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ABSTRACT

Despite the impressive capabilities of Large Vision-Language Models (LVLMs),
they remain susceptible to hallucinations—generating content that is inconsistent
with the input image. Existing training-free hallucination mitigation methods
often suffer from unstable performance and high sensitivity to hyperparameter
settings, limiting their practicality and broader adoption. In this paper, we propose
a novel decoding mechanism, Decoding with Inter-layer Consistency via Layer
Aggregation (DCLA), which requires no retraining, fine-tuning, or access to exter-
nal knowledge bases. Specifically, our approach constructs a dynamic semantic
reference by aggregating representations from previous layers, and corrects se-
mantically deviated layers to enforce inter-layer consistency. The method allows
DCLA to robustly mitigate hallucinations across multiple LVLMs. Experiments
on hallucination benchmarks such as MME and POPE demonstrate that DCLA
effectively reduces hallucinations while enhancing the reliability and performance
of LVLMs.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) have rapidly advanced in recent years, demonstrating
impressive capabilities in aligning visual and textual modalities, which has notably enhanced their
performance on multi-modal tasks such as visual question answering (VQA) and image captioning
Bai et al.| (2023); Dai et al.| (2023)); [Liu et al.| (2023b); |Ye et al.| (2024)); Zhou et al.| (2023a); [Zhu
et al.| (2023). Despite these advancements, LVLMs remain susceptible to hallucinations—generating
syntactically plausible but visually ungrounded outputs|Liu et al.|[(2023a); |Gunjal et al.|(2024); |L1
et al.[(2023); Lovenia et al.[(2023). This issue severely compromises their reliability and limits
their applicability in high-stakes fields such as medical report generation [Hartsock & Rasool| (2024),
autonomous driving [Zhou et al.| (2024a), and embodied Al systems Ma et al.| (2024}, where the
accuracy and trustworthiness of generated text are crucial.

Recent studies have identified several causes of hallucinations in LVLMs, including over-reliance
on statistical biases in training data such as object co-occurrence and background context|Li et al.
(2023); |Chen et al.| (2024); Zhou et al.| (2023b), the dominance of language priors over visual inputs
during decoding |Guan et al.| (2024); |[Han et al.| (2022)); [Kaul et al.| (2024)), and weak cross-modal
attention in deeper layers that undermines visual-textual alignment |An et al.| (2024); |Yang et al.
To address hallucinations in LVLMs, knowledge editing methods have been proposed Jiang et al.
(2024); |Chen et al.|(2025); [Khandelwal et al.|(2024); Zhou et al.| (2023b); [Perry et al.| (2025). These
approaches typically aim to mitigate hallucinations by fine-tuning specific memory-related parameters
within LVLMs Jiang et al.| (2024); |Chen et al.| (2025)); Khandelwal et al.|(2024)) or by injecting and
revising factual information through external knowledge bases|Zhou et al.|(2023b)); |Perry et al.[(2025).
However, such methods generally treat hallucination as a static knowledge deficiency, overlooking
the fact that information representations evolve dynamically across layers during inference.

Recently, several studies (Chuang et al.|(2023); Wang et al.; |Leng et al.| (2024)) have approached this
problem from a training-free perspective. Wang et al.| observed that hallucinations in LVLMs tend
to manifest as localized surges at the later layers, suppressing pre-existing and visually grounded
information in the decoding distribution. Based on this observation, they proposed a training-free
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Figure 1: Illustration of Decoding with Inter-Layer Consistency via Layer Aggregation (DCLA) in
LLaVA1.5-7b. Vanilla decoding process produces hallucinations and thus generates incorrect answers.
By aggregating hidden states across layers to refine the representation, DCLA effectively suppresses
hallucinations and restores the ground-truth answer.

approach that mitigates hallucinations by injecting accumulated momentum into the information flow
during inference. This design effectively suppresses the localized surges in the decoding distributions
observed in later layers. However, their approach focused primarily on accumulating momentum
across layers to guide the directional update of activations in later layers, without explicitly addressing
the evolving semantic inconsistencies that occur across layers during inference. Consequently, factual
information captured by earlier layers may still be attenuated or overridden by semantically divergent
activations in later layers, ultimately leading to hallucinations. Additionally, their method is highly
sensitive to hyperparameters.

To address these challenges, we propose a novel decoding mechanism, Decoding with Inter-layer
Consistency via Layer Aggregation (DCLA), shown in Figure [T} Unlike the momentum-based
update in DAMO we build an explicit semantic reference across different layers. This
resilient reference enables the model to retrieve the correct information captured by earlier layers
when decoding in later layers, effectively suppressing the localized surges in the decoding distribution.
Specifically, DCLA constructs this inter-layer semantic reference by performing weighted aggregation
over the representations of all preceding layers, thereby preserving factual information captured by
earlier layers and enhancing cross-layer consistency during decoding.

Experiments on the MME and POPE benchmarks demonstrate that, without any additional training,
DCLA significantly reduces hallucinations across four diverse LVLMs: LLaVA1.5-7b
(2023a), LLaVA1.5-13b[Liu et al (2023d), LLaVA-NEXT [Liu et al. (2024), and mPLUG-OwI2[Ye|
(2023). Results on VizWiz and MM-Vet datasets show the broader applicability of our method
beyond hallucination mitigation. The contributions are summarized as follows:

* We propose Decoding with Inter-layer Consistency via Layer Aggregation (DCLA), a
training-free decoding method that reduces hallucinations by enforcing semantic consistency
across transformer layers.

* We conduct extensive experiments to validate the proposed DCLA approach, demonstrating
that enforcing inter-layer consistency during inference can effectively reduce hallucinations
in LVLMs across multiple benchmarks and models.

2 RELATED WORK

Layer Aggregation Mechanisms In the field of computer vision,[Donahue et al.| (2014); [Yosinski
have pointed out that as the depth of neural networks increases, high-level representations
gain stronger semantic abstraction capabilities, while fine-grained features such as edges and textures
are often gradually forgotten. To address this, multi-level feature aggregation mechanisms have been
proposed to enhance semantic representation and structural perception (2018). Building
on this, the concept of layer aggregation has been widely adopted for efficient feature integration
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and mitigating the loss of shallow features [Huang et al.| (2020); |Zhao et al.|(2021)). In the domain
of large foundation models, the idea of layer aggregation has also been extensively adopted [Tenney:
et al.| (2019); [Brandon et al.| (2024)); Wu & Tu| (2024)); Zhou et al.| (2024b); [L1 et al.| (2025b). To
alleviate memory consumption and improve throughput during inference, Brandon et al.|(2024); [Wu
& Tul(2024); Zhou et al.| (2024b) have adopted layer aggregation strategies to reduce the size of
key value caches, effectively accelerating model execution. Meanwhile, other studies |[Tenney et al.
(2019); [L1 et al.| (2025b)) have explored the use of layer aggregation in the training or fine-tuning
stages, demonstrating its effectiveness in enhancing the representation capacity and task-specific
performance.

Hallucinations in LVLMs Before large language models (LLMs) emerged, the NLP community
primarily defined hallucination as the generation of illogical or source-inconsistent content Lin et al.
(2021); J1 et al.[(2023)); [Shi et al.| (2023)); |/ Agarwal et al.|(2018). With the advent of LLMs, hallucina-
tions have become a widely studied phenomenon, particularly in contexts where the generated text
deviates from the input or factual reality Zhu et al.| (2024)); |[Yao et al.| (2023); Xu et al.| (2024). In
LVLMs, visual and textual information must remain tightly aligned, making hallucinations harder to
mitigate and increasing the probability of their occurrence|Li et al.|(2023)); [Liu et al.|(2023a); Lovenia
et al.| (2023), especially in tasks such as image captioning and visual question answering |Yin et al.
(2024); [Li et al.| (2025a).

Some researchers have actively worked on constructing more refined datasets to fine-tune existing
LVLMs|Wang et al.[(2024); Xiao et al.|(2025) or to train correction modules that detect and reconstruct
outputs with fewer hallucinations Gunjal et al.| (2024)); |Liu et al.| (2023a). However, these approaches
often rely on acquiring additional datasets, performing fine-grained tuning on pretrained models, or
leveraging external pretrained models. These steps tend to be time-intensive, resource-demanding,
and costly in terms of computation. In addition, other studies Kim et al.|(2023));|Zeng et al.|(2021)
have focused on mitigating hallucinations by enhancing the alignment between visual and textual
modalities.

In recent years, DoLa|Chuang et al.|(2023) has been proposed to mitigate hallucinations in LLMs
through contrastive decoding, achieving promising results without requiring additional training. This
idea was later extended to the domain of LVLMs to address hallucinations in multimodal settings.
For example, VCD [Leng et al.| (2024) is a training-free method that compares the output distributions
generated from original and distorted visual inputs, thereby enhancing image-relevant information and
alleviating object hallucinations. To reduce hallucinations within the hidden state hierarchy during
inference, DAMO |Wang et al.| introduced a momentum mechanism by accumulating activations layer
by layer to correct the hidden states of later layers, thus alleviating the concentrated emergence of
hallucinations in deeper layers.

3 METHOD

3.1 DECODING IN LARGE VISION-LANGUAGE MODELS

Large Vision-Language Models (LVLMs) generate textual output in an autoregressive manner through
N stacked transformer layers |Vaswani et al.| (2017); [Liu et al.| (2023b); [Zhu et al.| (2023), where
each layer plays a crucial role in the inference process. As information propagates forward through
the network, feature representations are gradually transformed from low-level signals to high-level
semantic representations |[Rogers et al.[(2021). At time step ¢, given an initial fused representation x;,
the forward process can be formulated as follows:

) . 1
TransforrnerLayer(’)(h§z 1))7 ifi=1,...,N M

O _ {Embedding(xt), ifi=0
=
Where hi denotes the hidden states at layer i and time step ¢, and T ransformerLayer(i) represents the
1-th transformer block, consisting of a multi-head self-attention mechanism and a feedforward neural
network. The token prediction process, including both standard decoding from the final layer and
optional early exit decoding from intermediate layers, can be generalized as follow:

pi(ze41 | 24) = softmax(¢(hi)), i=0,..,N )
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where ¢(-) is the language modeling head that maps hidden states to vocabulary distributions. This
unified formulation enables predictions from any layer, providing flexibility for efficient inference
and layer-wise interpretability. Notably, the case ¢ = N corresponds to standard decoding using the
final-layer hidden state, while ¢ < N indicates early exit from an intermediate layer.

3.2 MOTIVATION

Recent work (Wang et al | utilized the early exit mechanism to trace the evolution of token probabilities
across the multi-layer inference process in LVLMs. Their findings indicate that hallucinations often
manifest as localized surges at the later layers, which tend to override earlier, visually grounded
information. To address this, they introduced a momentum-based correction method that aggregates
activations across layers and utilizes the accumulated momentum to adjust the hidden states in the
later layers.

While effective to some extent, this correction mechanism is highly sensitive to hyperparameters and
does not directly address the fundamental issue of inconsistency between layers. We argue that this
inter-layer inconsistency is a critical factor undermining semantic stability during decoding.

Motivated by this, we propose the DCLA mechanism, which enhances inter-layer consistency by
aggregating earlier-layer representations to stabilize semantics throughout the decoding process. This
approach effectively mitigates hallucinations caused by semantic drift, improving both the factual
accuracy and the robustness of the generated output.

3.3 DECODING WITH INTER-LAYER CONSISTENCY VIA LAYER AGGREGATION

Layer Aggregation In order to enforce inter-layer consistency, it is crucial to establish a stable
semantic reference throughout the decoding process. Earlier layers encode basic semantic structures
that remain robust to overfitting and noise introduced in deeper layers. Therefore, the use of historical
representation can effectively anchor the inference trajectory of models, promote consistency across
layers, and mitigate hallucinations. We perform weighted aggregation over all earlier layers to ensure
that the semantic reference comprehensively integrates the complete semantic information. Formally,
at the ¢-th layer, the aggregated representation is defined as:

h;, ifjecC

3 3

i—1
(1) — o B —
Hyoy = jz::Owj hj, where h; = i otherwise

Here, I ; denotes the effective hidden state of the j-th layer, which dynamically incorporates correction

information. If layer j has undergone a refinement process, the corrected hidden state ﬁj is used.
Otherwise, the original hidden state h; is retained. The set C C {0, 1,...,7 — 1} records all layers
that have undergone correction prior to the i-th layer. Therefore, the mechanism selectively integrates
the most reliable semantic information available at each layer. This design ensures that once a layer
undergoes refinement, the corrected hidden state persistently contributes to subsequent decoding,
effectively mitigating hallucinations. To prioritize layers that are closer to the current decoding step
while still leveraging the semantic stability provided by earlier layers, we introduce a normalized
exponential weighting scheme. This design reflects the intuition that recent layers contain more
task-specific contextual refinements, whereas earlier layers offer foundational but potentially less
context-aware semantics. The weight assigned to each layer j is defined as:

5 — _xp(s(5,1)) @)

LY e (k)
k=0

where v controls the decay based on layer distance. s(j,i) = j — (i — 1) is a distance function
that captures the relative positional relationship between layer 5 and layer <. Compared to linear or
uniform weighting strategies, this approach provides a more flexible and natural decay pattern, which
aligns with the hierarchical nature of transformer representations where semantic granularity deepens
progressively across layers.

Decoding with Inter-Layer Consistency In standard LVLMs, the decoding process typically
follows the vanilla decoding strategy, where each transformer layer updates its hidden state solely
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Figure 2: Layer Aggregation mechanism to form a stable semantic reference.

based on the output of the preceding layer. However, this unidirectional information flow can lead to
the gradual loss of fine-grained semantic cues captured by earlier layers. To address this issue, we

integrate the aggregated representation Hafgié, into the decoding process. The hidden state is corrected
through a linear fusion mechanism.

hi=a-hi+(1—a) HQ) 5)

where « controls the balance between the original representation and the aggregated semantic
reference. As shown in Figure 2] this correction mechanism allows the current layer to benefit from
both localized contextual information and global aggregated semantics.

3.4 ADAPTIVE LAYER AGGREGATION CORRECTION

Tenney et al.|(2019) have shown that different layers of the model perform different roles in semantic
construction. Earlier layers focus more on capturing lower-level information, while later layers
progressively inject abstract semantics and factual knowledge. Therefore, applying indiscriminate
corrections to all layers may disrupt the natural evolution of information within the model.

To verify this hypothesis, we conducted preliminary experiments on MME dataset, and the results
in Table [T]revealed that correcting different layers led to significant fluctuations in overall model
performance. Moreover, increasing the number of corrected layers did not necessarily result in better
outcomes. These observations suggest that correction should not be applied indiscriminately but
rather selectively based on the intrinsic characteristics of each layer.

Table 1: Perception performance of LLaVA1.5-7b on the MME dataset with different correction
ranges. Each column indicates a hallucination category, and bold values denote the best results.

Correction Exist. Count Pos. Color Posters Celeb. Scene Land. Art. OCR Total

baseline 190.00 160.00 13833 165.00 140.48 135.00 156.25 162.25 119.25 125.00 1491.56
1-16 layers  190.00 145.00 138.33 180.00 141.16 132.94 161.75 16550 122.25 140.00 1516.93
1-20 layers 190.00 145.00 138.33 175.00 141.16 132.06 160.25 167.00 119.25 147.50 1515.55
1-24 layers 190.00 150.00 133.33 170.00 142.18 13294 161.00 167.00 120.00 145.00 1511.45
1-28 layers 190.00 140.00 138.33 180.00 141.16 135.88 158.75 163.75 119.50 147.50 1514.87
1-32 layers 185.00 120.00 108.33 160.00 155.78 135.88 160.00 161.75 109.75 107.50 1404.00

Thus, we propose a dynamic layer correction mechanism. During inference, the model adaptively
determines whether a hallucination surge has occurred at each layer by comparing the semantic
features of the current hidden states with the global aggregated vector. The dynamic layer selection
mechanism, together with our layer aggregation strategy, completes our overall approach, Decoding
with Inter-layer Consistency via Layer Aggregation (DCLA). To more directly capture the intrinsic
semantic changes, we focus on the hidden states themselves rather than their derived probability
distributions. Specifically, we do not employ an early exit mechanism to obtain intermediate output

distributions. Instead, we flatten the hidden states at the i-th layer to obtain A3, and compute the

cosine similarity with H. )1,

) hﬂat . H(i)vﬂat
cos_sim(hinzEgg) = l—afig)fht
([Pt || Hage™

(6)
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Specifically, if the cosine similarity falls below a predefined threshold 7, we regard the current layer as
exhibiting unstable representation dynamics and activate a correction mechanism to refine the hidden
states. Otherwise, if the similarity exceeds 7, the decoding proceeds without modification. This
adaptive strategy ensures that corrections are only applied when necessary, preserving the model’s
natural semantic progression while mitigating potential inconsistencies.

4 EXPERIMENT

4.1 SETUP

Datasets To comprehensively validate the effectiveness of our DCLA method in mitigating hal-
lucination issues in Large Vision-Language Models (LVLMs), we utilize the MME benchmark [Fu
et al.| (2023). This benchmark comprises 14 diverse tasks, which are categorized under perception
and cognition. Additionally, we specifically investigate the effectiveness of DCLA in addressing
object hallucinations through benchmark POPE (Polling-based Object Probing Evaluation) Li et al.
(2023), which uses the SEEM-annotated datasets MSCOCO |Lin et al.| (2014), A-OKVQA [Schwenk
et al.| (2022) and GQA |Hudson & Manning|(2019). In addition, we further assess the generalization
of our method on two real-world VQA benchmarks: VizWiz |Gurari et al.| (2018), which features
noisy and ambiguous image inputs, and MM-Vet|Yu et al.| (2023)), which provides a comprehensive
assessment of multimodal models across six core capabilities. These datasets provide a practical
testbed for evaluating the robustness of LVLMs in open-domain settings.

Models and Baselines We conduct experiments on four recent LVLMs to validate the generalization
ability of our method. These include two models with identical architecture but different parameter
scales: LLaVA1.5-7b and LLaVA1.5-13b |Liu et al.[|(2023b), as well as two 7b-scale models with
distinct vision-language fusion and pre-training strategies: LLaVA-NEXT [Liu et al.| (2024)) and
mPLUG-OwI12 |Ye et al.| (2023). For baseline comparisons, we evaluate DCLA against several
representative decoding methods such as regular decoding, VCD [Leng et al.|(2024)), DoLa |Chuang
et al.|(2023)), and DAMO Wang et al.l To ensure the fairness and reproducibility of our comparisons,
all decoding strategies are evaluated under decoding temperature consistently set to zero throughout
all experiments.

Hyperparameters Setting We use only two hyperparameters in our experiments, namely 7 and «,
with their specific values provided in the Appendix. To further verify the effectiveness of our hyper-
parameter choices and the contribution of each component, we conduct an ablation study to compare
different combinations. The detailed results are also included in the Appendix. Experimental results
demonstrate that our chosen hyperparameter configuration maintains stable and strong performance
across different settings.

Table 2: Experimental results of various decoding strategies on MME dataset across four models:
LLaVA1.5-7b, LLaVA-NEXT, LLaVA1.5-13b, and mPLUG-OwI2.

Model Decoding Existence Count Position Color Posters Celebrity Scene Landmark Artwork OCR Total
Regular 190.00 160.00 13833  165.00 140.48 135.00 156.25 162.25 119.25  125.00 1491.56
VCD 190.00 163.33 13333 15833  129.59 139.12 155.75 166.50 124.00  125.00 1484.96
LLaVA1.5-7b  Dola 190.00 15333 14333 165.00 141.50 132.35 157.75 160.50 11875  132.50 1495.02
DAMO 195.00 150.00 14333 165.00 144.56 134.12  157.75 163.75 120.00  140.00 1513.51
DCLA 190.00  163.33 148.33 175.00 137.41 132.06 156.25 160.50 117.25  140.00 1520.14
Regular 195.00 135.00 14333 170.00 159.52 142.94  162.25 155.75 123.00  132.50 1519.30
VCD 175.00 125.00  95.00  140.00 148.98 145.29 159.00 169.75 13025 130.00 1418.27
LLaVA-NEXT Dola 190.00 13333 14333 170.00  132.65 155.59 156.25 135.00 136.75  162.50 151541
DAMO 195.00 130.00 13333 160.00 149.32 145.29 159.50 143.25 12375 13250 1471.95
DCLA 195.00  140.00 14333  170.00 160.20 142.94 161.50 155.75 12450 132,50 1525.73
Regular 188.33 145.00 123.33  160.00 159.52 159.71 157.25 141.75 12175 147.50 1504.15
VCD 190.00 16333  120.00 175.00 151.70 159.41 158.25 129.00 12525 13250 1504.44
LLaVA1.5-13b DoLa 190.00 150.00 123.33  160.00 160.54 157.06 155.75 134.50 124.00  147.50 1502.69
DAMO 190.00 125.00 11333 150.00 166.66 152.06  163.25 166.50 107.75  140.00 1474.56
DCLA 188.33 145.00 12333 160.00 159.52 160.88 158.00 140.50 121.75  147.50 1504.82
Regular 185.00 165.00 7833 150.00 163.27 162.94 152.75 160.00 139.75  102.50 1459.54
VCD 180.00 160.00  61.67 151.67 151.36 108.82 158.00 115.00 130.00  95.00 1311.52
mPLUG-Owl2  DoLa 175.00 160.00  93.33 16333 155.78 160.88  159.25 142.50 14225  110.00 1462.33
DAMO 180.00 155.00  78.33 145.00  134.01 167.35 154.00 168.25 133.50 87.50  1402.95
DCLA 185.00  165.00  78.33 155.00 162.24 163.82 153.00 159.50 139.00  102.50 1463.40
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4.2 RESULTS

Results on MME To systematically assess the effectiveness of DCLA in mitigating hallucinations,
we adopt the perception subset of the MME benchmark, which comprises 10 tasks and has been
widely used in recent studies related to hallucinations. Our experiments are conducted on some
representative LVLMs. As shown in Table 2] DCLA consistently outperforms almost all baseline
decoding methods across the board, achieving total scores of 1520.14 on LLaVA1.5-7b and 1525.73
on LLaVA-NEXT. Notably, DCLA achieves a total score of 1504.82 on the larger-scale model
LLaVA1.5-13b. Furthermore, it maintains strong performance on a structurally different architecture,
mPLUG-OwI2, with a total score of 1463.40, which surpasses other decoding-based baselines such
as DoLa and DAMO. Existing decoding-based approaches do not guarantee consistent improvements
across models: DoLa has no significant improvement over LLaVA1.5-7b, VCD struggles to maintain
stable performance across almost all architectures, and DAMO results in performance degradation on
LLaVA-NEXT. These findings highlight the superior generation ability and reliability of DCLA in
hallucination mitigation for LVLMs.

Table 3: Experimental results of various decoding strategies on the Random and Popular subsets
of the SEEM-annotated MSCOCO, A-OKVQA, and GQA datasets from POPE using four models:
LLaVA1.5-7b, LLaVA-NEXT, LLaVA1.5-13b, and mPLUG-OwI2.

Setting  Model Decoding | MS§coco | A-OKVQA | GQA

| Accuracy F1 Score | Accuracy F1 Score | Accuracy F1 Score

Regular 89.60 89.72 87.23 88.44 86.87 88.14

VCD 89.07 89.00 86.37 87.44 86.00 87.33

LLaVA1.5-7b DoLa 89.70 89.79 86.10 87.48 85.47 87.00
DAMO 89.94 89.90 87.83 88.88 86.03 87.52

DCLA 90.03 89.99 87.93 88.98 87.90 88.94

Regular 88.83 87.58 91.07 90.87 90.03 89.34

VCD 80.00 75.14 81.13 77.45 81.13 77.29

LLaVA-NEXT DoLa 85.40 83.02 88.73 87.68 86.97 85.34
DAMO 88.90 87.69 90.87 90.43 88.63 87.86

Random DCLA 88.87 87.60 91.10 90.69 90.10 89.52
Regular 88.37 87.15 91.03 90.72 91.03 90.75

VCD 87.10 85.50 89.00 88.33 89.43 88.90

LLaVA1.5-13b DoLa 88.30 87.04 90.77 90.37 91.03 90.67
DAMO 90.03 89.59 91.60 91.78 90.90 91.09

DCLA 91.07 90.83 91.50 91.28 91.00 90.70

Regular 88.40 87.71 88.09 88.17 86.10 85.41

VCD 82.17 79.96 82.83 81.49 81.73 80.25

mPLUG-Owl2 DoLa 86.97 85.60 87.63 86.96 84.77 83.06
DAMO 88.63 88.19 88.26 88.43 86.70 86.23

DCLA 88.53 87.99 88.10 88.16 86.80 86.25

Regular 86.20 86.81 80.10 83.07 74.50 79.29

VCD 85.63 86.03 78.90 81.82 73.73 78.60

LLaVA1.5-7b DoLa 86.07 86.67 80.40 83.21 75.30 79.75
DAMO 86.67 87.06 81.07 83.70 76.17 80.29

DCLA 86.73 87.10 81.13 83.78 75.20 79.68

Regular 87.63 86.43 89.13 88.87 86.57 86.23

VCD 79.83 74.99 80.90 77.23 79.20 75.53

LLaVA-NEXT DoLa 85.03 82.67 87.83 86.83 85.07 83.55
DAMO 87.70 86.54 89.03 88.72 85.97 85.43

Popular DCLA 87.73 86.51 89.23 88.96 86.57 86.30
Regular 87.53 86.36 89.13 88.97 88.43 88.38

VCD 86.13 84.58 86.73 86.26 86.53 86.28

LLaVA1.5-13b DoLa 87.53 86.31 88.93 88.68 88.60 88.43
DAMO 88.87 88.51 89.07 89.56 86.77 87.55

DCLA 90.27 90.09 89.17 89.14 88.40 88.33

Regular 86.56 86.04 84.33 84.18 79.37 80.38

VCD 80.13 77.89 80.77 79.93 77.83 77.12

mPLUG-Owl2 DolLa 85.77 84.48 84.47 84.15 81.37 80.29
DAMO 86.50 86.28 84.07 84.92 79.93 80.59

DCLA 86.83 86.45 84.43 85.06 79.87 80.44
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Results on POPE To evaluate the effectiveness of our proposed method in mitigating object-
level hallucinations, we conduct experiments on the SEEM-annotated versions of the MSCOCO,
A-OKVQA, and GQA datasets provided by the POPE benchmark. Each dataset is further divided
into three subsets: adversarial, popular, and random. As shown in Table 3] we compare DCLA with
several representative decoding strategies and report two key evaluation metrics: Accuracy and F1
Score, to comprehensively assess the consistency of object recognition. The results on the popular
and random subsets are presented in Table 3] while the results on the adversarial subset are provided
in the Appendix.

MSCOCO datasets DCLA reduces hallucinations in all evaluation categories across models, demon-
strating stable and robust improvements. Notably, under the most challenging adversarial setting of
LLaVA1.5-7b, DCLA achieves a 0.93% increase in accuracy and a 0.5% gain in F1 score. In contrast,
DoLa, VCD, and DAMO exhibit higher instability and even performance regression in some cases.

A-OKVQA datasets On the A-OKVQA dataset, DCLA outperforms most existing decoding strategies
across all evaluation settings, demonstrating stable and comprehensive improvements. In the most
challenging adversarial setting, DCLA yields an average accuracy improvement of 1.02% across
four different models. In contrast, other methods fail to guarantee consistent improvements and
occasionally lead to performance regressions.

GQA datasets DCLA is a strong and adaptable decoding strategy on the GQA dataset, delivering
consistent improvements across diverse models and settings, including base and advanced architec-
tures. Notably, DCLA achieves the best performance on LLaVA-NEXT, surpassing all other decoding
methods. In particular, under the random setting of mPLUG-OwI2, DCLA achieves gains of 0.70%
in accuracy and 0.84% in F1 score.

Table 4: Evaluation of DCLA and other decoding methods on LLaVA1.5-7b using VizWiz and
MM-Vet.

Decoding | VizWiz | MM-Vet
| Number Yes/No Unans. Other Overall | Rec OCR Know Gen Spat Math Total
Regular 47.62 7826 7430 38.11 5005 |36.1 245 17.5 222 257 115 315

VCD 4270  77.64 7254 3812 4947 277 215 83 7.6 281 38 26.1
DoLa 53.33 80.00 69.64 3736 4843 [37.6 213 215 246 256 7.7 318
DAMO 48.10  78.88 71.78 36.63 4841 |353 21.6 21.1 21.6 249 77 313
DCLA 45.71 78.65 7719 37.78 50.62 |37.7 239 199 245 293 77 321

Results on General-Purpose Multimodal Benchmarks ~As shown in Table ] DCLA achieves
strong overall performance on general-purpose multimodal benchmarks. It obtains 50.62% Overall
accuracy on VizWiz, with 77.19% in the Unanswerable category. On MM-Vet, it records a Total
score of 32.1%, including 37.7% in Recognition and 29.3% in Spatial Reasoning. Compared to
other decoding methods, DCLA maintains robust and balanced results across all settings, indicating
superior generalization.

1516.93 Total Score vs. Correction Range (MME, LLaVAL.5) 152014
1515.55 1514.8 1504.15

1500
144417 1506.32 1511.45 1506.56
41490 £
A
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1520 = mm e e e e e e e e e -

1500 1511.45

1480

1460

Total Score

1440
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~~ Regular Score

1400

0-16 0-20 0-24 0-28 0-32 Dynamic
Correction Range 1404.00

(@) (b)

mMPLUG-OWI2  LLaVA-15-13B  LLaVA-1.5-7B  LLaVA-NEXT
Model

Figure 3: (a) Comparison of different fixed refinement layers in DCLA (0-20th, 0-24th, 0-28th,
0-32nd) against standard decoding and our adaptive correction mechanism. (b)Evaluation of the
dynamic correction mechanism and fixed correction on LLaVA1.5-7b, LLaVA-Next, LLaVA1.5-13b,
and mPLUG-OwI2.
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Evaluation on Adaptive Layer Aggregation Correction To verify the effectiveness of our dy-
namic selection mechanism, we conduct a series of ablation studies. In all experiments, aggregation
is consistently performed starting from the 1st layer, while representation refinement is applied to
each layer from the O-th up to the ¢-th layer. All other parameters are kept unchanged to ensure a
fair and consistent comparison. As shown in Figure[3a] the experimental results on the MME dataset
using the LLaVA1.5 model indicate that most fixed refinement layer settings achieve reasonably good
performance, except for a few extreme values of <. In contrast, the dynamic selection mechanism
consistently achieves the highest accuracy across all configurations, demonstrating its flexibility and
effectiveness in guiding the decoding process. A similar trend can be observed across the other three
models, as illustrated in Figure [3b] further confirming the robustness and generalizability of our
approach.

Effect of Correction Strength and Trigger Threshold We evaluate the sensitivity of the LLaVA1.5
model to different correction strength values and trigger threshold on the POPE (MSCOCO setting),
and record the corresponding accuracy. As shown in Figure [db] the model exhibits consistent
performance fluctuations across the Random, Popular, and Adversarial subsets as o varies from 0.8
to 0.9, and 7 varies from 0.7 to 0.8, indicating the model’s sensitivity to this hyperparameter. Notably,
when o = 0.82 and 7 = (.74, the model achieves the highest accuracy on all three subsets.

1520.14

Random

Popular

Adversarial

(@ (b)

Figure 4: (a) Parameter sensitivity analysis of correction strength and trigger threshold on POPE
subsets (Random, Popular, Adversarial). (b) Parameter sensitivity analysis of correction strength and
trigger threshold on MME dataset.

To further investigate the effectiveness of this parameter setting, we conduct a sensitivity analysis on
the MME benchmark. As shown in Figure [fa] LLaVA1.5 is sensitive to the values of both correction
strength and trigger threshold. When « and 7 are set to the same values as those used on the POPE,
specifically a = 0.74 and 7 = 0.82, the model achieves the best overall performance on the MME
benchmark. This indicates that the selected parameter combination exhibits good cross-dataset
generalization on LLaVAL.S.

5 CONCLUSION

In this work, we propose Decoding with Inter-layer Consistency via Layer Aggregation (DCLA),
a training-free decoding strategy designed to mitigate hallucinations in Large Vision-Language
Models (LVLMs). DCLA introduces an explicit cross-layer semantic reference during decoding by
aggregating intermediate representations and dynamically selecting and refining the processing layer
to enhance semantic stability and suppress hallucinations. Experimental results demonstrate that
DCLA achieves consistent improvements on several challenging hallucination evaluation benchmarks,
including MME and POPE, with particularly strong gains under adversarial settings. Moreover, DCLA
achieves robust improvements on diverse real-world datasets such as VizWiz and MM- Vet, indicating
its ability to generalize beyond hallucination mitigation. Notably, DCLA is highly compatible
with existing model architectures and can be seamlessly integrated into mainstream multimodal
frameworks.
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APPENDIX
A  RESULTS ON ADVERSARIAL SUBSETS IN POPE

Table 5: Experimental results of various decoding strategies on the Adversarial subsets of the SEEM-
annotated MSCOCO, A-OKVQA, and GQA datasets from POPE using four models: LLaVA1.5-7b,
LLaVA-NEXT, LLaVA1.5-13b, and mPLUG-OwI2.

Setting Model Decoding ‘ mscoco ‘ A-OKVQA ‘ GQA
| Accuracy F1 Score | Accuracy Fl1 Score | Accuracy F1 Score

Regular 79.77 81.78 69.20 76.02 68.33 75.50

VCD 79.27 81.01 68.30 74.97 68.10 75.15

LLaVA1.5-7b DoLa 79.47 81.52 69.60 76.16 68.90 75.77
DAMO 80.50 82.14 70.64 76.85 70.07 76.43

DCLA 80.70 82.28 70.23 76.60 69.13 75.91

Regular 86.40 85.27 82.03 82.85 82.97 83.27

VCD 79.13 74.34 75.70 72.72 76.23 72.98

LLaVA-NEXT DoLa 84.30 81.97 82.83 82.37 81.87 80.71
DAMO 86.33 85.26 83.16 83.68 82.53 82.49

Adversarial DCLA 86.53 85.38 82.33 83.08 83.17 83.40
Regular 85.63 84.60 81.93 82.91 83.73 84.40

VCD 84.23 82.83 80.40 80.95 82.43 82.81

LLaVA1.5-13b DoLa 85.70 84.61 82.07 82.86 82.97 81.89
DAMO 85.53 85.56 81.13 83.25 81.47 83.39

DCLA 85.77 86.14 82.07 83.22 83.73 84.37

Regular 84.20 83.98 76.67 78.71 78.07 79.03

VCD 77.73 76.21 73.50 74.26 74.43 74.53

mPLUG-Owl2 DoLa 84.00 82.88 78.17 79.14 78.07 77.80
DAMO 83.33 83.59 76.20 79.04 78.03 79.13

DCLA 84.20 84.14 77.07 79.44 78.17 79.13

B LIMITATION ANALYSIS

DCLA also has limitations. This work focuses on hallucination mitigation in image-text multimodal
models and does not extend the proposed mechanism to video-language scenarios, where temporal
dynamics and cross-frame consistency present new challenges. In addition, DCLA is an inference-
only strategy and does not incorporate supervised signals such as reinforcement learning from human
feedback or task-specific fine-tuning, which could further enhance its effectiveness. Finally, the
method relies entirely on the model’s internal representations and does not utilize external retrieval or
grounding modules, limiting its ability to correct misinformation acquired during pretraining.

C HYPERPARAMETER SETTING

C.1 BASELINE SETTING

In the DoLa decoding strategy, we fixed the mature layer to the 32nd layer and adopted a dynamic
candidate layer selection mechanism with an adaptive plausibility constraint. For the DAMO method,
we kept all settings consistent with its official configuration. For the VCD method, we set the
decoding temperature to 0. The setting of our method is shown in Table 6]

C.2 HYPERPARAMETER SETTING IN DCLA

The code of DCLA is available at ht tps://anonymous.4open.science/r/DCLA-1028/l
Tabld6] presents the hyperparameter configurations of DCLA across four different models. The
correction strength coefficient o and the triggering threshold 7 are adjusted for each model to ensure
optimal performance. Specifically, LLaVA1.5-7b, LLaVA-NEXT, LLaVA1.5-13b, and mPLUG-OwI2
are assigned distinct values of o and 7, reflecting their architectural and scale differences. Importantly,
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we do not adopt dataset-specific parameter tuning to deliberately improve performance. Instead,
each model is assigned a single parameter setting that consistently improves results across most
datasets, demonstrating the strong generalization ability of our method as well as its robustness to
hyperparameter sensitivity.

Table 6: Hyperparameters of DCLA for different models.

LLaVA1l.5-7b LLaVA-NEXT LLaVA1l.5-13b mPLUG-OwI2

o 0.82 0.96 0.86 0.90
T 0.74 0.93 0.76 0.95

D ABLATION STUDY

D.1 EVALUATION THE SENSITIVITY OF CORRECTION STRENGTH

We evaluate the sensitivity of the LLaVA1.5-7b model to different correction strength values on
the POPE dataset (MSCOCO setting), and report the corresponding Accuracy scores. As shown in
Table [/ the model exhibits consistent performance fluctuations across the Random, Popular, and
Adversarial subsets as 7 varies from 0.7 to 0.8. Notably, when o = 0.82, the model achieves the
highest average score of 85.82.

Table 7: The sensitivity of correction strength on POPE (MSCOCO) dataset using LLaVA1.5-7b
model

T 080 082 084 08 0.88 0.90

Random 90.03 90.03 90.00 89.92 89.80 89.71
Popular 86.80 86.73 86.69 86.53 86.39 86.20
Adversarial 80.60 80.70 80.60 80.42 80.26 80.03
Average 85.81 85.82 8576 85.62 8548 8531

D.2 EVALUATION THE SENSITIVITY OF TRIGGER THRESHOLD

To further investigate the influence of the trigger threshold, we conduct a sensitivity analysis of 7 on
the MME benchmark. As shown in Table[8] LLaVAL.5 is quite sensitive to the value of . When « is
set to 0.74, the model achieves the best overall performance on the MME benchmark. This highlights
that & = 0.74 is the optimal setting under our current configuration.

Table 8: The sensitivity of trigger threshold on MME benchmark using LLaVA1.5-7b

T Exist. Count Pos. Color Posters Celeb. Scene Land. Art. OCR Total

0.7 190.00 158.33 143.33 165.00 138.44 135.00 157.00 159.75 11825 132.50 1497.60
0.72 190.00 158.33 148.33 165.00 138.44 135.00 157.00 160.50 118.25 132.50 1503.35
0.74 190.00 163.33 148.33 175.00 137.41 132.06 156.25 160.50 117.25 140.00 1520.14
0.76 190.00 163.33 148.33 175.00 136.39 132.06 156.25 160.00 117.25 13250 1511.12
0.78 190.00 163.33 148.33 175.00 136.39 132.06 156.25 160.00 117.25 13250 1511.12
0.80 190.00 163.33 148.33 175.00 136.39 132.06 156.25 160.00 117.25 13250 1511.12

D.3 VALIDATION OF THE SELECTED PARAMETERS ON MME

To validate the effectiveness of our selected hyperparameters, we conducted a larger-scale grid search
experiment. Table[9|reports the total scores of the LLaVA1.5-7b model on the perception subset under
different combinations of the correction strength « and trigger threshold 7. The table systematically
explores values of o from 0.80 to 0.89 and 7 from 0.70 to 0.79. The results reveal that performance
is relatively stable across a wide range of settings, with the highest scores observed around o« = 0.82
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and 7 = 0.74, suggesting that these hyperparameter ranges offer optimal balance for hallucination
mitigation and perceptual grounding.

Table 9: Total Score across of perceptron different 7 and o combinations on LLaVA1.5-7b.

T\a 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89

0.70 1496.7 1497.7 1497.6 14959 14974 1497.6 1497.8 14925 14975 14933
0.71 1501.7 1502.7 1502.6 1502.6 1504.1 1504.2 1497.8 14925 14925 1491.6
0.72 1501.7 1502.7 1503.4 15034 15039 15024 15009 14894 14894 1489.2
0.73 15044 15100 1509.8 1509.4 1511.1 15104 15184 1507.1 1508.5 1496.8
0.74 15148 1519.8 1520.1 1519.2 1520.1 15152 15162 1503.6 1505.8 1493.4
0.75 15123 1518.8 15194 1519.2 15202 1507.7 1516.2 1503.6 1505.8 1493.4
0.76 1504.0 15105 1511.1 1511.0 15127 1507.7 15162 1503.6 1505.8 1493.4
0.77 1504.0 15105 1511.1 1511.0 15127 1507.7 1516.2 1503.6 1505.8 1493.4
0.78 1504.0 15105 1511.1 1511.0 15127 1507.7 15162 1503.6 1505.8 1493.4
0.79 1504.0 15105 1511.1 1511.0 15127 1507.7 1516.2 1503.6 1505.8 1493.4

D.4 VALIDATION OF THE SELECTED PARAMETERS ON POPE

Similarly, we conduct large-scale grid search experiments on all three POPE (MSCOCO)subsets:
Random, Popular, and Adversarial. As shown in Tables [I0] [TT} and [T2] the model performance
remains stable across a wide range of 7 and « settings. Specifically, optimal performance consistently
emerges around 7 = 0.74 and o = 0.82 for all subsets, indicating that our chosen configuration
generalizes well across diverse hallucination scenarios in POPE. This consistent pattern further
supports the effectiveness and reliability of our parameter selection strategy.

Table 10: Adversarial Accuracy across different 7 and « values on LLaVA1.5-7b.

\a 081 082 083 084 08 08 087 088 0.8 090

0.72 0.805 0.805 0.805 0.803 0.803 0.802 0.802 0.802 0.801 0.800
0.73 0.807 0.807 0.807 0.806 0.805 0.804 0.803 0.802 0.801 0.800
0.74 0.807 0.807 0.807 0.806 0.805 0.804 0.803 0.802 0.801 0.800
0.75 0.807 0.807 0.807 0.806 0.805 0.804 0.803 0.802 0.801 0.800
0.76  0.807 0.807 0.807 0.806 0.805 0.804 0.803 0.802 0.801 0.800

Table 11: Popular Accuracy across different 7 and o values on LLaVA1.5-7b.

T\a 0.81 082 083 084 08 08 087 088 0.8 090

072 0.866 0.866 0.866 0.865 0.865 0.865 0.865 0.863 0.863 0.863
0.73 0.868 0.867 0.867 0.867 0.865 0.865 0.865 0.863 0.863 0.862
0.74 0.868 0.867 0.867 0.867 0.865 0.865 0.865 0.863 0.863 0.862
0.75 0.868 0.867 0.867 0.867 0.865 0.865 0.865 0.863 0.863 0.862
0.76 0.868 0.867 0.867 0.867 0.865 0.865 0.865 0.863 0.863 0.862

Table 12: Random Accuracy across different 7 and « values on LLaVA1.5-7b.

T\« 081 082 083 084 085 086 087 088 0.89 090

0.72 0900 0.899 0.899 0900 0.899 0.898 0.897 0.898 0.897 0.897
0.73 0.900 0.900 0.900 0.900 0.899 0.898 0.898 0.898 0.897 0.897
0.74 0900 0.900 0.900 0.900 0.899 0.898 0.898 0.898 0.897 0.897
0.75 0.900 0.900 0.900 0.900 0.899 0.898 0.898 0.898 0.897 0.897
0.76  0.900 0.900 0.900 0.900 0.899 0.898 0.898 0.898 0.897 0.897
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