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1 Abstract

This paper describes the method submitted by team ISPL IC for the Challenge
on Learned Image Compression 2025 (CLIC 2025). We propose a generative im-
age compression approach that combines a conditional discriminator and high-
frequency-aware objective to improve both perceptual quality and fidelity. The
method is implemented using an ELIC generator and a conditional discrimi-
nator, which are trained with rate-distortion, adversarial, high-frequency, and
perceptual loss terms. The architecture, training procedure, and datasets are
illustrated to facilitate reproducibility.

2 Introduction

In the field of lossy image compression, deep learning–based approaches have
achieved remarkable performance, surpassing traditional hand-crafted codecs
such as JPEG and VVC. The goal of lossy compression is to encode images
into compact bitstreams while reconstructing them into images with minimal
distortion. Although there exists a trade-off between bitrates and reconstruction
quality, the field has evolved to improve both efficiency and fidelity.

One of the research directions is to use generative models to generate infor-
mation lost in the compression process [5, 6, 10, 7]. Generative image compres-
sion methods, which use GANs or diffusion models, are known for producing
perceptually realistic reconstruction images. However, GAN-based methods of-
ten generate images that deviate from the actual content of the original images,
resulting in poor fidelity and semantic mismatches.

To address this limitation, we introduce a conditional discriminator that uses
high-frequency features of the original images as conditioning information. Ad-
ditionally, we employ a high-frequency–aware loss to preserve fine details. This
combination ensures that reconstructed images are both perceptually convincing
and faithful to the input content.
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Figure 1: Structure of the generator (ELIC [1])

Figure 2: Structure of the discriminator

3 Proposed Method

3.1 Overview

The compression framework consists of a generator and a discriminator. The
generator follows the ELIC architecture [1], which includes a space-channel con-
text model (SCCTX) for entropy modeling. Fig 1 illustrates the generator
structure.

3.2 Conditional Discriminator

Fig 2 shows the structure of the conditional discriminator. The discriminator
is based on the HiFiC architecture [5], which takes the reconstructed image x̂
and latent representation y′ as input. To improve fidelity, we introduce cross-
attention between the reconstructed image and the features of the original im-
age, following ideas from SeD [3]. Unlike SeD, which uses CLIP embeddings, we
extract high-frequency features, fHF , using a high-frequency network (HFNet),
illustrated in Fig 3.
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Figure 3: Structure of the HF network

3.3 High-frequency Objective

In addition to the use of high-frequency features in the proposed conditional
discriminator, we incorporate a high-frequency loss to further generate image-
related fine details. The high-frequency loss is defined as

Lhf = ∥HFNet(x),HFNet(x̂)∥1, (1)

where HFNet(·) denotes the high-frequency network output. The HFNet is
trained separately to predict high-frequency components of the images.

3.4 Training Objective

The network is trained with four loss terms:

• Rate-distortion loss: Lrd = R+ λ ·D, where R is the bitrates of y′ and z′

and D is the distortion between x and x̂.

• Adversarial loss: Lgan from the conditional discriminator.

• High-frequency loss: Lhf as defined above.

• Perceptual loss: Llpips, where LPIPS [11] is computed using VGG features
[8] of x and x̂.

The total loss is:

L = Lrd + α · Lgan + β · Lhf + γ · Llpips, (2)

with α, β, γ controlling the contribution of each term.

4 Experiments

4.1 High-frequency Network Training

HFNet consists of 5 convolutional layers with 64 channels, ReLU activations
between the convolutional layers, and a final sigmoid layer. The ground truth
images for HFNet are computed as:

Ihf = I ′gt − LPF (I ′gt), (3)
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Bitrate (bpp) PSNR MS-SSIM
0.075 24.745 0.910
0.150 25.251 0.942
0.300 28.593 0.972

Table 1: Testset results

where LPF (·) is a low-pass filter implemented with Gaussian blur function
(kernel size 11, σ = 5.0). Here, I ′gt refers to one-channel gray scale ground truth
image. HFNet is trained on the DIV2K dataset [9] using random crops of size
256×256 and data augmentation (flips and rotations) for 500 epochs with Adam
optimizer [2] with learning rate 10−4.

4.2 Generative Compression Network Training

We use 320 channels for y and 192 channels for z features. The channels of
y are divided into 16, 16, 32, 64, and 192 in SCCTX (space-channel context
model) for entropy modeling and checkerboard context model is used to reduce
the decoding time. For the loss function, α, β, and γ are set to 0.01, 1.0, and 1.0,
respectively. We used two splits of Open Images dataset [4] for training and the
images are randomly flipped, resized, and cropped to size 256× 256. The high-
frequency feature used in the discriminator fHF is extracted from the output
of the second-to-last convolutional layer followed by the ReLU activation in the
HF-Net. Both generator and discriminator networks are optimized with Adam
[?] optimizers with learning rate 10−4. We used λ = 8×10−5, 10×10−5, 80×10−5

for target bitrates 0.075bpp, 0.15bpp, and 0.3bpp, respectively. LPIPS loss
Llpips is omitted for the lowest bitrate model (0.075bpp) to meet the target
bitrate.

4.3 Testset Refinement and Results

For the challenge testset, decoders trained on the validation set generated bit-
streams exceeding the target bitrates. To correct this, we applied a low-pass
filter (Gaussian blur filter) to the testset images before encoding. Table 1 lists
the resulting PSNR and MS-SSIM metrics on the testset.

5 Conclusion

This paper provides a detailed description of the ISPL IC method for CLIC
2025. By combining conditional discriminators and high-frequency-aware loss,
our approach achieves perceptually realistic and content-faithful reconstruc-
tions. All network architectures, training procedures, and dataset usage have
been described to allow reproducibility by third parties.
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