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Abstract
Recent approaches to word sense disambigua-001
tion (WSD) utilize encodings of the sense gloss002
(definition text), in addition to the input words003
and context, to improve performance. In this004
work we demonstrate that this approach can005
be adapted for use in multiword expression006
(MWE) identification by training a Bi-encoder007
model which uses gloss and context informa-008
tion to filter MWE candidates produced from009
a simple rule-based extraction pipeline. Our010
approach substantially improves precision, out-011
performing the state-of-the-art in MWE iden-012
tification on the DiMSUM dataset by 0.9 F1013
points and achieving competitive results on the014
PARSEME 1.1 English dataset. Our model015
also retains most of its ability to perform WSD,016
demonstrating that a single model can success-017
fully be applied to both of these tasks. Addi-018
tionally, we experiment with applying Poly-019
encoder models to MWE identification and020
WSD, introducing a modified Poly-encoder ar-021
chitecture which outperforms the standard Poly-022
encoder on these tasks and improves MWE023
identification performance.024

1 Introduction025

Word sense disambiguation (WSD), the task of pre-026

dicting the appropriate sense for a word in context,027

and multiword expression (MWE) identification,028

the task of identifying multiword expressions in a029

body of text, are both tasks that deal with determin-030

ing the meaning of words in context (Maru et al.,031

2022; Constant et al., 2017). Despite their com-032

monalities, and the fact that both share a place in033

the NLP pipeline as preprocessing tasks, they have034

traditionally been treated as separate tasks. This is035

potentially disadvantageous as WSD performed on036

words which are part of unrecognized MWEs can-037

not produce correct meanings, and the meanings038

of polysemous MWEs are ambiguous even after039

identification.040

In order to correctly identify the meanings of all041

words in a sentence we must solve both of these042

tasks in an integrated way. WSD can give us the 043

appropriate sense for both single words and MWEs, 044

but we must first identify which words in the sen- 045

tence are part of MWEs. Consider the sentence 046

“She inherited a fortune after her grandfather kicked 047

the bucket.”, which tell us that someone’s grand- 048

father has died, but we would not expect to find 049

meanings associated with death in the sense inven- 050

tories of either kick or bucket. However, like many 051

other MWEs, kick the bucket can also have a lit- 052

eral, non-compositional meaning as in “He kicked 053

the bucket down the hill”, so we cannot indiscrim- 054

inately mark all combinations of words in known 055

MWEs as those MWEs. Finally, note that MWEs 056

can have multiple possible senses in the same way 057

words can: for example, break up can refer both 058

to objects physically breaking apart and romantic 059

relationships ending. 060

In this paper, we propose a system that can tackle 061

word sense disambiguation and multiword expres- 062

sion identification together, using an MWE lexicon 063

and rule-based pipeline to identify MWE candi- 064

dates and a Bi-encoder to both perform WSD and 065

filter MWE candidates. Similar to prior work in 066

WSD, Our Bi-encoder consists of two BERT (De- 067

vlin et al., 2019) models which encode the words 068

in context along and the possible sense glosses, 069

respectively, into the same embedding space. By 070

utilizing gloss information to filter out MWE can- 071

didates whose meanings don’t make sense in con- 072

text, we improve precision and achieve state-of-the- 073

art F1 for MWE identification on the DiMSUM 074

dataset (Schneider et al., 2016) and competitive 075

performance on the PARSEME 1.1 English data 076

(Ramisch et al., 2018). To the best of our knowl- 077

edge, this work is the first to use glosses as a re- 078

source for multiword expression identification. 079

Additionally, we experiment with Poly-encoders 080

(Humeau et al., 2020) for the same set of tasks, 081

proposing a novel architecture that helps the Poly- 082

encoder focus on specific words. Our contributions 083
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are summarized as follows:084

• We show that it is viable to solve MWE iden-085

tification and WSD together, presenting an086

approach which uses a rule-based system to087

generate MWE candidates and a Bi-Encoder088

to filter them and perform WSD089

• We demonstrate that our approach produces090

models capable of both tasks, achieving state-091

of-the-art results for MWE identification on092

DiMSUM and only 6% less F1 for WSD than093

an equivalent single-task model094

• We propose a Poly-encoder architecture which095

outperforms the standard Poly-encoder on our096

tasks and improves MWE identification per-097

formance on PARSEME098

We make all of our code, models and data public.099

2 Related Work100

2.1 Word Sense Disambiguation101

The task of word sense disambiguation has a long102

history in NLP, first introduced as a necessary step103

for machine translation by Weaver (1949). In fact,104

WSD has shown to be useful for improving down-105

stream performance not just in machine translation,106

but in other tasks such as Information Extraction107

as well (Barba et al., 2021; Song et al., 2021).108

Until the last few years, most approaches to109

WSD treated senses simply as labels from a large110

vocabulary of possible labels in a classification111

task. This formulation risks limiting the informa-112

tion available to the model about each sense to113

only what is learnable from the training data, and114

can lead to poor performance on rare or unseen115

senses. In order to mitigate these problems, recent116

approaches to WSD have improved performance117

by incorporating glosses (Blevins and Zettlemoyer,118

2020; Barba et al., 2021; Zhang et al., 2022).119

Our work is inspired by this methodology and120

utilizes gloss information to improve MWE iden-121

tification. In particular, Blevins and Zettlemoyer122

(2020) demonstrate that a simple Bi-encoder model123

consisting of two BERT models can achieve com-124

petitive WSD performance, with Kohli (2021) im-125

proving Bi-encoder training for WSD and Song126

et al. (2021) achieving further performance gains127

through improved sense representations. Bi-128

encoder models also have the advantage of being129

efficient at inference time due to the fact that doc- 130

ument representations (for WSD, gloss represen- 131

tations) can be computed in advance and cached, 132

which lead us to choose this architecture for our 133

experiments. 134

2.2 Poly-encoders 135

The Poly-encoder architecture was proposed by 136

Humeau et al. (2020) as a middle ground between 137

Bi-encoders and Cross-encoders (which jointly en- 138

code all possible input pairs), retaining the speed 139

advantage of the Bi-encoder, but allowing some 140

information to flow between the two encoder out- 141

puts like the Cross-encoder. It can be used in place 142

of Bi-encoder models in tasks such as information 143

retrieval (Li et al., 2022) and text reranking (Kim 144

et al., 2022), or in our case, word sense disambigua- 145

tion and MWE identification. 146

2.3 Multiword Expression Identification 147

Precisely defining what constitutes a multiword ex- 148

pression has proven to be difficult (Maziarz et al., 149

2015), but they can be broadly defined as groupings 150

of words whose meaning is not entirely composed 151

of the meanings of included words (Sag et al., 2002; 152

Baldwin and Kim, 2010). This includes idioms 153

such as a taste of one’s own medicine, verb-particle 154

constructions such as break up or run down, id- 155

iomatic compound nouns such as bus stop, and 156

potentially any other grouping of words with non- 157

compositional semantics. In fact, a significant por- 158

tion of noun MWEs are named entities, such that 159

there is some overlap between MWE identification 160

and NER (Savary et al., 2019). 161

The task of MWE identification is locating these 162

MWEs in a given body of text. The two main 163

approaches to solving MWE identification have 164

been rule-based systems (Foufi et al., 2017; Pasquer 165

et al., 2020) and neural token tagging systems (Ro- 166

hanian et al., 2019; Liu et al., 2021). Rule-based 167

systems remain competitive with neural models in 168

this task, and many systems use MWE lexicons 169

in order to identify multiword expressions in text, 170

which Savary et al. (2019) argue are critical to mak- 171

ing progress in MWE identification. This applies 172

to our system as well, which relies on a lexicon 173

in order to be able to find candidate MWEs. Kur- 174

falı and Östling (2020) and Kanclerz and Piasecki 175

(2022) are similar to our work in that they frame 176

the task of MWE identification as a classification 177

problem, although neither use gloss information. 178
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Figure 1: A diagram illustrating how the Bi-encoder computes scores for an arbitrary MWE. Representations of
each MWE are computed as an average of its constituents, and sense representations are taken from the [CLS] token
encodings. The dot product of these representations then becomes the scores for each sense.

Among all the types of MWEs, verbal MWEs179

are particularly difficult to identify due to their sur-180

face variability — constituents can be conjugated181

or separated so that they become discontinuous182

(Pasquer et al., 2020). Much work on verbal MWE183

identification, especially in languages other than184

English, has been done as part of recent iterations185

of the PARSEME shared task (Ramisch et al., 2018)186

which focused on identifying verbal MWEs across187

a wide variety of languages.188

3 Methodology189

In this section, we explain our approach for solving190

multiword expression identification and word sense191

disambiguation.192

3.1 Bi-encoder193

We use a Bi-encoder identical to that of Blevins194

and Zettlemoyer (2020) for WSD, consisting of a195

context encoder Tc and gloss encoder Tg, both196

of which are BERT (Devlin et al., 2019) models.197

Given an input context sentence c = (w0, ...wn)198

containing the target words to disambiguate, we199

first tokenize it and use the context encoder to pro-200

duce representations for each token. Because to-201

kenization may break words up into multiple sub-202

words — and because as described below, we also203

use this model for multiword expressions — repre-204

sentations are computed as an average of all sub-205

words in a word or MWE. 206

Tc(c) = t0, ...tn 207

rw =
1

|w|
∑
t∈w

t 208

Then, for each target word, the gloss encoder pro- 209

duces representations for each of the word’s senses. 210

We pool the encoder output by taking the represen- 211

tation of the [CLS] token for each sense. 212

rs = Tg(gs)[0] 213

Scores corresponding to possible senses for each 214

target word are computed as the dot product of the 215

word and sense representations. 216

ϕ(w, si) = rw · rsi 217

Finally, the model predicts the sense with the high- 218

est score. 219

pred(w) = argmax
si

ϕ(w, si) : si ∈ Sw 220

An overview of the model architecture can be seen 221

in Figure 1. 222

3.2 Poly-encoder 223

We also experiment with Poly-encoders as an alter- 224

native to the Bi-encoder model. The Poly-encoder 225

still has two encoders, a context encoder Tc for 226

target word contexts and a gloss encoder Tg for 227

gloss definitions. There is also a new set of param- 228

eters that Humeau et al. (2020) refer to as code 229
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embeddings, Q. These codes are used to extract230

information from context representation produced231

by the context encoder. The inputs to the Poly-232

encoder are the same as the Bi-encoder, sense rep-233

resentations rs are computed in the same way, and234

predictions are still the highest scoring sense. How-235

ever, senses are scored differently, as described236

below.237

We take the last hidden state of the context en-238

coder as the as the context representation rc =239

Tc(c), which we use along with the code embed-240

dings Q = (q1, ..., qm) in the first dot-product at-241

tention step (code context attention) of the Poly-242

encoder. We use a different set of embeddings243

for single words and MWEs. The number of em-244

beddings, m, is a hyperparameter and their dimen-245

sionality is the same as the encoders’ hidden sizes.246

The context representation rc is used as both keys247

and values in this dot-product attention module,248

yielding a code attended context Yctxt. The repre-249

sentation a code qi extracts is as follows:250

(wqi
0 , ..., w

qi
n ) = softmax(qi · rc1 , ...qi · rcn)251

yictxt =
n∑

j=1

wqi
j rcj252

The sense representations rs are then used as253

queries and the code-attended context representa-254

tions Yctxt are used as keys and values in a final255

dot-product attention module, which yields a gloss256

attended code-context. For a word or MWE w with257

|Sw| = k possible senses:258

(w1, ..., wm) = softmax(rsi · y1ctxt, ..., rsi · ymctxt)259

yfinal =
k∑

i=1

wiy
i
ctxt260

We then take the dot product of the gloss at-261

tended code-context yfinal and each gloss embed-262

ding rs0 , ...rsk , yielding a score for each definition:263

ϕ(w, si) = yfinal · rsi .264

3.3 Distinct Codes Attention265

Since the Poly-encoder was originally designed to266

compute sentence representations, it contains no267

mechanism for explicitly focusing on a specific268

set of target words/subword tokens. To address269

this problem, we propose a variation of the Poly-270

encoder which we call “distinct codes attention”271

(DCA). We change the code context attention step272

of the Poly-encoder to use two sets of code em-273

beddings: one set of code embeddings for target274

words and one set for non-target words. Since we 275

also maintain different code embeddings for single 276

words and MWEs, this gives us a total of four sets 277

of code embeddings. 278

In the first attention module, code-context at- 279

tention, we now construct a query matrix using 280

the target-word codes only at the indices of sub- 281

words in a target word or MWE, and the nontarget 282

code embeddings elsewhere. We do this by using 283

two masks: the target mask, Mt, which is 1 at the 284

indices of target subwords and 0 otherwise. The 285

nontarget mask Mnt is the opposite: 0 at target 286

indices, 1 elsewhere. We then multiply each mask 287

by its respective code embeddings Q and then add 288

the products: 289

QKT = (Mt ∗Qt) + (Mn ∗Qnt) 290

Finally, we softmax and multiply QKT by the en- 291

coded context rc to yield the code attended context, 292

Yctxt = softmax(QKT )(rc). The gloss attended 293

context and final scores are then computed identi- 294

cally to the standard Poly-encoder. 295

3.4 MWE Identification Pipeline 296

Our system for MWE identification is a three-stage 297

pipeline inspired by Kulkarni and Finlayson (2011), 298

consisting of one or more detector functions which 299

generate possible MWEs from an input sentence, 300

zero or more filter functions which filter these can- 301

didates, and up to one resolver which chooses be- 302

tween two MWE candidates in case of overlap. 303

Our detector is a simple exhaustive search 304

which returns all combinations of words in a sen- 305

tence which correspond to MWEs in our lexicon. 306

That is, our initial set of candidates before filtering 307

is every combination of words in the input sen- 308

tence that correspond to any MWEs in our lexicon. 309

Our filters include OrderedOnly which discards 310

MWE candidates where the constituent words are 311

out of order and MaxGappiness which discards 312

candidates with too many tokens in between con- 313

stituents, but the most critical is the BiEncoder- 314

Filter, which discards MWE candidates judged to 315

be incorrect by our Bi-encoder (or Poly-encoder) 316

model. We use the term “rule-based pipeline” to 317

describe variations of the pipeline without the Bi- 318

EncoderFilter in later sections. 319

3.4.1 Bi-encoder Filter 320

Because all of our MWE candidates correpond to 321

words (and consequently subwords) in the input 322

sentence, we can produce a representation rw for 323
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each MWE candidate, along with scores for each324

of their possible senses, the same way we do for325

words. However, since no MWE will have a sense326

corresponding to the case where that candidate is327

a false positive, we define a special sense n to rep-328

resent the case where none of the other senses are329

correct (I.E. where this candidate is not actually an330

MWE, or at least not one in our lexicon). Since n331

has no gloss, we cannot use the gloss encoder to332

compute a representation for it, and instead make333

this representation a learnable parameter matrix rn,334

with the same dimensionality as the model’s hid-335

den size. This representation can then be used in336

the scoring functions for the Bi-encoder or Poly-337

encoder to compute a score for the candidate not338

being an MWE, which we use in our BiEncoder-339

Filter. This filter excludes any MWE candidates340

where the “not an MWE” score is higher than any341

of the scores for other senses, retaining only candi-342

dates for which the below is true:343

∃si ∈ Sw ϕ(w, si) > ϕ(w, n)344

Although uncommon after filtering, in cases of345

overlap between candidates, our resolver chooses346

the MWE with the largest difference between its347

highest scoring sense and the “not an MWE” sense.348

Note that since this filtering process involves com-349

puting scores for all possible senses, it also effec-350

tively performs WSD on any polysemous MWEs.351

3.4.2 Limitations352

The output of our MWE pipeline can only ever353

be a subset of the original candidates generated,354

which are by definition a subset of MWEs present355

in our lexicon. Furthermore, because our BiEn-356

coderFilter uses the gloss text as input, it requires357

that definitions be present for all MWE lexicon en-358

tries. Consequently, our approach depends on the359

presence of a high-quality lexicon which includes360

both MWE lemmas and possible definitions, mak-361

ing it ill-suited for scenarios where data like this362

may not be publicly available yet, such as in low363

resource languages. However, we are optimistic364

that work in MWE discovery (Ramisch et al., 2010)365

and definition generation (Bevilacqua et al., 2020)366

will help to mitigate this problem by automating367

parts of the data creation process.368

4 Experiments369

4.1 Lexicon370

We use WordNet (Miller, 1995) as our MWE lexi-371

con for all experiments, treating every entry includ-372

ing the character “_” as an MWE. All sense glosses 373

are taken from WordNet 3.0. 374

4.2 Training Data 375

We train our models on SemCor (Miller et al., 376

1993), a word sense disambiguation dataset con- 377

taining a total of 226,036 examples annotated with 378

senses from WordNet. In order to make the data 379

usable for MWE identification in addition to WSD, 380

we preprocess it in the following ways. First, since 381

MWEs in SemCor are not distinguished from nor- 382

mal words, we explicitly mark any words whose 383

lemma includes the character “_” as MWEs such 384

that during training the possible labels for these 385

MWEs include the “not an MWE” sense as well 386

as their normally available senses. We also attach 387

stranded constituents to their parent MWE, since 388

some discontiguous MWEs in SemCor are labeled 389

only on a subset of the included words1. Finally, 390

because SemCor contains no examples of negative 391

MWEs — instances where the constituent elements 392

of an MWE are all present but their meaning in 393

context does not match any of the MWE senses 394

— we must add these ourselves. We primarily do 395

this by automatically generating synthetic nega- 396

tive examples, using the rule-based pipeline with 397

its filters inverted. That is, we mark out-of-order 398

and/or extremely gappy MWEs as training exam- 399

ples whose gold label is the “not an MWE” sense. 400

We randomly add negative training examples in 401

this fashion until they account for approximately 402

50% of the MWE examples in the training data. 403

While this approach is effective in generating 404

a large number of negative examples, it risks en- 405

couraging the model to learn the heuristics used to 406

generate these synthetic negative examples instead 407

of learning how to judge whether a MWE candi- 408

date is correct using context and the information in 409

its gloss(es). In order to combat this, we manually 410

annotate a small number of examples which are 411

neither out of order nor excessively gappy. Annota- 412

tion is done by using a variation of the rule-based 413

pipeline to extract candidates, which we mark ei- 414

ther with the appropriate sense from WordNet or as 415

a negative example if none of the available senses 416

are appropriate for the constituent words in the 417

given sentence. 418

1For example, in the sentence “Are they encouraged to
take full legal advantage of these benefits?” (ID d000.s015),
the verb take is correctly labeled as the MWE take_advantage,
but advantage is not labeled as being part of any MWE.
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Pos MWE Neg MWE
SemCor 12409 0

+Annotation 12907 658
+AutoNeg 12907 14688

Table 1: SemCor data after each processing step

4.3 Training419

Like Blevins and Zettlemoyer (2020), we train420

with cross-entropy loss. The difference is that for421

MWEs, there is one additional possible label repre-422

senting the “not an MWE” case. Given a word or423

MWE w, its gold sense gs, and |Sw| = j possible424

senses in the lexicon, this formalizes to:425

L(w, gs) = −ϕ(w, gs) + log
∑
x∈X

exp(ϕ(w, x))426

X =

{
{s0, ...sj , n} if MWE
{s0, ...sj} otherwise

427

We define batch size by the number of training ex-428

amples (words or MWEs to be labeled) in each429

batch, and keep this number constant by adjusting430

the number of sentences and/or masking out exam-431

ples to save them for the next batch. We train for432

15 epochs, computing F1 on the WSD and MWE433

identification dev sets once per epoch and using the434

best performing model as our final model. Batch435

size and other hyperparameters such as learning436

rate were determined by hyperparameter search.437

Further implementation and training details can be438

found in Appendix A.439

4.4 Evaluation440

We evaluate our model on two MWE detection441

datasets: The English section of the PARSEME 1.1442

Shared Task (Ramisch et al., 2018) and the DiM-443

SUM dataset (Schneider et al., 2016). We do not444

evaluate on STREUSLE (Schneider et al., 2018) as445

it requires predicting lexical categories and super-446

senses2, while our system predicts only the pres-447

ence or absence of MWEs. For performance on448

the WSD task, we use the unified evaluation frame-449

work established by Raganato et al. (2017), and450

evaluate on the English all-words task.451

We report scores on four variations of our sys-452

tem. The first is an entirely rule-based pipeline453

with no BiEncoderFilter, and the remainder are the454

same pipeline with variations of the BiEncoderFil-455

ter with different models: one Bi-Encoder (abbre-456

2The STREUSLE evaluation script rejects input without
appropriate lexical categories/supersenses

viated as BiEnc) trained on the modified SemCor 457

data, one trained on the SemCor data and then fine- 458

tuned on the MWE identification datasets, and our 459

DCA Poly-encoder trained and fine-tuned on the 460

same data. We fine tune using any positive labeled 461

examples of MWEs which are in our lexicon (as 462

we cannot identify MWEs missing from our lexi- 463

con regardless), and take any incorrect outputs of 464

our pipeline on the fine tuning data as negative ex- 465

amples. This means that all the negative training 466

examples the model sees when fine tuning are false 467

positives from the model itself, allowing the model 468

to learn from its mistakes. Because PARSEME and 469

DiMSUM are not annotated with sense information 470

(only a binary labeling of MWE or not), we pick 471

the first sense from WordNet as the gold label for 472

positive examples when fine-tuning. 473

4.4.1 PARSEME 1.1 474

The PARSEME 1.1 shared task focuses on the iden- 475

tification of verbal multiword expressions, with its 476

English data containing 3471 sentences in the train- 477

ing set and 3965 in test. We use 10% of the train 478

data for our dev set when fine tuning. Because the 479

dataset contains only verbal MWEs, when evalu- 480

ating on PARSEME we add a filter that limits the 481

output of our pipeline to verbal MWEs. 482

4.4.2 DiMSUM 483

The DiMSUM test set consists of a mixture of on- 484

line reviews, tweets and TED Talks which have 485

been annotated with MWEs and other information. 486

There are 4799 sentences in the training set, and 487

1000 in the test set. As with the PARSEME data, 488

we use 10% of the train data for our dev set. Be- 489

cause most noun phrases are marked as MWEs in 490

DiMSUM, when evaluating on DiMSUM we also 491

add a rule-based detector which marks consecutive 492

nouns as MWEs. 493

4.4.3 WSD Evaluation 494

Following standard practice, we use the SemEval- 495

2007 dataset (Pradhan et al., 2007) as our dev set, 496

holding out the remaining Senseval-02, Senseval- 497

03, SemEval-2013, and SemEval-2015, as test sets 498

(Palmer et al., 2001; Snyder and Palmer, 2004; 499

Navigli et al., 2013; Moro and Navigli, 2015). 500

5 Results 501

Table 2 shows results on MWE identification for 502

PARSEME 1.1 English and DiMSUM, as well as 503
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Evaluation Results PARSEME 1.1 DiMSUM WSD
System MWE-Based Token-based MWEs

P R F1 P R F1 P R F1 F1
Taslimipoor+ (2019) - - 36.0 - - 40.2 - - - -
Rohanian+ (2019) - - 41.9 - - - - - - -

Kirilin+ (2016) - - - - - - 73.3 48.4 58.4 -
Williams (2017) - - - - - - 65.4 56.0 60.4 -

Liu+ (2021) 36.1 45.5 40.3 40.2 52.0 45.4 47.9 52.2 50.0 -
BEM (2020) - - - - - - - - - 79.0
Rule-based 16.3 39.9 23.1 19.2 43.9 26.7 57.7 55.5 56.6 -

BiEnc (SemCor) 27.5 38.8 32.2±0.8 30.0 39.43 34.1±0.3 70.7 52.57 60.0±0.4 77.4±0.6
BiEnc (fine-tuned) 44.5 31.0 36.5±0.9 46.4 30.5 36.2±0.8 80.9 49.3 61.3±0.4 74.2±1.0
DCA (fine-tuned) 45.4 33.2 38.3±0.1 46.9 31.9 38.0±0.2 80.4 49.5 61.3±0.4 74.4±0.6

Table 2: Test set results on PARSEME 1.1 English and DiMSUM for MWE identification, and the English all-words
WSD task. For trainable models we report the mean (± standard deviation for the F1 score) of three runs with
random seeds. Because our system uses gold POS tags/lemmas to look up sense glosses, we compare against
systems using gold information where available, such as for Liu et al. (2021) and Kirilin et al. (2016).

the English all-words WSD task. We focus pri-504

marily on work in MWE identification, but include505

BEM (Blevins and Zettlemoyer, 2020) as a point506

of reference for WSD performance, since it is a507

Bi-encoder trained exclusively for WSD.508

Our system achieves moderate performance on509

PARSEME and competitive performance on the510

DiMSUM trained only on the modified SemCor511

data. When fine-tuned on the training data from512

both MWE identification datasets its performance513

on PARSEME improves and it achieves state-of-514

the-art performance on DiMSUM. Additionally, its515

F1 for the WSD task is only 6% lower than BEM,516

showing that a single model can perform both tasks.517

High precision stands out as a clear strength of518

our approach to MWE identification, but it suffers519

from low recall — even the entirely rule-based520

pipeline with minimal filtering still falls behind521

other systems in recall. We attribute this primar-522

ily to the issue of lexicon dependence described in523

Section 3.4.2; multiword expressions missing from524

our lexicon simply cannot be identified, and this525

accounts for a large portion of our false negatives526

as we show in our error analysis below (Section 6).527

These findings echo those of Savary et al. (2019) in528

terms of the importance of lexicons for MWE iden-529

tification, and suggest that there is room to improve530

performance simply by expanding the lexicon.531

5.1 Poly-encoder Performance532

The standard Poly-encoder architecture performed533

worse than the Bi-encoder systems for all tasks,534

likely because it was designed to improve sentence535

representations and has no mechanism to focus on 536

target words. Our proposed distinct codes attention 537

architecture remedies this weakness and outper- 538

forms the Bi-encoder on the PARSEME data while 539

matching its performance for other datasets, such 540

that overall our best-performing model overall is 541

the fine-tuned DCA Poly-encoder. However, we 542

did not find that the DCA architecture meaningfully 543

improved performance on WSD in our experiments, 544

and leave Poly-encoder architectures for WSD to 545

future work. 546

5.2 Transfer Learning Ablation 547

In order to assess whether the model’s performance 548

on MWE identification benefits from training on 549

SemCor data, we also train models using just the 550

PARSEME and/or DiMSUM data. We find that 551

the presence or absence of this SemCor pretraining 552

makes a substantial difference; systems using mod- 553

els trained on only a single dataset barely outper- 554

form the rule-based pipeline. A model trained on 555

both datasets produces slightly better results (likely 556

just due to having more training data), but still 557

scores worse than even the SemCor only model, 558

achieving 30.0 and 59.0 F1 on PARSEME and 559

DiMSUM respectively. 560

6 Error Analysis 561

In order to better understand the output of our 562

system and its performance on the DiMSUM and 563

PARSEME data, we perform an error analysis of 564

the output of our base and fine-tuned models on 565

both test sets, taking 50 false positives and 50 false 566
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Dataset Type Sentence Note
PARSEME FP ...were propped up on a foot-warmer, ... prop up never marked as MWE in dataset

PARSEME FN Never mind, Mrs. Bray will join you later. never mind missing from lexicon

PARSEME FP ...his mind drifted off to the accounts... Lexicon definition of “fall asleep” does not apply

DiMSUM FP Aww, thank you. thank you marked as MWE in 4 other sentences

DiMSUM FN All our dreams can come true,... come true missing from lexicon

DiMSUM FN ...this was a breathe of fresh air. Present in lexicon; Bi-encoder false negative

Table 3: Error Examples

negatives from each combination of model and567

dataset (for a total of 400 examples). Select exam-568

ples can be seen in Table 3, and detailed statistics569

about the outcome of our analysis can be found in570

Appendix B.571

For false positives, we find that more than 80%3572

of the time a definition found in our lexicon was573

appropriate for the combination of words marked574

as an MWE in context of that sentence, meaning575

that these are cases where the model is successfully576

identifying a MWE candidate with a valid defini-577

tion in our lexicon but the output still disagrees578

with the gold label annotations. Many of these579

MWEs are present in our lexicon but nowhere in580

the test set, suggesting discrepancies between the581

scope of what WordNet and these datasets respec-582

tively define as multiword expressions. Further-583

more, there are also a significant number of false584

positives for MWEs that are marked as MWEs585

in other places in the dataset, but not in that spe-586

cific sentence. In some cases this may be because587

these combinations of words were only marked as588

MWEs when they had specific meanings or partic-589

ularly non-compositional semantics, but this did590

not seem to be the case for many examples we591

examined.592

For false negatives, more than 85% were cases593

where the target MWE was missing from our lexi-594

con, so the bottleneck for recall appears to be our595

system’s lexicon. However, for the majority of596

false negatives where the the MWE was present in597

our lexicon it was also associated with a definition598

appropriate for that combination of words in that599

sentence, meaning that these represent failures of600

our MWE identification system and not the lexi-601

con. In conclusion, the results of our analysis speak602

to the difficult and potentially subjective nature of603

defining and annotating MWEs, and we hope to604

see further work exploring this area in the future.605

3Computed excluding false-positives from the DiMSUM
noun phrase detector, which does not use the lexicon

7 Conclusion 606

In this work, we present an approach to MWE 607

identification and WSD using rule-based candi- 608

date extraction with a Bi-encoder filter, achieving 609

strong results on the PARSEME 1.1 English data 610

and state-of-the-art results for MWE identification 611

on the DiMSUM dataset. Our system uses the same 612

model for both word sense disambiguation and 613

MWE identification, demonstrating that these tasks 614

can be tackled together. We also experiment with 615

applying Poly-encoders to the same tasks, intro- 616

ducing a modified Poly-encoder architecture better 617

suited to MWE identification. 618

Our system’s strength is its high precision for 619

MWE identification, but it remains limited by its 620

low recall. We show this to be a function of lexicon 621

size, so one possible direction for future work could 622

be expanding the lexicon by mining MWEs and 623

generating their definitions, which has the potential 624

to substantially increase recall for lexicon-based 625

systems. 626

Future work in better approaches for multitask 627

training of MWE identification/WSD models could 628

also be valuable; the ideal preprocessing pipeline 629

would be competitive with state-of-the-art systems 630

in both tasks, and not just MWE identification. 631
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A Implementation Details903

Bi-encoder and Poly-encoder models are imple-904

mented and trained with Pytorch Lightning (Fal-905

con and The PyTorch Lightning team, 2019), us-906

ing pretrained BERT models from the Transform-907

ers library (Wolf et al., 2020). All models were908

trained on a single GeForce GTX TITAN X GPU,909

with hyperparameters tuned using Weights & Bi-910

ases (Biewald, 2020) to run random sweeps and911

track performance. Separate sweeps were run for912

the Bi-encider and Poly-encoder, each having a913

maximum of 20 runs and using early stopping to914

terminate runs with poor performance. Our total915

compute time was approximately 150 days (though916

this would have been significantly lower using a917

newer model of GPU), and our models have 220M918

parameters. Further detail, including all training919

hyperparameters and instructions for reproduction,920

can be found in our published code.921

B Error Analysis Details 922

This appendix contain details about the frequency 923

with which we found various types of false posi- 924

tives or false negatives in our error analysis. 925

B.1 PARSEME 926

In the table below, Def? represents the % of false 927

positives where a definition appropriate for the pre- 928

dicted MWE was present in our lexicon. MWE? 929

represents the % of false positives where the MWE 930

was present in other sentences in the dataset, and 931

the % of false negatives where it was present in our 932

lexicon, respectively. 933

False Positives False Negatives
Model Def? MWE? MWE?

SemCor 90% 16% 6%
fine-tuned 90% 34% 16%

Table 4: PARSEME Error Analysis

B.2 DiMSUM 934

Our results on DiMSUM are similar to those of 935

PARSEME, except that for the system using the 936

SemCor model 22% of the false positives were 937

from the rule-based consecutive noun tagger, with 938

that number increasing to 56% for the fine-tuned 939

model (the false positive rate drops substantially 940

after fine tuning the filtering model as can be seen 941

in Table 2, which leads to these errors account- 942

ing for a higher percentage of total false positives). 943

The Def? and MWE? percentages for false pos- 944

itives in the below table are computed excluding 945

consecutive noun tagger false positives. 946

False Positives False Negatives
Model Def? MWE? MWE?

SemCor 92% 56% 4%
fine-tuned 81% 63% 12%

Table 5: DiMSUM Error Analysis
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