
Under review as a conference paper at ICLR 2023

INVERSELY ELICITING NUMERICAL REASONING IN
LANGUAGE MODELS VIA SOLVING LINEAR SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Numerical reasoning over natural language has been a long-standing goal for the
research community. However, recent language models have proven difficult to
reliably generalize to a broad range of numbers, although they have shown profi-
ciency in reasoning over common and simple numbers. In this paper, we propose
a novel method to elicit and exploit the numerical reasoning knowledge hidden in
pre-trained language models using simple anchor numbers. Concretely, we first
leverage simple numbers as anchors to probe the implicitly inferred arithmetic
expressions from language models, and then explicitly apply the expressions on
complex numbers to get corresponding answers. To inversely elicit arithmetic ex-
pressions, we transform and formulate the task as an analytically solvable linear
system. Experimental results on several numerical reasoning benchmarks demon-
strate that our approach is highly effective. More importantly, our approach works
in the inference phase without extra model training, making it highly portable
and achieving significant and consistent performance benefits across a variety of
language models in zero-shot, few-shot, and fine-tuning scenarios.

1 INTRODUCTION

Language Models (LMs) have demonstrated great success on a wide range of natural language
tasks (Devlin et al., 2018; Brown et al., 2020b; Chowdhery et al., 2022), and recent works even
explore to use LMs as a general-purpose interface for diverse modalities (Hao et al., 2022; Xie
et al., 2022; He et al., 2022). But when it comes to reasoning about numbers, the crucial parts of
text, tables, and knowledge bases, the performance of LMs slumps. A key challenge of numerical
reasoning for now is number calculation. Even rational numbers, a small subset of real numbers,
readily constitute an infinite space that cannot be completely covered by pre-training corpora, hence
posing a significant obstacle to LMs. Recent works have shown strong context understanding ca-
pabilities of LMs in numerical reasoning datasets (Dua et al., 2019; Cobbe et al., 2021), but LMs
are still far from being robust on implicit numerical calculation: as numbers grow bigger and more
complex, LMs are more likely to fail, e.g., 8, 534.5 + 17.85; and even for small number additions,
e.g., 512+128 and 513+129, LMs are not stable enough to produce the correct answer consistently.
Similar observations are also reported by Razeghi et al. (2022), showing that end-to-end LMs easily
fail to calculate numbers that rarely appear in pre-training corpora.

Fortunately, by reverse thinking, we have a positive perspective: with the exact same context, LMs
are significantly more accurate and stable on simple numbers - typically small integers that appear
frequently in the pre-training corpora - than complex numbers, indicating that LMs have a strong
capability of applying arithmetic results to simple numbers after pre-training. This motivates us to
leverage simple numbers as “anchors” to probe the implicitly inferred arithmetic expressions from
language models and then explicitly apply the expressions on complex numbers. Specifically, as
Figure 1 illustrates, when detecting complex numbers (10, 477 and 7, 459) that are challenging for
LMs, to first replace them by anchor numbers(10 and 7, etc) and use LMs to output answers (3,
etc) that are more much accurate than complex numbers, then inversely elicit the hidden arithmetic
relationship (x1 − x2) implicitly inferred by LMs through anchor inputs/outputs (10,7,3, etc), and
finally explicitly doing the arithmetic using the initial complex numbers (10, 477−7, 459) to produce
the precise answer (3, 018). In this way, our method combines the advances of LMs on understanding
complex context and memorizing simple numbers for reliable numerical reasoning.

1

Under review as a conference paper at ICLR 2023

Paragraph:
As of the census of 2000, there
were 10,477 households and
7,459 families in the county.
Question:
How many more households
are there than families?

3 Arithmetic Relationship Inversion2 Number Substitution

𝑦=𝑥!−𝑥"

3 (𝑦)

10 (𝑥!), 7 (𝑥")

R
ea

so
ni

ng
 L

M

Solving Algorithm

Answer: 3,01810,477 (𝑥!), 7,459 (𝑥")

1 Operand Proposal

As of the census of 2000, there
were 25,764 people, 10,477

households, and 7,459 families
residing in the county.

Paragraph:
As of the census of 2000, there
were 10 households and
7 families in the county.

Question:
How many more households
are there than families?

Figure 1: The illustration of our proposed framework, which elicits numerical reasoning in language
models via Solving Linear Systems (SOLIS).

This paper introduces a new idea of eliciting and exploiting the numerical reasoning knowledge
hidden in pre-trained LMs through probing with simple anchor numbers. Importantly, our frame-
work does not need any additional model training or labeled data, because it simply works during
the test-time inference phase, and it is portable to all existing fine-tuned/few-shot/zero-shot LMs
with decoders. Thus it is significantly different from existing neural symbolic methods that need
continuous training (Liang et al., 2016) and program synthesis from examples that need specific and
human-provided input-output pairs for each example in the inference phase (Gulwani, 2011).

To inversely elicit arithmetic relationships in LMs through anchor numbers, we propose SOLIS, a
novel method to transform and formulate this problem to a linear system that can be straightfor-
wardly solved in an analytic way. Alternative search-based and heuristic-based methods are further
devised to promote robustness for noisy linear systems. Experimental results show significant and
consistent gains over various language models and diverse zero-shot, few-shot and fine-tuning set-
tings on several representative numerical reasoning datasets.

2 PRELIMINARY STUDY

In this section, we will first demonstrate the brittleness of language models’ ability on arithmetically-
related tasks. Unlike arithmetic benchmarks such as AddSub or MultiArith (Roy & Roth, 2015)
which contain natural language context for each sample, we directly generate and feed the arith-
metic expressions and test the performance on language models. This is done to reduce potential
perturbing factors and highlight the models’ calculating ability. We impose constraints on the com-
plexity of the expressions: we only study the four fundamental operations, and demand no more
than 4 operands, where each operand’s integer range is less then 10, 000 and floating point precision
is less than 4. To conduct a systematic investigation, we first produce F which represents the set
of all the expressions satisfying our constraints. We randomly sample numbers within the limits of
range and precision as the operands. For one expression f ∈ F with a specified range and precision,
we randomly generate 50 samples. We evaluate the language model on these samples and denote
this synthesized task as MathExp which stands for Math Expressions.

0 1 2 3
0

20
40
60
80

100

Floating Point Precision

E
xa

ct
M

at
ch

(%
)

≤101≤102≤103≤104

Integer Range

Two Operands Three Operands Four Operands

Figure 2: Performance with different floating
point precision (left) and integer range (right).

We sample a maximum of 50 expressions for
each different settings of complexity, and test
these samples using large scale language model
GPT-3 (Brown et al., 2020a). We conduct the
study on GPT-3 in a few-shot manner: to un-
leash its potential, we pre-pend 10 to 20 expres-
sions (having the same f , integer range, and
floating point precision as the tested sample) to-
gether with the answers as the prompt. We then
call the OpenAI API1 to get all the predictions,
and evaluate the performance accordingly.

Results in Figure 2 indicate that even the latest
powerful GPT-3(Code-Davinci-002) fails to achieve a satisfactory performance: (i) the prediction
accuracy decreases largely as the number gets more complex, i.e., integer range or floating point

1https://openai.com/api

2

https://openai.com/api

Under review as a conference paper at ICLR 2023

precision of operands increases; (ii) the prediction accuracy also drops dramatically as the arithmetic
relationship getting more complex, i.e., number of operands increases. In Appendix A, we also
present the performance with our SOLIS framework, which is more robust to influence of floating
point precision and integer range.

3 NUMERICAL REASONING VIA SOLVING LINEAR SYSTEMS

The preliminary study demonstrates that the current language models are vulnerable to complex
numbers. For example, they have no chance to guess the answer to the sum of two floating point
numbers with three decimal places. However, the language model can perform reliably well when
the operands are simple, i.e., relatively small integers. Such observations motivate us to simplify the
numbers before feeding them into language models, thus enabling reliable neural-based numerical
reasoning. In this section, we first provide an overview of our framework SOLIS, and then we
elaborate on each part of our framework in detail.

3.1 METHOD OVERVIEW

As mentioned above, our method can be integrated into language models in a plug-and-play manner
at test time. For the sake of clarification, in the following we refer to LMs that can steadily perform
numerical reasoning as reasoning LMs. They can be either LMs obtained by fine-tuning on datasets
involving numerical reasoning, or LMs that perform numerical reasoning via in-context learning.

As shown in Figure 1, our method generally involves three stages: (1) Operand Proposal: given a
paragraph, we first identify the numbers which are necessary for the reasoning LM to perform nu-
merical reasoning (e.g., 10,477); (2) Number Substitution: these proposed operands2 are generally
complex for language models, and thus they need to be substituted with randomly chosen simple
numbers (e.g., 10) to make the model input simpler. Using the reasoning LM, we can obtain a set of
predicted answers with respect to each substituted paragraph after several substitutions. (3) Arith-
metic Relationship Inversion: using these paragraphs and their answers as observed data, we can
inversely derive the internal reasoning flow from the reasoning LM, i.e. the arithmetic expression
between the operands (e.g., y = x1 − x2). By applying the expression on the original numbers, the
answer to the original paragraph can be obtained.

3.2 OPERAND PROPOSAL

There are often many numbers involved in a paragraph, and it is quite challenging to model the arith-
metic relationships among all these numbers simultaneously. Consequently, it is important during
the operand proposal step to trim the prospective operands to a manageable size. A straightforward
strategy would be to select only the numbers pertinent to the answer as candidate operands, which
is not trivial in practice since there is no intermediate supervision on the relevance between each
number and the answer.

To address the issue, we provide a novel technique that employs number perturbation and the reason-
ing LM to measure the relevance systematically. It is largely inspired by prior works that leverage an
image classifier to quantify the relevance of pixels with image categories (Samek et al., 2017) and its
application on natural language tasks (Liu et al., 2021). In their works, relevance is assessed by the
degradation of the classifier score after erasing each pixel, where a substantial degradation indicates
a strong relevance. Similarly, we consider a number to be essential to the final answer if there is a
difference between the model predictions before and after perturbing it. Regarding perturbations, we
implement it by adding a small adjustment to each number in the paragraph (e.g., 98.5→ 98.6) and
evaluate whether the model prediction changes correspondingly. Despite the fact that the reasoning
LM hardly perform accurate calculations over numbers, we observe that LMs have strong context
understanding capabilities about numbers and are sensitive to slight changes in the numbers used to
forecast answer. More details about the operand proposal mechanism can be found in Appendix B.

2We use the terms number and operand interchangeably.

3

Under review as a conference paper at ICLR 2023

3.3 NUMBER SUBSTITUTION

After the operand proposal stage, a random set of numbers is generated to substitute the proposed
operands sequentially. These numbers are referred to as anchor numbers below. Each anchor number
is an integer between 1 and 20, a range that we believe reasoning LMs can easily handle. Meanwhile,
to minimize the effects of number substitution, we strive to maintain the order relationships among
the numbers. Taking the example from Figure 1, we make the substitution number corresponding to
10, 477 larger than the one corresponding to 7, 459 since 10, 477 is larger than 7, 459.

Notably, the random number substitution must be repeated several times (e.g., three times in Fig-
ure 1) to obtain a group of anchor numbers. Along with the original question, each of these para-
graphs is fed into the reasoning LM to predict the answer, which we call the anchor answer. Typi-
cally, the number of anchor answers must exceed the number of operands for the subsequent arith-
metic relationship inversion stage to be feasible.

3.4 ARITHMETIC RELATIONSHIP INVERSION

Given a collection of anchor numbers and anchor answers, the arithmetic relationship inversion stage
investigates the relationship between these numbers and induces an expression to reflect it. Taking
the example from Figure 1, a typical expression can be y = x1 − x2, where x1 and x2 are both
anchor numbers while y is the anchor answer.

Although the example expression appears intuitive, deriving such an expression from data points is
tremendously difficult because the solution space is theoretically infinite. To make it practicable,
as a first step, we begin by limiting the problem-solving space to compositions of binary operators,
where each operator can be addition, subtraction, multiplication or division, the four most prevalent
operators in numerical reasoning (Dua et al., 2019). Meanwhile, there can be up to three compo-
sitions, which means the expression contains a maximum of four operands. With such priors, the
insoluble expression induction problem can be turned into a linear system solving problem, where
the anchor numbers, the anchor answer, and their compositions constitute a linear system. In this
way, the problem of expression induction can be tackled by the solving algorithms for linear sys-
tems, which will be elaborated in Section 4. Finally, the answer can be reached in a trustworthy and
interpretable manner by applying the derived expression to the original numbers.

4 SOLVING ALGORITHM

In this section, we introduce three algorithms that can derive expressions merely from anchor num-
bers and anchor answers, namely analytical-based, search-based and heuristic-based algorithm.

4.1 FORMULATION

Formally, given a paragraph and a question, we denote a group of anchor numbers as x =
(x1, x2, . . . , xn) and the arithmetic relationship as an expression f , which should produce the an-
swer y by y = f(x). The goal is to recover f from different groups of anchor numbers X and
corresponding anchor answers y. We propose to transform and formulate the arithmetic relationship
inversion as solving a system of linear equations. Given expression f(x) with four fundamental
arithmetic operations, we transform the equation y = f(x) by multiplying denominators on both
sides when operator division exists, then we get:

a0 · C + a1 · x1 + a2 · x2 + a3 · y + a4 · x1x2 + . . .+ ak · (x1x2 . . . xny) = 0 (1)

For example, y = 1 − x1/x2 can be transformed to x2 − x1 − x2y = 0. Then uncovering f(x) is
equivalent to solving a = (a0, a1, . . . , ak), which are coefficients of all possible polynomial basis
combined by x1, , xn and y, denoted as p, where k = 2n+1 − 1. Multiple groups of anchors X and
y constitute multiple groups of values of polynomial basis, denoted as P, then Equation 1 can be
denoted as Pa = 0, which is a typical set of linear equations.

4

Under review as a conference paper at ICLR 2023

4.2 ANALYTICAL-BASED ALGORITHM

To solve Pa = b, we can simply generate k+1 groups of anchor numbers as X and LMs’ answers
as y, compute P based on X and y, and finally get a = (P)

−1
b when P is in full rank. But notice

that y can be a linear weighted summation of x0, . . . , xn by itself, the coefficient matrix P may
not be full-ranked. To address this, we generate k groups of anchor numbers and add an additional
constraint by setting |a| =

∑k
i=0 ai = 1. So we augment P with an all-one vector to P∗ and finally

get a = (P ∗)
−1

b, where b = (0, 0, . . . , 0, 1). In practice, randomly sampled groups of anchor
numbers can form a full-ranked P ∗ with a very high probability, and one can even add a buffer by
sampling a bit more groups of anchor numbers than k to constitute different P ∗s for cross validation.

The analytic method is theoretically complete to deduce arithmetic expressions in our pre-defined
problem space. But in practice, LMs may produce incorrect results even for anchor numbers, es-
pecially when given a complex expression, so as to violate the analytic method which needs purely
correct anchor answers. To best tolerate them, we then propose search-based and heuristic-based
methods to better solve a noisy linear system. Gladly, the analytic method theoretical supports other
methods in aspects such as guiding the number of anchors to sample to ensure a unique expression.

4.3 SEARCH-BASED ALGORITHM

The search-based algorithm exhaustively explores the search space and finds out the most preferable
arithmetic expression in the space. We constrain the search space of a in Equation 1 by: requiring
a1−n ∈ {−1, 0, 1} for all coefficients of the non-constant terms, and for coefficient a0 of constant
term C, one can restrict the search range to a pre-defined set, e.g., a0 ∈ {−100,−1, 0, 1, 100} in our
experiments for efficiency, and different from the analytic method that can easily solve constants in
expressions. Constraints here mean that we only let this search algorithm cover f(x) with no more
than one constant for efficiency. We then transform all searched polynomial-basis-based equations
backwards into expressions because they have one-to-one mappings, e.g., from x2 − x1 − x2y = 0
to y = 1− x1/x2. We denote the space of expressions as F, and for each fi ∈ F and each group of
anchor numbers Xj (using m to denote the number of groups), we get yij by applying fi to Xj .

Algorithm 1 SEARCH

Input: parameters X, ŷ,F, cthreshold
Output: Most preferable expression f̃

1: while j < m do
2: for fi ∈ F do
3: y∗ij ← fi(Xj)
4: ci ← ci + 1(y∗j == ŷij)
5: ϵi ← ϵi + |y∗j − ŷij |
6: end for
7: j ← j + 1
8: end while
9: i∗c ← argmax c, i∗ϵ ← argmin ϵ

10: if ci∗ ≥ cthreshold then f̃ ← fi∗c
11: elsef̃ ← fi∗ϵ
12: end if

We define the prediction error between the target ex-
pression f̂ and fi as ϵ(f̂ , fi), which is calculated by
ϵ(f̂ , fi) =

∑
j ϵij =

∑
j abs(ŷj−yij), and the num-

ber of occurrence of exact matching as ci. We then
find the most preferable expression with the mini-
mum prediction error and the maximum number of
exact matching. Specifically, when the number of
exact matching exceeds a pre-defined cthreshold, we
pick the expression fi with the highest ci; otherwise,
we pick the expression fi with the lowest ϵi. The
search process is sketched in Algorithm 1.

This method is robust for probably incorrect predic-
tions, i.e., when model does not have sufficient num-
ber of exact matching, it is still capable to return the
most nearest expression by selecting the one with the
minimum error. However, the search-based method
can be challenged by exponentially explosive search space when the number of operands surges,
and it’s not efficient to search constant numbers that has a wide and even infinite range, neither.

4.4 HEURISTIC-BASED ALGORITHM

In this section, we introduce a heuristic-based algorithm, simulated annealing, which is efficient and
does not need to search for the whole problem space, though it may produce sub-optimal results
given a limited number of exploration steps. We follow the formulation introduced in Section 4.1
and proposed a optimization target LH to measure the L1 loss of Pa. The pipeline includes: (1)
randomly initialize a with values {-1, 0, 1} and calculate initial LH ; (2) randomly select i from 0 to
k and perturb ai by adding or subtracting a constant number (we use 1 here); (3) calculate new LH ,

5

Under review as a conference paper at ICLR 2023

and adopt the perturbation with a large probability if LH decreases and with a low probability if it
increases, balanced by a pre-defined temperature T , which decreases over steps; (4) return a if the
number of steps is enough or LH equals to zero, otherwise repeat from step 1. Note that, we restrict
coefficients in a to be integers for simplicity, so different from the analytical method restricting∑k

i=0 ai = 1, we ensure only one of the coefficients of y-related polynomial basis {y, x1y, . . . ,
x1x2 . . . xny} to be non-zero (with a static value 1) and at least two coefficients in a are non-zero
during the whole initialization and perturbation process to avoid some infeasible local optimal.

Table 1: Comparison of solving algorithms.

Optimum Robustness Scalability

Analytical ✓ ✗ ✓
Search ✓ ✓ ✗
Heuristic ✗ ✓ ✓

In summary, Table 1 shows the strong and weak
points of these algorithms. In the problem space
introduced in Section 3.4 within at most four
operands, the search-based method does not have
scalability issues, so it achieves best performance
in our experiments because it’s robust to LMs’
predictions and can retrieve optimal expression
through exhaustive search except rare constants.

5 EXPERIMENTS

In this section, we integrate SOLIS with various language models as backbones and evaluate the
effectiveness of SOLIS on two well-known numerical reasoning benchmarks.

5.1 EXPERIMENTAL SETUP

Datasets We perform experiments on DROP (Dua et al., 2019), AddSub and MultiArith, of which
the latter two are widely used subsets from MAWPS (Roy & Roth, 2015). DROP is a reading
comprehension benchmark that focuses on numerical reasoning and has a variety of answer types,
including span, number, and date. The experimental results of DROP are evaluated with the official
evaluation metrics Exact Match (EM) and F1. As for MAWPS, it consists of math word problems
which also require numerical reasoning ability. The subset AddSub features relatively easier numer-
ical reasoning, whereas MultiArith necessitates multi-step numerical calculations. The EM metric
is used to evaluate the results of AddSub and MultiArith. More details can be found in Appendix C.

Backbone and Baselines The fine-tuning evaluation is conducted on DROP, where we adopt two
kinds of fine-tuned LMs as backbones, including (i) Vanilla LMs: BART (Lewis et al., 2020) and
T5 (Raffel et al., 2020), (ii) Reasoning LMs: GENBERT Geva et al. (2020), TAPEX (Liu et al.,
2022) and POET (Pi et al., 2022). We compare the performance of our method with previous spe-
cialized models designed for DROP, such as NumNet (Ran et al., 2019), NeRd (Chen et al., 2020b),
MTMSN (Hu et al., 2019) and QDGAT (Chen et al., 2020a). All models are fine-tuned on the DROP
train set, and the best validation set performance is reported. The few-shot and zero-shot evalua-
tions are done using AddSub and MultiArith, where we adopt GPT-3 code-davinci-002 (Brown
et al., 2020a) with different prompting as our backbones: Few-shot Chain-of-Thought Prompt-
ing (Few-shot Chain) (Wei et al., 2022b) and Zero-shot Chain-of-Thought Prompting (Zero-shot
Chain) (Kojima et al., 2022). These models perform numerical reasoning by in-context learning,
and the few-shot demonstrations are the 8 samples released by Wei et al. (2022b).

Design Choices on DROP Following previous work, we apply two general-purpose numerical de-
signs on the DROP dataset. First, we employ the character-level rather than subword-level number
representation, which proves to be more effective (Wallace et al., 2019; Pi et al., 2022). Second,
we employ the reverse decoding technique, which proves to be a successful design to mimic arith-
metic carry (Geva et al., 2020). Meanwhile, as mentioned above, the search-based algorithm has
difficulties in covering expressions including constants. Considering the constant 100 is frequently
used for percentage calculations (e.g., “How many percent of the national population does not live
in Bangkok?”), we add it to be one candidate in DROP.

5.2 EXPERIMENTAL RESULTS

Since our work focuses on addressing arithmetic problems, we first evaluate suggested solving algo-
rithms via their performance on the DROP subset whose answers are numbers (i.e., numeric subset).

6

Under review as a conference paper at ICLR 2023

Table 2: Experimental results of SOLIS w. various solving algorithms on the DROP numeric subset.

LM Algorithm F1(%) on Hard F1(%) on Total

BART

– 30.4 66.4
Analytical 46.4 (+16.0) 69.3 (+2.9)

Search 64.8 (+30.4) 75.2 (+8.8)
Heuristic 52.8 (+22.4) 71.7 (+5.3)

POET-SQL

– 66.8 78.4
Analytical 73.3 (+6.5) 80.0 (+1.6)

Search 76.9 (+10.1) 81.4 (+3.0)
Heuristic 73.0 (+6.2) 80.5 (+2.1)

Table 3: Fine-tuning evaluation on the validation set of DROP dataset.

Models EM(%) F1(%)

Specialized Models
NumNet (Ran et al., 2019) 64.9 68.3
MTMSN (Hu et al., 2019) 76.7 80.5
NeRd (Chen et al., 2020b) 78.6 81.9
QDGAT (Chen et al., 2020a) 84.1 87.1

Vanilla LMs
BART (Lewis et al., 2020) 67.4 70.6

w. SOLIS 72.9 (+5.5) 76.1 (+5.5)
T5 (Raffel et al., 2020) 61.0 64.6

w. SOLIS 69.9 (+8.9) 73.5 (+8.9)
Reasoning LMs

GENBERT (Geva et al., 2020) 68.8 72.3
w. SOLIS 70.5 (+1.7) 74.4 (+2.1)

TAPEX (Liu et al., 2022) 76.3 79.3
w. SOLIS 78.5 (+2.2) 81.6 (+2.3)

POET-SQL (Pi et al., 2022) 76.9 80.0
w. SOLIS 78.2 (+1.3) 82.0 (+2.0)

Meanwhile, we select cases in which the answer is greater than 1000, identify them as “hard” cases,
and additionally report the average performance on them. As shown in Table 2, all of our proposed
algorithms significantly improve the performance of LMs, especially in hard cases. For example, the
search-based algorithm boosts BART with an absolute 30.4% improvement on hard cases. The full
results of the performance comparison can be found in Appendix D. Notably, since the search-based
algorithm is the most effective, we apply it as the default algorithm in SOLIS.

Table 3 shows the experimental results of different models on DROP dataset. As shown, SOLIS
can bring consistent and significant improvements over all backbone LMs, especially for the vanilla
LMs. Taking the T5 model as an example, it could be boosted by a maximum of 8.9% with SOLIS.
Even for POET-SQL which are already pre-trained for numerical reasoning, our method yields a
2.0% F1 improvement, pushing the best LM performance to 82.0% F1. Table 4 presents the exper-
imental results on AddSub and MultiArith. The results indicate that our approach is surprisingly
effective for giant LMs and can further boost the performance of chain-of-thought prompting.

Table 4: Few-shot evaluation on the AddSub and MultiArith dataset.

Language Model Setting AddSub MultiArith

PaLM (540B) Few-shot Vanilla (Chowdhery et al., 2022) − 42.2
Few-shot Chain (Wei et al., 2022b) 91.9 94.7

GPT-3 (175B)

Zero-shot Chain (Kojima et al., 2022) 66.6 63.8
w. SOLIS 89.4 (+22.8) 80.0 (+16.2)

Few-shot Chain (Wei et al., 2022b) 88.4 96.7
w. SOLIS 90.9 (+2.5) 98.7 (+2.0)

7

Under review as a conference paper at ICLR 2023

Table 5: Case study on derived expressions using POET-SQL w. SOLIS on DROP. Listed are, the
intention, the example question with intention trigger words (i.e., the colorful spans) and the derived
expression, and the proportion of each intention.

Question Intention Example Question with [Derived Expression] Proportion

Addition How many total yards of touchdown passes were there?
[y = x1 + x2 + x3]

8.92%

Diff Constant How many in percent in the county from the census of 2000
weren’t English? [y = 100− x]

36.49%

Subtraction How many more percentages of people were germans compared
to irish? [y = x1 − x2]

54.25%

Composition How many more Albanian citizens were there compared to Bul-
garian and Georgia citizens combined ? [y = x0 − (x1 + x2)]

0.34%

6 MODEL ANALYSIS

Arithmetic Relationship Inversion In addition to performance improvement, SOLIS features the
ability to derive an arithmetic expression for each question, whereas no such information is available
during training. To better understand if these expressions align with question intentions, we collect
all derived expressions and categorize them into four types in Table 5. As demonstrated, the majority
of expressions contain addition and subtraction between variables and constants, which are largely
consistent with the question intention, highlighting the superior interpretability of SOLIS.

Solving Algorithm Robustness The possibility that the anchor answers provided by reasoning LMs
are inaccurate presents a challenge for the solving algorithms. To measure the robustness of our
solving algorithms, we roughly decrease the probability that anchor answers are correct by decreas-
ing the number of few-shot demonstrations in Figure 3. As shown, even though the backbone LM
performance drops to 60.0%, the improvement of SOLIS is still as high as to 5.1%, suggesting its
robustness.

Number Substitution To study the impact of different factors during the number substitution stage,
we conduct experiments on MathExp in Figure 4. As demonstrated, expanding the range of anchor
numbers results in a minor performance drop, showing that the reasoning LM is more familiar with
small integers. Furthermore, increasing the size of anchor number groups gives a large improvement
on the performance, especially when there are four operands.

Limitation Discussion The first limitation of our framework is that we cannot support expressions
that cannot be solved with linear systems. For example, with respect to the question “How many
yards was Donovan McNabb’s longest rushing TD?”, the expected expression [y = maxi(xi)] is
not supported by SOLIS. Second, the framework is less efficient when there are many operands. On
the one hand, the group of anchor numbers would be quite huge, making the algorithm’s runtime
unacceptable. For example, when expanding to 5 operands, number substitution must be performed
at least 50 times. On the other hand, for the search-based algorithm, the search space will increase
exponentially, making the algorithm impracticable. Last, we assume a certain level of numeracy
understanding of the reasoning LM. Therefore, if the reasoning LM is unable to comprehend the
numeracy relationship, our method would not work well.

7 RELATED WORK

Numerical Understanding and Reasoning via Specialized Models Since our work focuses on
numerical reasoning, it is related to previous works on numerical understanding, which has been
found to be important for deep learning models (Spithourakis & Riedel, 2018; Wallace et al., 2019;
Naik et al., 2019; Zhang et al., 2020; Sundararaman et al., 2020; Thawani et al., 2021). In general,
previous work on numerical understanding aims to develop better numeracy embeddings that accu-
rately reflect their properties, so they typically evaluate numeracy embeddings on synthetic tasks.
For example, Wallace et al. (2019) proposes List Maximum, an evaluation task by predicting the
index of the maximal number in a list of five numeracy embeddings. When it comes to downstream

8

Under review as a conference paper at ICLR 2023

8 4 2 1
50

60

70

80

90

100

60

8484.5
88.4

65.1

87.688.490.9

of Few-shot Examples

E
xa

ct
M

at
ch

(%
)

Few-shot Chain Few-shot Chain w. SOLIS

Figure 3: Experimental results of Few-shot
Chain with or without SOLIS on AddSub as
the number of few-shot examples decreases.

≤ 5 ≤ 10 ≤ 20 ≤ 100
0

20

40

60

80

100

Anchor Number Range

E
xa

ct
M

at
ch

(%
)

5 10 15 20 25 30

Anchor Number Group Size

Two Operands Three Operands Four Operands

Figure 4: The experimental results of SOLIS on Math-
Exp with different choices of anchor number range
(left) and anchor number groups (right).

applications, the majority of previous works (Jiang et al., 2020; Duan et al., 2021) are studied on
classification or regression tasks. Differently, numerical reasoning involves flexible answers that go
beyond classification (e.g., requiring complex calculation), which is our focus. As for numercial
reasoning, previous works generally design trainable specialized modules and equip LMs with them
to tackle different kinds of numerical reasoning problems (e.g., counting). While these methods
work well on specific datasets (Dua et al., 2019; Andor et al., 2019; Hu et al., 2019; Ding et al.,
2019), they are hardly suited across different datasets and backbone LMs (Chen et al., 2020b). Dif-
ferently, since our method does not require additional model training, it is applicable to almost all
models, even those that only provide an inference interface (e.g., GPT-3). As for methods that first
generate programs or logic forms, it is quite laborious to define domain-specific language and col-
lect corresponding training data (Berant et al., 2013). Unlike them, our methods does not require
extra annotated programs. Instead, our method allows for the program discovery from examples via
solving linear systems.

Numerical Reasoning via Pre-training This line of work always focuses on the pre-training of lan-
guage models with corpus which involves reasoning. The corpus can be reasoning-oriented natural
language texts from Internet (Deng et al., 2021; Lewkowycz et al., 2022), human-designed templates
filled by different data sources (Geva et al., 2020; Yoran et al., 2022), or programs with rich reason-
ing semantics (Liu et al., 2022; Pi et al., 2022). Although this kind of pre-training allows language
models to perform better reasoning, they still require considerable computation budgets during pre-
training and may still be challenged by complex numbers. In contrast, our method is efficient since
it can be integrated into existing models without further training or pre-training.

Numerical Reasoning in Giant Language Models Recent works demonstrate that with proper
prompting, giant language models (e.g., GPT-3) perform much better than smaller ones on several
reasoning tasks (Wei et al., 2022b;a; Kojima et al., 2022; Li et al., 2022; Zhou et al., 2022; Wang
et al., 2022). For example, with the chain-of-thought prompting, the few-shot PaLM model (Chowd-
hery et al., 2022) can beat the previous best fine-tuned model on math word problems. However,
their conclusions do not generalize to non-giant language models. Different from them, our method
can be simultaneously applied to language models ranging from millions (e.g., BART) to billions
(e.g., GPT-3). Moreover, our work is orthogonal to these giant LMs and can be complementary
to each other. For example, Section 5 shows that our approach can further boost the numerical
reasoning capability of GPT-3 with chain-of-thought prompting.

8 CONCLUSION

In this work, we present SOLIS, a framework which can elicit numerical reasoning in language
models at test time. Motivated by the fact that language models usually excel at simple numbers,
SOLIS uses simple numbers as anchors to inversely derive the implicitly inferred arithmetic ex-
pressions from language models, and subsequently apply these expressions to complex numbers to
perform numerical reasoning. With modeling the expression derivation as solving linear systems,
we propose three kinds of algorithms to achieve SOLIS with noisy signals. Experimental results on
several numerical reasoning benchmarks demonstrate that SOLIS can be integrated to a variety of
language models, and can greatly improve their performance under zero-shot, few-shot, and fine-
tuning scenarios. Our work provides a new perspective towards tackling numerical reasoning, which
can be potentially applied to more language models and numerical reasoning tasks.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Daniel Andor, Luheng He, Kenton Lee, and Emily Pitler. Giving bert a calculator: Finding oper-
ations and arguments with reading comprehension. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp. 5947–5952, 2019.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pp. 1533–1544, Seattle, Washington, USA, October 2013. Association for
Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc., 2020a.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020b.

Kunlong Chen, Weidi Xu, Xingyi Cheng, Zou Xiaochuan, Yuyu Zhang, Le Song, Taifeng Wang,
Yuan Qi, and Wei Chu. Question directed graph attention network for numerical reasoning over
text. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pp. 6759–6768, 2020a.

Xinyun Chen, Chen Liang, Adams Wei Yu, Denny Zhou, Dawn Song, and Quoc V Le. Neural
symbolic reader: Scalable integration of distributed and symbolic representations for reading
comprehension. In ICLR, 2020b.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Xiang Deng, Yu Su, Alyssa Lees, You Wu, Cong Yu, and Huan Sun. ReasonBERT: Pre-trained to
reason with distant supervision. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 6112–6127, Online and Punta Cana, Dominican Republic,
November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.
494.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang, and Jie Tang. Cognitive graph for multi-hop
reading comprehension at scale. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 2694–2703, Florence, Italy, July 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/P19-1259.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
Proceedings of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp.
2368–2378, 2019.

10

Under review as a conference paper at ICLR 2023

Hanyu Duan, Yi Yang, and Kar Yan Tam. Learning Numeracy: A Simple Yet Effective Number
Embedding Approach Using Knowledge Graph. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pp. 2597–2602, Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.221. URL
https://aclanthology.org/2021.findings-emnlp.221.

Mor Geva, Ankit Gupta, and Jonathan Berant. Injecting numerical reasoning skills into language
models. In Proceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics, pp. 946–958, 2020.

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. ACM
Sigplan Notices, 46(1):317–330, 2011.

Yaru Hao, Haoyu Song, Li Dong, Shaohan Huang, Zewen Chi, Wenhui Wang, Shuming Ma, and
Furu Wei. Language models are general-purpose interfaces. arXiv preprint arXiv:2206.06336,
2022.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16000–16009, 2022.

Minghao Hu, Yuxing Peng, Zhen Huang, and Dongsheng Li. A multi-type multi-span network for
reading comprehension that requires discrete reasoning. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pp. 1596–1606, 2019.

Chengyue Jiang, Zhonglin Nian, Kaihao Guo, Shanbo Chu, Yinggong Zhao, Libin Shen, and Kewei
Tu. Learning Numeral Embedding. In Findings of the Association for Computational Linguis-
tics: EMNLP 2020, pp. 2586–2599, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.findings-emnlp.235. URL https://aclanthology.
org/2020.findings-emnlp.235.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880, 2020.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. arXiv preprint arXiv:2206.14858, 2022.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. On the
advance of making language models better reasoners. arXiv preprint arXiv:2206.02336, 2022.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D Forbus, and Ni Lao. Neural symbolic machines:
Learning semantic parsers on freebase with weak supervision. arXiv preprint arXiv:1611.00020,
2016.

Qian Liu, Dejian Yang, Jiahui Zhang, Jiaqi Guo, Bin Zhou, and Jian-Guang Lou. Awakening latent
grounding from pretrained language models for semantic parsing. In Findings of the Associa-
tion for Computational Linguistics: ACL-IJCNLP 2021, pp. 1174–1189, Online, August 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.100.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and Jian-Guang Lou.
TAPEX: Table pre-training via learning a neural SQL executor. In International Conference on
Learning Representations, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

11

https://aclanthology.org/2021.findings-emnlp.221
https://aclanthology.org/2020.findings-emnlp.235
https://aclanthology.org/2020.findings-emnlp.235
https://openreview.net/forum?id=Bkg6RiCqY7

Under review as a conference paper at ICLR 2023

Aakanksha Naik, Abhilasha Ravichander, Carolyn Rose, and Eduard Hovy. Exploring Numeracy in
Word Embeddings. In Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 3374–3380, Florence, Italy, July 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/P19-1329. URL https://aclanthology.org/P19-1329.

Xinyu Pi, Qian Liu, Bei Chen, Morteza Ziyadi, Zeqi Lin, Yan Gao, Qiang Fu, Jian-Guang Lou, and
Weizhu Chen. Reasoning like program executors. arXiv preprint arXiv:2201.11473, 2022.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21:1–67, 2020.

Qiu Ran, Yankai Lin, Peng Li, Jie Zhou, and Zhiyuan Liu. Numnet: Machine reading comprehen-
sion with numerical reasoning. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 2474–2484, 2019.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of pretraining term
frequencies on few-shot reasoning. arXiv preprint arXiv:2202.07206, 2022.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pp. 1743–1752, 2015.

W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K. Müller. Evaluating the visualization of
what a deep neural network has learned. IEEE Transactions on Neural Networks and Learning
Systems, 28(11):2660–2673, 2017. doi: 10.1109/TNNLS.2016.2599820.

Georgios Spithourakis and Sebastian Riedel. Numeracy for Language Models: Evaluating and
Improving their Ability to Predict Numbers. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia, July
2018. Association for Computational Linguistics.

Dhanasekar Sundararaman, Shijing Si, Vivek Subramanian, Guoyin Wang, Devamanyu Hazarika,
and Lawrence Carin. Methods for Numeracy-Preserving Word Embeddings. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 4742–
4753, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.emnlp-main.384. URL https://aclanthology.org/2020.emnlp-main.384.

Avijit Thawani, Jay Pujara, and Filip Ilievski. Numeracy enhances the Literacy of Language
Models. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 6960–6967, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.557. URL
https://aclanthology.org/2021.emnlp-main.557.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh, and Matt Gardner. Do nlp models know
numbers? probing numeracy in embeddings. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 5307–5315, 2019.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Self-consistency
improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models.
ArXiv, abs/2206.07682, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022b.

12

https://aclanthology.org/P19-1329
https://aclanthology.org/2020.emnlp-main.384
https://aclanthology.org/2021.emnlp-main.557

Under review as a conference paper at ICLR 2023

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38–45, 2020.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong, Torsten Scholak, Michihiro Yasunaga,
Chien-Sheng Wu, Ming Zhong, Pengcheng Yin, Sida I Wang, et al. Unifiedskg: Unifying and
multi-tasking structured knowledge grounding with text-to-text language models. arXiv preprint
arXiv:2201.05966, 2022.

Ori Yoran, Alon Talmor, and Jonathan Berant. Turning tables: Generating examples from semi-
structured tables for endowing language models with reasoning skills. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
6016–6031, 2022.

Xikun Zhang, Deepak Ramachandran, Ian Tenney, Yanai Elazar, and Dan Roth. Do Language
Embeddings capture Scales? In Findings of the Association for Computational Linguistics:
EMNLP 2020, pp. 4889–4896, Online, November 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.findings-emnlp.439. URL https://aclanthology.org/
2020.findings-emnlp.439.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schu-
urmans, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

13

https://aclanthology.org/2020.findings-emnlp.439
https://aclanthology.org/2020.findings-emnlp.439

Under review as a conference paper at ICLR 2023

A PRELIMINARY STUDY DETAILS

Here we present the model performance on MathExp of GPT-3 with different solving algorithms in
Figure 5 and Figure 6. We can conclude that: (1) both algorithms are not sensitive with either the
floating point precision or the integer range; (2) the search-based algorithm is most robust than the
analytical-based algorithm with respect to the number of operands.

0 1 2 3
0

20

40

60

80

100

Floating Point Precision

E
xa

ct
M

at
ch

(%
)

≤101≤102≤103≤104

Integer Range

Two Operands Three Operands Four Operands

Figure 5: Performance over different floating
point precision (left) and integer range (right) on
MathExp of GPT-3 w. search-based algorithm.

0 1 2 3
0

20

40

60

80

100

Floating Point Precision

E
xa

ct
M

at
ch

(%
)

≤101≤102≤103≤104

Integer Range

Two Operands Three Operands Four Operands

Figure 6: Performance over different floating
point precision (left) and integer range (right) on
MathExp of GPT-3 w. analytical-based algorithm.

B OPERAND PROPOSAL DETAILS

In Section 3.2, we mention that the textual context on a realistic dataset may be noisy, i.e., contains
irrelevant numbers, thus we need to locate the operand number first. We substitute 10 times for each
number appearing in the paragraph, if the output gives ≥ 3 different prediction numbers out of 10,
we decide the current tested number is involved to the answer. Moreover, we substitute numbers fol-
lowing a template: suppose the original number x is with precision p, then the substituted numbers
can be represented as x+ k · 10p, where k ∈ {−5,−4,−3,−2,−1, 1, 2, 3, 4, 5}.

C EXPERIMENTS

C.1 EXPERIMENTAL SETUP

Table 6: Statistics of DROP dataset

Dataset
Train Dev

Questions # Docs # Questions # Docs

DROP 77, 409 5, 565 9, 536 582

Table 7: Statistics of MAWPS dataset

Subset # Questions
AddSub 395
MultiArith 600

For BART, we implement the fine-tuning methods using the Huggingface transformers library (Wolf
et al., 2020) on 4 V100 16GB GPUs. We use BARTLARGE(Lewis et al., 2020) as our backbone.
We use same-scale reasoning-pretrained POET-SQL and TAPEX models in experiments. For T5,

14

Under review as a conference paper at ICLR 2023

we implement its fine-tuning on the Huggingface transformers library on A100 GPUs. We use
T5LARGE (Raffel et al., 2020) as our backbone.

Hyperparameter Selection For fine-tuning evaluation, we apply Adam (Loshchilov & Hutter,
2019) optimizer. The fine-tuning epochs are set as 50. For BART models (i.e., BART and POET-
SQL), we follow previous works (Pi et al., 2022) to set the batch size as 128 and the learning rate as
3× 10−5. For T5, we decrease the batch size to 32 due to the computational budget. The early stop
technique is used to save training time. For zero-shot / few-shot evaluation, we employ the GPT-3
API. We keep the temperature as default setting 0, and set the maximum output tokens to 128. As for
anchor number groups: the group size is 6/8/10 corresponding to corresponding to 2/3/4 operands
on DROP; the group size is 4 on AddSub, and 10 on MultiArith because MultiArith requires more
compositional operations.

C.2 EXPERIMENTAL DETAILS ON DROP

Fine-tuning Details For all fine-tuning methods, we select the default max token length for each
model. We set the max token length of generation as 96. To save training time, we set early stop
mechanism: we evaluate the EM and F1 score per 500 or 1000 steps, if the performance does not
increase in the latest 20 evaluations, we stop the training and save the best checkpoint.

On DROP, we pre-pend the question to the given paragraph. For multi-span answer, we insert “;”
between each span and make up the final answer. For T5LARGE, we also insert “</s>” token
between the question and the given paragraph. Since most LMs’ checkpoints on DROP is currently
not off-the-shelf, we re-implement them and compare to the results reported in previous works. We
present the comparison results in Table 8.

Table 8: Performance Comparison on DROP between reported results in previous works and our
re-implementation. Results marked with ∗ represent our re-implementation results.

Models EM (%) F1 (%)
BART (Pi et al., 2022) 66.2 69.2
BART∗ 67.4 70.6

T5 (Yoran et al., 2022) – 64.6
T5∗ 61.0 64.6

POET-SQL (Pi et al., 2022) 77.7 80.6
POET-SQL∗ 76.9 80.0

C.3 COMBINATION WITH MAJORITY VOTING (WANG ET AL., 2022)

Wang et al. (2022) proposed self-consistency, which samples different reasoning paths, and then
pick the most consistent final answer by majority voting. Such majority voting method proves to
improve LLMs’ performance over various reasoning benchmarks. We have also conducted experi-
ments combining majority voting and SOLIS, to check if there is further improvement. We present
the performance comparison in Table 9.

Table 9: Combination with Majority Voting (Wang et al., 2022)

Language Model Setting MultiArith

GPT-3 (175B)
Zero-shot Chain (Kojima et al., 2022) 63.8

w. majority voting 73.5 (+9.7)
w. majority voting +SOLIS 83.5 (+19.7)

15

Under review as a conference paper at ICLR 2023

D MORE RESULTS ON DROP

We present the performance breakdown of F1 on dev set of DROP in Table 10 Apart from fine-tuning
models on DROP dataset, we also use GPT-3 to conduct a study on few-shot learning. We pre-pend
10 random training samples in train set, and run all cases where answer type equals to “number”.
We also apply our search-based algorithm on GPT-3. To save API calling time, we only substitute
the number for one time. Table 11 presents the F1 score comparison.

We also summarize common calculation error cases in our tested language models and present some
of them for case study in Table 12, which again illustrates the unreliability of language models.

Table 10: Breakdown of model F1 score by answer types on the dev set of DROP.

Models Number Span Spans Date Total
BART 66.3 80.3 66.0 56.7 70.6

w. SOLIS 75.2 80.5 66.7 55.7 76.1
T5 55.5 81.6 73.0 53.5 64.6

w. SOLIS 69.8 81.8 73.9 53.5 73.5
TAPEX 77.8 84.3 72.9 62.8 79.3

w. SOLIS 81.4 84.4 73.0 61.7 81.6
POET-SQL 78.4 84.6 76.6 63.4 80.0

w. SOLIS 81.4 84.9 76.9 62.6 82.0

Table 11: Few-shot evaluation of GPT-3 w. SOLIS on the DROP numeric subset.

Language Model Algorithm F1(%) on Hard F1(%) on Total

GPT-3 (175B) - 42.5 64.7
Search 59.9 (+17.4) 68.7 (+4.9)

Table 12: Common calculation error cases on DROP dataset.

Error Type Example Prediction Label
Carry Error . . . the size of the black-white IQ gap in the United States

decreased from 16.33 to 9.94 IQ points. . . .
6.49 6.39

Q: How many IQ points did the black-white IQ gap de-
crease in the United States in a 2013 analysis of the Na-
tional Assessment of Educational Progress?

Missing High Digit . . . The Department of Tourism recorded 26,861,095 Thai
and 11,361,808 foreign visitors to Bangkok in 2010. . . .

499287 15499287

Q: How many more Thai visitors did Bangkok have in
2010 compared to other foreign visitors?

Extra Integer digit . . . Rayner nailed a 23-yard field goal . . . Rayner got a 54-
yarder and a 46-yarder to end the half . . .

111113 123

Q: How many total yards of field goals did Dave Rayner
have?

Extra Float Number
Digits

. . . have estimated the IQ means of 17-year-old black,
white, and Hispanic students to range respectively from
90.45-94.15 . . .

3.75 3.7

Q: How many points difference is the IQ range in 17-
year-old black students?

Insufficient Precision . . . The Diocese of Karelia has 22,000 church members in
12 parishes. . . .

1833 1833.33

Q: How many church members approximately are in each
one of the 12 parishes?

16

	Introduction
	Preliminary Study
	Numerical Reasoning via Solving Linear Systems
	Method Overview
	Operand Proposal
	Number Substitution
	Arithmetic Relationship Inversion

	Solving Algorithm
	Formulation
	Analytical-based Algorithm
	Search-based Algorithm
	Heuristic-based Algorithm

	Experiments
	Experimental Setup
	Experimental Results

	Model Analysis
	Related Work
	Conclusion
	Preliminary Study Details
	Operand Proposal Details
	Experiments
	Experimental Setup
	Experimental Details on DROP
	Combination with Majority Voting wang2022self

	More Results on DROP

