Learning the Neighborhood: Contrast-Free
Self-Supervised Molecular Graph Pretraining

t1,2 1,2,3

Boshra Ariguib! Mathias Nieper Andrei Manolache
ariguiba@studi.informatik.uni-stuttgart.de
mathias.niepert@ki.uni-stuttgart.de
andrei.manolache@ki.uni-stuttgart.de

University of Stuttgart, Germany
2International Max Planck Research School for Intelligent Systems, Germany
3Bitdefender, Romania

Abstract

High-quality molecular representations are essential for property prediction and
molecular design, yet large labeled datasets remain scarce. Self-supervised pretrain-
ing on molecular graphs has shown promise, but existing approaches often rely on
costly negative sampling, hand-crafted augmentations, or complex generative and
latent prediction objectives. We introduce C-FREE (Contrast-Free Representation
learning on Ego-nets), a simple and effective framework that learns molecular
representations by predicting subgraph embeddings from their complementary
neighborhoods in the latent space. Motivated by the success of subgraph-based
methods in supervised learning, C-FREE adopts fixed-radius ego-nets as the basic
modeling unit and trains a hybrid Graph Neural Network (GNN)-Transformer
backbone without negatives, positional encodings, or expensive pre-processing.
Pretrained on the GEOM dataset, C-FREE achieves state-of-the-art performance on
MoleculeNet, outperforming contrastive, generative, and more complex latent self-
supervised learning techniques. Fine-tuning on the Kraken dataset further shows
that pretraining on GEOM transfers effectively to new chemical domains, providing
clear benefits over training from scratch. We make our code and best performing
checkpoints publicly available at https://github.com/ariguiba/C-FREE,

1 Introduction and Related Work

High-quality molecular representations are critical for predicting properties, interpreting chemical
behavior, and accelerating compound discovery [1} 2. However, building such representations
typically requires large labeled datasets, which are costly and scarce. Self-supervised learning
(SSL) offers a promising alternative, and recent advances in vision and language modeling [3H9]]
have motivated its adaptation to molecular graphs. Broadly, existing approaches for graph self-
supervised learning fall into three categories: contrastive learning, generative pre-training, and latent
representation learning.

Contrastive learning aims to align representations of similar instances while pushing apart those of
dissimilar ones, and it has been particularly influential in graph representation learning. For instance,
GraphCL [10] adapts contrastive learning to graphs by designing diverse augmentations that capture
structural priors, while JOAO [[11]] extends this idea by automatically selecting effective augmenta-
tions during training. Other approaches explore multi-view consistency, such as GraphMVP [12],
which integrates 2D topology with 3D conformations, or InfoGraph [13]], which maximizes mutual
information between node- and graph-level embeddings. Although these methods produce transfer-
able molecular representations [[14], they are constrained by the need for negative samples and large
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batch sizes [10]. In the case of graphs, the challenge is compounded by their irregular structures
and varying sizes, which render naive negative sampling unreliable and ambiguous, thereby the
generation of non-trivial negatives often demands expensive computations.

Generative pre-training forms the second category of self-supervised learning, where models learn to
reconstruct masked or missing components of a graph from the surrounding context. This objective
encourages the capture of intrinsic structural and semantic properties. Early approaches include
AttrMask [15]], which predicts masked node attributes, and ContextPred [[15]], which trains GNNs
to embed nodes occurring in similar structural contexts close together. EdgePred [[L6] extends this
idea by predicting missing edges, while GPT-GNN [17]] adopts an autoregressive formulation for full
graph reconstruction. Building on these, GROVER [18] incorporates chemical domain knowledge by
extracting molecular motifs and pre-training models to predict their presence. Despite their promise,
generative approaches face the challenge of reconstructing both the discrete, sparse adjacency matrix
and the node features, which may be continuous. Moreover, since graph nodes lack a natural ordering,
it is often unclear how to define a valid starting point or sequence for autoregressive generation.

Finally, latent representation is the third category of self-supervised methods. Instead of reconstructing
raw graph structures or features, these approaches predict target embeddings directly in the latent
space. Operating in this space leverages compact, denoised, and semantically rich representations,
often across different input modalities, and is generally easier than reconstructing the full graph,
since only latent vectors need to be aligned rather than the entire adjacency matrix and feature set.
Notable examples include BGRL [[19], which adopts a bootstrapped strategy where an online encoder
learns representations while a target encoder predicts outputs under different graph augmentations,
and LaGraph [20] formulates self-supervised learning as latent graph prediction — because the latent
graph itself is not available, it optimizes a computable upper bound of the prediction loss, combining
reconstruction with invariance regularization applied only to masked nodes for more context-aware
representations. While latent prediction methods avoid the costly generation of negative samples,
their performance depends strongly on the quality of augmentations and the stability of model updates,
as these methods are prone to representation collapse [21, 22]]. Within latent representation learning,
GraphJEPA [23]] has recently extended the Joint Embedding Predictive Architecture (JEPA) [21] to
graphs. GraphJEPA employs the computationally expensive METIS clustering algorithm to remove
clusters and predict them from the remaining graph, generating patch-like substructures. It further
encodes implicit hierarchical information by predicting subgraph coordinates on the unit hyperbola.
While effective, this design introduces additional computational overhead and relies on auxiliary
components—such as clustering, hierarchical encodings, and positional embeddings—that complicate
training and may not be strictly necessary for learning useful representations.

Current work. To address these limitations, we introduce a self-supervised framework that adopts
a non-contrastive predictive learning strategy with subgraphs as the basic modeling unit. Our
approach is motivated by two goals: (i) avoiding expensive or ambiguous design choices such
as augmentations, subgraph extraction, and negative sampling, where subgraph construction may
require computationally heavy algorithms (e.g., METIS clustering [23]]) and defining meaningful
augmentations or negatives is non-trivial, since even molecules with nearly identical structures (e.g.,
chiral isomers) can exhibit very different properties, and (ii) leveraging the success of subgraph-based
methods in supervised learning [24], which suggest that aggregating information from substructures
can yield richer graph-level representations. Building on ideas from JEPA [21] and Equivariant
Subgraph Aggregation Networks (ESAN) [24]], our method generates subgraphs in a straightforward
way and uses them with a non-contrastive predictive objective. We segment graphs into disjoint
subgraphs, analogous to image patches or language tokens, and train the model to predict masked
subgraphs from context. Unlike GraphJEPA and I-JEPA, our method avoids positional encodings,
hierarchical objectives, and costly preprocessing such as clustering, relying instead on the inductive
bias of GNNs and subgraph-based training to learn rich embeddings. Our contributions are as follows:

1. A new pretraining task for molecular graphs. We introduce a broadly applicable predictive
objective based on k-EgoNet subgraphs, avoiding costly hand-crafted augmentations.

2. A simple and effective training scheme. We use non-contrastive predictive learning in
place of contrastive objectives, eliminating the pre-train/fine-tune mismatch and removing
the need for negative pairs or heavy augmentations. Moreover, we show that our fine-tuning
can simulate ESAN [24] and is provably strictly more expressive than 1-WL [25].
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Figure 1: From each molecular graph, we construct complementary context and target subgraphs by
sampling a random node and extracting its k-EgoNet [24] with k € {2, 3,4} to obtain sufficiently
large neighborhoods. Both subgraphs are independently encoded; the context embedding is passed
through a predictor to estimate the target embedding. We pool the predicted and encoded target
embeddings and minimize their mean squared £ loss. To prevent representation collapse [22} 21]],
the target encoder is maintained as an exponential moving average (EMA) of the context encoder.

3. State-of-the-art results. Our approach matches or surpasses other self-supervised models,
achieving the best average performance on MoleculeNet [26], and showing strong transfer
capabilities to novel molecular datasets such as Kraken [27].

2 Contrast-Free Self-Supervised Pretraining

In the following, we outline our proposed training pipeline, illustrated in Fig. [I, Unlike most
generative methods [[15} [16]], we apply our training objective fully in the latent space, without
reconstructing the original features of the masked components. The core principle of our approach is
to learn representations by predicting the embedding of one view of the data, denoted as the target,
from the embedding of another, related view, denoted as the context.

Specifically, we represent a molecule as a graph G = (V, E') where V is the set of nodes (e.g., atoms)
and E is the set of edges (e.g., covalent bonds). From G, we sample a subgraph Gsup = (Vsup, Esup)
and its complementary graph Geomp = (V' \ Vsub, £\ Esup). To construct Gyp, we sample a random
node v; and generate its k-EgoNet E(v;), defined as the k-hop neighborhood including all induced
edges [24]); the remaining nodes and edges form G'copmp. The model then predicts the embedding of
the target subgraph from that of its associated context subgraph. This design is loosely inspired by
ESAN [24], but adopts a simplified variant: we use fixed-radius ego-nets as complementary views
during pretraining, and at fine-tuning we evaluate both linear probing on whole-graph embeddings
and an aggregation of subgraph embeddings using DeepSets [28]].

Context-Target View Generation. We generate com- S
plementary views by sampling k-EgoNets, where the k- e B
hop neighborhood of a node defines one subgraph and PEENY

the remaining nodes and edges define its complement *Qﬁ@

(see Fig. . Either view can serve as the target while NN Nl\ ;
the other acts as context, and their roles are alternated L l s AN
during training to avoid prediction bias. We adopt fixed- N TN L/
radius neighborhoods with & € {2, 3,4}, analogous to L N

fixed-size patches in vision-based methods [21]. Although

graphs vary in size and structure, this ensures that each

subgraph captures a comparable amount of local informa- Figure 2: To generate subgraphs, we
tion. To further diversify training, we sample multiple sample a random node from the origi-
nodes vy, v, . . ., v per molecule and construct their cor- nal graph (here, the oxygen atom) and
responding k-EgoNets E(v1), E(v2), ..., E(v,), yield- extract its 2-EgoNet as the context sub-
ing multiple complementary context-target pairs without graph (outlined by red square). The re-
increasing dataset size. maining components (outlined by blue

squares) constitute the target subgraph.



Context Encoder. We aim to learn subgraph representations that generalize effectively to whole-
molecule embeddings. Following the architecture proposed in [29]], we use a message-passing neural
network (MPNN) with GINE [15}[30] as the backbone to capture local structural information and
stack a Transformer module with multiple self-attention layers on top to capture global dependencies.
For the final embedding, for each node, we pool its intermediate representations obtained from the
GINE layers, and then pass the node embeddings to the Transformer module as tokens.

Predictor Network. The predictor takes the context subgraph representation and learns to predict
the embedding of its complementary subgraph. It is implemented as a lightweight transformer, with
stacked attention layers followed by an MLP. In our architecture, structural information is already
captured implicitly by the MPNN-based context encoder, so unlike image-based JEPA [21] and
GraphJEPA [31]], we do not rely on explicit positional encodings.

Target Encoder. The target subgraph f7 is encoded by a separate instance of the context encoder.
Maintaining two distinct networks stabilizes training and mitigates representation collapse, a strategy
widely adopted in self-predictive frameworks such as BYOL [22]], I-JEPA [21], and BGRL [19]
The target encoder’s weights are updated via an exponential moving average (EMA) of the context
encoder’s parameters:

60 = 790D 4 (1 - 1) g®

where A(*) are the exponentially moving averaged parameters at step ¢, 8(*) are the current parameters,
and 7 € [0, 1] is the decay rate controlling the contribution of past parameters.

Pretraining task. We obtain a single embedding for each subgraph by pooling the final node
embeddings. For the context subgraph we use the outputs of the predictor, and for the target subgraph
we use the outputs of the encoder. The self-supervised pretraining objective is to minimize the mean
squared L4 distance between the predicted and target subgraph embeddings:

M k
1 . 2
MZZ 8y, —sy,||
i=1 j=1

where Sy; and sy; denote the predicted and target subgraph embeddings, M is the batch size, and k
the number of sampled views (ego-nets and their complements). All views are treated as separate
instances when computing the loss.

Fine-tuning. When fine-tuning for downstream tasks, we use the target encoder as our pretrained
backbone to generate graph embeddings, and add lightweight task-specific heads. We consider two
types of task heads: (i) linear probing on whole-graph embeddings by using a single linear layer
(C-FREE] |n) to evaluate the quality of the representations on downstream tasks and (ii) aggregating
the k-EgoNet subgraph embeddings with DeepSets [28] (C-FREEps), demonstrating that subgraph
pretraining transfers both to whole-molecule prediction and to ESAN-style fine-tuning schemes.

2.1 Expressiveness

Finally, we make a simple theoretical observation: when using the DeepSets head, C-FREEpg
simulates ESAN [24] and is strictly more expressive than the 1-WL algorithm [25]. The formal text
and proof for the Lemma is deferred to Appendix Section

(Informal) Lemma 1. Under the assumptions from Theorem 2 of [24], C-FREE with a DeepSets
task head is as expressive as ESAN, hence it is strictly more expressive than the 1-WL algorithm [25]].

3 Empirical Evaluation

We evaluate our framework through four complementary sets of experiments:

(i) We compare against both contrastive and non-contrastive self-supervised methods on the
MoleculeNet [26]] benchmark, which consist of classification tasks, using a frozen backbone
to assess the quality of the learned representations (Section [3.1)).

(ii)) We examine whether pretraining accelerates convergence and improves downstream per-
formance compared to random initialization by fully fine-tuning on Kraken [32], a dataset
focused on molecular property regression (Section|3.2).



Table 1: Performance comparison on molecular property prediction tasks from the MoleculeNet [26]]
datasets. The feature extractor backbone is frozen. Non-CL refers to non-contrastive methods, and
CL refers to contrastive methods. Our model is reported as C-FREEj 1y, which uses whole-molecule
embeddings with a linear probe for fine-tuning, and C-FREEpg, which aggregates k-EgoNet subgraph
embeddings with DeepSets [28]]. The evaluation metric is ROC-AUC (7). Red highlights the best
model and Blue the second best. C-FREE achieves the best or second-best results on 4 out of 7
datasets, with C-FREEpg ranking first overall and C-FREEj N being the second best model.

MOLECULENET DATASETS
BBBP (1) Tox21 () TOXCAST (1) SIDER(T) CLINTOX (1) HIV (1) BACE(1) AvVG(?])

RANDOM INIT. 50.7+2.5 64.940.5 53.240.3 53.241.1 63.142.3 66.1+0.7 63.441.8 59.2
INFOGRAPH 65.940.6 65.840.7 54.640.1 57.24+1.0 61.4448 714406 67.444.9 63.4
GROVER 67.0403 63.940.3 53.640.4 59.94 7 65.046.4 67.8+1.0 69.044.7 63.7
d GRAPHCL 64.7+1.7 69.140.5 56.240.2 59.540.9 60.843.0 72.541.4 T7.0117 65.7
JOAO 66.110.8 68.140.2 55.140.4 58.3+0.3 65.3+6.1 73.8+1.2 Tl.1408 65.4
GRAPHMVP 69.2418 63.840.3 55.540.3 58.640.4 58.7T+1.9 68.6+1.0 73.344.7 64.0
EDGEPRED 54.241.0 66.240.2 54.440.1 56.140.1 65.445.0 73.640.4 71441 63.0
1 ATTRMASK 62.7T+0.7 65.7+0.8 56.140.2 58.3+1.5 61.946.4 65.541.4 64.842.6 62.1
O GPT-GNN 62.0+0.9 64.940.7 55.440.2 55.3+0.8 55.045.1 712415 61.0+1.2 60.7
% CONT. PRED 55.542.0 67.940.7 54.040.3 571405 674143 66.24+1.5 54.443.2 60.4
z C-FREE N 60.54+1.7 76.1102 62.710.4 59.040.6 62.7+1.0 68.7+0.4 75.810.9 66.6
C-FREEps 64.2438 76.7+06 63.940.3 58.040.7 714437 65.54+0.6 73.940.7 67.7

(iii) We conduct an ablation study on the predictor network to determine its impact on represen-
tation quality and training stability (Section [3.3).

(iv) We verify whether the empirical expressiveness aligns with the theoretical result from (In-
formal) Lemmal[I] (Appendix Section[5.1).

Implementation details for pretraining and evaluation are provided in Section[5.5]in the Appendix.

3.1 Comparison with Frozen Backbones

For the first set of experiments, we compare our framework against state-of-the-art contrastive
and non-contrastive self-supervised methods in the transfer learning setting on molecular property
classification tasks. Following the protocol of Wang et al. [[14], we pre-train a backbone on all
eligible molecules from the GEOM dataset [33]] (about 0.33M) and use the resulting embeddings on
MoleculeNet [26]] classification tasks. We report results for two evaluation strategies: applying a
linear probe directly on whole-graph embeddings to test generalization, and applying a linear probe
on aggregated subgraph embeddings combined with DeepSets [24]]. Performance is reported as the
mean and standard deviation of ROC-AUC scores over three scaffold splits, with test scores taken
from the model achieving the best validation performance.

As shown in Table([T] our framework achieves the best average performance across all datasets and
outperforms baselines on 4 of the 7 tasks. The gain from using DeepSets-aggregated subgraphs is
consistent with our pretext task design, though this comparison should be interpreted with caution
since the DeepSets variant introduces additional parameters into the linear probe. Notably, our
method performs particularly well when compared to other non-contrastive approaches, highlighting
the effectiveness of our predictive learning strategy. We also observe strong gains on multi-task
classification datasets such as Tox21 (12 tasks), ToxCast (617 tasks), and Sider (27 tasks), suggesting
that our method may capture more generalizable features across related prediction tasks.

3.2 Full Fine-tuning for Property Regression

Having established a comparison with a frozen backbone on classification tasks, we next examine
the transfer capabilities of our pretrained model in a regression setting. For this, we fine-tune the
backbone pretrained on GEOM [33]] end-to-end on the Kraken dataset [27] and add a separate 2-layer
MLP head for each target, without using DeepSets. Kraken contains 1,552 ligands labeled with four
3D descriptors: Sterimol BS, Sterimol L, buried Sterimol B5, and buried Sterimol L. These molecules
are not seen during pretraining and provide a strong test of generalization. Although Kraken includes
DFT-computed conformer ensembles, we do not train on conformers and only use 2D graphs.

As shown in Fig. 3] two trends are clear: (i) models initialized with GEOM pretraining start with
substantially lower MAE than randomly initialized counterparts, and (ii) even after 250 epochs,
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Figure 3: Test MAE on Kraken regression tasks (Sterimol B5 and Sterimol L) comparing random
initialization and GEOM-pretrained models. Pretrained models start with lower error and converge
faster, while randomly initialized models fail to match their performance even after 250 epochs.
Curves show the mean over 3 runs, with shaded regions indicating the standard deviation.
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Figure 4: Predictor ablation. Left: SSL validation loss on GEOM for the pretraining predictive
task. Right: average linear-probe (MAE |) on Kraken using frozen backbones. Training without a
predictor collapses (loss~0) and yields the worst probes; an MLP predictor helps but underperforms;
a Transformer predictor delivers the best downstream performance.

random initialization fails to match the performance of pretrained models. Results for BurB5 and
BurL are included in the Appendix Fig. [6]

3.3 Ablation on Predictor Types

We hypothesize that our model’s strong performance stems from the predictor network, which serves
as a guiding signal to refine the representations produced by the encoder. To test this, we pretrain
on GEOM and perform an ablation with three predictor variants: none, a linear predictor, and a
transformer. We then evaluate downstream performance using either a linear probe or full fine-tuning.

As shown in Appendix Table [§] removing the predictor leads to poor downstream performance
across all regression tasks, consistent with representation collapse, as the self-supervised loss quickly
converges to zero (see Fig.[d). While the target encoder is updated via Exponential Moving Average
to stabilize training [34} 22, [21]], this alone is insufficient: without an asymmetric architecture, the
model collapses to a trivial solution. Introducing a predictor breaks this symmetry and is hypothesized
to empirically prevent collapse [35]. Even a simple two-layer MLP improves performance, while
a transformer-based predictor yields the strongest results. Unlike the MLP, where we pool node
embeddings before prediction, the transformer predicts at the node level prior to pooling, potentially
producing more informative graph-level representations; we therefore adopt it as the default.

4 Conclusions and Future Work

We presented C-FREE, a simple yet effective framework for molecular representation learning that
predicts subgraph embeddings from their complementary neighborhoods in the latent space. Our
method consistently outperforms both contrastive and non-contrastive baselines while avoiding costly
overhead such as positional encodings or complex subgraph partitioning algorithms. We further
showed that incorporating the transformer architecture in both the encoder and predictor strengthens
representation quality and improves training stability. Importantly, C-FREE demonstrates strong
transfer to unseen molecules and new tasks, including classification benchmarks such as MoleculeNet
and regression datasets such as Kraken, underlining its promise as a strong foundation model for
molecular learning.

There are several natural extensions of our work. First, improving the subgraph selection process
to incorporate more chemically meaningful or substructure-aware strategies may lead to richer



representations. Second, since our framework builds on the modular MolMix backbone [29], it can
be readily extended to multimodal inputs by adding encoders for different data types, enabling joint
training on 2D molecular graphs together with SMILES strings and 3D conformers. Finally, exploring
alternative pretraining objectives and transfer strategies, such as different ways of aggregating
information across subgraphs, could further improve performance. Beyond chemistry, applying our
pretraining strategy to other graph domains, including citation networks or knowledge graphs, would
provide a broader test of its applicability.
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Table 2: Expressiveness experiment results on the EXP [36] dataset. Our C-FREE framework
outperforms standard GNNs, with the 2- and 3-EgoNet variants achieving the highest accuracy. In
particular, they surpass GraphJEPA, which relies on the computationally expensive METIS [37]
clustering algorithm to extract substructures, as well as a standard MPNN baseline (GINE).

METHOD ACCURACY (1)
GINE [30] 50.6941.39
GRAPHJEPA [23]] 98.77+0.99

C-FREE (1-EGONET) 96.03+1 .09
C-FREE (2-EGONET) 99.33+0.18
C-FREE (3-EGONET) 99.08+0.20

5 Supplementary Materials

5.1 Expressiveness
Here, we provide the proof for (Informal) Lemma I]in the main paper.

Lemma 1. Let C-FREEpg be a model as defined in Section 2 with a subgraph encoder fy consisting
of a 1-WL MPNN (e.g., GIN/GINE) followed by a Transformer without positional encodings, and a
DeepSets task head DS. For any k-EgoNet policy with k > 1 under the assumptions of Theorem 2
from [24], C-FREEpg is as expressive as ESAN [24]] with an EGO policy, therefore it is as most as
expressive as DS-WL and strictly more expressive than 1-WL.

Proof. Fix a k-EGO policy 7 = EGOy, with k > 1 and let S (G) be the multiset of k-ego-nets with
their complements (edge-covering in the ESAN sense). Define:

ferree(G) = DS({fo(S) : S € S<(G)}),

Due to Theorem 1 of [29]], we have that fy maintains the permutation equivariance of the MPNN;
moreover, since there exists a parametrization of the Transformer that can approximate the identity
map arbitrarily well, the Transformer does not lower the expressive power of the MPNN. We therefore
have that fy is as powerful as 1-WL.

Since we have a DeepSets encoder DS and an edge-covering k-EGO policy, we can use the same
proof argument as in Theorem 2 from [24], i.e. we apply fy to each S € S (G) and then aggregate
the multisets with DS, therefore fo.prpr simulates ESAN, and is at most as expressive as DS-WL
and strictly more expressive than 1-WL.

O

To validate our theoretical findings, we run an experiment to examine the expressive power of our
framework. We use the EXP dataset, which is specifically designed by Abboud et al. [36] so that
any 1-WL GNN cannot do better than random guess. We design an end-to-end training experiment
with a smaller version of our backbone and compare the results to a Vanilla GINE [[15] network and
to GraphJEPA [21]]. We employ a 3-layer GNN encoder followed by a 2-layer transformer with 2
attention heads, using a hidden dimension of 96 throughout. Results are averaged over three runs
with resampled EgoNets. As shown in Table[2] even the 1-EgoNet variant of our C-FREE framework
achieves strong performance, approaching the theoretical upper bound. Both the 2- and 3-EgoNet
variants further improve accuracy, outperforming standard GNNs such as GINE and GraphJEPA, the
latter relying on the computationally expensive METIS [37] algorithm.

5.2 Computational Complexity Analysis

For generating the subgraphs used as input units in our pre-training scheme, we employ k-EgoNets
with fixed radii £ € {3,4}. We extract k-hop neighborhoods using PyTorch Geometric’s [? ]
k_hop_subgraph function, which performs a breadth-first search (BFS) from each node and collects
all nodes reachable within % hops. For constant k, the BFS cost is bounded by the number of explored
edges, yielding a worst-case complexity of O(|E|). When repeated for all k radii, this results in
O(k - |E|), where |E| denotes the total number of edges. In practice, the number of explored edges is
proportional to the average degree d, giving a total cost of O(k - d - |[V|), where |V] is the number
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Table 3: Average runtime (in milliseconds) for generating a single subgraph on the GEOM dataset,
comparing METIS partitions with n € {16, 32} patches and k-EgoNets with k € {3,4}.

METHOD AVG. RUNTIME (MS)

N =32 1.123
METIS N=16 1.031
K=3 0.171
K-EGONETS K=4 0.185

Table 4: Computational efficiency of different SSL methods from [14], showing the number of
trainable parameters for each backbone. We report both the total parameters of our backbone and
those of the encoder alone, since only the latter is used for downstream evaluation. By discarding
nearly half of the backbone parameters in this stage, our approach remains competitive without
increasing the parameter count for downstream tasks, further highlighting its efficiency.

METHOD #PARAMETERS (MILLION)
EDGEPRED 7.46
ATTRMASK 7.61
GPT-GNN 7.61
INFOGRAPH 7.82
GROVER 7.57
CONT.PRED 12.00
GRAPHCL 8.19
JOAO 8.19
GRAPHMVP 15.84
C-FREE (FULL) 8.09
C-FREE (ENCODER) 4.67

of nodes. Since molecular graphs are sparse, neighborhood growth is modest: an analysis of the
GEOM dataset used for pre-training shows that the average degree is only d = 2.1. As a result, k-hop
neighborhoods remain small, and k_hop_subgraph is computationally efficient, scaling linearly
with the number of nodes O(|V|) in practice.

In comparison, the METIS algorithm [37] used in GraphJEPA [23]] employs a multilevel graph
partitioning approach. While the algorithm is often cited with an overall complexity of O(|E|-log |V])
in practice, it consists of three main phases: (1) a coarsening phase that uses heavy-edge matching
to successively reduce the graph size, (2) an initial partitioning phase that partitions the smallest
coarsened graph (with negligible complexity due to its small size), and (3) an uncoarsening/refinement
phase that projects the partition back to the original graph while refining it at each level. The
coarsening and refinement phases dominate the computational cost, each contributing O(|E| -log |V|)
complexity. However, since molecular graphs are sparse, similar to above, this results in a total
complexity of O(d - [V| - log |V|), which is theoretically higher than that of fixed-radius EgoNets.

To further validate this, we ran timed experiments comparing the generation of k-EgoNet subgraphs
with the generation of METIS partitions on the GEOM dataset. Section reports the average
runtime of each method, computed over all graphs in the dataset.

5.3 Backbone Parameter Efficiency

Table [] compares the number of trainable parameters across different SSL backbones. For our
method, we report both the total parameters and the encoder-only count used during downstream
evaluation. This distinction arises because only the target encoder is retained as the backbone, during
downstream tasks, while the predictor is discarded. As a result, nearly half of the parameters are
removed at this stage, allowing our method to remain competitive without increasing the parameter
load for downstream evaluation, further underscoring its efficiency.
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Figure 5: From each molecular graph, we sample a random node and extract its k-EgoNet [24] with
k € {3, 4} to form complementary context and target subgraphs. Both 2D and 3D views are encoded
with a GINE and a SchNet, concatenated, and passed through a transformer; the context embedding is
further processed by a predictor to estimate the target. Training minimizes the mean squared Lo loss
between predicted and encoded targets, with the target encoder updated as an exponential moving
average (EMA) of the context encoder [22, 21]. For clarity, only one 3D conformation is shown,
though in practice we use three.

5.4 Extension to Multi-modal data

In the following, we describe how our method can be extended to incorporate multi-modal molecular
data. Specifically, for each atom v € V in the molecule, we include 3D coordinates 7, € R3, taken
from multiple conformers of the molecule, and use these as the 3D views of the molecule. We adapt
the context encoder as follows:

Following the architecture proposed in [29], we use a message-passing neural network (MPNN)
with GINE [15,[30]] as the 2D encoder, and SchNet [38] as the 3D encoder used to process multiple
conformers. From GINE, we obtain node-level embeddings {h?”} for all atoms in the subgraph
by averaging their intermediate representations across layers. From SchNet, we extract node-level
embeddings {hifg } for each conformer c, preserving per-atom detail across conformations. To build
the multimodal sequence, we prepend a learnable classification token h¢ s and insert a learnable
separation token hggp between the 2D and 3D components, resulting in the following multi-modal
sequence:

H = [hers, hspp, {h2P}, hspp, {h32} hspp]

To distinguish between modalities, we add learnable modality embeddings that mark whether a
token comes from the 2D or 3D graph. The full sequence is then passed through a Transformer with
multiple self-attention layers to capture global dependencies both within and across modalities.

All other components remain unchanged; the full pipeline is shown in Fig.[5] and the results following
the protocol described in Section [3.1]are summarized in Table 3]

5.5 Additional Details on Empirical Evaluation

For the context encoder we use a GINE [30] network containing 3 layers, with a hidden dimension
of 192 and 6 Transformer layers with 8 heads and a hidden dimension of 384. The parameters are
updated via backpropagation using the Adam optimizer, while the target encoder is updated through
an exponential moving average (EMA) schedule, with the decay rate 7y gradually increasing from
0.9995 to 1.0 over the course of training.
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Table 5: Performance on MoleculeNet [26] with frozen backbones. Non-CL denotes non-contrastive
and CL contrastive methods. We report C-FREE;p (2D-only) and C-FREEpy (multi-modal),
each with linear probing on whole-molecule embeddings (LIN) or subgraph aggregation with
DeepSets [28] (DS). Metric: ROC-AUC (7). Red marks the best model and Blue the second best.
C-FREE ranks first or second on 6 of 8 datasets, with MM-LIN best overall, while even the 2D-only
variants of C-FREE outperform all baselines on average.

MOLECULENET DATASETS (LINEAR PROBE)
BBBP (1) Tox21 (1) TOXCAST (1) SIDER(f) CLINTOX (1) MUV (1) HIV () BACE(1) AVG (})

RANDOM INIT. 50.7+2.5 64.940.5 53.24+0.3 53.241.1 63.1+9.3 62.1+1.3 66.14+0.7 63.4+1.8 59.60
INFOGRAPH 65.9+0.6 65.84+0.7 54.6+0.1 572410 614448 63.9+1.9 Tl4406 674449 63.44
1 GROVER 67.0+0.3 63.9+0.3 53.6+0.4 59.94+1.7 65.0+6.4 62.741.4 67.8+1.0 69.044.7 63.62
O  GrAPHCL 64.741.7 69.140.5 56.240.2 59.510.9 60.8+3.0 60.6+1.8 725414 770417 65.04
JOAO 66.14+0.8 68.14+0.2 55.140.4 58.3+0.3 65.3+6.1 624412 73.8:12 Tllios 65.05
EDGEPRED 54.241.0 66.2+0.2 54.440.1 56.14+0.1 65.445.0 59.540.9 73.6+10.4 714412 62.59
ATTRMASK 62.740.7 65.7+0.8 56.140.2 58.3+1.5 61.946.4 60.9+1.8 65.5+1.4 64.8+2.6 61.99
4  GPT-GNN 62.0+0.0 64.940.7 55.440.2 55.3+0.8 55.0+5.1 61.241.5 T1.2415 61.0+1.2 60.74
O CONT. PRED 55.542.0 67.94+0.7 54.04+0.3 57.140.5 674443 60.5+0.9 66.24+1.5 544432 60.36
© C-FREE:p.Lix 60.5+1.7 76.140.2 62.710.4 59.0+0.6 62.711.0 5 68.7104 75841009 66.63
z C-FREE;p.ps 64.243.8 76.7+0.6 63.9+0.3 58.0+0.7 714437 65.5+0.6 73.9+0.7 67.27
C-FREEymin  698:06  79.9.: 65.840.7 58.542.5 699110 72807 753114 | T1.07
C-FREEmM.ps 73.8421 76.710.7 66.810.2 56.441.5 757420 70.6+1.0 T1.9415 75.5+1.9 70.92

Table 6: Overview of tasks and sizes for the MoleculeNet datasets.
BBBP Tox21 ToxCAast SIDER CLINTOX HIV BACE

# MOLECULES 2,039 7,831 8,575 1,427 1,478 41,127 1,513
# TASKS 1 12 617 27 2 1 1

Table 7: C-FREEggy denotes the model from checkpoint based on the best SSL loss, and C-FREEy 1y
denotes the model from the checkpoint based on the best linear probe performance.

MOLECULENET DATASETS
BBBP (1) Tox21 (1) TOXCAST (1) SIDER (1) CLINTOX (1) HIV (1) BACE(1) AVG (1)

C-FREE N 60.5+1.7 76.140.2 62.740.4 59.01056 62.711.0 68.740.4 T75.810.9 66.6
C-FREEss1, 62.5123 774104 66.210.1 52.7T43.5 52.6+2.5 69.110.1 T4.3105 65.0

Since the EMA decay reaches 7; = 1 in the final epoch, the context and target encoders converge to
identical parameters. Nevertheless, we follow [21]] and report results using the target encoder.

For the choice of the scheduler we opt for a cosine scheduler without warmup. We notice that using
a very small learning rate prevented convergence, while a moderate learning rate caused an early
loss drop followed by stagnating representations. Adding a warmup phase allows the model to adapt
gradually before the cosine decay, improving stability and representation learning. Thus we begin
with a learning rate of 2 x 10~ over 30 epochs warmup up to 5 x 10~° and a patience of 50 epochs.
For the batch size we use 256 and a weight decay of 0.04 and train for 300 epochs.

All experiments were performed on a mix of Nvidia A100/RTX 4090 GPUs and AMD EPYC 7713/In-
tel Xeon W-2225 CPUs for both the pre-training and downstream experiments. All experiments
consumed a total of approximately 500 GPU hours, with the longest compute being consumed on the
pre-training backbone run on the GEOM dataset with a total of 25 hours.

Additionally we provide an overview of the tasks and dataset sizes of the MoleculeNet dataset
in Table

5.6 Additional Results

Following the evaluation protocol, we select the best hyper-parameters based on average downstream
performance. However, we criticize this method, as it introduces bias that is inconsistent with the
self-supervised learning framework and favors downstream-specific tuning. Therefore, we also report
in Table|7|results from the checkpoint achieving the best L2 loss on the self-supervised task, which
we consider a more representative and principled evaluation of the model.
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Figure 6: Best MAE on Kraken regression tasks (Sterimol BurB5 and Sterimol BurL) comparing
random initialization and GEOM-pretrained models. Similarly to both targets reported in Section
pretrained models start with lower error and converge faster, while randomly initialized models fail
to match their performance on average even after 250 epochs. Curves show the mean over 3 runs,
with shaded regions indicating the standard deviation.

Table 8: Ablation study on the Kraken dataset (MAE |). We keep the encoder fixed and compare
three predictors: (1) none, (2) a 2-layer MLP, and (3) a transformer. The transformer consistently
achieves the best performance. The gap is especially pronounced in the linear probe (LIN. P.) setting,
where the quality of the learned representations matters most. Even with full fine-tuning (FT), the
no-predictor and MLP variants fail to match the transformer predictor.

METHOD B5 | L] BURBS | BURL |

NONE 0.3814+0.023 049440020 0.20240.009 0.15740.004
E 2-LAYERS MLP 0.315+0.017 0.39610.018 0.1850.009 0.144 ¢ 004

TRANSFORMER  0.292.990s 0.3804.¢ 023 0.180+9 014 0.1464+0.004
a. NONE 1.06540.000  0.81440.001  0.62410.001  0.29610.001
Z. 2-LAYERS MLP 0.817:&0.002 0.687:&(),0()8 0.514:|:0‘001 0.266:|:()‘0()1
5 TRANSFORMER 0.588. 0004 0.5544:0007 0.34710003 0.20210.008

Additionally, in Section [3.2] we report the results on the Sterimol BurB5 and Sterimol BurL targets
from the Kraken dataset following the experiment in Section 3.2}

Finally, in Table[8] we report the explicit numbers of the probe shown in Section[3.3]

5.7 Additional Related Work

Large-Scale Supervised Pre-training An alternative to self-supervised training explores large-
scale supervised pretraining on massive labeled molecular datasets, aiming to transfer knowledge to
downstream tasks [? ]. While effective in some cases, this approach still depends on labeled data and
may be domain-specific, since source and target distributions can differ. In contrast, self-supervised
methods avoid this reliance on labels and can transfer more flexibly. Importantly, the two strategies are
complementary: self-supervised pretraining can provide strong initializations that are later fine-tuned
on labeled data.

Contrastive Learning UniCorn [39] uses different molecular views and presents a unified contrastive
learning framework that combines the strengths of existing methods in a single pre-training framework.
3D-Mol [40] leverages 3D conformational information by constructing hierarchical graphs and
applying contrastive learning to distinguish between different molecular conformations. Additionally,
GraphFP [41]] leverages fragments—abstract representations of molecular substructures—to capture
higher-level connectivity by introducing a contrastive task that aligns fragment embeddings with their
corresponding regions in the molecular graph, enabling multi-resolution structural learning.

Latent Representation Learning CCA-SSG [42] introduces an alignment objective based on
Canonical Correlation Analysis, encouraging the latent features of two augmented views to be
maximally correlated while remaining de-correlated across dimensions. Complementing these
augmentation-based methods, AFGRL [43]] proposes a more principled strategy for view generation by
identifying structurally and semantically similar anchor nodes, mitigating the reliance on handcrafted
augmentations.
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