ϕ such that pθ,λ(x) =
r(x) and pθ,λ(z|x) = qϕ(z|x), i.e. the variational lower bound (ELBO) is tight.

A proof sketch is provided in Appendix B. This result shows that LS4 subsumes autoregressive
generative models based on vanilla S4 (Gu et al., 2021), given that the architecture between SSM
layers is the same. Crucially, with the assumption that we are able to globally optimize the ELBO
training objective, LS4 will fit the data at least as well as vanilla S4.

Scaling to arbitrary feature dimensions. So far we have assumed the input and latent signals
are real numbers. The approach can be scaled to arbitrary dimensions of inputs and latents by
constructing LS4 layers for each dimension which are input into a mixing linear layer. We call such
parallelized SSMs heads and provide a pseudo-code in Appendix C.
Proposition 4.2. (Efficiency.) For a SSM with H heads, an observation sequence of length L and
hidden dimensionN can be calculated in O(H(L+N) log(L+N)) time and O(H(L+N)) space.

We provide proof in Appendix B. Note that our model is much more efficient in both time and space
than RNN/ODE-based methods (which requires O(N2L) in time and O(NL) in space as discussed
in Section 3.1). To demonstrate the computation efficiency, we additionally provide below pseudo-
code for a single LS4 prior layer 10. The other blocks can be similarly constructed.

def LS4_prior_layer(z, A, B, C, F, h_0): # z: (B, L, 1)
K = C @ materialize_kernel(z, A, B, h_0) # O((L+N)log(L+N)) time
CH = fft_conv(K, z) # O(LlogL) time and O(L) space
y = gelu(CH + F * z)
return y

Note that in practice, A is HiPPO initialized (Gu et al., 2020) and the materialized kernel includes
C so that the convolution is computed directly in the projected space, bypassing materializing the
high-dimensional hidden states.

5 EXPERIMENTS

In this section, we verify the modeling capability of LS4 empirically. There are three main questions
we seek to answer: (1) How effective is LS4 in modeling stiff sequence data? (2) How expressive is
LS4 in scaling to real time-series with a variety of temporal dynamics? (3) How efficient in training
and inference is LS4 in terms of wall-clock time?

5.1 LEARNING TO GENERATE DATA FROM STIFF SYSTEMS

Modeling data generated by dynamics with widely separated time scales has been proven to be
particularly challenging for vanilla ODE-based approaches which make use of standard explicit
solvers for inference and gradient calculation. Kim et al. (2021) showed that as the learned dynamics
stiffen up to track data paths, the ODE numerics start to catastrophically fail; the inference cost
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raises drastically and the gradient estimation process becomes ill–conditioned. These issues can be
mitigated by employing implicit ODE solvers or ad-hoc rescalings of the learned vector field (see
(Kim et al., 2021) for further details).

In turn, state–space models do not suffer from stiffness of dynamics as the numerical methods are
sidestepped in favor of an exact evaluation of the convolution operator. We hereby show that LS4 is
able to model data generated by a prototype stiff system.

FLAME problem We consider a simple model of flame growth (FLAME) (Wanner & Hairer, 1996),
which has been extensively studied as a representative of highly stiff systems:

d

dt
xt = x2t − xpt

where p ∈ {3, 4, . . . , 10}. For each p, 1000 trajectories are generated for t ∈ [0, 1000] with unit
increment.

Generation. In Figure 1a, we show the mean trajectories and the distribution at each time step
and that our samples closely match the ground-truth data. The Latent ODE (Rubanova et al., 2019)
instead fails to do so and produces non–stiff samples drastically different from the target.

(a) Generation of the stiff system. (b) Marginal histograms at steps equally spaced
between the 0.5% and 10% steps in log scale.

Marginal Distribution. We plot the marginal distribution of the real data and the generated data
from both our model and Latent ODE. Since the stiff transitions are mostly distributed before 10%
of total steps, we visualize the marginal histograms at 4 time steps equally spaced between the
0.5% and 10% steps in log scale (see Figure 1b). We observe that the empirical histogram matches
the ground truth distribution significantly better than what is produced by Latent ODEs, as also
qualitatively visible from the samples in (a).

5.2 GENERATION WITH REAL TIME-SERIES DATASETS

We investigate the generative capability of LS4 on real time-series data. We show that our model is
capable of fitting a wide variety of time-series data with significantly different temporal dynamics.
We leave implementation details to Appendix D.1.

Data. We use Monash Time Series Repository (Godahewa et al., 2021), a comprehensive benchmark
containing 30 time-series datasets collected in the real world, and we choose FRED-MD, NN5 Daily,
Temperature Rain, and Solar Weekly as our target datasets. Each dataset exhibits unique temporal
dynamics, which makes generative learning a challenging task. A sample from each dataset can be
visualized in Figure 2.

Figure 2: Monash data. The selected datasets exhibit a variety of temporal dynamics ranging from relatively
smooth to stiff transitions.

Metrics. We propose 3 different metrics for measuring generation performance, namely Marginal,
Classification, and Prediction scores. Marginal scores calculate the absolute difference between
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empirical probability density functions of two distributions – the lower the better (Ni et al., 2020).
Following Kidger et al. (2021), we define Classification scores as using a sequence model to classify
whether a sample is real or generated and use its cross-entropy loss as a proxy for generation quality
– the higher the less distinguishable the samples, thus better the generation. Similarly, Prediction
scores use a train-on-synthetic-test-on-real seq2seq model to predict k steps into the future – the
lower the more predictable, thus better the generation. We use a 1-layer S4 (Gu et al., 2021) for
both Classification and Prediction scores (see Appendix D.1 for more details). We will discuss the
necessity of all 3 metrics in the following discussion section.

We compare our model with several time-series generative models, namely the VAE-based methods
such as RNN-VAE (Rubanova et al., 2019), GP-VAE (Fortuin et al., 2020), ODE2VAE (Yildiz et al.,
2019), Latent ODE (Rubanova et al., 2019), GAN-based methods such as TimeGAN (Yoon et al.,
2019) and SDE GAN (Kidger et al., 2021), and SaShiMi (Goel et al., 2022). We show quantitative
results in Table 1.

Data Metric RNN-VAE GP-VAE ODE2VAE Latent ODE TimeGAN SDEGAN SaShiMi LS4 (Ours)

FRED-MD Marginal ↓ 0.132 0.152 0.122 0.0416 0.0813 0.0841 0.0482 0.0221
Class. ↑ 0.0362 0.0158 0.0282 0.327 0.0294 0.501 0.00119 0.544
Prediction ↓ 1.47 2.05 0.567 0.0132 0.0575 0.677 0.232 0.0373

NN5 Daily Marginal ↓ 0.137 0.117 0.211 0.107 0.0396 0.0852 0.0199 0.00671
Class. ↑ 0.000339 0.00246 0.00102 0.000381 0.00160 0.0852 0.0446 0.636
Prediction ↓ 0.967 1.169 1.19 1.04 1.34 1.01 0.849 0.241

Temp Rain Marginal ↓ 0.0174 0.183 1.831 0.0106 0.498 0.990 0.758 0.0834
Class. ↑ 0.00000212 0.0000123 0.0000319 0.0000419 0.00271 0.0169 0.0000167 0.976
Prediction ↓ 159 2.305 1.133 145 1.96 2.46 2.12 0.521

Solar Weekly Marginal ↓ 0.0903 0.308 0.153 0.0853 0.0496 0.147 0.173 0.0459
Class. ↑ 0.0524 0.000731 0.0998 0.0521 0.6489 0.591 0.00102 0.683
Prediction ↓ 1.25 1.47 0.761 0.973 0.237 0.976 0.578 0.141

Table 1: Generation results on FRED-MD, NN5 Daily, Temperature Rain, and Solar Weekly.

Our model significantly outperforms the baselines on all datasets. We note that baseline models
have a hard time modeling NN5 Daily and Temperature Rain where the transition dynamics are
stiff. For Temperature Rain where most data points lie around x-axis with sharp spikes throughout,
latent ODE generates mostly closely to the x-axis, thus achieving lower marginal scores, but its
generation is easily distinguishable from data, thus making it a less favorable generative model. We
demonstrate that Marginal scores alone are an insufficient metric for generation quality. SaShiMi,
an autoregressive model based on S4, does not perform as well on time series generation in the tasks
considered. We further discuss the reason in Appendix D.1.

5.3 INTERPOLATION & EXTRAPOLATION

We also show that our model is expressive enough to fit to irregularly-sampled data and performs
favorably in terms of interpolation and extrapolation. Interpolation refers to the task of predicting
missing data given a subset of a sequence while extrapolation refers to the task that data is separated
into 2 segments each with half the length of the full sequence, and one predicts the latter segment
given the former.

Data. Following Rubanova et al. (2019); Schirmer et al. (2022), we use USHCN and Physionet as
our datasets of choice. The United States Historical Climatology Network (USHCN) (Menne et al.,
2015) is a climate dataset containing daily measurements form 1,218 weather stations across the
US for precipitation, snowfall, snow depth, minimum and maximum temperature. Physionet (Silva
et al., 2012) is a dataset containing health measurements of 41 signals from 8,000 ICU patients in
their first 48 hours. We follow preprocessing steps of Schirmer et al. (2022) for training and testing.

Metrics. We use mean squared error (MSE) to evaluate both interpolation and extrapolation.

We compare our model with RNN (Rumelhart et al., 1985), RNN-VAE (Chung et al., 2014;
Rubanova et al., 2019), ODE-RNN (Rubanova et al., 2019), GRU-D (Rubanova et al., 2019), Latent
ODE (Chen et al., 2018; Rubanova et al., 2019), and CRU Schirmer et al. (2022). Results are shown
in Table 2.

2Numbers are taken from the original paper. We keep the significant digits unchanged
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Task Data RNN RNN-VAE ODE-RNN GRU-D Latent ODE CRU 2 LS4 (Ours)

Interp. Physionet 2.918 5.930 2.234 3.325 8.341 1.82 0.6287
USHCN 4.322 7.561 2.473 3.395 6.859 0.16 0.0594

Extrap. Physionet 3.406 3.064 3.014 3.120 4.212 6.29 4.942
USHCN 9.474 9.083 9.045 8.964 8.959 12.73 2.975

Table 2: Interpolation and extrapolation MSE (×10−3) scores. Lower scores are better.

We observe that our model outperforms previous continuous-time methods. Our model performs less
well on extrapolation for Physionet compared to ODE-RNN and latent ODE. We postulate that this
is due to the high variability granted by our latent space. Since new latent variables are generated
as we extrapolate, our model generates paths that are more flexible (hence less predictable) than
those of Latent ODE, which instead uses a single latent variable to encode an entire path. We
additional observe that our model achieves ELBO of −669.0 and −250.2 on Physionet interpolation
and extrapolation tasks respectively. These bounds are much tighter lower bounds than other VAE-
based methods, i.e. RNN-VAE, which reports −412.8 and −220.2, and latent ODE, which reports
−410.3 and −168.5. We leave additional ELBO comparisons in Appendix D.

5.4 RUNTIME

We additionally verify the computational efficiency of our model for both training and inference.
We do so by training and inferring on synthetic data with controlled lengths specified below.

Data. We create a set of synthetic datasets with lengths {80, 320, 1280, 5120, 20480} to investigate
scaling of training/inference time with respect to sequence length. Training is done with 100 itera-
tions through the synthetic data, and inference is performed given one batch of synthetic data (see
Appendix D.3).

Metrics. We use wall-clock runtime measured in milliseconds.

Figure 3: Runtime comparison. The y-axis shows run-time (ms) of each setting in log scale. Our runtime stays
consistently lower across all sequence lengths investigated.

Figure 3 shows model runtime in log scale. ODE2VAE fails to finish training on the last sequence
length within a reasonable time frame, so we omit its plot of the last data point. Our model performs
consistently and significantly lower than baselines, which are observed to scale linearly with input
lengths, and is ×100 faster than baselines in both training and inference on 20480 length.

6 CONCLUSION

We introduce LS4, a powerful generative model with latent space evolution following a state space
ODE. Our model is built with a deep stack of LS4 prior/generative/inference blocks, which are
trained via standard sequence VAE objectives. We also show that under specific choices of model
parameters, LS4 subsumes autoregressive S4 models. Experimentally, we demonstrate the modeling
power of LS4 on datasets with a wide variety of temporal dynamics and show significant improve-
ment in generation/interpolation/extrapolation quality. In addition, our model shows ×100 speed-up
in training and inference time on long sequences. LS4 demonstrates improved expressivity and com-
putational efficiency, and we believe that it has a further role to play in modeling general time-series
sequences.
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Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

10



Under review as a conference paper at ICLR 2023

Albert Gu, Ankit Gupta, Karan Goel, and Christopher Ré. On the parameterization and initialization
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