

000 TRANSFORMERS TRAINED VIA GRADIENT DESCENT 001 CAN PROVABLY LEARN A CLASS OF TEACHER MOD- 002 ELS 003 004

005 **Anonymous authors**
006
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Transformers have achieved great success across a wide range of applications, yet
014 the theoretical foundations underlying their success remain largely unexplored. To
015 demystify the strong capacities of transformers applied to versatile scenarios and
016 tasks, we theoretically investigate utilizing transformers as students to learn from
017 a class of teacher models. Specifically, the teacher models covered in our analy-
018 sis encompass convolution layers with average pooling, graph convolution layers,
019 and various classic statistical learning models, including a variant of sparse token
020 selection models (Sanford et al., 2023; Wang et al., 2024) and group-sparse linear
021 predictors (Zhang et al., 2025). When learning from this class of teacher models,
022 we prove that one-layer transformers with simplified “position-only” attention can
023 successfully recover all parameter blocks of the teacher models, thus achieving the
024 optimal population loss. Building upon the efficient mimicry of trained transform-
025 ers towards teacher models, we further demonstrate that they can generalize well
026 to a broad class of out-of-distribution data under mild assumptions. The key in our
027 analysis is to identify a fundamental bilinear structure shared by various learning
028 tasks, which enables us to establish unified learning guarantees for these tasks
029 when treating them as teachers for transformers.
030
031

1 INTRODUCTION

032 Transformers have rapidly become a cornerstone in the field of modern machine learning, demon-
033 strating exceptional performance and versatility across diverse applications, including natural lan-
034 guage processing (Vaswani et al., 2017; Radford et al., 2019; OpenAI, 2023; Devlin, 2018; Achiam
035 et al., 2023; Vig & Belinkov, 2019; Touvron et al., 2023; Ouyang et al., 2022), computer vision
036 (Dosovitskiy et al., 2020; Rao et al., 2021; Liu et al., 2021; Yuan et al., 2021), and reinforcement
037 learning (Jumper et al., 2021; Chen et al., 2021; Janner et al., 2021; Reed et al., 2022). Acting as
038 the critical component of transformers, self-attention layers assign varying weights to features based
039 on their relevance and embedded positional context. This design principle intuitively endows trans-
040 formers with a remarkable ability to efficiently process both structural and positional information, as
041 empirically validated in numerous applications mentioned above. However, despite their profound
042 impact, the theoretical foundations of transformers, especially the mechanisms of how self-attention
043 layers work, remain largely unexplored due to their intricate architecture.
044

045 Some recent theoretical studies aimed to understand transformers by analyzing their capability in
046 solving specific tasks (Zhang et al., 2024b; Frei & Vardi, 2025; Jelassi et al., 2022; Wang et al., 2024;
047 Zhang et al., 2025). Specifically, Zhang et al. (2024b) considered in-context linear regression, and
048 demonstrated that for Gaussian data, a one-layer transformer with linear attention can perform linear
049 regression based on the context, and then apply the obtained linear model to make predictions on
050 query data. Later, Frei & Vardi (2025) further extended the setting to in-context linear classification,
051 and studied the in-context benign overfitting phenomena when learning from Gaussian mixture data.
052 Jelassi et al. (2022) investigated a specific data model based on the ‘patch association’ assumption,
053 where an image is divided into disjoint partitions, and patches within the same partition share similar
characteristics. They theoretically demonstrate that a one-layer vision transformer (ViT) can extract
the spatial structure among patches when trained on this data model. Wang et al. (2024) studied
a problem termed ‘sparse token selections’, where the objective is to find the average of several

tokens from specific positions, and they proved that a one-layer transformer can successfully solve this task on Gaussian data when the positional information of the target positions is embedded into the query token. Zhang et al. (2025) considered a group sparse linear model, where the input’s label is determined by features from only one of several input feature groups (the ‘label-relevant group’), and prove that for Gaussian data, a trained one-layer transformer can achieve correct classification by identifying features from this group and learning the ground truth linear classifier. Although these works have offered valuable insights into the underlying mechanisms of transformers, their focus on very specific learning tasks limits the generality of their theoretical findings, prompting us to seek a unified theoretical framework accounting for a broader range of examples.

Despite the distinctions among the model simplifications and technical assumptions, we observe that for some learning tasks discussed above, including a variant of the sparse token selection (Sanford et al., 2023; Wang et al., 2024), the group sparse linear predictors (Zhang et al., 2025), and patch association (Jelassi et al., 2022), their true responses are essentially given by bilinear functions. In addition, the linear attention studied in Zhang et al. (2024a); Frei & Vardi (2025) inherently constitutes a bilinear structure with respect to its parameter matrices. Motivated by this observation, we define a general class of ‘teacher models’ that employ a bilinear structure, and investigate the setting where one-layer transformers are trained as ‘student’ models under the supervision from these teacher models. Our framework not only encompasses the learning tasks from prior works but also covers popular, previously unexplored models such as convolution layers with average pooling and graph convolution layers on regular graphs. The purpose of our analysis is to establish unified theoretical guarantees for one-layer transformer models trained with gradient descent in learning this class of teacher models.

The major contributions of this work are as follows.

- We theoretically demonstrate that one-layer transformers trained via gradient descent can effectively recover a general class of teacher models. To support this claim, we establish a tight convergence guarantee for the population loss, with matching upper and lower bounds at the rate of $\Theta(\frac{1}{T})$, where T is the iteration number of gradient descent. We also establish out-of-distribution generalization bounds for the obtained transformer model and demonstrate that it is competitive with the teacher model over a wide range of learning tasks. This illustrates the effectiveness and robustness of transformer models in learning from diverse teacher models.
- Our theory covers a wide range of learning tasks, including some settings closely related to those studied in (Wang et al., 2024; Zhang et al., 2025). Specifically, Wang et al. (2024) study a type of ‘sparse token selection’ task where the goal is to select a number of target input tokens specified by a query column, and then output their average. Assuming that the positions of the target tokens are randomly generated for each data point, the authors establish an $\mathcal{O}(\frac{\log(T)}{T})$ convergence rate. In comparison, our setting covers a slightly different task where the target positions are fixed but are not explicitly fed to model, and our theoretical results demonstrate a tight $\Theta(\frac{1}{T})$ convergence rate with matching upper and lower bounds. Compared with Zhang et al. (2025) which focuses on group sparse linear classification, our work provides complementary results and demonstrates that transformers can also perform efficient group sparse linear regression.
- Experiments on both synthetic and real-world data are conducted to verify our theory through the examples of learning a convolution layer with average pooling, learning a graph convolution layer with regular graphs, learning sparse token selection, and group sparse linear regression. In all experiments, we can observe clear loss convergence and parameter convergence that match our theory. The experiments setup does not exactly match our theory assumptions, indicating that our theory conclusions can also hold in more practical training setups and real-data learning tasks.

2 PROBLEM SETUP

In this section, we introduce the definition of the teacher models we study in this paper, and give various examples covered in our definition.

We consider a teacher model with an input matrix $\mathbf{X} \in \mathbb{R}^{d \times D}$ of the following form:

$$f^*(\mathbf{X}) = \sigma(\mathbf{V}^* \mathbf{X} \mathbf{S}^*), \quad (2.1)$$

108 where $\mathbf{V}^* \in \mathbb{R}^{M \times d}$ is the ground truth value matrix of the teacher model, and $\mathbf{S}^* \in \mathbb{R}^{D \times D}$ is
 109 the ground truth softmax scores. Each column of \mathbf{S}^* has K non-zero entries equivalent to $\frac{1}{K}$. In
 110 addition, $\sigma(\cdot)$ denotes either an identity map, ReLU, or Leaky ReLU activation function.
 111

112 The teacher models defined in (2.1) can cover a general class of functions (models). Notably, when
 113 $K = 1$ and all the non-zero entries of \mathbf{S}^* appear on its diagonal, \mathbf{S}^* equals the identity matrix \mathbf{I}_D . In
 114 this scenario, the teacher model (2.1) reduces to $f^*(\mathbf{X}) = \sigma(\mathbf{V}^* \mathbf{X})$, and can be seen as a single-layer
 115 neural network. Besides this naive example where $\mathbf{S}^* = \mathbf{I}_D$, the teacher model (2.1) also includes
 116 some other common architectures and models. We discuss these examples in the following.
 117

118 **Example 2.1** (Single convolutional layer with average pooling). We consider a convolution layer
 119 consisting of convolution operation, average pooling, and then the activation function. The convolu-
 120 tion operation is essentially performed by taking inner products between each convolution kernel
 121 and each patch of the input. We consider a convolution layer with M (vectorized) kernels
 122 $\mathbf{v}_1^*, \dots, \mathbf{v}_M^*$, and consider an input consisting of D (vectorized) patches $\mathbf{x}_1, \dots, \mathbf{x}_D$. In average
 123 pooling, we take averages according to a partition of the D patches. Let $\mathcal{G} = \{g_1, g_2, \dots, g_J\}$ be a
 124 disjoint partition of $[D]$, forming J pooling groups with $|g_j| = K$, $j \in [J]$. Then the final output of
 125 this convolution layer corresponding to the j -th pooling group and the m -th kernel is given as
 126

$$\sigma\left(\frac{1}{K} \sum_{i \in g_j} \langle \mathbf{v}_m^*, \mathbf{x}_i \rangle\right) = \sigma(\mathbf{v}_m^{*\top} \mathbf{X} \mathbf{1}_{g_j} / K), \quad m \in [M], \quad j \in [J],$$

127 where σ is the activation function, $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_D] \in \mathbb{R}^{d \times D}$, and $\mathbf{1}_{g_j} \in \mathbb{R}^D$ is a vector whose
 128 entries are 1 for indices in g_j , and 0 otherwise. Then, we can summarize all outputs into a matrix:
 129

$$F_{\text{CNN}}(\mathbf{X}) = \sigma(\mathbf{V}^* \mathbf{X} [\mathbf{1}_{g_1}, \dots, \mathbf{1}_{g_J}] / K) \in \mathbb{R}^{M \times J},$$

131 where $\mathbf{V}^* = [\mathbf{v}_1^*, \dots, \mathbf{v}_M^*]^\top \in \mathbb{R}^{M \times d}$. Here, the j -th column of $F_{\text{CNN}}(\mathbf{X})$ corresponds to the output
 132 of j -th pooling group g_j , and m -th row of $F_{\text{CNN}}(\mathbf{X})$ corresponds to the output of m -th kernel \mathbf{v}_m^* .
 133

134 To formulate the convolution layer above as a teacher for transformers, we further specify the cor-
 135 respondence between each input patch and the output. The teacher model can then be given as

$$f^*(\mathbf{X}) = \sigma(\mathbf{V}^* \mathbf{X} \mathbf{S}^*),$$
 where the i -th column of \mathbf{S}^* is $\mathbf{1}_{g_i} / K$, with g_i being the group containing i .
 136

137 **Example 2.2** (Single graph convolution layer on a regular graph). Let $\mathbf{A} \in \mathbb{R}^{D \times D}$ be an adjacency
 138 matrix of a degree- $(K - 1)$ regular graph with D nodes, and $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_D] \in \mathbb{R}^{d \times D}$ be the
 139 feature matrix of this graph, with each column \mathbf{x}_i (for all i in $[D]$) representing the d -dimensional
 140 feature vector of the i -th node. A typical single graph convolution layer (Kipf & Welling, 2017),
 141 with weight matrix $\mathbf{V}^* \in \mathbb{R}^{M \times d}$ is defined as
 142

$$F_{\text{GCN}}(\mathbf{X}) = \sigma(\mathbf{V}^* \mathbf{X} \tilde{\mathbf{D}}^{-1/2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1/2}), \quad (2.2)$$

143 where $\tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}_D$ is the adjacency matrix with self-connections added, and $\tilde{\mathbf{D}}$ is the diagonal
 144 degree matrix of $\tilde{\mathbf{A}}$. For a degree- $(K - 1)$ regular graph, each node has $K - 1$ neighbors, and hence
 145 each column of $\tilde{\mathbf{A}}$ contains K ones and $D - K$ zeroes, and $\tilde{\mathbf{D}} = K \cdot \mathbf{I}_D$. Therefore, the GCN defined
 146 in (2.2) is equivalent to a $f^*(\mathbf{X}) = \sigma(\mathbf{V}^* \mathbf{X} \mathbf{S}^*)$ with \mathbf{V}^* and $\mathbf{S}^* = \tilde{\mathbf{D}}^{-1/2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1/2} = \tilde{\mathbf{A}} / K$.
 147

148 **Example 2.3** (Sparse token selection model (Sanford et al., 2023; Wang et al., 2024)). Let $\mathbf{X} =$
 149 $[\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_D] \in \mathbb{R}^{d \times D}$ be a sequence of d -dimensional tokens. Given a K -element index set
 150 $g \subseteq [D]$, the goal of sparse token selection is to (i) select the tokens \mathbf{x}_i , $i \in g$, and (ii) take an
 151 average over the selected tokens. Hence, we can define
 152

$$F_{\text{STS}}(\mathbf{X}) = \frac{1}{K} \sum_{i \in g} \mathbf{x}_i.$$

154 Then it is clear that $f^*(\mathbf{X}) = \sigma(\mathbf{V}^* \mathbf{X} \mathbf{S}^*)$ with $\mathbf{V}^* = \mathbf{I}_D$, $\mathbf{S}^* = \frac{1}{K} \mathbf{1}_g \cdot \mathbf{1}_D^\top \in \mathbb{R}^{D \times D}$, and $\sigma(\cdot)$ being
 155 identity map is equivalent to $F_{\text{STS}}(\mathbf{X})$, except that $f^*(\mathbf{X})$ duplicates the output D times to match
 156 the output dimensions of a self-attention layer.
 157

158 **Remark 2.4.** The “sparse token selection” task defined in Example 2.3 is slightly different from
 159 that studied in Wang et al. (2024). In our setting, the index set g is specified as part of the learning
 160 objective and therefore remains fixed across all inputs. In contrast, Wang et al. (2024) considers a
 161 setting in which g is provided as part of the input, allowing target positions to vary between different
 162 inputs. We remark that despite the difference, our learning task and that studied in Wang et al. (2024)
 163 essentially lead to very similar learning dynamics. We provide a detailed discussion in Appendix C.
 164

162 **Example 2.5** (Group sparse linear predictors (Zhang et al., 2025)). Let $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_D] \in \mathbb{R}^{d \times D}$ be a sequence of d -dimensional feature groups. For a given ground truth vector $\mathbf{v}^* \in \mathbb{R}^d$, and a label-relevant group index i^* , the group sparse linear predictor will first search for the variable group \mathbf{x}_i corresponding to the label-relevant index i^* , and then calculate its inner product with the ground truth vector \mathbf{v}^* . Hence, we define

$$F_{\text{GSLP}} = \langle \mathbf{v}^*, \mathbf{x}_{i^*} \rangle.$$

169 Consider a teacher model $f^*(\mathbf{X}) = \sigma(\mathbf{V}^* \mathbf{X} \mathbf{S}^*)$ with $\mathbf{V}^* = \mathbf{v}^*$ by reducing M to 1, $\mathbf{S}^* = \mathbf{e}_{i^*} \cdot \mathbf{1}_D^\top$,
170 and $\sigma(\cdot)$ being identity map. Then similar to Example 2.3, $f^*(\mathbf{X})$ duplicates the output of $F_{\text{GSLP}}(\mathbf{X})$
171 for D times, and is essentially equivalent to $F_{\text{GSLP}}(\mathbf{X})$.

172 **One-layer transformer.** A one-layer transformer model Vaswani et al. (2017); Dosovitskiy et al.
173 (2020) can be defined as
174

$$175 \quad \text{TF}(\mathbf{Z}; \mathbf{W}_V; \mathbf{W}_Q; \mathbf{W}_K) = \sigma \left(\mathbf{W}_V \mathbf{Z} \mathcal{S} \left(\frac{\mathbf{Z}^\top \mathbf{W}_K^\top \mathbf{W}_Q \mathbf{Z}}{\sqrt{D}} \right) \right). \quad (2.3)$$

178 In this formulation, \mathbf{Z} represents the input matrix of the transformers, obtained by concatenating the
179 original feature matrix \mathbf{X} with its positional encoding matrix \mathbf{P} . Specifically, for each column \mathbf{x}_i
180 (for all $i \in [D]$) of the original feature matrix \mathbf{X} , we concatenate it with the position encoding vector
181 \mathbf{p}_i , which contains the positional information of this specific index, to generate a column of \mathbf{Z} as
182 $\mathbf{z}_i = [\mathbf{x}_i^\top, \mathbf{p}_i^\top]^\top$. The complete positional encoding matrix is denoted as $\mathbf{P} = [\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_D]$,
183 and we employ an orthogonal design for \mathbf{P} , meaning that \mathbf{P} is an $D \times D$ orthogonal matrix. For
184 analytical convenience, the practice of concatenating feature and positional encoding matrices has
185 been widely adopted in recent theoretical studies (Nichani et al., 2024; Bai et al., 2024; Wang et al.,
186 2024; Zhang et al., 2025). Furthermore, $\mathcal{S}(\cdot) : \mathbb{R}^{D \times D} \mapsto \mathbb{R}^{D \times D}$ denotes the softmax operator,
187 which implements the softmax function column-wisely, and $\mathbf{W}_V, \mathbf{W}_Q, \mathbf{W}_K$ represent the value
188 matrix, query matrix, and key matrix in a typical self-attention structure, respectively. Instead of
189 studying the typical structure (2.3), we consider a moderately simplified “position-only” softmax
190 self-attention in this paper, which is defined as

$$191 \quad \text{TF}(\mathbf{Z}; \mathbf{W}_V; \mathbf{W}_{KQ}) = \sigma \left(\mathbf{W}_V \mathbf{X} \mathcal{S} \left(\frac{\mathbf{P}^\top \mathbf{W}_{KQ} \mathbf{P}}{\sqrt{D}} \right) \right) = \sigma(\mathbf{W}_V \mathbf{X} \mathbf{S}) \in \mathbb{R}^{M \times D}. \quad (2.4)$$

194 In comparison with the typical single-head self-attention architecture (2.3), our model (2.4) is sim-
195 plified from the following two aspects: (i). We re-parameterize the original key matrix \mathbf{W}_K and
196 query matrix \mathbf{W}_Q into one trainable key-query matrix \mathbf{W}_{KQ} , which has been adopted in almost
197 theoretical studies regarding the optimization of transformers (Tian et al., 2023; Zhang et al., 2024b;
198 Wang et al., 2024; Huang et al., 2024; Frei & Vardi, 2025; Zhang et al., 2025; He et al., 2025). (ii).
199 We employ an architecture such that only the positional encoding matrix \mathbf{P} is involved when calcu-
200 lating the softmax attention score, and the value matrix \mathbf{W}_V only interacts with the feature matrix
201 \mathbf{X} . To illustrate a rationale for this design, consider the following one-layer transformers:

$$202 \quad \widetilde{\text{TF}}(\mathbf{Z}; \widetilde{\mathbf{W}}_V; \widetilde{\mathbf{W}}_{KQ}) = \sigma \left(\widetilde{\mathbf{W}}_V \mathbf{Z} \mathcal{S} \left(\frac{\mathbf{Z}^\top \widetilde{\mathbf{W}}_{KQ} \mathbf{Z}}{\sqrt{D}} \right) \right), \quad (2.5)$$

205 where the entire input matrix \mathbf{Z} is involved in both the calculation of attention score and interac-
206 tions with the value matrix. Empirical observations (illustrated in Figure 1) reveal that when the
207 transformer model $\widetilde{\text{TF}}$ in (2.5) is used to learn a teacher model f^* in (2.1), substantial training pre-
208 dominantly occurs in the left block of $\widetilde{\mathbf{W}}_V$ and the ‘bottom-right’ block of $\widetilde{\mathbf{W}}_{KQ}$. These actively
209 trained blocks map to \mathbf{W}_V and \mathbf{W}_{KQ} respectively in our model (2.4), while other parameter blocks
210 of $\widetilde{\text{TF}}$ exhibit negligible changes from their initial values. Consequently, our model (2.4) can be con-
211 sidered essentially equivalent to the transformer model $\widetilde{\text{TF}}$ if these rarely updated blocks within $\widetilde{\mathbf{W}}_V$
212 and $\widetilde{\mathbf{W}}_{KQ}$ are fixed to zero. This strategy of fixing certain transformer parameters during training
213 is widely adopted in the theoretical studies on the optimization of transformers (Wu et al., 2023;
214 Tarzanagh et al., 2023a; Huang et al., 2024; Sakamoto & Sato, 2024; Frei & Vardi, 2025; He et al.,
215 2025), and analogous “position-only” attention structures are also adopted in Jelassi et al. (2022);
216 Wang et al. (2024).

Figure 1: Visualization of parameter matrices for the transformer $\widetilde{\text{TF}}$ in (2.5), obtained after training to learn the teacher model f^* and achieving loss convergence. The formal illustration of the loss function and training algorithm is provided in the next section.

3 MAIN RESULTS

In this section, we demonstrate our theoretical conclusions of utilizing a one-layer transformer (2.4) to learn a given teacher model f^* in (2.1). For a teacher model f^* parameterized with the ground truth value matrix \mathbf{V}^* and ground truth softmax scores \mathbf{S}^* , the observed label \mathbf{Y} for an input matrix \mathbf{X} is assumed to be generated as:

$$\mathbf{Y} = f^*(\mathbf{X}) + \mathcal{E} = \sigma(\mathbf{V}^* \mathbf{X} \mathbf{S}^*) + \mathcal{E} \in \mathbb{R}^{M \times D}, \quad (3.1)$$

where $\mathcal{E} \in \mathbb{R}^{M \times D}$ is a noise matrix independent of \mathbf{X} and following a zero-mean distribution. To train a one-layer transformer (2.4), we consider the population mean squared error as the objective loss function. Specifically, given an input-label pair (\mathbf{X}, \mathbf{Y}) , the loss function is defined as

$$\mathcal{L}(\mathbf{W}_V; \mathbf{W}_{KQ}) = \frac{1}{2} \mathbb{E}_{\mathbf{X}, \mathbf{Y}} [\|\mathbf{Y} - \text{TF}(\mathbf{Z}; \mathbf{W}_V; \mathbf{W}_{KQ})\|_F^2]. \quad (3.2)$$

Here, each column of \mathbf{X} is assumed to independently follow the standard Gaussian distribution during the training stage of (2.4), i.e. $\mathbf{x}_i \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(0, \mathbf{I}_d)$ for all $i \in [D]$. Due to the variance introduced by the noise component \mathcal{E} , even the loss of the ground truth model f^* has an irreducible term, and we denote this term as the optimal loss, i.e.

$$\mathcal{L}_{\text{opt}} = \frac{1}{2} \mathbb{E}_{\mathbf{X}, \mathbf{Y}} [\|\mathbf{Y} - f^*(\mathbf{X})\|_F^2] = \frac{1}{2} \mathbb{E} [\|\mathcal{E}\|_F^2].$$

To evaluate the performance of one-layer transformer with different \mathbf{W}_V and \mathbf{W}_{KQ} , we consider the excess loss defined as: $\mathcal{L}(\mathbf{W}_V; \mathbf{W}_{KQ}) - \mathcal{L}_{\text{opt}}$. While the choice population loss implicitly suggests an infinite training data set—a scenario not feasible in practice—it significantly simplifies the technical challenges of conducting a rigorous optimization analysis for transformer models. This approach enables us to focus on the global optimization trajectories, and has been adopted in most of the recent theoretical studies regarding the optimization of transformer models (Zhang et al., 2024b; Huang et al., 2024; Wang et al., 2024; Jelassi et al., 2022; Frei & Vardi, 2025; Zhang et al., 2025).

For the training objective loss (3.2), we utilize the gradient descent to derive the optimal solutions for the value matrix \mathbf{W}_V , and key-query matrix \mathbf{W}_{KQ} . The iterative rule for \mathbf{W}_V and \mathbf{W}_{KQ} during the learning process can be expressed as

$$\mathbf{W}_V^{(t+1)} = \mathbf{W}_V^{(t)} - \eta \nabla_{\mathbf{W}_V} \mathcal{L}(\mathbf{W}_V^{(t)}; \mathbf{W}_{KQ}^{(t)}); \quad (3.3)$$

$$\mathbf{W}_{KQ}^{(t+1)} = \mathbf{W}_{KQ}^{(t)} - \eta \nabla_{\mathbf{W}_{KQ}} \mathcal{L}(\mathbf{W}_V^{(t)}; \mathbf{W}_{KQ}^{(t)}), \quad (3.4)$$

where η is the learning rate, and the initializations are set as $\mathbf{W}_V^{(0)}, \mathbf{W}_{KQ}^{(0)} = \mathbf{0}$. Based on these preliminaries, the following theorem characterizes the convergence of gradient descent (3.3) and (3.4).

270 **Theorem 3.1.** Suppose that $D \geq \Omega(\text{poly}(M, K))$, $\eta \leq \mathcal{O}(M^{-1}D^{-5/2})$. Under these conditions,
 271 there exists $T^* = \Theta\left(\frac{KD^2}{\eta\|\mathbf{V}^*\|_F^2}\right)$, such that for all $T \geq T^*$, the following results hold.
 272

273 1. The attention scores achieved by the one-layer transformer (2.4), match the ground truth softmax
 274 scores of the teacher model: $\mathbf{S}^{(T)}$ at the T -th iteration satisfies that
 275

$$276 \|\mathbf{S}^{(T)} - \mathbf{S}^*\|_F = \Theta\left(\frac{D^{\frac{5}{2}}}{\|\mathbf{V}^*\|_F \sqrt{\eta T}}\right). \\ 277$$

278 2. The value matrix \mathbf{W}_V of the one-layer transformer (2.4) aligns with the ground truth value matrix
 279 of the teacher model:
 280

$$281 \|\mathbf{W}_V^{(T)} - \mathbf{V}^*\|_F = \Theta\left(D^2 \sqrt{\frac{K}{\eta T}}\right). \\ 282$$

283 3. The excess loss is minimized with matching lower and upper bounds:
 284

$$285 \frac{cKD^4}{\eta T} \leq \mathcal{L}\left(\mathbf{W}_V^{(T)}; \mathbf{W}_{KQ}^{(T)}\right) - \mathcal{L}_{\text{opt}} \leq \frac{\bar{c}KD^4}{\eta T},$$

286 where c and \bar{c} are two positive constants satisfying $c \leq \bar{c}$.
 287

288 The proof of Theorem 3.1 is given in Appendix D. Theorem 3.1 demonstrates that a one-layer
 289 transformer can learn the teacher model f^* formulated in (2.1) from two aspects. The first and
 290 second results show that the one-layer transformer’s value matrix $\mathbf{W}_V^{(T)}$ and attention scores $\mathbf{S}^{(T)}$
 291 converge (in the Frobenius norm) to the teacher model’s ground truth value matrix \mathbf{V}^* and softmax
 292 scores \mathbf{S}^* , respectively. This reveals that a one-layer transformer trained via gradient descent can
 293 correctly recover the teacher model by accurately learning all its core components. The third result
 294 in Theorem 3.1 shows that the training loss will eventually converge to the optimal loss at a rate
 295 of $\Theta\left(\frac{KD^4}{\eta T}\right)$. The third result characterizes the convergence of the training loss. It shows that the
 296 excess loss decreases at the rate $\Theta\left(\frac{KD^4}{\eta T}\right)$, with matching upper and lower bounds. We note that the
 297 factor D^4 indicates that the convergence takes a large number of iterations when the sequence length
 298 D is large. However, the matching lower bound in Theorem 3.1 confirms that this rate is already
 299 optimal and cannot be improved under our current setting. In fact, this polynomial dependence on D
 300 originates from two intrinsic aspects of the learning task: (i) Since the loss is the squared Frobenius
 301 distance between two $M \times D$ matrices, it necessarily aggregates errors over all D columns, and
 302 thus scales proportionally with the sequence length; (ii) The $1/\sqrt{D}$ factor appears in the gradients
 303 of \mathbf{W}_{KQ} and requires \mathbf{W}_{KQ} to scale larger to achieve sufficient convergence, thereby introducing
 304 additional factors of D into the convergence rate.
 305

306 As illustrated in Examples 2.3 and 2.5, our teacher model f^* encompasses settings that are closely
 307 related to the learning tasks studied in Wang et al. (2024) and Zhang et al. (2025). For the “sparse
 308 token selection” problem, Theorem 3.1 establishes a learning guarantee for the setting in which the
 309 target index set is fixed by the learning objective and not provided as part of the input. This offers
 310 a complementary perspective to the settings in Wang et al. (2024), where the target index set is
 311 given as a part of input, and may vary across different data points. Under our setting, Theorem 3.1
 312 yields a tight $\Theta\left(\frac{1}{T}\right)$ convergence rate with matching upper and lower bounds, sharper than the
 313 $\mathcal{O}\left(\frac{\log(T)}{T}\right)$ guarantee obtained under the different problem formulation of Wang et al. (2024). A de-
 314 tailed comparison between the convergence rate is provided in Appendix C. Regarding group-sparse
 315 linear prediction, Zhang et al. (2025) focus primarily on the classification setting, while Theorem 3.1
 316 delivers a complementary result by addressing the regression setting.
 317

318 The learning guarantee in Theorem 3.1 is established under the assumption that the data input matrix
 319 \mathbf{X} is Gaussian, and the target response matrix \mathbf{Y} is provided by the teacher with noises. Here, we can
 320 also study the out-of-distribution (OOD) generalization guarantee of the obtained transformer model
 321 on data without such assumptions. Specifically, we consider any feature and response matrices
 322 $\tilde{\mathbf{X}} \in \mathbb{R}^{d \times D}$, $\tilde{\mathbf{Y}} \in \mathbb{R}^{M \times D}$ with bounded second moments, and establish bounds on the OOD loss

$$323 \mathcal{L}_{\text{OOD}}(\mathbf{W}_V; \mathbf{W}_{KQ}) = \frac{1}{2} \mathbb{E}_{\tilde{\mathbf{X}}, \tilde{\mathbf{Y}}} [\|\tilde{\mathbf{Y}} - \text{TF}(\tilde{\mathbf{Z}}; \mathbf{W}_V; \mathbf{W}_{KQ})\|_F^2]$$

324 by comparing it with the loss achieved by the teacher model. We have the following theorem.
 325

326 **Theorem 3.2.** Suppose that $D \geq \Omega(\text{poly}(M, K))$ and $\eta \leq \mathcal{O}(M^{-1}D^{-5/2})$. In addition, the OOD
 327 input pairs $(\tilde{\mathbf{X}}, \tilde{\mathbf{Y}})$ satisfy the condition that each column $\tilde{\mathbf{x}}_i$ and $\tilde{\mathbf{y}}_i$ has finite second moments, i.e.
 328 there exists a constant $\xi > 0$ such that $\mathbb{E}[\|\tilde{\mathbf{x}}_i\|_2^2], \mathbb{E}[\|\tilde{\mathbf{y}}_i\|_2^2] \leq \xi$ for all $i \in [D]$. Then for any $\epsilon > 0$,
 329 there exists $T_\epsilon = \mathcal{O}\left(\frac{KD^6\xi^2 \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}{\eta\epsilon^2}\right)$ such that for any $T > T_\epsilon$, the OOD loss satisfies that:
 330

$$\mathcal{L}_{\text{OOD}}\left(\mathbf{W}_V^{(T)}; \mathbf{W}_{KQ}^{(T)}\right) \leq \frac{1}{2}\mathbb{E}\left[\|\tilde{\mathbf{Y}} - f^*(\tilde{\mathbf{X}})\|_F^2\right] + \epsilon.$$

331 Theorem 3.2 requires only the mild assumption that $\tilde{\mathbf{X}}$ and $\tilde{\mathbf{Y}}$ have bounded second moments.
 332 Notably, the response matrix $\tilde{\mathbf{Y}}$ need not be generated by or correlated with the output of the teacher
 333 model $f^*(\tilde{\mathbf{X}})$. Therefore, the term $\frac{1}{2}\mathbb{E}\left[\|\tilde{\mathbf{Y}} - f^*(\tilde{\mathbf{X}})\|_F^2\right]$ measures the teacher model's O.O.D. test
 334 loss, analogous to the role of \mathcal{L}_{opt} in Theorem 3.1. This shows that the trained transformer's O.O.D.
 335 loss exceeds that of the teacher model by at most ϵ , demonstrating its robustness to distribution
 336 shift. In addition, although it is challenging to establishing a matching lower bound for all pairs
 337 $(\tilde{\mathbf{X}}, \tilde{\mathbf{Y}})$ like Theorem 3.1, a worst-case $\tilde{\mathbf{Y}}$ can be constructed to demonstrate that this upper bound
 338 is attainable, thereby validating the tightness of Theorem 3.2. The complete proof of Theorem 3.2
 339 and the worst-case example are provided in Section E.
 340

4 EXPERIMENTS

341 In this section, we present our experimental results. As detailed in Section 2, the teacher model can
 342 cover various models, including (i). convolution layer with average pooling, (ii). graph convolution
 343 layer on a regular graph, (iii). sparse token selection model, and (iv). group sparse linear predictor.
 344 Our experiments also focus on these four cases.

345 We conduct experiments on both synthetic data and real-world data sets, respectively. For experiments
 346 on synthetic data, we follow the exact definitions in Section 2 to build up teacher models f^* .
 347 For experiments on real-world datasets, we pre-train a teacher CNN on the MNIST dataset, whose
 348 first convolution layer is then served as the teacher model to train the student transformer.
 349

4.1 SYNTHETIC DATA EXPERIMENTS

350 We begin by detailing the common experimental setups on synthetic data. Given parameters d and
 351 D , an fixed orthogonal matrix $\mathbf{P} \in \mathbb{R}^{D \times D}$ serves as the positional encoding matrix. We adopt an
 352 online gradient descent algorithm to simulate training over the population loss. At each iteration, we
 353 sample a new batch of $N = 100$ standard $d \times D$ Gaussian matrices, i.e. $\{\mathbf{X}_n\}_{n=1}^N \subseteq \mathbb{R}^{d \times D}$. For each
 354 \mathbf{X}_n with $n \in [N]$, its corresponding label $\mathbf{Y}_n = f^*(\mathbf{X}_n) + \mathcal{E}_n$, where $\mathcal{E}_n \in \mathbb{R}^{M \times D}$ is another in-
 355 dependently sampled Gaussian matrix. We concatenate each \mathbf{X}_n with the fixed positional encoding
 356 matrix \mathbf{P} to form \mathbf{Z}_n as the inputs to the transformer. Subsequently, a gradient descent update is per-
 357 formed using this batch of $N = 100$ data pairs $\{(\mathbf{Z}_n, \mathbf{Y}_n)\}_{n=1}^N$. Furthermore, we also generate an-
 358 other batch of $N = 100$ data pairs $\{(\tilde{\mathbf{Z}}_n, \tilde{\mathbf{Y}}_n)\}_{n=1}^N$ following the almost identical procedure, except
 359 that each $\tilde{\mathbf{X}}_n$ is generated from the exponential distribution. This batch of data pairs $\{(\tilde{\mathbf{Z}}_n, \tilde{\mathbf{Y}}_n)\}_{n=1}^N$
 360 is prepared for calculating the excess OOD loss, defined as $\mathcal{L}_{\text{OOD}} = \frac{1}{2N} \sum_{n=1}^N \|\tilde{\mathbf{Y}}_n - f^*(\tilde{\mathbf{X}}_n)\|_F^2$.
 361

362 In the next, we introduce the distinct settings for different tasks, specifically the ground-truth soft-
 363 max score matrices \mathbf{S}^* . For the task of learning a convolution layer with average pooling, we set
 364 $D = 36$ and $K = 4$, where the pooling groups are partitioned by aggregating the K neighbor
 365 patches into a group. Given this partition of pooling groups, the ground truth softmax score of the
 366 teacher model can be formulated into a diagonal block matrix as $\mathbf{S}^* = \frac{1}{K} \text{Diag}(\mathbf{1}_{K \times K}, \dots, \mathbf{1}_{K \times K})$,
 367 with totally D/K blocks. For the task of learning a graph convolution layer, we consider a 'cycle-
 368 graph' with $D = 20$ nodes, where each node is connected to exactly two other nodes, i.e. the i -th
 369 node is connected to its adjacent nodes $(i-1)$ and $(i+1)$. Under this setup, the ground-truth
 370 softmax score \mathbf{S}^* is constructed as follows: for each column i , the entries at rows $(i-1), i$, and
 371 $(i+1)$ are set to $1/K$ with $K = 3$, while all other entries are zero. For both the tasks of learning
 372 the sparse token selection model and the group sparse linear predictor, we set the total number of
 373

378 tokens/feature groups $D = 20$, and randomly generate K indices from $[D]$ as indices of target tokens/ label-relevant group, where $K = 4$ and 1 respectively. In these two sets of tasks, the rows representing the target tokens/ label-relevant group equal to $1/K$, while other rows are filled with 0.

390 Figure 2: Excess training loss, excess OOD test loss (both in log-log scales), and cosine similarity
391 between the value matrix \mathbf{W}_V of one layer transformer (2.4), and ground truth value matrix \mathbf{V}^* .
392 These results are presented for six experimental sets, which originate from four distinct tasks.

393 For the task of learning CNN and GCN, we conduct two sets for each with ReLU and Leaky ReLU
394 respectively. Experiment results are given in Figures 2 and 3. Figure 2(a) and Figure 2(b) demon-
395 strate the convergence curves for the excess training loss and the excess OOD test loss (both in
396 log-log scales). We can clearly observe that both the excess training loss and the OOD test loss
397 converge to a small value on all six sets of experiments. After initial iterations, the curves for excess
398 training loss appear almost straight with slopes equal to -1 , and excess OOD loss curves have ap-
399 proximate -0.5 slopes. These observations validate the $\Theta(1/T)$ convergence rate in Theorem 3.1,
400 and $\mathcal{O}(1/\sqrt{T})$ convergence rate in Theorem 3.2. Figure 2(c) displays the cosine similarity curve be-
401 tween the value matrix $\mathbf{W}_V^{(t)}$, and the ground truth value matrix \mathbf{V}^* . It shows that $\mathbf{W}_V^{(t)}$ directionally
402 aligns with the ground truth value matrix \mathbf{V}^* in all six experiments since the very beginning.

403 Furthermore, Figure 3 provides the heatmaps of the attention scores when the loss converges. Speci-
404 cally, Figure 3(a) and Figure 3(b) respectively display the attention scores when learning a con-
405 volution layer with ReLU and Leaky ReLU. In both figures, the attention scores exhibit a diagonal
406 block matrix pattern, where each diagonal block has approximately equal values $1/4$. Figure 3(c) and
407 Figure 3(d) show the attention scores when learning a graph convolution layer on a cycle graph.
408 Specifically, the attention scores show a pattern of a cyclic tridiagonal matrix, with all the significant
409 entries having approximately equal values $1/3$. Figure 3(e) and Figure 3(f) show the attention scores
410 when learning a sparse token selection task and group sparse linear predictor. We can observe that
411 only the rows corresponding to the target positions are assigned significant values in both tasks. In
412 summary, all these patterns match the ground truth softmax scores, which are described previously.

416 4.2 REAL DATA EXPERIMENTS

417 We also conduct experiments on the MNIST dataset. Each image is normalized and resized to 27×27
418 pixels. We train a two-layer CNN with $M = 16$ convolution kernels, each having a 3×3 kernel
419 size. Given the 27×27 image dimensions, each image is divided into $D = 81$ patches. An average
420 pooling layer with a 3×3 pooling receptive field (i.e $\bar{K} = 9$) is additive to the first convolution layer,
421 and then cascaded with activation and a linear layer for classification. This two-layer CNN is trained
422 by minimizing the cross-entropy loss, achieving a moderate test accuracy of about 71% on the test
423 set after 20 epochs. After training of this teacher CNN, its first convolution layer with average
424 pooling is extracted as the teacher model f^* , with its hidden-layer outputs supervising a one-layer
425 transformer (2.4). The training of the one-layer transformer is still conducted on the MNIST dataset,
426 and the mean-squared loss is employed for optimization.

427 The experiment results are given in Figure 4 and Figure 5. Figure 4(a) displays the training loss
428 curves. We can observe that for both ReLU and Leaky ReLU, the training loss very quickly con-
429 verges to a small value. Figure 4(b) demonstrates the cosine similarity curve between the value
430 matrix $\mathbf{W}_V^{(t)}$ of the transformer and the convolution kernel matrix \mathbf{V}^* of the teacher convolution
431 layer. The similarity rises above 0.9, indicating that the transformer successfully learns the ground-

Figure 3: Heatmap of attention score matrix $\mathbf{S}^{(T)}$ when the training loss converges. The results are presented for six different experimental sets, indicated by the captions of sub-figures.

Figure 4: Training loss and cosine similarity between the value matrix \mathbf{W}_V of the one-layer transformer (2.4), and convolution kernel matrix \mathbf{V}^* of the pre-trained teacher CNN.

truth value matrix of the teacher model. Furthermore, Figure 5(a) provides the heatmap of the ground truth softmax score derived from the teacher CNN’s average pooling layer. Figure 5(b) and Figure 5(c) respectively present heatmaps of attention scores at convergence for the transformers with ReLU and Leaky ReLU activations. We can observe that both the attention scores achieved by transformers can capture the pattern of the ground truth softmax scores, with notable exceptions in the first and last nine rows in the softmax heatmap. We remark that the failure in learning these rows of ground-truth softmax scores is due to the fact that they correspond to MNIST image patches that are mostly all background (all zero). Figure 5(d) highlights the image regions corresponding to failed-to-learn softmax scores, marked by yellow rectangles. We can see that they are indeed boundary regions and are mostly pure background. Consequently, they offer minimal informative content to the model, explaining why transformers can not attend to these positions. Overall, it is clear that the real-world data experiments corroborate our theory.

5 PROOF SKETCH OF THEOREM 3.1

In this section, we outline the major steps in the proof of Theorem 3.1. For simplicity, here we focus the case where $\sigma(\cdot)$ is the identity map. More details, including more general choices of $\sigma(\cdot)$, are formally proved in Appendix D. The proof consists of three main steps:

Figure 5: Heatmap of the ground truth softmax scores of average pooling, Heatmap of the attention scores $\mathbf{S}^{(T)}$ of trained one-layer transformer when loss converges, and an image example in MNIST.

Step 1. Structures of \mathbf{W}_V and \mathbf{W}_{KQ} during training. A critical step in our proof is to show that throughout training, the parameter matrices \mathbf{W}_V and \mathbf{W}_{KQ} preserve the following decompositions:

$$\mathbf{W}_V^{(t)} = C_1(t) \mathbf{V}^*; \quad \mathbf{W}_{KQ}^{(t)} = C_2(t) \sum_{i=1}^D \sum_{i' \in G^i} \mathbf{p}_{i'} \mathbf{p}_i^\top - C_3(t) \sum_{i=1}^D \sum_{i' \notin G^i} \mathbf{p}_{i'} \mathbf{p}_i^\top,$$

where G^i denotes the index set of entries of value $1/K$ in i -th column of \mathbf{S}^* . The details of this conclusion are given in Lemma D.2. Based on the decompositions, we can express $\mathbf{S}^{(t)}$ as: $\mathbf{S}_{i',i}^{(t)} = \frac{1}{K + (D-K) \exp(-(C_2(t) + C_3(t))/\sqrt{D})}$ if $i' \in G^i$; $\mathbf{S}_{i',i}^{(t)} = \frac{\exp(-(C_2(t) + C_3(t))/\sqrt{D})}{K + (D-K) \exp(-(C_2(t) + C_3(t))/\sqrt{D})}$ if $i' \notin G^i$. Comparing these results with the definition of the teacher model $f^*(\cdot)$, we can further observe that

$$\mathbf{W}_V^{(t)} \rightarrow \mathbf{V}^* \Leftrightarrow C_1(t) \rightarrow 1; \quad \mathbf{S}^{(t)} \rightarrow \mathbf{S}^* \Leftrightarrow C_2(t) + C_3(t) \rightarrow \infty.$$

In this way, the original optimization analysis regarding full matrices \mathbf{W}_V and \mathbf{W}_{KQ} is simplified into studying the updates of three scalars $C_1(t)$, $C_2(t)$, $C_3(t)$.

Step 2. Accurate characterization of convergence that $C_1(t) \rightarrow 1$ and $C_2(t) + C_3(t) \rightarrow \infty$. The decompositions obtained in **Step 1.** implies that the coefficients $C_1(t)$, $C_2(t)$, $C_3(t)$ essentially follow gradient descent starting from zero initialization minimizing the loss

$$\tilde{\mathcal{L}}(C_1, C_2, C_3) \propto \frac{D-K}{K} \left[1 - \frac{KC_1}{K + (D-K)e^{-\frac{C_2+C_3}{\sqrt{D}}}} \right]^2 + C_1^2 \left[1 - \frac{K}{K + (D-K)e^{-\frac{C_2+C_3}{\sqrt{D}}}} \right]^2,$$

We remark that this expression of $\tilde{\mathcal{L}}(C_1, C_2, C_3)$ corresponds to the special case where $\sigma(\cdot)$ is the identity map. The general formulation for $\sigma(\cdot)$ is activation is deferred to Lemma D.2. Then by carefully analyzing the training dynamics, we can show that for sufficiently large T ,

$$C_1(T) - 1 = \Theta\left(\frac{D^2 \sqrt{K}}{\|\mathbf{V}^*\|_F \sqrt{\eta T}}\right), \quad C_2(T) + C_3(T) = \frac{\sqrt{D}}{2} \log\left(\Theta\left(\frac{\eta \|\mathbf{V}^*\|_F^2}{K^3 D^2}\right)T + e^{\frac{2}{K \sqrt{D}}}\right).$$

The details are provided in Lemmas D.2, D.5, D.15, D.18, and F.12.

Step 3. Final convergence results. Combining the convergence rates obtained in **Step 2.** and the formulations of $\mathbf{S}^{(T)}$ and $\mathbf{W}_V^{(T)}$ in **Step 1.**, we can further obtain that $\|\mathbf{S}^{(T)} - \mathbf{S}^*\|_F, \|\mathbf{W}_V^{(T)} - \mathbf{V}^*\|_F = \Theta\left(\frac{1}{\sqrt{T}}\right)$. Under mean-squared loss, the $\Theta\left(\frac{1}{\sqrt{T}}\right)$ convergence of the matrices $\mathbf{S}^{(t)}$ and $\mathbf{V}^{(t)}$ directly suggests that loss will decay at the rate of $\Theta\left(\frac{1}{T}\right)$, which finishes the proof.

6 CONCLUSIONS AND LIMITATIONS

In this paper, we provide the theoretical guarantee that a one-layer transformer can learn a class of teacher models, covering a wide range of common models in machine learning. Specifically, we establish a tight convergence bound at the rate of $\Theta\left(\frac{1}{T}\right)$ for the population loss. We also establish out-of-distribution generalization bounds for the obtained transformer model, demonstrating its robustness. To empirically support our findings, we conduct experiments on both synthetic data and real data, and all results align with our theoretical conclusion. Our current theory focuses on one-layer models, and we make certain simplifications and assumptions on the model and data, which present a limitation. We believe establishing teacher-student learning guarantees for more complex models and under milder assumptions is an interesting and promising further work direction.

540 REFERENCES
541

542 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
543 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
544 report. *arXiv preprint arXiv:2303.08774*, 2023.

545 Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
546 Provable in-context learning with in-context algorithm selection. *Advances in neural information*
547 *processing systems*, 36, 2024.

548 Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet with gaussian
549 inputs. In *International conference on machine learning*, pp. 605–614. PMLR, 2017.

550 Yuan Cao, Difan Zou, Yuanzhi Li, and Quanquan Gu. The implicit bias of batch normalization in
551 linear models and two-layer linear convolutional neural networks. In *The Thirty Sixth Annual*
552 *Conference on Learning Theory*, pp. 5699–5753. PMLR, 2023.

553 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
554 Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
555 modeling. *Advances in neural information processing systems*, 34:15084–15097, 2021.

556 Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Unveiling induction heads: Provable
557 training dynamics and feature learning in transformers. In *The Thirty-eighth Annual Conference*
558 *on Neural Information Processing Systems*, 2024a.

559 Xingwu Chen, Lei Zhao, and Difan Zou. How transformers utilize multi-head attention in in-context
560 learning? a case study on sparse linear regression. In *ICML 2024 Workshop on Theoretical*
561 *Foundations of Foundation Models*, 2024b.

562 Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
563 *arXiv preprint arXiv:1810.04805*, 2018.

564 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
565 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
566 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
567 *arXiv:2010.11929*, 2020.

568 Simon Du, Jason Lee, Yuandong Tian, Aarti Singh, and Barnabas Poczos. Gradient descent learns
569 one-hidden-layer cnn: Don’t be afraid of spurious local minima. In *International Conference on*
570 *Machine Learning*, pp. 1339–1348. PMLR, 2018a.

571 Simon S Du, Jason D Lee, and Yuandong Tian. When is a convolutional filter easy to learn? In
572 *International Conference on Learning Representations*, 2018b.

573 Spencer Frei and Gal Vardi. Trained transformer classifiers generalize and exhibit benign overfitting
574 in-context. In *The Thirteenth International Conference on Learning Representations*, 2025.

575 Cheng Gao, Yuan Cao, Zihao Li, Yihan He, Mengdi Wang, Han Liu, Jason Klusowski, and Jianqing
576 Fan. Global convergence in training large-scale transformers. *Advances in Neural Information*
577 *Processing Systems*, 37:29213–29284, 2024.

578 Surbhi Goel, Adam Klivans, and Raghu Meka. Learning one convolutional layer with overlapping
579 patches. In *International conference on machine learning*, pp. 1783–1791. PMLR, 2018.

580 Jianliang He, Xintian Pan, Siyu Chen, and Zhuoran Yang. In-context linear regression demysti-
581 fied: Training dynamics and mechanistic interpretability of multi-head softmax attention. *arXiv*
582 *preprint arXiv:2503.12734*, 2025.

583 Jianhao Huang, Zixuan Wang, and Jason D Lee. Transformers learn to implement multi-step gra-
584 dient descent with chain of thought. In *The Thirteenth International Conference on Learning*
585 *Representations*, 2025.

586 Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. In *Forty-first*
587 *International Conference on Machine Learning*, 2024.

594 Muhammed Emrullah Ildiz, Yixiao HUANG, Yingcong Li, Ankit Singh Rawat, and Samet Oymak.
 595 From self-attention to markov models: Unveiling the dynamics of generative transformers. In
 596 *Forty-first International Conference on Machine Learning*, 2024.

597

598 Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
 599 modeling problem. *Advances in neural information processing systems*, 34:1273–1286, 2021.

600 Samy Jelassi, Michael Sander, and Yuanzhi Li. Vision transformers provably learn spatial structure.
 601 *Advances in Neural Information Processing Systems*, 35:37822–37836, 2022.

602

603 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 604 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
 605 protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021.

606

607 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
 608 works. In *International Conference on Learning Representations*, 2017.

609

610 Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the
 611 main factor behind the gap between sgd and adam on transformers, but sign descent might be. In
 612 *The Eleventh International Conference on Learning Representations*, 2023.

613

614 Bingrui Li, Wei Huang, Andi Han, Zhanpeng Zhou, Taiji Suzuki, Jun Zhu, and Jianfei Chen. On
 615 the optimization and generalization of two-layer transformers with sign gradient descent. *arXiv*
 616 preprint *arXiv:2410.04870*, 2024a.

617

618 Hongkang Li, Meng Wang, Sijia Liu, and Pin-Yu Chen. A theoretical understanding of shallow
 619 vision transformers: Learning, generalization, and sample complexity. In *The Eleventh Interna-
 620 tional Conference on Learning Representations*, 2023a.

621

622 Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards a
 623 mechanistic understanding. In *International Conference on Machine Learning*, pp. 19689–19729.
 624 PMLR, 2023b.

625

626 Zihao Li, Yuan Cao, Cheng Gao, Yihan He, Han Liu, Jason Klusowski, Jianqing Fan, and Mengdi
 627 Wang. One-layer transformer provably learns one-nearest neighbor in context. *Advances in Neu-
 628 ral Information Processing Systems*, 37:82166–82204, 2024b.

629

630 Tianyi Liu, Minshuo Chen, Mo Zhou, Simon S Du, Enlu Zhou, and Tuo Zhao. Towards understand-
 631 ing the importance of shortcut connections in residual networks. *Advances in neural information
 632 processing systems*, 32, 2019.

633

634 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 635 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the
 636 IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.

637

638 Xuran Meng, Difan Zou, and Yuan Cao. Benign overfitting in two-layer relu convolutional neu-
 639 ral networks for xor data. In *The Forty-first International Conference on Machine Learning
 640 (21/07/2024-27/07/2024, Vienna)*, 2024.

641

642 Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
 643 gradient descent. In *Forty-first International Conference on Machine Learning*, 2024.

644

645 R OpenAI. Gpt-4 technical report. arxiv 2303.08774. *View in Article*, 2(5), 2023.

646

647 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 648 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 649 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 650 27730–27744, 2022.

651

652 Yan Pan and Yuanzhi Li. Toward understanding why adam converges faster than sgd for transform-
 653 ers. *arXiv preprint arXiv:2306.00204*, 2023.

654

655 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 656 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

648 Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamiccvit:
 649 Efficient vision transformers with dynamic token sparsification. *Advances in neural information*
 650 *processing systems*, 34:13937–13949, 2021.

651 Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
 652 Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
 653 A generalist agent. *arXiv preprint arXiv:2205.06175*, 2022.

654 Keitaro Sakamoto and Issei Sato. Benign or not-benign overfitting in token selection of attention
 655 mechanism. *arXiv preprint arXiv:2409.17625*, 2024.

656 Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limitations of
 657 transformers. *Advances in Neural Information Processing Systems*, 36:36677–36707, 2023.

658 Chen Siyu, Sheen Heejune, Wang Tianhao, and Yang Zhuoran. Training dynamics of multi-head
 659 softmax attention for in-context learning: Emergence, convergence, and optimality. In *The Thirty*
 660 *Seventh Annual Conference on Learning Theory*, pp. 4573–4573. PMLR, 2024.

661 Mahdi Soltanolkotabi. Learning relus via gradient descent. *Advances in neural information pro-*
 662 *cessing systems*, 30, 2017.

663 Davoud Atae Tarzanagh, Yingcong Li, Christos Thrampoulidis, and Samet Oymak. Transformers
 664 as support vector machines. In *NeurIPS 2023 Workshop on Mathematics of Modern Machine*
 665 *Learning*, 2023a.

666 Davoud Atae Tarzanagh, Yingcong Li, Xuechen Zhang, and Samet Oymak. Max-margin token se-
 667 lection in attention mechanism. *Advances in Neural Information Processing Systems*, 36:48314–
 668 48362, 2023b.

669 Yuandong Tian. An analytical formula of population gradient for two-layered relu network and its
 670 applications in convergence and critical point analysis. In *International conference on machine*
 671 *learning*, pp. 3404–3413. PMLR, 2017.

672 Yuandong Tian, Yiping Wang, Beidi Chen, and Simon S Du. Scan and snap: Understanding train-
 673 ing dynamics and token composition in 1-layer transformer. *Advances in Neural Information*
 674 *Processing Systems*, 36:71911–71947, 2023.

675 Yuandong Tian, Yiping Wang, Zhenyu Zhang, Beidi Chen, and Simon Shaolei Du. Joma: Demys-
 676 tifying multilayer transformers via joint dynamics of mlp and attention. In *The Twelfth Interna-*
 677 *tional Conference on Learning Representations*, 2024.

678 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 679 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 680 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

681 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 682 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 683 *tion processing systems*, 30, 2017.

684 Jesse Vig and Yonatan Belinkov. Analyzing the structure of attention in a transformer language
 685 model. In *Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting*
 686 *Neural Networks for NLP*, pp. 63–76, 2019.

687 Zixuan Wang, Stanley Wei, Daniel Hsu, and Jason D Lee. Transformers provably learn sparse token
 688 selection while fully-connected nets cannot. In *Forty-first International Conference on Machine*
 689 *Learning*, 2024.

690 Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter L Bartlett.
 691 How many pretraining tasks are needed for in-context learning of linear regression? *arXiv*
 692 *preprint arXiv:2310.08391*, 2023.

693 Weihang Xu and Simon Du. Over-parameterization exponentially slows down gradient descent for
 694 learning a single neuron. In *The Thirty Sixth Annual Conference on Learning Theory*, pp. 1155–
 695 1198. PMLR, 2023.

702 Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay, Jiashi
703 Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
704 imagenet. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
705 558–567, 2021.

706 Chenyang Zhang, Gao Peifeng, Difan Zou, and Yuan Cao. Gradient descent robustly learns the in-
707 trinsic dimension of data in training convolutional neural networks. In *High-dimensional Learn-
708 ing Dynamics 2024: The Emergence of Structure and Reasoning*, 2024a.

709 Chenyang Zhang, Xuran Meng, and Yuan Cao. Transformer learns optimal variable selection in
710 group-sparse classification. In *The Thirteenth International Conference on Learning Representa-
711 tions*, 2025.

712 Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
713 Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? *Advances in
714 Neural Information Processing Systems*, 33:15383–15393, 2020.

715 Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
716 *Journal of Machine Learning Research*, 25(49):1–55, 2024b.

717 Ruiqi Zhang, Jingfeng Wu, and Peter L Bartlett. In-context learning of a linear transformer block:
718 benefits of the mlp component and one-step gd initialization. *arXiv preprint arXiv:2402.14951*,
719 2024c.

720 Mo Zhou, Tianyi Liu, Yan Li, Dachao Lin, Enlu Zhou, and Tuo Zhao. Toward understanding
721 the importance of noise in training neural networks. In *International Conference on Machine
722 Learning*, pp. 7594–7602. PMLR, 2019.

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A NOTATION**
757758 In this section, we introduce the key notations we use throughout paper. We first introduce the
759 following mathematical notations.
760761 **Mathematical notations.** Given two sequences $\{x_n\}$ and $\{y_n\}$, we denote $x_n = \mathcal{O}(y_n)$ if there
762 exist some absolute constant $C_1 > 0$ and $N > 0$ such that $|x_n| \leq C_1|y_n|$ for all $n \geq N$. Similarly,
763 we denote $x_n = \Omega(y_n)$ if there exist $C_2 > 0$ and $N > 0$ such that $|x_n| \geq C_2|y_n|$ for all $n > N$.
764 We say $x_n = \Theta(y_n)$ if $x_n = \mathcal{O}(y_n)$ and $x_n = \Omega(y_n)$ both holds. We use $\tilde{\mathcal{O}}(\cdot)$, $\tilde{\Omega}(\cdot)$, and $\tilde{\Theta}(\cdot)$
765 to hide logarithmic factors in these notations respectively. Moreover, we denote $x_n = \text{poly}(y_n)$ if
766 $x_n = O(y_n^D)$ for some positive constant D , and $x_n = \text{polylog}(y_n)$ if $x_n = \text{poly}(\log(y_n))$. For two
767 scalars a and b , we denote $a \vee b = \max\{a, b\}$ and $a \wedge b = \min\{a, b\}$. For any $n \in \mathbb{N}_+$, we use $[n]$
768 to denote the set $\{1, 2, \dots, n\}$. In addition, we use $\mathbf{1}_n$ to denote a n -dimensional vector with all 1
769 entries. For an index set g , $\mathbf{1}_g$ denotes a vector whose entries are 1 for indices in g , and 0 otherwise.
770 Let $\mathbf{A}_1, \dots, \mathbf{A}_n$ be n matrices with the same dimensionality $d_1 \times d_2$, then $\text{Diag}(\mathbf{A}_1, \dots, \mathbf{A}_n)$ is a
771 $nd_1 \times nd_2$ diagonal block matrix, with $\mathbf{A}_1, \dots, \mathbf{A}_n$ being the block entries.
772773 In addition, we also provide a summary table of the key variables in our study in Table 1.
774775 Table 1: Key variables and their meanings.
776

777 Symbol	778 Meaning
779 \mathbf{V}^*	780 Ground truth value matrix in f^* , a $M \times D$ matrix.
781 \mathbf{S}^*	782 Ground truth softmax score matrix in f^* , a $D \times D$ column-stochastic matrix.
783 D	784 Sequence length (number of input tokens).
785 d	786 Feature dimension of each token.
787 K	788 Number of none zero entries in each column of \mathbf{S}^* . It can represent: (i) the pooling size in CNN and pooling layer, (ii) the number of neighbors of GCN layer, (iii) the number of target tokens in sparse token selection, (iv) it equals to 1 in group-sparse linear models.
789 G^i	790 Target index set of i -th input token, namely $\mathbf{S}_{i',i} = \frac{1}{K}$ if $i' \in G^i$, and 0 otherwise.
791 t, T	792 Number of gradient descent iterations.
793 η	794 Learning rate.
795 $\mathbf{W}_V, \mathbf{W}_{KQ}$	796 Parameter matrices of the transformer.
797 \mathcal{L}	798 Population loss (objective function).
799 $\mathcal{L}_{\text{O.O.D.}}$	800 Out of distribution loss.
801 $C_1(t), C_2(t), C_3(t)$	802 Coefficients of the decompositions of \mathbf{W}_V and \mathbf{W}_{KQ} during the training.

793 **B ADDITIONAL RELATED WORKS**
794795 **Optimization of transformers.** There exist multiple recent works studying the optimizations of
796 transformers, most of which focus on the single-layer architecture. Zhang et al. (2020); Kunstner
797 et al. (2023); Pan & Li (2023); Li et al. (2024a) investigate performance comparison between the
798 adaptive methods and SGD under different settings from both theoretical and empirical perspec-
799 tives. Li et al. (2023b) investigates the optimal parameters of transformers applied to a masked topic
800 structure model similar to the Bert framework through a two-stage training regime. Ildiz et al. (2024);
801 Chen et al. (2024a) explain the mechanism of attention from the perspective of Markov chains. Tian
802 et al. (2023; 2024) study the training dynamics of transformers, jointly with a decoder layer and a
803 fully-connected layer, respectively. Li et al. (2024b) analyzes transformer training behavior in the
804 context of one-nearest neighbor selection. Gao et al. (2024) addresses the global convergence of
805 transformers given certain prerequisites. Tarzanagh et al. (2023a;b) demonstrates that single-layer
806 attention mechanisms can converge directionally towards the hard margin solution typical of Sup-
807 port Vector Machines (SVMs). Furthermore, Li et al. (2023a) presents a generalization error bound
808 for vision transformers optimized using stochastic gradient descent. Furthermore, many other ex-
809 existing works investigate the optimization of transformers under the so-called “in-context learning”
810 settings (Chen et al., 2024b; Huang et al., 2024; Zhang et al., 2024b;c; Nichani et al., 2024; Huang

810 et al., 2025). Based on the framework proposed in (Zhang et al., 2024b), Huang et al. (2024) extends
 811 this result to one-layer softmax attention transformers. Siyu et al. (2024) investigates the multi-head
 812 self-attention under this setting, and summarizes two distinct patterns among all heads. Nichani et al.
 813 (2024) demonstrates that when solving in-context learning tasks with latent causal structure, trans-
 814 formers can encode the latent causal graph. Huang et al. (2025) demonstrates that Chain of Thought
 815 (CoT) prompting enables Transformer models to learn to perform multi-step gradient descent and
 816 effectively recover true weights.

817 **Teacher-student framework for training neural networks.** We also introduce some related theo-
 818 retical works regarding the training of a “student” neural network under the guidance of a “teacher
 819 model” (Brutzkus & Globerson, 2017; Tian, 2017; Soltanolkotabi, 2017; Goel et al., 2018; Du et al.,
 820 2018b;a; Zhou et al., 2019; Liu et al., 2019; Xu & Du, 2023). Several studies establish convergence
 821 guarantees for gradient descent in specific ReLU network settings: Brutzkus & Globerson (2017)
 822 demonstrated polynomial-time global convergence for one-hidden-layer non-overlapping convolutional
 823 ReLU networks with Gaussian inputs; Tian (2017) characterized critical points and proved
 824 gradient descent convergence for two-layer ReLU student-teacher networks under Gaussian inputs;
 825 and Du et al. (2018b;a) provided polynomial-time recovery guarantees for learning convolutional
 826 ReLU filters and networks, respectively, using (stochastic) gradient descent, even with potential
 827 spurious minimizers and for general or Gaussian inputs. Furthermore, Zhou et al. (2019) and Liu
 828 et al. (2019) showed that methods like perturbed gradient descent with noise annealing or specific
 829 normalizations and initializations can achieve polynomial-time global convergence in convolutional
 830 neural networks (including ResNets) despite the presence of spurious local optima. Research fo-
 831 cusing on single ReLU scenarios includes Soltanolkotabi (2017)’s analysis of linear convergence
 832 for a single ReLU in a high-dimensional Gaussian model with structured weights, and Xu & Du
 833 (2023)’s finding that over-parameterizing a student network to learn a single target ReLU neuron
 834 under Gaussian inputs can surprisingly slow convergence. Finally, Goel et al. (2018) introduced
 835 Convotron, a provably efficient algorithm for one-hidden-layer convolutional networks with general
 836 patches, achieving global convergence through noise-tolerant stochastic updates without requiring
 837 special initialization or learning rate tuning.

C COMPARISON WITH WANG ET AL. (2024)

811 In this section, we compare the essential optimization dynamics in Wang et al. (2024) and our works.
 812 Wang et al. (2024) and our work both rely on the symmetry of Gaussian data and the uniform
 813 distribution among the target tokens expected to be selected. A critical technical step shared by
 814 both analyses is to simplify the optimization regarding the full parameter matrices to investigate the
 815 evolutions of several specific scalars, as demonstrated in Lemma 3.2 in Wang et al. (2024) and in
 816 our Lemma D.2. Specifically, the analysis in Wang et al. (2024) tracks the evolution of two scalars,
 817 $\alpha(t)$ and $C(t)$, for which the coefficients are essentially minimizing the loss

$$818 \tilde{\mathcal{L}}(\alpha, C) = \frac{d}{2(D-K)} \left[K(D-K) \left(\frac{\alpha}{K + (D-K)e^{-C}} - \frac{1}{K} \right)^2 + \alpha^2 \left(1 - \frac{K}{K + (D-K)e^{-C}} \right)^2 \right], \quad (C.1)$$

820 as demonstrated on top of Page 31 in Wang et al. (2024).

821 As demonstrated in Lemma D.2, our analysis focus on the scalars $C_1(t), C_2(t), C_3(t)$. When the
 822 teacher model is reduced to the “sparse token selection” task defined in Example 2.3, with $\mathbf{V}^* = \mathbf{I}_d$
 823 and without activation function, the coefficients $C_1(t), C_2(t), C_3(t)$ essentially minimize the loss

$$824 \tilde{\mathcal{L}}(C_1, C_2, C_3) = \frac{dD}{2(D-K)} \left[K(D-K) \left(\frac{C_1}{K + (D-K)e^{-\frac{C_2+C_3}{\sqrt{D}}}} - \frac{1}{K} \right)^2 \right. \\ \left. + C_1^2 \left(1 - \frac{K}{K + (D-K)e^{-\frac{C_2+C_3}{\sqrt{D}}}} \right)^2 \right] \quad (C.2)$$

825 Comparing these two loss functions in (C.2) and (C.2), we can observe that they essentially share
 826 the same function structure. Specifically, if we regard $\frac{C_2+C_3}{\sqrt{D}}$ in (C.1) as one term, playing the role
 827

as C in (C.1), then these two functions only differ by a factor D . Therefore, while the setting of the “sparse token selection” task in our work is different from that considered in Wang et al. (2024), they can be formulated into an essentially identical optimization problem. Notably, the loss in (C.2) is only the special case in our setting with $\mathbf{V}^* = \mathbf{I}_d$ and without activation function, while the general case is much more complicated and provided in Lemma D.2. Therefore, the setting considered in our work is more general compared with that in Wang et al. (2024), from a technical perspective. This also highlights that establishing a tight convergence rate with a matching lower bound indeed constitutes a technical advantage of our work.

D PROOF OF THEOREM 3.1

In this section, we provide a detailed proof for Theorem 3.1. We first introduce several notations used in the following proof. For each $i \in [D]$, we use G^i to denote the index set to which the entries of i -th column of \mathbf{S}^* is $\frac{1}{k}$, i.e. $\mathbf{S}_{i',i}^* = \frac{1}{K}$ if $i' \in G^i$ and 0 otherwise. With this notation, we can express that $[f^*(\mathbf{X})]_{m,i} = \sigma(\mathbf{v}_m^{*\top} \mathbf{X} \mathbf{1}_{G^i})) = \frac{1}{K} \sigma(\sum_{i' \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i'} \rangle)$. In addition we let $\mathbf{V}^* = [\mathbf{v}_1^*, \mathbf{v}_2^*, \dots, \mathbf{v}_M^*]^\top$, and $\mathbf{W}_V = [\mathbf{w}_{V,1}, \mathbf{w}_{V,2}, \dots, \mathbf{w}_{V,M}]^\top \in \mathbb{R}^{M \times d}$. Based on this notation, it is equivalent to consider the gradient descent updating regarding each $\mathbf{w}_{V,m}$ for all $m \in [M]$, expressed as

$$\mathbf{w}_{V,m}^{(t+1)} = \mathbf{w}_{V,m}^{(t)} - \eta \nabla_{\mathbf{w}_{V,m}} \mathcal{L}(\mathbf{W}_V^{(t)}; \mathbf{W}_{KQ}^{(t)}). \quad (\text{D.1})$$

In the following proof, we will consider the gradient descent updating details for each $\mathbf{w}_{V,m}^{(t)}$, and derive the conclusion for $\mathbf{W}_V^{(t)}$ based on the result of $\mathbf{w}_{V,m}^{(t)}$ for all $m \in [M]$. For simplicity of presentation, we assume that each \mathbf{v}_m^* is normalized in the remaining sections, i.e. $\|\mathbf{v}_m^*\|_2 = 1$ for all $m \in [M]$, without loss of generality (W.L.O.G.). However, our theoretical findings and proofs can be directly extended to the case where \mathbf{v}_m^* is not normalized. For each \mathbf{v}_m^* , let $\Gamma_m = [\mathbf{v}_m^*, \xi_{m,2}, \dots, \xi_{m,d}] \in \mathbb{R}^{d \times d}$ be an orthogonal matrix with \mathbf{v}_m^* being its first column. (Actually, if \mathbf{v}_m^* is not normalized, the first column of Γ_m will be $\frac{\mathbf{v}_m^*}{\|\mathbf{v}_m^*\|_2}$.)

Furthermore, we introduce several definitions regarding the expectations of Gaussian random variables. Let $x_1 \sim \mathcal{N}(0, a)$, $x_2 \sim \mathcal{N}(0, b)$, and $x_3 \sim \mathcal{N}(0, c)$ be three independent Gaussian random variables. In addition, $\sigma(\cdot)$ can be the identity map, the ReLU activation function, and the Leaky ReLU activation function, with κ denoting the coefficient of the Leaky ReLU activation function when the input is negative. Specifically, when $\sigma(\cdot)$ indicates the Leaky ReLU activation function, $\sigma(x) = x \mathbb{1}_{\{x \geq 0\}} + \kappa x \mathbb{1}_{\{x < 0\}}$. Then, based on these notations, we define that

$$F_1(a) = \mathbb{E}[x_1 \sigma(x_1) \sigma'(x_1)]; \quad (\text{D.2})$$

$$F_2(a, b) = \mathbb{E}[x_1 \sigma(x_1 + x_2) \sigma'(x_1 + x_2)]; \quad (\text{D.3})$$

$$F_3(a, b) = \mathbb{E}[(x_1 + x_2) \sigma(x_1) \sigma'(x_1 + x_2)]; \quad (\text{D.4})$$

$$F_4(a, b, c) = \mathbb{E}[x_1 \sigma(x_1 + x_2) \sigma'(x_1 + x_2 + x_3)]; \quad (\text{D.5})$$

$$F_5(a, b, c) = \mathbb{E}[x_2 \sigma(x_1) \sigma'(x_1 + x_2 + x_3)]. \quad (\text{D.6})$$

We provide the detailed calculations for these expectations in Section F.1

D.1 DETAILED GRADIENT DESCENT UPDATING RULES

In this subsection, we introduce and prove several lemmas regarding the calculation details regarding the gradient descent iterative rule (D.1) and (3.4).

Lemma D.1. The gradient descent updating regarding $\mathbf{w}_{V,m}^{(t)}$ for all $m \in [M]$ and $\mathbf{W}_{KQ}^{(t)}$, which have been defined in (D.1) and (3.4), can be rewritten as

$$\mathbf{w}_{V,m}^{(t+1)} = \mathbf{w}_{V,m}^{(t)} + \eta \sum_{i=1}^D \sum_{i_1=1}^D \mathbb{E} \left[\left[\mathbf{Y}_{m,i} - \sigma \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \right] \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \mathbf{x}_{i_1} \mathbf{S}_{i_1,i}^{(t)} \right]; \quad (\text{D.7})$$

$$\mathbf{W}_{KQ}^{(t+1)} = \mathbf{W}_{KQ}^{(t)} + \frac{\eta}{\sqrt{D}} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\left[\mathbf{Y}_{m,i} - \sigma \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \right] \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \right]$$

$$\cdot \sum_{i_1=1}^D \sum_{i_2=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \mathbf{S}_{i_2,i}^{(t)} (\mathbf{p}_{i_1} - \mathbf{p}_{i_2}) \mathbf{p}_i^\top \Big]. \quad (\text{D.8})$$

Proof of Lemma D.1. By the chain rule of derivatives, we have

$$\begin{aligned} \mathbf{w}_{V,m}^{(t+1)} &= \mathbf{w}_{V,m}^{(t)} - \eta \nabla_{\mathbf{w}_{V,m}} \mathcal{L}(\mathbf{W}_V^{(t)}; \mathbf{W}_{KQ}^{(t)}) = \mathbf{w}_{V,m}^{(t)} - \frac{\eta}{2} \nabla_{\mathbf{w}_{V,m}} \mathbb{E} [\|\mathbf{Y} - \text{TF}(\mathbf{Z}; \mathbf{W}_V; \mathbf{W}_{KQ})\|_F^2] \\ &= \mathbf{w}_{V,m}^{(t)} - \frac{\eta}{2} \sum_{m'=1}^M \sum_{i=1}^D \nabla_{\mathbf{w}_{V,m}} \mathbb{E} [(\mathbf{Y}_{m',i} - \sigma(\mathbf{W}_V^{(t)} \mathbf{X} \mathbf{S}^{(t)})_{m',i})^2] \\ &= \mathbf{w}_{V,m}^{(t)} - \frac{\eta}{2} \sum_{m'=1}^M \sum_{i=1}^D \nabla_{\mathbf{w}_{V,m}} \mathbb{E} \left[\left[\mathbf{Y}_{m',i} - \sigma \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \right]^2 \right] \\ &= \mathbf{w}_{V,m}^{(t)} + \eta \sum_{i=1}^D \sum_{i_1=1}^D \mathbb{E} \left[\left[\mathbf{Y}_{m,i} - \sigma \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \right] \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \mathbf{x}_{i_1} \mathbf{S}_{i_1,i}^{(t)} \right], \end{aligned}$$

where the last equality holds simply by the chain rule of differentiation. This proves (D.7). Next for \mathbf{W}_{KQ} , we have¹

$$\begin{aligned} \mathbf{W}_{KQ}^{(t+1)} &= \mathbf{W}_{KQ}^{(t)} - \eta \nabla_{\mathbf{W}_{KQ}} \mathcal{L}(\mathbf{W}_V^{(t)}; \mathbf{W}_{KQ}^{(t)}) = \mathbf{W}_{KQ}^{(t)} - \frac{\eta}{2} \nabla_{\mathbf{W}_{KQ}} \mathbb{E} [\|\mathbf{Y} - \text{TF}(\mathbf{Z}; \mathbf{W}_V; \mathbf{W}_{KQ})\|_F^2] \\ &= \mathbf{W}_{KQ}^{(t)} - \frac{\eta}{2} \sum_{m=1}^M \sum_{i=1}^D \nabla_{\mathbf{W}_{KQ}} \mathbb{E} [(\mathbf{Y}_{m,i} - \sigma(\mathbf{W}_V^{(t)} \mathbf{X} \mathbf{S}^{(t)})_{m,i})^2] \\ &= \mathbf{W}_{KQ}^{(t)} + \eta \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\left[\mathbf{Y}_{m,i} - \sigma \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \right] \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \right. \\ &\quad \left. \cdot \underbrace{\nabla_{\mathbf{W}_{KQ}} (\mathbf{w}_{V,m}^{(t)})^\top \mathbf{X} \mathcal{S} \left(\frac{\mathbf{P} \mathbf{W}_{KQ}^{(t)} \mathbf{p}_i}{\sqrt{D}} \right)}_I \right]. \quad (\text{D.9}) \end{aligned}$$

For the derivative calculation of I , we have

$$\begin{aligned} I &= \sum_{i_1=1}^D \nabla_{\mathbf{W}_{KQ}} [(\mathbf{w}_{V,m}^{(t)})^\top \mathbf{X}]_{i_1} \left[\mathcal{S} \left(\frac{\mathbf{P} \mathbf{W}_{KQ}^{(t)} \mathbf{p}_i}{\sqrt{D}} \right) \right]_{i_1} = \sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \nabla_{\mathbf{W}_{KQ}} \left[\mathcal{S} \left(\frac{\mathbf{P} \mathbf{W}_{KQ}^{(t)} \mathbf{p}_i}{\sqrt{D}} \right) \right]_{i_1} \\ &= \sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \sum_{i_2=1}^D \frac{d \left[\mathcal{S} \left(\frac{\mathbf{P} \mathbf{W}_{KQ}^{(t)} \mathbf{p}_i}{\sqrt{D}} \right) \right]_{i_1}}{d \left[\frac{\mathbf{P} \mathbf{W}_{KQ}^{(t)} \mathbf{p}_i}{\sqrt{D}} \right]_{i_2}} \nabla_{\mathbf{W}_{KQ}} \left[\frac{\mathbf{P} \mathbf{W}_{KQ}^{(t)} \mathbf{p}_i}{\sqrt{D}} \right]_{i_2} \\ &= \frac{1}{\sqrt{D}} \sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \sum_{i_2=1}^D \left[\mathcal{S}' \left(\frac{\mathbf{P} \mathbf{W}_{KQ}^{(t)} \mathbf{p}_i}{\sqrt{D}} \right) \right]_{i_1, i_2} \mathbf{p}_{i_2} \mathbf{p}_i^\top = \sum_{i_1=1}^D \sum_{i_2 \neq i_1} \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \mathbf{S}_{i_2,i}^{(t)} (\mathbf{p}_{i_1} - \mathbf{p}_{i_2}) \mathbf{p}_i^\top. \quad (\text{D.10}) \end{aligned}$$

The last equality holds as $\mathcal{S}'(\mathbf{a}) = \text{diag}(\mathbf{a}) - \mathcal{S}(\mathbf{a})\mathcal{S}(\mathbf{a})^\top \in \mathbb{R}^{d \times d}$ for any vector $\mathbf{a} \in \mathbb{R}^d$, and consequently,

$$\left[\mathcal{S}' \left(\frac{\mathbf{P} \mathbf{W}_{KQ}^{(t)} \mathbf{p}_i}{\sqrt{D}} \right) \right]_{i_1, i_2} = \begin{cases} \left[\mathcal{S} \left(\frac{\mathbf{P} \mathbf{W}_{KQ}^{(t)} \mathbf{p}_i}{\sqrt{D}} \right) \right]_{i_1} \left(1 - \left[\mathcal{S} \left(\frac{\mathbf{P} \mathbf{W}_{KQ}^{(t)} \mathbf{p}_i}{\sqrt{D}} \right) \right]_{i_1} \right) = \mathbf{S}_{i_1,i}^{(t)} (1 - \mathbf{S}_{i_1,i}^{(t)}), & \text{if } i_1 = i_2; \\ - \left[\mathcal{S} \left(\frac{\mathbf{P} \mathbf{W}_{KQ}^{(t)} \mathbf{p}_i}{\sqrt{D}} \right) \right]_{i_1} \left[\mathcal{S} \left(\frac{\mathbf{P} \mathbf{W}_{KQ}^{(t)} \mathbf{p}_i}{\sqrt{D}} \right) \right]_{i_2} = -\mathbf{S}_{i_1,i}^{(t)} \mathbf{S}_{i_2,i}^{(t)}, & \text{otherwise.} \end{cases}$$

By substituting the result of I from (D.10) into (D.9), we complete the proof of (D.8). \square

¹Here we slightly abuse the notation of $\mathcal{S}(\cdot)$. If the input is a D -dimensional vector, $\mathcal{S}(\cdot)$ denotes the softmax function from $\mathbb{R}^D \mapsto \mathbb{R}^D$. If the input is a $D_1 \times D_2$ -dimensional matrix, $\mathcal{S}(\cdot)$ represents the softmax operator which implements the softmax normalization defined above column-wisely.

The next lemma demonstrates that the training dynamics of $\mathbf{w}_{V,m}^{(t)}$ for all $m \in [M]$ and $\mathbf{W}_{KQ}^{(t)}$ exhibit specific patterns. Analyzing the training processes described in (D.1) and (D.21) can be reframed as an investigation into the coefficients of these patterns.

Lemma D.2. Under the same conditions of Theorem 3.1, there exist a time dependent non-negative scalar $C_1(t)$, and non-negative, monotonically increasing scalars $C_2(t)$ and $C_3(t)$, such that

$$\mathbf{w}_{V,m}^{(t)} = C_1(t) \cdot \mathbf{v}_m^*, \text{ for all } m \in [M];$$

$$\mathbf{W}_{KQ}^{(t)} = C_2(t) \sum_{i=1}^D \sum_{i_1 \in G^i} \mathbf{p}_{i_1} \mathbf{p}_i^\top - C_3(t) \sum_{i=1}^D \sum_{i_1 \notin G^i} \mathbf{p}_{i_1} \mathbf{p}_i^\top.$$

Due to the specific pattern of $\mathbf{W}_{KQ}^{(t)}$ demonstrated above, there exist a time dependent scalar

$$p(t) = \frac{1}{K + (D - K)e^{-\frac{C_2(t) + C_3(t)}{\sqrt{D}}}},$$

such that $\mathbf{S}_{i_1,i}^{(t)} = p(t)$ for all $i \in [D]$ and $i_1 \in G^i$. Otherwise, $\mathbf{S}_{i_1,i}^{(t)} = \frac{1 - Kp(t)}{D - K}$. Additionally, $\frac{1}{D} \leq p(t) \leq \frac{1}{K}$ and $p(t)$ is monotonically increasing. Based on the definition of $p(t)$, $C_1(t)$, $C_2(t)$, and $C_3(t)$ have the following iterative rules:

$$C_1(t+1) = C_1(t) + D\eta \left(\frac{F_3^{(t)}}{Kp(t)} - C_1(t)F_1^{(t)} \right) = C_1(t) + \frac{\eta D F_3^{(t)}}{Kp(t)} \left(1 - \frac{C_1(t)}{C_1^*(t)} \right);$$

$$C_2(t+1) = C_2(t) + \eta \frac{C_1(t)M}{\sqrt{D}} \left(\frac{1}{K} \left(\frac{F_4^{(t)}}{p(t)} - F_3^{(t)} \right) - C_1(t) \left(F_{2,1}^{(t)} + p(t)F_1^{(t)} \right) \right);$$

$$C_3(t+1) = C_3(t) - \eta \frac{C_1(t)M(1 - Kp(t))}{\sqrt{D}(D - K)} \left(\left(\frac{F_3^{(t)}}{Kp(t)} - \frac{(D - K)F_5^{(t)}}{Kp(t)(1 - Kp(t))} \right) - C_1(t) \left(F_1^{(t)} - \frac{(D - K)F_{2,2}^{(t)}}{1 - Kp(t)} \right) \right),$$

where $F_1^{(t)} = F_1 \left(Kp(t)^2 + \frac{(1 - Kp(t))^2}{D - K} \right)$, $F_{2,1}^{(t)} = F_2 \left(p(t)^2, (K - 1)p(t)^2 + \frac{(1 - Kp(t))^2}{D - K} \right)$,

$F_{2,2}^{(t)} = F_2 \left(\frac{(1 - Kp(t))^2}{(D - K)^2}, Kp(t)^2 + \frac{(D - K - 1)(1 - Kp(t))^2}{(D - K)^2} \right)$, $F_3^{(t)} = F_3 \left(Kp(t)^2, \frac{(1 - Kp(t))^2}{D - K} \right)$, $F_4^{(t)} =$

$F_4 \left(p(t)^2, (K - 1)p(t)^2, \frac{(1 - Kp(t))^2}{D - K} \right)$, $F_5^{(t)} = F_5 \left(Kp(t)^2, \frac{(1 - Kp(t))^2}{(D - K)^2}, \frac{(D - K - 1)(1 - Kp(t))^2}{(D - K)^2} \right)$, and

$C_1^*(t) = \frac{F_3^{(t)}}{Kp(t)F_1^{(t)}}$. In addition, based on all these definitions, the coefficients $C_1(t)$, $C_2(t)$, and

$C_3(t)$ are essentially minimizing the following loss function by gradient descent

$$\tilde{\mathcal{L}}(C_1, C_2, C_3) = \frac{c_\sigma D \|\mathbf{V}^*\|_F^2}{2(D - K)} \left[K(D - K) \left(\frac{1}{K} - C_1 p \right)^2 + C_1^2 (1 - Kp)^2 \right] - D \|\mathbf{V}^*\|_F^2 F_6(C_1, p).$$

where c_σ is an absolute constant such that $c_\sigma = \mathbb{1}_{\{\sigma(\cdot) \text{ is identity map}\}} + \frac{1}{2} \mathbb{1}_{\{\sigma(\cdot) \text{ is ReLU}\}} + \frac{1 + \kappa^2}{2} \mathbb{1}_{\{\sigma(\cdot) \text{ is Leaky ReLU}\}}$. In addition, $F_6(C_1, p)$ is defined as

$$F_6 = \begin{cases} 0; & \text{If } \sigma(\cdot) \text{ is identity map} \\ p C_1^2 \left(Kp \left(\frac{1}{\pi} \arctan \left(\frac{p\sqrt{K(D - K)}}{1 - Kp} \right) - \frac{1}{2} \right) + \frac{(1 - Kp)\sqrt{K}}{\pi\sqrt{D - K}} \right); & \text{If } \sigma(\cdot) \text{ is ReLU activation} \\ (1 - \kappa)^2 p C_1^2 \left(Kp \left(\frac{1}{\pi} \arctan \left(\frac{p\sqrt{K(D - K)}}{1 - Kp} \right) - \frac{1}{2} \right) + \frac{(1 - Kp)\sqrt{K}}{\pi\sqrt{D - K}} \right). & \text{If } \sigma(\cdot) \text{ is Leaky ReLU activation} \end{cases}$$

We establish these conclusions by induction. It can be easily verified that all these conclusions hold at $t = 0$, since the parameters are initialized as $\mathbf{W}_V^{(0)} = \mathbf{0}_{M \times d}$ and $\mathbf{W}_{KQ}^{(0)} = \mathbf{0}_{D \times D}$. However, for the sake of conciseness and coherence in the presentation, we rearrange the contents of Lemma D.2 into Lemma D.4 and Lemma D.8, including the relevant details regarding $\mathbf{W}_{V,m}$ and \mathbf{W}_{KQ} respectively. To prevent the proof of a single Lemma D.2 from becoming overly lengthy, we prove Lemmas D.4 and D.8 separately.

1026 As we use induction, we assume that the conclusions of both Lemma D.4 and Lemma D.8 hold at the
 1027 current iteration. We then demonstrate that the conclusion of either Lemma D.4 or Lemma D.8 holds
 1028 at the next iteration, depending on which lemma we are proving. It is important to clarify that this
 1029 is not circular reasoning; all these contents can indeed be organized into a single Lemma D.2. It is
 1030 reasonable to assume that all conclusions hold for each iteration and to verify that these conclusions
 1031 remain valid for the next iteration, as long as we rigorously demonstrate their validity at the outset.

1032 In the following, we introduce and prove Lemma D.4 and Lemma D.8 respectively. Besides, the
 1033 notations defined in Lemma D.2, containing $p(t)$, $F_1^{(t)}$, $F_{2,1}^{(t)}$, $F_{2,2}^{(t)}$, $F_3^{(t)}$, $F_4^{(t)}$, and $F_5^{(t)}$ will remain
 1034 consistent unless stated otherwise.
 1035

1036 We first introduce and prove a lemma regarding the ratio between $F_1^{(t)}$ and $F_3^{(t)}$, which will be
 1037 utilized in the proof of Lemma D.4.

1038 **Lemma D.3.** Under the same conditions of Theorem 3.1, for $F_1^{(t)}$ and $F_3^{(t)}$ defined in Lemma D.2,
 1039 it holds that

$$1040 \quad Kp(t) \leq \frac{F_3^{(t)}}{F_1^{(t)}} \leq \sqrt{DK}p(t).$$

$$1041$$

$$1042$$

1043 *Proof of Lemma D.3.* By Lemma F.1 and Lemma F.5, we can derive that
 1044

- 1045 • If $\sigma(\cdot)$ is the identity map, then

$$1046 \quad \frac{F_1^{(t)}}{F_3^{(t)}} = \frac{(D-K)Kp(t)^2}{DKp(t)^2 - 2Kp(t) + 1} = Kp(t) \frac{D-K}{DKp(t) + \frac{1}{p(t)} - 2K} \geq Kp(t);$$

$$1047$$

$$1048$$

$$1049 \quad \frac{F_1^{(t)}}{F_3^{(t)}} = \frac{(D-K)Kp(t)^2}{DKp(t)^2 - 2Kp(t) + 1} = Kp(t) \frac{D-K}{DKp(t) + \frac{1}{p(t)} - 2K} \leq \sqrt{DK}p(t).$$

$$1050$$

$$1051$$

1052 The last inequality is derived by $2\sqrt{DK} - 2K \leq DKp(t) + \frac{1}{p(t)} - 2K \leq D - K$ as $\frac{1}{D} \leq p(t) < \frac{1}{K}$.
 1053

- 1054 • If $\sigma(\cdot)$ is ReLU activation function, it is also straightforward that

$$1055 \quad \frac{F_1^{(t)}}{F_3^{(t)}} \geq \frac{2(D-K)\frac{Kp(t)^2}{2}}{DKp(t)^2 - 2Kp(t) + 1} = Kp(t) \frac{D-K}{DKp(t) + \frac{1}{p(t)} - 2K} \geq Kp(t).$$

$$1056$$

$$1057$$

1058 On the other hand, by Lemma F.5, it can be derived that

$$1059 \quad \frac{F_1^{(t)}}{F_3^{(t)}} \leq \frac{2(D-K)\left(\frac{Kp(t)^2}{2} + \frac{1}{2\pi}\sqrt{\frac{K}{D-K}}p(t)(1-Kp(t))\right)}{DKp(t)^2 - 2Kp(t) + 1}$$

$$1060$$

$$1061$$

$$1062 \quad = Kp(t) \left(\frac{D-K}{DKp(t) + \frac{1}{p(t)} - 2K} + \sqrt{\frac{D-K}{K}} \frac{1-Kp(t)}{\pi(DKp(t)^2 - 2Kp(t) + 1)} \right)$$

$$1063$$

$$1064$$

$$1065 \quad \leq Kp(t) \left(\frac{1}{2}\sqrt{\frac{D}{K}} + \frac{1}{\pi}\sqrt{\frac{D-K}{K}} + \frac{1}{2} \right) \leq \sqrt{DK}p(t),$$

$$1066$$

$$1067$$

1068 where the penultimate inequality holds since $DKp(t) + \frac{1}{p(t)} - 2K \geq 2\sqrt{DK} - 2K$, and
 1069 $\frac{1-Kp(t)}{DKp(t)^2 - 2Kp(t) + 1}$ is a decreasing function w.r.t. $p(t)$ as the numerator is decreasing w.r.t.
 1070 $p(t)$ while denominator is increasing w.r.t. $p(t)$. Therefore, it takes the maximum value when
 1071 $p(t) = \frac{1}{D}$, and consequently $\frac{1-Kp(t)}{DKp(t)^2 - 2Kp(t) + 1} \leq \sqrt{\frac{D-K}{K}}$.
 1072

1073 • If $\sigma(\cdot)$ is Leaky ReLU activation function, by utilizing a similar calculation, it holds that

$$1074 \quad \frac{F_1^{(t)}}{F_3^{(t)}} \geq \frac{2(D-K)\frac{(1+\kappa)^2Kp(t)^2}{2}}{(1+\kappa)^2(DKp(t)^2 - 2Kp(t) + 1)} = Kp(t) \frac{(D-K)p(t)}{DKp(t)^2 - 2Kp(t) + 1} \geq Kp(t);$$

$$1075$$

$$1076$$

$$1077 \quad \frac{F_1^{(t)}}{F_3^{(t)}} \leq \frac{2(D-K)\left(\frac{(1+\kappa)^2Kp(t)^2}{2} + \frac{(1-\kappa)^2}{2\pi}\sqrt{\frac{K}{D-K}}p(t)(1-Kp(t))\right)}{(1+\kappa)^2(DKp(t)^2 - 2Kp(t) + 1)} \leq \sqrt{DK}p(t).$$

$$1078$$

$$1079$$

This completes the proof.

Lemma D.4 (Restatement of Lemma D.2, the first part). Under the same conditions of Theorem 3.1, there exist time dependent non-negative scalars $C_1(t)$, such that

$$\mathbf{w}_{V,m}^{(t)} = C_1(t) \cdot \mathbf{v}_m^*, \text{ for all } m \in [M], \quad (\text{D.11})$$

where $C_1(t)$ has the following iterative rule:

$$C_1(t+1) = C_1(t) + D\eta \left(\frac{F_3^{(t)}}{Kp(t)} - C_1(t)F_1^{(t)} \right) = C_1(t) + \frac{\eta D F_3^{(t)}}{Kp(t)} \left(1 - \frac{C_1(t)}{C_1^*(t)} \right), \quad (\text{D.12})$$

where $C_1^*(t) = \frac{F_3^{(t)}}{K p(t) F_1^{(t)}}$.

Proof of Lemma D.4. First at the initialization $t = 0$, we have $\mathbf{W}_V^{(0)} = \mathbf{0}_{M \times d}$, satisfying (D.11). Next, we assume that at t -th iteration, the conclusion of (D.11) still holds, and we will prove that it continues to hold at the $t + 1$ -th iteration. Actually, it suffices to show that

$$\nabla_{\mathbf{w}_{V,m}} \mathcal{L}(\mathbf{W}_V^{(t)}; \mathbf{W}_{KQ}^{(t)}) = c_1(t) \cdot \mathbf{v}_m^*, \text{ for all } m \in [M], \quad (\text{D.13})$$

where $c_1(t)$ is a time-dependent scalar. By Lemma D.1, we have

$$\begin{aligned}
\nabla_{\mathbf{W}_{V,m}} \mathcal{L}(\mathbf{W}_V^{(t)}; \mathbf{W}_{KQ}^{(t)}) &= - \sum_{i=1}^D \sum_{i_1=1}^D \mathbb{E} \left[\left[\mathbf{Y}_{m,i} - \sigma \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \right] \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \mathbf{x}_{i_1} \mathbf{S}_{i_1,i}^{(t)} \right] \\
&= - \underbrace{\sum_{i=1}^D \sum_{i_1=1}^D \mathbb{E} \left[\mathbf{Y}_{m,i} \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \mathbf{x}_{i_1} \mathbf{S}_{i_1,i}^{(t)} \right]}_{I_1} \\
&\quad + \underbrace{\sum_{i=1}^D \sum_{i_1=1}^D \mathbb{E} \left[\sigma \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \mathbf{x}_{i_1} \mathbf{S}_{i_1,i}^{(t)} \right]}_{I_2}
\end{aligned} \tag{D.14}$$

For J_1 , we have

$$\begin{aligned}
I_1 &= \sum_{i=1}^D \sum_{i_1=1}^D \mathbb{E} \left[\mathbf{Y}_{m,i} \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \boldsymbol{\Gamma}_m \boldsymbol{\Gamma}_m^\top \mathbf{x}_{i_1} \mathbf{S}_{i_1,i}^{(t)} \right] \\
&= \sum_{i=1}^D \sum_{i_1=1}^D \mathbb{E} \left[[f^*(\mathbf{X})]_{m,i} \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right] \cdot \mathbf{v}_m^* \\
&\quad + \sum_{i=1}^D \sum_{i_1=1}^D \sum_{k=2}^d \mathbb{E} \left[[f^*(\mathbf{X})]_{m,i} \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \langle \boldsymbol{\xi}_{m,k}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right] \cdot \boldsymbol{\xi}_{m,k} \\
&= \sum_{i=1}^D \sum_{i_1=1}^D \mathbb{E} \left[[f^*(\mathbf{X})]_{m,i} \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right] \cdot \mathbf{v}_m^*.
\end{aligned}$$

The first quality holds as \mathcal{E} is mean-zero and independent with \mathbf{X} , and the last equality holds as the orthogonality between \mathbf{v}_m^* and $\xi_{m,k}$ implies that $\langle \mathbf{v}_m^*, \mathbf{x}_{i_2} \rangle$ is independent with $\langle \xi_{m,k}, \mathbf{x}_{i_1} \rangle$ for all $i_1, i_2 \in [D]$. Notice that $[f^*(\mathbf{X})]_{m,i} = \frac{1}{K} \sigma(\sum_{i' \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i'} \rangle)$ and $\sigma'(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)}) = \sigma'(C_1(t) \sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)}) = \sigma'(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)})$. Consequently, $\langle \xi_{m,k}, \mathbf{x}_{i_1} \rangle$ is a mean-zero Gaussian random variable, and independent with both $[f^*(\mathbf{X})]_{m,i}$ and $\sigma'(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)})$ simultaneously, implying that

$$\mathbb{E} \left[\left[f^*(\mathbf{X}) \right]_{m,i} \sigma' \left(\sum_{i=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i,1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \langle \boldsymbol{\xi}_{m,k}, \mathbf{x}_{i,1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right]$$

$$= \mathbb{E} \left[\left[f^*(\mathbf{X}) \right]_{m,i} \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \mathbf{S}_{i_1,i}^{(t)} \right] \mathbb{E}[\langle \boldsymbol{\xi}_{m,k}, \mathbf{x}_{i_1} \rangle] = 0.$$

Based on previous results, by plugging $\left[f^*(\mathbf{X}) \right]_{m,i} = \frac{1}{K} \sigma(\sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle)$ and utilizing the definition of $F_3(a, b)$ in (D.4), we can further derive that

$$\begin{aligned} I_1 &= \frac{1}{K} \sum_{i=1}^D \mathbb{E} \left[\sigma \left(\sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right) \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \right] \cdot \mathbf{v}_m^* \\ &= \frac{1}{p(t)K} \sum_{i=1}^D \mathbb{E} \left[\sigma \left(\sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle p(t) \right) \sigma' \left(\sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle p(t) + \sum_{i_1 \notin G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \frac{1 - Kp(t)}{D - K} \right) \right. \\ &\quad \left. \cdot \left(\sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle p(t) + \sum_{i_1 \notin G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \frac{1 - Kp(t)}{D - K} \right) \right] \cdot \mathbf{v}_m^* \\ &= \frac{D}{Kp(t)} F_3 \left(Kp(t)^2, \frac{(1 - Kp(t))^2}{D - K} \right) \cdot \mathbf{v}_m^* = \frac{DF_3^{(t)}}{Kp(t)} \mathbf{v}_m^*. \end{aligned}$$

The second equality is derived by fact that $\sigma(ax) = a\sigma(x)$ and $\sigma'(ax) = \sigma'(x)$ if $a \geq 0$, and the definition of $p(t)$. The penultimate equality holds as $\sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle p(t) \sim \mathcal{N}(0, Kp(t)^2)$, $\sum_{i_1 \notin G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \frac{1 - Kp(t)}{D - K} \sim \mathcal{N}(0, \frac{(1 - Kp(t))^2}{D - K})$, and they are independent. Then we can conclude the final result by the definition of $F_3(a, b)$ in (D.4). Similar to the process of handling I_1 , we have the following for I_2 :

$$\begin{aligned} I_2 &= \sum_{i=1}^D \sum_{i_1=1}^D \mathbb{E} \left[\sigma \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \boldsymbol{\Gamma}_m \boldsymbol{\Gamma}_m^\top \mathbf{x}_{i_1} \mathbf{S}_{i_1,i}^{(t)} \right] \\ &= C_1(t) \sum_{i=1}^D \mathbb{E} \left[\sigma \left(\sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle p(t) + \sum_{i_1 \notin G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \frac{1 - Kp(t)}{D - K} \right) \right. \\ &\quad \left. \cdot \sigma' \left(\sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle p(t) + \sum_{i_1 \notin G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \frac{1 - Kp(t)}{D - K} \right) \right. \\ &\quad \left. \cdot \left(\sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle p(t) + \sum_{i_1 \notin G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \frac{1 - Kp(t)}{D - K} \right) \right] \cdot \mathbf{v}_m^* \\ &= DC_1(t) F_1 \left(Kp(t)^2 + \frac{(1 - Kp(t))^2}{D - K} \right) \cdot \mathbf{v}_m^* = DC_1(t) F_1^{(t)} \cdot \mathbf{v}_m^*. \end{aligned}$$

where the last equality holds by Lemma F.1. Plugging the calculation results for I_1 and I_2 into (D.14), we can immediately derive (D.13), which, as we stated previously, directly conclude (D.11). In addition, we can further calculate that

$$\mathbf{w}_{V,m}^{(t+1)} = C_1(t+1) \cdot \mathbf{v}_m^* = \left(C_1(t) + D\eta \left(\frac{F_3^{(t)}}{Kp(t)} - C_1(t)F_1^{(t)} \right) \right) \cdot \mathbf{v}_m^*,$$

which finishes the proof of (D.12). Next, we prove that $C_1(t)$ is always non-negative by induction. Obviously $C_1(t) \geq 0$, and we prove that $C_1(t+1) \geq 0$ by assuming that $C_1(t) \geq 0$. Firstly, we define that

$$C_1^*(t) = \frac{F_3^{(t)}}{Kp(t)F_1^{(t)}}.$$

Then based on the definition of $C_1^*(t)$, the iterative rule for $C_1(t)$ can be re-written as

$$C_1(t+1) = C_1(t) + \frac{\eta DF_3^{(t)}}{Kp(t)} \left(1 - \frac{C_1(t)}{C_1^*(t)} \right).$$

From the iterative rule above, it is clear that if $C_1(t) \leq C_1^*(t)$, then $C_1(t+1) \geq C_1(t)$, and $C_1(t+1) < C_1(t)$ if $C_1(t) > C_1^*(t)$. Notice that Lemma D.3 immediately implies that $1 \leq C_1^*(t) \leq \sqrt{\frac{D}{K}}$. We can conclude that once $C_1(t)$ surpasses $\sqrt{\frac{D}{K}}$, then it starts to decrease until it becomes lower than $\sqrt{\frac{D}{K}}$. Therefore, we have

$$\begin{aligned} C_1(t) &\leq \sqrt{\frac{D}{K}} + D\eta \frac{F_3^{(t)}}{Kp(t)} \leq \sqrt{\frac{D}{K}} + D\eta \frac{Kp(t)^2 + \sqrt{\frac{K}{D-K}}p(t)(1-Kp(t))}{Kp(t)} \\ &= \sqrt{\frac{D}{K}} + \eta D \left(p(t) + \sqrt{\frac{1}{K(D-K)}(1-Kp(t))} \right) \leq \sqrt{\frac{D}{K}} + \frac{2\eta D}{K} \leq \sqrt{\frac{D+1}{K}}, \end{aligned}$$

where the second inequality holds as $F_3^{(t)} \leq Kp(t)^2 + \sqrt{\frac{K}{D-K}}p(t)(1-Kp(t))$ demonstrated in Lemma F.5, and the last inequality holds by the condition of η that $\eta \leq \mathcal{O}(D^{-5/2})$ in Theorem 3.1. Now we prove that $C_1(t+1) \geq 0$ holds for both cases: $C_1(t) \leq C_1^*(t)$ and $C_1(t) > C_1^*(t)$. If $C_1(t) \leq C_1^*(t)$, then it is straightforward that $C_1(t+1) \geq C_1(t) \geq 0$. If $C_1(t) > C_1^*(t)$, then we have

$$\begin{aligned} C_1(t+1) &\geq C_1(t) - \eta DC_1(t)F_1(t) \\ &\geq C_1(t) - \frac{D\eta C_1(t)(DKp(t)^2 - 2Kp(t) + 1)}{D-K} \\ &\geq 1 - D\eta \sqrt{\frac{D+1}{K}} \frac{(DKp(t)^2 - 2Kp(t) + 1)}{D-K} \\ &\geq 1 - \eta \sqrt{\frac{D+1}{K}} \frac{D}{K} \geq \frac{1}{2}. \end{aligned}$$

Here, the second inequality holds as $F_1^{(t)} \leq \frac{DKp(t)^2 - 2Kp(t) + 1}{D-K}$ implied by Lemma F.1. The second inequality holds by $C_1(t) \leq \sqrt{\frac{D+1}{K}}$, and $C_1(t) \geq C_1^*(t) \geq 1$. The third inequality holds as $DKp(t)^2 - 2Kp(t) + 1 \leq \frac{D-K}{K}$ when $\frac{1}{D} \leq p(t) \leq \frac{1}{K}$. The last inequality holds by the condition of η that $\eta \leq \mathcal{O}(D^{-5/2})$ in Theorem 3.1. This finishes the proof that $C_1(t)$ is always non-negative. \square

In the proof above, we introduce the definition of a proxy $C_1^*(t) = \frac{F_3^{(t)}}{Kp(t)F_1^{(t)}}$, and utilize this proxy to provide an upper bound for $C_1(t)$. In fact, $C_1^*(t)$ can be regarded as a “stationary point” of the iterative rule for $C_1(t)$ in (D.12). Inspired by the proof techniques proposed in Wang et al. (2024), we introduce the following lemma, which offers a more refined upper bound for $C_1(t)$. We demonstrate this lemma prior to Lemma D.8, as its conclusion will be utilized in the proof of Lemma D.8.

Lemma D.5. Suppose all conditions of Theorem 3.1 hold, and $C_1(t)$, $C_1^*(t)$ are as defined in Lemma D.4. In addition, define that

$$A(t) = \begin{cases} Kp(t)^2 & \text{if } \sigma(\cdot) \text{ is identity map;} \\ \frac{Kp(t)^2}{4} + \frac{Kp(t)^2}{2\pi} \arctan \left(\frac{\sqrt{K(D-K)}p(t)}{1-Kp(t)} \right) & \text{if } \sigma(\cdot) \text{ is ReLU activation function;} \\ \frac{(1+\kappa)^2 Kp(t)^2}{4} + \frac{(1-\kappa)^2 Kp(t)^2}{2\pi} \arctan \left(\frac{\sqrt{K(D-K)}p(t)}{1-Kp(t)} \right) & \text{if } \sigma(\cdot) \text{ is Leaky ReLU activation function,} \end{cases} \quad (\text{D.15})$$

and

$$B(t) = \begin{cases} 0 & \text{if } \sigma(\cdot) \text{ is identity map;} \\ \frac{1}{2\pi} \sqrt{\frac{K}{D-K}}p(t)(1-Kp(t)) & \text{if } \sigma(\cdot) \text{ is ReLU activation function;} \\ \frac{(1-\kappa)^2}{2\pi} \sqrt{\frac{K}{D-K}}p(t)(1-Kp(t)) & \text{if } \sigma(\cdot) \text{ is Leaky ReLU activation function.} \end{cases} \quad (\text{D.16})$$

Then it always holds that

$$C_1(t) \leq \left(1 + \frac{4A(t)}{5(A(t) + B(t))} \frac{1 - Kp(t)}{Kp(t)(Dp(t) - 1)} \right) C_1^*(t), \quad (\text{D.17})$$

1242 Specifically, when $p(t) \leq \frac{1}{2\sqrt{\pi DK}}$, this upper bound can be tighter as $C_1(t) \leq C_1^*(t)$.
 1243

1244 **Remark D.6.** In fact, by checking the definition of $F_3^{(t)}$ in Lemma D.2 and its calculated value in
 1245 Lemma F.5, we can conclude that $F_3^{(t)} = A(t) + B(t)$.
 1246

1247 In addition, we also have the following lemma, which provides further calculation results when the
 1248 conclusion of Lemma D.5 holds. This result will be utilized in the proof of Lemma D.8.

1249 **Lemma D.7.** Suppose $C_1(t), C_1^*(t)$ as defined in Lemma D.4, and satisfying that
 1250

$$1251 \quad C_1(t) = \left(1 + \alpha \frac{A(t)}{A(t) + B(t)} \frac{1 - Kp(t)}{Kp(t)(Dp(t) - 1)}\right) C_1^*(t)$$

1253 for some scalar $\alpha < 1$, then it holds that
 1254

$$1255 \quad \frac{F_4^{(t)}}{p(t)} - F_3^{(t)} - KC_1(t) \left(F_{2,1}^{(t)} + p(t)F_1^{(t)} \right) = \frac{(1 - Kp(t))^2}{Kp(t)(DKp(t)^2 - 2Kp(t) + 1)} (1 - \alpha)A(t);$$

$$1257 \quad \frac{F_3^{(t)}}{Kp(t)} - \frac{(D - K)F_5^{(t)}}{Kp(t)(1 - Kp(t))} - C_1(t) \left(F_1^{(t)} - \frac{(D - K)F_{2,2}^{(t)}}{1 - Kp(t)} \right) = \frac{1 - Kp(t)}{Kp(t)(DKp(t)^2 - 2Kp(t) + 1)} (1 - \alpha)A(t).$$

1260
 1261 *Proof of Lemma D.7.* We prove this lemma when $\sigma(\cdot)$ is the identity map, ReLU activation func-
 1262 tion, and Leaky ReLU activation function, respectively. When $\sigma(\cdot)$ is the identity map, utilizing
 1263 Lemma F.1, Lemma F.2, Lemma F.5, Lemma F.6, and Lemma F.7, we can obtain that

$$1264 \quad F_1^{(t)} = Kp(t)^2 + \frac{(1 - Kp(t))^2}{D - K}; \quad F_{2,1}^{(t)} = p(t)^2; \quad F_{2,2}^{(t)} = \frac{(1 - Kp(t))^2}{(D - K)^2};$$

$$1267 \quad F_3^{(t)} = Kp(t)^2; \quad F_4^{(t)} = p(t)^2; \quad F_5^{(t)} = 0. \quad (\text{D.18})$$

1268 Then combined with the definition of $A(t), B(t)$ in Lemma D.5, we can derive that
 1269

$$1270 \quad \frac{F_4^{(t)}}{p(t)} - F_3^{(t)} - KC_1(t) \left(F_{2,1}^{(t)} + p(t)F_1^{(t)} \right)$$

$$1273 \quad = \frac{F_4^{(t)}}{p(t)} - F_3^{(t)} - \left(1 + \alpha \frac{1 - Kp(t)}{Kp(t)(Dp(t) - 1)}\right) KC_1^*(t) \left(F_{2,1}^{(t)} + p(t)F_1^{(t)} \right)$$

$$1275 \quad = \frac{1 - Kp(t)}{Kp(t)} A(t) - \left(1 + \frac{\alpha A(t)}{A(t) + B(t)} \frac{1 - Kp(t)}{Kp(t)(Dp(t) - 1)}\right) \frac{(1 - Kp(t))(Dp(t) - 1)}{DKp(t)^2 - 2Kp(t) + 1} A(t)$$

$$1278 \quad = \frac{(1 - Kp(t))^2}{Kp(t)(DKp(t)^2 - 2Kp(t) + 1)} (1 - \alpha)A(t).$$

1280 where the first inequality holds by applying $C_1(t) = \left(1 + \alpha \frac{A(t)}{A(t) + B(t)} \frac{1 - Kp(t)}{Kp(t)(Dp(t) - 1)}\right) C_1^*(t)$ and
 1281 $B(t) = 0$, the second inequality holds by applying the definition of $C_1^*(t)$ and the calculation results
 1282 illustrated in (D.18). Similarly, we can also derive that
 1283

$$1284 \quad \frac{F_3^{(t)}}{Kp(t)} - \frac{(D - K)F_5^{(t)}}{Kp(t)(1 - Kp(t))} - C_1(t) \left(F_1^{(t)} - \frac{(D - K)F_{2,2}^{(t)}}{1 - Kp(t)} \right)$$

$$1287 \quad = \frac{A(t)}{Kp(t)} - \left(1 + \alpha \frac{1 - Kp(t)}{Kp(t)(Dp(t) - 1)}\right) \frac{Dp(t) - 1}{DKp(t)^2 - 2Kp(t) + 1} A(t)$$

$$1290 \quad = \frac{1 - Kp(t)}{Kp(t)(DKp(t)^2 - 2Kp(t) + 1)} (1 - \alpha)A(t).$$

1292 This finishes the proof when $\sigma(\cdot)$ is identity map. When $\sigma(\cdot)$ is the ReLU activation function,
 1293 utilizing Lemma F.1, Lemma F.2, Lemma F.5, Lemma F.6, and Lemma F.7, we can obtain that
 1294

$$1295 \quad F_1^{(t)} = \frac{Kp(t)^2}{2} + \frac{(1 - Kp(t))^2}{2(D - K)}; \quad F_{2,1}^{(t)} = \frac{p(t)^2}{2}; \quad F_{2,2}^{(t)} = \frac{(1 - Kp(t))^2}{2(D - K)^2};$$

$$\begin{aligned}
1296 \quad F_3^{(t)} &= \frac{Kp(t)^2}{4} + \frac{Kp(t)^2}{2\pi} \arctan \left(\frac{\sqrt{K(D-K)}p(t)}{1-Kp(t)} \right) + \frac{1}{2\pi} \sqrt{\frac{K}{D-K}} p(t)(1-Kp(t)) = A(t) + B(t); \\
1297 \quad F_4^{(t)} &= \frac{p(t)^2}{4} + \frac{p(t)^2}{2\pi} \arctan \left(\frac{\sqrt{K(D-K)}p(t)}{1-Kp(t)} \right) + \frac{\sqrt{K(D-K)}p(t)^3(1-Kp(t))}{2\pi(DKp(t)^2-2Kp(t)+1)} \\
1298 \quad &= A(t) + \frac{(D-K)p(t)^2}{DKp(t)^2-2Kp(t)+1} B(t); \\
1299 \quad F_5^{(t)} &= \frac{p(t)(1-Kp(t))^3}{2\pi(D-K)(DKp(t)^2-2Kp(t)+1)} \sqrt{\frac{K}{D-K}}. \\
1300 \quad & \\
1301 \quad & \\
1302 \quad & \\
1303 \quad & \\
1304 \quad & \\
1305 \quad & \\
1306 \quad & \\
1307 \quad \text{Then combined with the definition of } A(t), B(t) \text{ in Lemma D.5, we can derive that} \\
1308 \quad & \\
1309 \quad \frac{F_4^{(t)}}{p(t)} - F_3^{(t)} - KC_1(t) \left(F_{2,1}^{(t)} + p(t)F_1^{(t)} \right) \\
1310 \quad & \\
1311 \quad = \frac{F_4^{(t)}}{p(t)} - F_3^{(t)} - \left(1 + \frac{\alpha A(t)}{A(t)+B(t)} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)} \right) \frac{C_1^*(t)Kp(t)(1-Kp(t))(Dp(t)-1)}{2(D-K)} \\
1312 \quad & \\
1313 \quad = \frac{F_4^{(t)}}{p(t)} - F_3^{(t)} - \left(1 + \frac{\alpha A(t)}{A(t)+B(t)} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)} \right) \frac{F_3^{(t)}(1-Kp(t))(Dp(t)-1)}{DKp(t)^2-2Kp(t)+1} \\
1314 \quad & \\
1315 \quad = \frac{1-Kp(t)}{Kp(t)} A(t) - \left(1 + \frac{\alpha A(t)}{A(t)+B(t)} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)} \right) \frac{(1-Kp(t))(Dp(t)-1)}{DKp(t)^2-2Kp(t)+1} A(t) \\
1316 \quad & \\
1317 \quad + \frac{(1-Kp(t))(Dp(t)-1)}{DKp(t)^2-2Kp(t)+1} B(t) - \left(1 + \frac{\alpha A(t)}{A(t)+B(t)} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)} \right) \frac{(1-Kp(t))(Dp(t)-1)}{DKp(t)^2-2Kp(t)+1} B(t) \\
1318 \quad & \\
1319 \quad & \\
1320 \quad & \\
1321 \quad & \\
1322 \quad = \frac{(1-Kp(t))^2}{Kp(t)(DKp(t)^2-2Kp(t)+1)} \left(\left(1 - \frac{\alpha A(t)}{A(t)+B(t)} \right) A(t) - \frac{\alpha A(t)B(t)}{A(t)+B(t)} \right) \\
1323 \quad & \\
1324 \quad = \frac{(1-Kp(t))^2}{Kp(t)(DKp(t)^2-2Kp(t)+1)} (1-\alpha) A(t). \\
1325 \quad & \\
1326 \quad & \\
1327 \quad \text{Similarly, we also have} \\
1328 \quad & \\
1329 \quad \frac{F_3^{(t)}}{Kp(t)} - \frac{(D-K)F_5^{(t)}}{Kp(t)(1-Kp(t))} - C_1(t) \left(F_1^{(t)} - \frac{(D-K)F_{2,2}^{(t)}}{1-Kp(t)} \right) \\
1330 \quad & \\
1331 \quad = \frac{F_3^{(t)}}{Kp(t)} - \frac{1-Kp(t)}{Kp(t)(DKp(t)^2-2Kp(t)+1)} B(t) \\
1332 \quad & \\
1333 \quad = \left(\frac{1}{Kp(t)} - \left(1 + \frac{\alpha A(t)}{A(t)+B(t)} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)} \right) \frac{F_1^{(t)}(Dp(t)-1)}{DKp(t)^2-2Kp(t)+1} \right) A(t) \\
1334 \quad & \\
1335 \quad - \left(1 + \frac{\alpha A(t)}{A(t)+B(t)} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)} \right) \frac{F_1^{(t)}(Dp(t)-1)}{DKp(t)^2-2Kp(t)+1} \\
1336 \quad & \\
1337 \quad = \left(\frac{1}{Kp(t)} - \left(1 + \frac{\alpha A(t)}{A(t)+B(t)} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)} \right) \frac{Dp(t)-1}{DKp(t)^2-2Kp(t)+1} \right) A(t) \\
1338 \quad & \\
1339 \quad + \left[\frac{1}{Kp(t)} - \frac{1-Kp(t)}{Kp(t)(DKp(t)^2-2Kp(t)+1)} \right. \\
1340 \quad & \\
1341 \quad \left. - \left(1 + \frac{\alpha A(t)}{A(t)+B(t)} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)} \right) \frac{Dp(t)-1}{DKp(t)^2-2Kp(t)+1} \right] B(t) \\
1342 \quad & \\
1343 \quad & \\
1344 \quad & \\
1345 \quad & \\
1346 \quad = \frac{1-Kp(t)}{Kp(t)(DKp(t)^2-2Kp(t)+1)} \left(\left(1 - \frac{\alpha A(t)}{A(t)+B(t)} \right) A(t) - \frac{\alpha A(t)B(t)}{A(t)+B(t)} \right) \\
1347 \quad & \\
1348 \quad & \\
1349 \quad = \frac{1-Kp(t)}{Kp(t)(DKp(t)^2-2Kp(t)+1)} (1-\alpha) A(t).
\end{aligned} \tag{D.19}$$

1350 This completes the proof of the scenario that $\sigma(\cdot)$ is ReLU activation function. For the case that $\sigma(\cdot)$
 1351 is the Leaky ReLU activation function, utilizing Lemma F.1, Lemma F.2, Lemma F.5, Lemma F.6,
 1352 and Lemma F.7, we can obtain that
 1353

$$\begin{aligned}
 1354 \quad F_1^{(t)} &= \frac{(1+\kappa^2)Kp(t)^2}{2} + \frac{(1+\kappa^2)(1-Kp(t))^2}{2(D-K)}; \\
 1355 \quad F_{2,1}^{(t)} &= \frac{(1+\kappa^2)p(t)^2}{2}; \quad F_{2,2}^{(t)} = \frac{(1+\kappa^2)(1-Kp(t))^2}{2(D-K)^2}; \\
 1356 \quad F_3^{(t)} &= \frac{(1+\kappa)^2Kp(t)^2}{4} + \frac{(1-\kappa)^2Kp(t)^2}{2\pi} \arctan\left(\frac{\sqrt{K(D-K)}p(t)}{1-Kp(t)}\right) \\
 1357 \quad &\quad + \frac{(1-\kappa)^2}{2\pi} \sqrt{\frac{K}{D-K}} p(t)(1-Kp(t)) = A(t) + B(t); \\
 1358 \quad F_4^{(t)} &= \frac{(1+\kappa)^2p(t)^2}{4} + \frac{(1-\kappa)^2p(t)^2}{2\pi} \arctan\left(\frac{\sqrt{K(D-K)}p(t)}{1-Kp(t)}\right) \\
 1359 \quad &\quad + \frac{(1-\kappa)^2\sqrt{K(D-K)}p(t)^3(1-Kp(t))}{2\pi(DKp(t)^2-2Kp(t)+1)} = A(t) + \frac{(D-K)p(t)^2}{DKp(t)^2-2Kp(t)+1} B(t); \\
 1360 \quad F_5^{(t)} &= \frac{(1-\kappa)^2p(t)(1-Kp(t))^3}{2\pi(D-K)(DKp(t)^2-2Kp(t)+1)} \sqrt{\frac{K}{D-K}}. \tag{D.20}
 \end{aligned}$$

1372 Then the remaining proof is entirely identical to that of the ReLU activation function, when replacing
 1373 the values of these terms demonstrated in (D.20). \square
 1374

1375
 1376
 1377 Based on the conclusion of Lemma D.5 and Lemma D.7, we are now prepared to prove Lemma D.8.
 1378 We will address the proof of Lemma D.5 after completing the proof of Lemma D.8.

1379
 1380 **Lemma D.8.** Under the same conditions of Theorem 3.1, there exist time dependent non-negative,
 1381 monotonically increasing scalars $C_2(t)$ and $C_3(t)$, such that

$$1382 \quad \mathbf{W}_{KQ}^{(t)} = C_2(t) \sum_{i=1}^D \sum_{i_1 \in G^i} \mathbf{p}_{i_1} \mathbf{p}_i^\top - C_3(t) \sum_{i=1}^D \sum_{i_1 \notin G^i} \mathbf{p}_{i_1} \mathbf{p}_i^\top. \tag{D.21}$$

1386 Due to the specific pattern of $\mathbf{W}_{KQ}^{(t)}$ demonstrated in (D.21), there exist a time dependent scalar
 1387 $p(t)$, such that $\mathbf{S}_{i_1,i}^{(t)} = p(t)$ for all $i \in [D]$ and $i_1 \in G^i$. Otherwise, $\mathbf{S}_{i_1,i}^{(t)} = \frac{1-Kp(t)}{D-K}$. Additionally,
 1388 $\frac{1}{D} \leq p(t) \leq \frac{1}{K}$ and $p(t)$ is monotonically increasing. Based on the definition of $p(t)$, $C_2(t)$ and
 1389 $C_3(t)$ have the following iterative rules
 1390

$$1392 \quad C_2(t+1) = C_2(t) + \eta \frac{C_1(t)M}{\sqrt{D}} \left(\frac{1}{K} \left(\frac{F_4^{(t)}}{p(t)} - F_3^{(t)} \right) - C_1(t) \left(F_{2,1}^{(t)} + p(t)F_1^{(t)} \right) \right); \tag{D.22}$$

$$1395 \quad C_3(t+1) = C_3(t) - \eta \frac{C_1(t)M(1-Kp(t))}{\sqrt{D}(D-K)} \left(\left(\frac{F_3^{(t)}}{Kp(t)} - \frac{(D-K)F_5^{(t)}}{Kp(t)(1-Kp(t))} \right) - C_1(t) \left(F_1^{(t)} - \frac{(D-K)F_{2,2}^{(t)}}{1-Kp(t)} \right) \right). \tag{D.23}$$

1399
 1400 In addition, based on all these definitions, the coefficients $C_1(t)$, $C_2(t)$, and $C_3(t)$ are essentially
 1401 minimizing the following loss function by gradient descent

$$1402 \quad \tilde{\mathcal{L}}(C_1, C_2, C_3) = \frac{c_\sigma D \|\mathbf{V}^*\|_F^2}{2(D-K)} \left[K(D-K) \left(\frac{1}{K} - C_1 p \right)^2 + C_1^2 (1-Kp)^2 \right] - D \|\mathbf{V}^*\|_F^2 F_6(C_1, p).$$

1404 where c_σ is an absolute constant such that $c_\sigma = \mathbb{1}_{\{\sigma(\cdot) \text{ is identity map}\}} + \frac{1}{2}\mathbb{1}_{\{\sigma(\cdot) \text{ is ReLU}\}} +$
 1405 $\frac{1+\kappa^2}{2}\mathbb{1}_{\{\sigma(\cdot) \text{ is Leaky ReLU}\}}$. In addition, $F_6(C_1, p)$ is defined as
 1406

$$1407 \quad F_6 = \begin{cases} 0; & \text{If } \sigma(\cdot) \text{ is identity map} \\ 1408 \quad pC_1^2 \left(Kp \left(\frac{1}{\pi} \arctan \left(\frac{p\sqrt{K(D-K)}}{1-Kp} \right) - \frac{1}{2} \right) + \frac{(1-Kp)\sqrt{K}}{\pi\sqrt{D-K}} \right); & \text{If } \sigma(\cdot) \text{ is ReLU activation} \\ 1409 \quad (1-\kappa)^2 pC_1^2 \left(Kp \left(\frac{1}{\pi} \arctan \left(\frac{p\sqrt{K(D-K)}}{1-Kp} \right) - \frac{1}{2} \right) + \frac{(1-Kp)\sqrt{K}}{\pi\sqrt{D-K}} \right). & \text{If } \sigma(\cdot) \text{ is Leaky ReLU activation} \\ 1410 \\ 1411 \\ 1412 \\ 1413 \end{cases}$$

1414
 1415 *Proof of Lemma D.8.* Similarly, it can be easily verified that the initialization $\mathbf{W}_{KQ}^{(0)} = \mathbf{0}_{D \times D}$ satisfies
 1416 (D.21). Assuming it holds at the t -th iteration, we aim to prove that it continues to hold at the
 1417 $t + 1$ -th iteration. To do this, it suffices to show that
 1418

$$1419 \quad \nabla_{\mathbf{W}_{KQ}} \mathcal{L}(\mathbf{W}_V^{(t)}; \mathbf{W}_{KQ}^{(t)}) = -c_2(t) \sum_{i=1}^D \sum_{i_1 \in G^i} \mathbf{p}_{i_1} \mathbf{p}_i^\top + c_3(t) \sum_{i=1}^D \sum_{i_1 \notin G^i} \mathbf{p}_{i_1} \mathbf{p}_i^\top, \quad (\text{D.24})$$

1422 where $c_2(t)$ and $c_3(t)$ are two time-dependent non-positive scalars. By Lemma D.1, we have
 1423

$$1424 \quad \begin{aligned} & \sqrt{D} \nabla_{\mathbf{W}_{KQ}} \mathcal{L}(\mathbf{W}_V^{(t)}; \mathbf{W}_{KQ}^{(t)}) \\ 1425 &= - \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\left[[f^*(\mathbf{X})]_{m,i} - \sigma \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \right] \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \right. \\ 1426 & \quad \cdot \left. \sum_{i_1=1}^D \sum_{i_2=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \mathbf{S}_{i_2,i}^{(t)} (\mathbf{p}_{i_1} - \mathbf{p}_{i_2}) \mathbf{p}_i^\top \right] \\ 1427 &= - \underbrace{\sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\left[[f^*(\mathbf{X})]_{m,i} \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \sum_{i_1=1}^D \sum_{i_2=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \mathbf{S}_{i_2,i}^{(t)} \mathbf{p}_{i_1} \mathbf{p}_i^\top \right] \right.}_{I_3} \\ 1428 & \quad + \underbrace{\sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\left[[f^*(\mathbf{X})]_{m,i} \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \sum_{i_1=1}^D \sum_{i_2=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \mathbf{S}_{i_2,i}^{(t)} \mathbf{p}_{i_2} \mathbf{p}_i^\top \right] \right.}_{I_4} \\ 1429 & \quad + \underbrace{\sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\sigma \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \sum_{i_1=1}^D \sum_{i_2=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \mathbf{S}_{i_2,i}^{(t)} \mathbf{p}_{i_1} \mathbf{p}_i^\top \right] \right.}_{I_5} \\ 1430 & \quad - \underbrace{\sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\sigma \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \sum_{i_1=1}^D \sum_{i_2=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \mathbf{S}_{i_2,i}^{(t)} \mathbf{p}_{i_2} \mathbf{p}_i^\top \right] \right.}_{I_6}. \end{aligned} \quad (\text{D.25})$$

1450 In the next, we discuss the value of I_3 , I_4 , I_5 , and I_6 respectively. For I_3 , it can be calculated as
 1451

$$1452 \quad \begin{aligned} I_3 &= \frac{1}{K} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\sigma \left(\sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right) \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \sum_{i'=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i'} \rangle \mathbf{S}_{i',i}^{(t)} \mathbf{p}_{i'} \mathbf{p}_i^\top \sum_{i_2=1}^D \mathbf{S}_{i_2,i}^{(t)} \right] \\ 1453 &= \frac{C_1(t)}{Kp(t)} \sum_{m=1}^M \sum_{i=1}^D \sum_{i' \in G^i} \mathbb{E} \left[\sigma \left(\langle \mathbf{v}_m^*, \mathbf{x}_{i'} \rangle p(t) + \sum_{i_1 \in G^i, i_1 \neq i'} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle p(t) \right) \right] \end{aligned}$$

$$\begin{aligned}
& \cdot \sigma' \left(\langle \mathbf{v}_m^*, \mathbf{x}_{i'} \rangle p(t) + \sum_{i_1 \in G^i, i_1 \neq i'} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle p(t) + \sum_{i_1 \notin G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \frac{1 - Kp(t)}{D - K} \right) \langle \mathbf{v}_m^*, \mathbf{x}_{i'} \rangle p(t) \right] \mathbf{p}_{i'} \mathbf{p}_{i'}^\top \\
& + \frac{C_1(t)}{Kp(t)} \sum_{m=1}^M \sum_{i=1}^D \sum_{i' \notin G^i} \mathbb{E} \left[\sigma \left(\sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle p(t) \right) \right. \\
& \cdot \sigma' \left(\langle \mathbf{v}_m^*, \mathbf{x}_{i'} \rangle \frac{1 - Kp(t)}{D - K} + \sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle p(t) + \sum_{i_1 \notin G^i, i_1 \neq i'} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \frac{1 - Kp(t)}{D - K} \right) \langle \mathbf{v}_m^*, \mathbf{x}_{i'} \rangle p(t) \left. \right] \mathbf{p}_{i'} \mathbf{p}_{i'}^\top \\
& = \frac{C_1(t)M}{Kp(t)} F_4 \left(p(t)^2, (K-1)p(t)^2, \frac{(1-Kp(t))^2}{D-K} \right) \sum_{i=1}^D \sum_{i' \in G^i} \mathbf{p}_{i'} \mathbf{p}_{i'}^\top \\
& + \frac{C_1(t)M}{Kp(t)} F_5 \left(Kp(t)^2, \frac{(1-Kp(t))^2}{(D-K)^2}, \frac{(D-K-1)(1-Kp(t))^2}{(D-K)^2} \right) \sum_{i=1}^D \sum_{i' \notin G^i} \mathbf{p}_{i'} \mathbf{p}_{i'}^\top \\
& = \frac{C_1(t)MF_4^{(t)}}{Kp(t)} \sum_{i=1}^D \sum_{i' \in G^i} \mathbf{p}_{i'} \mathbf{p}_{i'}^\top + \frac{C_1(t)MF_5^{(t)}}{Kp(t)} \sum_{i=1}^D \sum_{i' \notin G^i} \mathbf{p}_{i'} \mathbf{p}_{i'}^\top
\end{aligned}$$

Notice that $\langle \mathbf{v}_m^*, \mathbf{x}_{i'} \rangle p(t) \sim \mathcal{N}(0, p(t)^2)$, $\sum_{i_1 \in G^i, i_1 \neq i'} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle p(t) \sim \mathcal{N}(0, (K-1)p(t)^2)$, and $\sum_{i_1 \notin G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \frac{1-Kp(t)}{D-K} \sim \mathcal{N}(0, \frac{(1-Kp(t))^2}{D-K})$ are three independent Gaussian random variables. Consequently, the first term in the penultimate equality is derived by the definition of $F_4(a, b, c)$ in (D.5). Similarly, $\sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle p(t) \sim \mathcal{N}(0, Kp(t)^2)$, $\langle \mathbf{v}_m^*, \mathbf{x}_{i'} \rangle \frac{1-Kp(t)}{D-K} \sim \mathcal{N}(0, \frac{(1-Kp(t))^2}{(D-K)^2})$, and $\sum_{i_1 \notin G^i, i_1 \neq i'} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \frac{1-Kp(t)}{D-K} \sim \mathcal{N}(0, \frac{(D-K-1)(1-Kp(t))^2}{(D-K)^2})$ are three independent Gaussian random variables. Therefore, the second term in the penultimate equality is derived by the definition of $F_5(a, b, c)$ in (D.6). Similarly, for I_4 , we can calculate it as

$$\begin{aligned}
I_4 &= \frac{1}{K} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\sigma \left(\sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right) \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \right] \sum_{i_2=1}^D \mathbf{S}_{i_2,i}^{(t)} \mathbf{p}_{i_2} \mathbf{p}_{i_2}^\top \\
&= \frac{C_1(t)}{Kp(t)} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\sigma \left(\sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle p(t) \right) \sigma' \left(\sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle p(t) + \sum_{i_1 \notin G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \frac{1 - Kp(t)}{D - K} \right) \right. \\
&\quad \cdot \left. \left(\sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle p(t) + \sum_{i_1 \notin G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \frac{1 - Kp(t)}{D - K} \right) \right] \sum_{i_2=1}^D \mathbf{S}_{i_2,i}^{(t)} \mathbf{p}_{i_2} \mathbf{p}_{i_2}^\top \\
&= \frac{C_1(t)M}{K} F_3 \left(Kp(t)^2, \frac{(1 - Kp(t))^2}{D - K} \right) \sum_{i=1}^D \sum_{i_2 \in G^i} \mathbf{p}_{i_2} \mathbf{p}_{i_2}^\top \\
&\quad + \frac{C_1(t)M(1 - Kp(t))}{(D - K)Kp(t)} F_3 \left(Kp(t)^2, \frac{(1 - Kp(t))^2}{D - K} \right) \sum_{i=1}^D \sum_{i_2 \notin G^i} \mathbf{p}_{i_2} \mathbf{p}_{i_2}^\top \\
&= \frac{C_1(t)MF_3^{(t)}}{K} \sum_{i=1}^D \sum_{i_2 \in G^i} \mathbf{p}_{i_2} \mathbf{p}_{i_2}^\top + \frac{C_1(t)M(1 - Kp(t))F_3^{(t)}}{(D - K)Kp(t)} \sum_{i=1}^D \sum_{i_2 \notin G^i} \mathbf{p}_{i_2} \mathbf{p}_{i_2}^\top
\end{aligned}$$

The penultimate equality holds by the definition of $F_3(a, b)$ in (D.4), as $\sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle p(t) \sim \mathcal{N}(0, Kp(t)^2)$, and $\sum_{i_1 \notin G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \frac{1 - Kp(t)}{D - K} \sim \mathcal{N}(0, \frac{(1 - Kp(t))^2}{D - K})$ are two independent Gaussian random variables. Additionally, I_5 can be calculated as

$$\begin{aligned}
I_5 &= C_1(t)^2 \sum_{m=1}^M \sum_{i=1}^D \sum_{i'=1}^D \mathbb{E} \left[\sigma \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \langle \mathbf{v}_m^*, \mathbf{x}_{i'} \rangle \mathbf{S}_{i',i}^{(t)} \right] \mathbf{p}_{i'} \mathbf{p}_{i'}^\top \sum_{i_2=1}^D \mathbf{S}_{i_2,i}^{(t)} \\
&= C_1(t)^2 \sum_{m=1}^M \sum_{i=1}^D \sum_{i' \in G^i} \mathbb{E} \left[\sigma \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \langle \mathbf{v}_m^*, \mathbf{x}_{i'} \rangle p(t) \right] \mathbf{p}_{i'} \mathbf{p}_{i'}^\top
\end{aligned}$$

$$\begin{aligned}
& + C_1(t)^2 \sum_{m=1}^M \sum_{i=1}^D \sum_{i' \in G^i} \mathbb{E} \left[\sigma \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1, i}^{(t)} \right) \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1, i}^{(t)} \right) \langle \mathbf{v}_m^*, \mathbf{x}_{i'} \rangle \frac{1 - Kp(t)}{D - K} \right] \mathbf{p}_{i'} \mathbf{p}_i^\top \\
& = MC_1(t)^2 F_2 \left(p(t)^2, (K-1)p(t)^2 + \frac{(1-Kp(t))^2}{D-K} \right) \sum_{i=1}^D \sum_{i' \in G^i} \mathbf{p}_{i'} \mathbf{p}_i^\top \\
& + MC_1(t)^2 F_2 \left(\frac{(1-Kp(t))^2}{(D-K)^2}, Kp(t)^2 + \frac{(D-K-1)(1-Kp(t))^2}{(D-K)^2} \right) \sum_{i=1}^D \sum_{i' \notin G^i} \mathbf{p}_{i'} \mathbf{p}_i^\top \\
& = MC_1(t)^2 F_{2,1}^{(t)} \sum_{i=1}^D \sum_{i' \in G^i} \mathbf{p}_{i'} \mathbf{p}_i^\top + MC_1(t)^2 F_{2,2}^{(t)} \sum_{i=1}^D \sum_{i' \notin G^i} \mathbf{p}_{i'} \mathbf{p}_i^\top,
\end{aligned}$$

where the penultimate equality utilize the definition of $F_2(a, b)$ in (D.3). Similarly, for I_6 , we have

$$\begin{aligned}
I_6 & = C_1(t)^2 \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\sigma \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1, i}^{(t)} \right) \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1, i}^{(t)} \right) \left(\sum_{i_2=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_2} \rangle \mathbf{S}_{i_2, i}^{(t)} \right) \right] \sum_{i_2=1}^D \mathbf{S}_{i_2, i}^{(t)} \mathbf{p}_{i_2} \mathbf{p}_i^\top \\
& = MC_1(t)^2 p(t) F_1^{(t)} \sum_{i=1}^D \sum_{i_2 \in G^i} \mathbf{p}_{i_2} \mathbf{p}_i^\top + MC_1(t)^2 F_1^{(t)} \frac{1 - Kp(t)}{D - K} \sum_{i=1}^D \sum_{i_2 \notin G^i} \mathbf{p}_{i_2} \mathbf{p}_i^\top.
\end{aligned}$$

Combining all these results of I_3, I_4, I_5 , and I_6 , and plugging them into (D.25), we obtain that

$$\begin{aligned}
& \nabla_{\mathbf{W}_{KQ}} \mathcal{L}(\mathbf{W}_V^{(t)}; \mathbf{W}_{KQ}^{(t)}) \\
& = - \frac{C_1(t)M}{\sqrt{D}} \left(\frac{1}{K} \left(\frac{F_4^{(t)}}{p(t)} - F_3^{(t)} \right) - C_1(t) \left(F_{2,1}^{(t)} + p(t) F_1^{(t)} \right) \right) \sum_{i=1}^D \sum_{i' \in G^i} \mathbf{p}_{i'} \mathbf{p}_i^\top \\
& + \frac{C_1(t)M(1-Kp(t))}{(D-K)\sqrt{D}} \left(\left(\frac{F_3^{(t)}}{Kp(t)} - \frac{(D-K)F_5^{(t)}}{Kp(t)(1-Kp(t))} \right) - C_1(t) \left(F_1^{(t)} - \frac{(D-K)F_{2,2}^{(t)}}{1-Kp(t)} \right) \right) \sum_{i=1}^D \sum_{i' \notin G^i} \mathbf{p}_{i'} \mathbf{p}_i^\top \\
& = -c_2(t) \sum_{i=1}^D \sum_{i' \in G^i} \mathbf{p}_{i'} \mathbf{p}_i^\top + c_3(t) \sum_{i=1}^D \sum_{i' \notin G^i} \mathbf{p}_{i'} \mathbf{p}_i^\top.
\end{aligned}$$

It remains to show that $c_2(t)$ and $c_3(t)$ are always non-negative. Notice that Lemma D.5 guarantee the assumption of Lemma D.7. By carefully compare the formulas and applying Lemma D.7, we can obtain that

$$\frac{K\sqrt{D}c_2(t)}{MC_1(t)} \geq \frac{(1-Kp(t))^2}{5Kp(t)(DKp(t)^2-2Kp(t)+1)} A(t) \geq 0.$$

Since we have proved that $C_1(t)$ is always non-negative in Lemma D.4, this result implies that $c_2(t) \geq 0$. Similarly, for $c_3(t)$, we have

$$\frac{\sqrt{D}(D-K)c_3(t)}{MC_1(t)(1-Kp(t))} \geq \frac{1 - Kp(t)}{5Kp(t)(DKp(t)^2-2Kp(t)+1)} A(t) \geq 0.$$

This proves that $c_3(t) \geq 0$, and we conclude that

$$\begin{aligned}
C_2(t+1) & = C_2(t) + \eta \frac{C_1(t)M}{\sqrt{D}} \left(\frac{1}{K} \left(\frac{F_4^{(t)}}{p(t)} - F_3^{(t)} \right) - C_1(t) \left(F_{2,1}^{(t)} + p(t) F_1^{(t)} \right) \right); \\
C_3(t+1) & = C_3(t) - \eta \frac{C_1(t)M(1-Kp(t))}{\sqrt{D}(D-K)} \left(\left(\frac{F_3^{(t)}}{Kp(t)} - \frac{(D-K)F_5^{(t)}}{Kp(t)(1-Kp(t))} \right) - C_1(t) \left(F_1^{(t)} - \frac{(D-K)F_{2,2}^{(t)}}{1-Kp(t)} \right) \right),
\end{aligned}$$

which completes the proof of (D.21), (D.22) and (D.23). It remains to prove the conclusions regarding $\mathbf{S}_{i_1, i}^{(t)}$ and $p(t)$. By the orthogonality among the positional encodings \mathbf{p}_i 's, it is straightforward

1566 that for all $i, i_1 \in [D]$,

$$1568 \quad \mathbf{p}_{i_1}^\top \mathbf{W}_{KQ}^{(t)} \mathbf{p}_i = \begin{cases} C_2(t) & \text{if } i_1 \in G^i; \\ -C_3(t) & \text{if } i_1 \notin G^i. \end{cases}$$

1570 Then by the definition of $\mathbf{S}^{(t)}$, when $i_1 \in G^i$

$$\begin{aligned} 1572 \quad \mathbf{S}_{i_1, i}^{(t)} &= \frac{\exp\left(\frac{\mathbf{p}_{i_1}^\top \mathbf{W}_{KQ}^{(t)} \mathbf{p}_i}{\sqrt{D}}\right)}{\sum_{i_2=1}^D \exp\left(\frac{\mathbf{p}_{i_2}^\top \mathbf{W}_{KQ}^{(t)} \mathbf{p}_i}{\sqrt{D}}\right)} = \frac{\exp\left(\frac{C_2(t)}{\sqrt{D}}\right)}{K \exp\left(\frac{C_2(t)}{\sqrt{D}}\right) + (D-K) \exp\left(-\frac{C_3(t)}{\sqrt{D}}\right)} \\ 1576 \quad &= \frac{1}{K + (D-K) \exp\left(-\frac{C_2(t)+C_3(t)}{\sqrt{D}}\right)} = p(t). \end{aligned}$$

1578 Since $C_2(t)$ and $C_3(t)$ are non-negative and monotonically increasing scalars, we immediately conclude that $\frac{1}{D} \leq p(t) \leq \frac{1}{K}$, and $p(t)$ is also monotonically increasing. Lastly, it remains to formulate 1579 excess loss into an expression of excess loss. By the parameter forms in Lemma D.2, we have 1580

$$\begin{aligned} 1581 \quad \tilde{\mathcal{L}}(C_1, C_2, C_3) &= \mathcal{L}(\mathbf{W}_V, \mathbf{W}_{KQ}) - \mathcal{L}_{\text{opt}} \\ 1582 \quad &= \mathbb{E} \left[\sum_{m=1}^M \sum_{i=1}^D \left(\sigma\left(\frac{\sum_{i' \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i'} \rangle}{K}\right) - \sigma\left(C_1 p \sum_{i' \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i'} \rangle + \frac{C_1(1-Kp)}{D-K} \sum_{i' \notin G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i'} \rangle\right) \right)^2 \right] \\ 1583 \quad &= \sum_{m=1}^M \sum_{i=1}^D \underbrace{\mathbb{E}\left[\sigma\left(\frac{\sum_{i' \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i'} \rangle}{K}\right)^2\right]}_{I_7} + \sum_{m=1}^M \sum_{i=1}^D \underbrace{\mathbb{E}\left[\sigma\left(C_1 p \sum_{i' \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i'} \rangle + \frac{C_1(1-Kp)}{D-K} \sum_{i' \notin G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i'} \rangle\right)^2\right]}_{I_8} \\ 1589 \quad &\quad - 2 \sum_{m=1}^M \sum_{i=1}^D \underbrace{\mathbb{E}\left[\sigma\left(\frac{\sum_{i' \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i'} \rangle}{K}\right) \sigma\left(C_1 p \sum_{i' \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i'} \rangle + \frac{C_1(1-Kp)}{D-K} \sum_{i' \notin G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i'} \rangle\right)\right]}_{I_9}. \end{aligned}$$

1594 For the term I_7 and I_8 , by the fact that $\mathbb{E}[\sigma(x)^2] = c_\sigma a$ when $x \sim \mathcal{N}(0, a)$, we can directly calculate 1595 that

$$\begin{aligned} 1597 \quad I_7 &= \frac{c_\sigma \|\mathbf{v}_m^*\|_2^2}{K}; \\ 1598 \quad I_8 &= c_\sigma K p^2 C_1^2 \|\mathbf{v}_m^*\|_2^2 + \frac{c_\sigma C_1^2 (1-Kp)^2 \|\mathbf{v}_m^*\|_2^2}{D-K}. \end{aligned}$$

1601 In addition, by utilizing the conclusions in Lemma F.8, we can conclude that

$$1602 \quad I_9 = c_\sigma C_1 p \|\mathbf{v}_m^*\|_2^2 - \frac{D \|\mathbf{v}_m^*\|_2^2 F_6(C_1, p)}{2}.$$

1604 Plugging all these results, we completes the proof that

$$1606 \quad \tilde{\mathcal{L}}(C_1, C_2, C_3) = \frac{c_\sigma D \|\mathbf{V}^*\|_F^2}{2(D-K)} \left[K(D-K) \left(\frac{1}{K} - C_1 p \right)^2 + C_1^2 (1-Kp)^2 \right] - D \|\mathbf{V}^*\|_F^2 F_6(C_1, p)$$

1609 Now, we successfully prove all the conclusions of Lemma D.8. \square

1610 Lastly, before we prove Lemma D.5, we first introduce and prove the following Lemma D.9, 1611 Lemma D.10, Lemma D.11, and Lemma D.12, which will be utilized for proof of Lemma D.5.

1613 **Lemma D.9.** Under the same conditions as Theorem 3.1 and $p(t)$ as defined in Lemma D.2, it holds 1614 that

$$1615 \quad \frac{p(t)(1-Kp(t))}{2\sqrt{D}} (\Delta C_2(t) + \Delta C_3(t)) \leq \Delta p(t) \leq \frac{D^2 p(t)(1-Kp(t))}{\sqrt{D}(D^2-1)} (\Delta C_2(t) + \Delta C_3(t));$$

$$1618 \quad \Delta C_2(t) + \Delta C_3(t) \leq \eta \frac{MD}{K^2(D-K)} \sqrt{\frac{D+1}{K}} \leq \frac{1}{D^2},$$

1619 where $\Delta p(t) = p(t+1) - p(t)$, $\Delta C_2(t) = C_2(t+1) - C_2(t)$, and $\Delta C_3(t) = C_3(t+1) - C_3(t)$.

1620 *Proof of Lemma D.9.* By the definition of $p(t)$ in Lemma D.2, it can be derived that
1621

$$\begin{aligned}
1622 \quad \Delta p(t) &= p(t+1) - p(t) = \frac{1}{K + (D-K) \exp\left(-\frac{C_2(t+1)+C_3(t+1)}{\sqrt{D}}\right)} - \frac{1}{K + (D-K) \exp\left(-\frac{C_2(t)+C_3(t)}{\sqrt{D}}\right)} \\
1623 \quad &\leq \frac{1}{K + (D-K) \exp\left(-\frac{C_2(t)+C_3(t)}{\sqrt{D}}\right) \left(1 - \frac{\Delta C_2(t) + \Delta C_3(t)}{\sqrt{D}}\right)} - \frac{1}{K + (D-K) \exp\left(-\frac{C_2(t)+C_3(t)}{\sqrt{D}}\right)} \\
1624 \quad &= \frac{(\Delta C_2(t) + \Delta C_3(t))(D-K) \exp\left(-\frac{C_2(t)+C_3(t)}{\sqrt{D}}\right)}{\sqrt{D} \left[K + (D-K) \exp\left(-\frac{C_2(t)+C_3(t)}{\sqrt{D}}\right) \left(1 - \frac{\Delta C_2(t) + \Delta C_3(t)}{\sqrt{D}}\right) \right] \left[K + (D-K) \exp\left(-\frac{C_2(t)+C_3(t)}{\sqrt{D}}\right) \right]} \\
1625 \quad &\leq \frac{\Delta C_2(t) + \Delta C_3(t)}{\sqrt{D} - \Delta C_2(t) - \Delta C_3(t)} \frac{(D-K) \exp\left(-\frac{C_2(t)+C_3(t)}{\sqrt{D}}\right)}{\left[K + (D-K) \exp\left(-\frac{C_2(t)+C_3(t)}{\sqrt{D}}\right) \right]^2} \\
1626 \quad &= \frac{\Delta C_2(t) + \Delta C_3(t)}{\sqrt{D} - \Delta C_2(t) - \Delta C_3(t)} p(t) (1 - Kp(t))
\end{aligned}$$

1627 Additionally, applying the update rules for $C_2(t)$ and $C_3(t)$ derived in Lemma D.8, along with a
1628 similar calculation to the one used in the proof of Lemma D.7, we obtain that
1629

$$\begin{aligned}
1630 \quad \Delta C_2(t) &\leq \eta \frac{MC_1(t)}{K\sqrt{D}} \left(\frac{F_4^{(t)}}{p(t)} - F_3^{(t)} \right) \\
1631 \quad &= \eta \frac{MC_1(t)}{K\sqrt{D}} \left(\left(\frac{1}{Kp(t)} - 1 \right) A(t) + \left(\frac{(D-K)p(t)}{DKp(t)^2 - 2Kp(t) + 1} - 1 \right) B(t) \right) \\
1632 \quad &= \eta \frac{MC_1(t)}{K\sqrt{D}} \left(\frac{1 - Kp(t)}{Kp(t)} A(t) + \frac{(1 - Kp(t))(Dp(t) - 1)}{Kp(t)(Dp(t) - 1) + 1 - Kp(t)} B(t) \right) \\
1633 \quad &\leq \eta \frac{MC_1(t)}{K\sqrt{D}} \frac{1 - Kp(t)}{Kp(t)} F_3^{(t)} \leq \eta \frac{MC_1(t)}{K\sqrt{D}} \frac{1 - Kp(t)}{Kp(t)} \left(Kp(t)^2 + \frac{1}{2\pi} \sqrt{\frac{K}{D-K}} p(t) (1 - Kp(t)) \right) \\
1634 \quad &\leq \eta \frac{M}{K^2} \sqrt{\frac{D+1}{DK}}.
\end{aligned}$$

1635 Here, the penultimate inequality holds as $C_1(t) \leq \sqrt{\frac{D+1}{K}}$ and $\frac{1}{D} \leq p(t) \leq \frac{1}{K}$. Similarly, we can
1636 also derive that
1637

$$\Delta C_3(t) \leq \eta \frac{MC_1(t)(1 - Kp(t))}{\sqrt{D}(D-K)} \frac{F_3^{(t)}}{Kp(t)} \leq \eta \frac{M}{K(D-K)} \sqrt{\frac{D+1}{DK}}.$$

1638 Combining these results, we have
1639

$$\Delta C_2(t) + \Delta C_3(t) \leq \eta \frac{MD}{K^2(D-K)} \sqrt{\frac{D+1}{K}} \leq \frac{1}{D^2},$$

1640 where the last inequality holds by the condition that $\eta \leq \mathcal{O}(M^{-1}D^{-5/2})$ in Theorem 3.1. Replacing
1641 these results, we finally prove that
1642

$$\Delta p(t) \leq \frac{D^2 p(t)(1 - Kp(t))}{\sqrt{D}(D^2 - 1)} (\Delta C_2(t) + \Delta C_3(t)).$$

1643 On the other hand, since $\Delta C_2(t) + \Delta C_3(t)$ is sufficiently small, we can also have
1644

$$\begin{aligned}
1645 \quad \Delta p(t) &\geq \frac{1}{K + (D-K) \exp\left(-\frac{C_2(t)+C_3(t)}{\sqrt{D}}\right) \left(1 - \frac{\Delta C_2(t) + \Delta C_3(t)}{2\sqrt{D}}\right)} \\
1646 \quad &\quad - \frac{1}{K + (D-K) \exp\left(-\frac{C_2(t)+C_3(t)}{\sqrt{D}}\right)}
\end{aligned}$$

$$\begin{aligned}
&\geq \frac{\Delta C_2(t) + \Delta C_3(t)}{2\sqrt{D}} \frac{(D-K) \exp\left(-\frac{C_2(t)+C_3(t)}{\sqrt{D}}\right)}{\left[K + (D-K) \exp\left(-\frac{C_2(t)+C_3(t)}{\sqrt{D}}\right)\right]^2} \\
&= \frac{p(t)(1-Kp(t))}{2\sqrt{D}} (\Delta C_2(t) + \Delta C_3(t)).
\end{aligned}$$

This completes the proof. \square

Lemma D.10. For $C_1^*(t)$ defined in Lemma D.2, it holds that $C_1^*(t)$ is monotonically increasing w.r.t t when $p(t) \leq \frac{1}{2\sqrt{\pi D K}}$.

Proof of Lemma D.10. As Lemma D.8 demonstrates that $p(t)$ is always monotonically increasing. Consequently, it suffices to show that $C_1^*(t)$ is monotonically increasing w.r.t. $p(t)$ when $p(t) \leq \frac{1}{2\sqrt{\pi D K}}$. In the following, we discuss the three scenarios where $\sigma(\cdot)$ is the identity map, ReLU activation function, and Leaky ReLU activation function, respectively. When $\sigma(\cdot)$ is the identity map,

$$C_1^*(t) = \frac{(D-K)p(t)}{DKp(t)^2 - 2Kp(t) + 1} = \frac{D-K}{DKp(t) + \frac{1}{p(t)} - 2K}.$$

It is straightforward that $C_1^*(t)$ is monotonically increasing when $p(t) \leq \frac{1}{\sqrt{DK}}$, as the denominator is decreasing. When $\sigma(\cdot)$ is the ReLU activation function, we have

$$C_1^*(t) = \frac{\pi(D-K)p(t) + 2(D-K)p(t) \arctan\left(\sqrt{K(D-K)} \frac{p(t)}{1-Kp(t)}\right) + 2(D-K) \frac{1-Kp(t)}{\sqrt{K(D-K)}}}{2\pi(DKp(t)^2 - 2Kp(t) + 1)}.$$

By applying basic calculus, we can derive that

$$\begin{aligned}
\frac{dC_1^*(t)}{dp(t)} &\geq \frac{2\pi(\pi-1)(D-K)(DKp(t)^2 - 2Kp(t) + 1)}{4\pi^2(DKp(t)^2 - 2Kp(t) + 1)^2} \\
&\quad - \frac{2(D-K)\left(\pi p(t) + \frac{1}{\sqrt{K(D-K)}}\right)4\pi K(Dp(t) - 1)}{4\pi^2(DKp(t)^2 - 2Kp(t) + 1)^2} \\
&\geq \frac{3\pi(D-K)(1-4\pi DKp(t)^2)}{4\pi^2(DKp(t)^2 - 2Kp(t) + 1)^2} + \frac{3\pi(D-K)(1-2\sqrt{\pi D K}p(t))}{4\pi^2(DKp(t)^2 - 2Kp(t) + 1)^2},
\end{aligned}$$

which is positive when $p(t) \leq \frac{1}{2\sqrt{\pi D K}}$. Therefore, we can conclude that when $p(t) \leq \frac{1}{2\sqrt{\pi D K}}$, $C_1^*(t)$ is monotonically increasing w.r.t. $p(t)$. Similarly, when $\sigma(\cdot)$ is the Leaky ReLU activation function, we also have,

$$\begin{aligned}
C_1^*(t) &= \frac{(1+\kappa)^2\pi(D-K)p(t) + 2(1-\kappa)^2(D-K)p(t) \arctan\left(\sqrt{K(D-K)} \frac{p(t)}{1-Kp(t)}\right)}{2(1+\kappa^2)\pi(DKp(t)^2 - 2Kp(t) + 1)} \\
&\quad + \frac{(1-\kappa)^2(D-K)(1-Kp(t))}{\sqrt{K(D-K)}(1+\kappa^2)\pi(DKp(t)^2 - 2Kp(t) + 1)},
\end{aligned}$$

and

$$\begin{aligned}
\frac{dC_1^*(t)}{dp(t)} &\geq \frac{2\pi(\pi-1)(D-K)(DKp(t)^2 - 2Kp(t) + 1)}{4\pi^2(DKp(t)^2 - 2Kp(t) + 1)^2} \\
&= \frac{2(D-K)\left(\pi p(t) + \frac{1}{\sqrt{K(D-K)}}\right)K(Dp(t) - 1)}{\pi(DKp(t)^2 - 2Kp(t) + 1)^2} \\
&\geq \frac{3\pi(D-K)(1-4\pi DKp(t)^2)}{4\pi^2(DKp(t)^2 - 2Kp(t) + 1)^2} + \frac{3\pi(D-K)(1-2\sqrt{\pi D K}p(t))}{4\pi^2(DKp(t)^2 - 2Kp(t) + 1)^2},
\end{aligned}$$

which proves that $C_1^*(t)$ is monotonically increasing w.r.t. $p(t)$ when $p(t) \leq \frac{1}{2\sqrt{\pi D K}}$. \square

1728 **Lemma D.11.** For $C_1^*(t)$ defined in Lemma D.2, it holds that
 1729

$$1730 \quad 1731 \quad 1732 \quad C_1^*(t+1) \geq C_1^*(t) - \frac{3DKp(t)\Delta p(t)}{DKp(t)^2 - 2Kp(t) + 1} C_1^*(t), \quad (D.26)$$

1733 *Proof of Lemma D.11.* We prove (D.26) for $\sigma(\cdot)$ is identity map, ReLU activation function, and
 1734 Leaky ReLU activation function, respectively. When $\sigma(\cdot)$ is identity map,
 1735

$$1736 \quad C_1^*(t+1) = \frac{(D-K)p(t+1)}{DKp(t+1)^2 - 2Kp(t+1) + 1} \geq \frac{(D-K)p(t)}{DKp(t)^2 - 2Kp(t) + 1 + DK\Delta p(t)(2p(t) + \Delta p(t))} \\ 1737 \\ 1738 \quad \geq C_1^*(t) - \frac{DK\Delta p(t)(2p(t) + \Delta p(t))}{DKp(t)^2 - 2Kp(t) + 1} C_1^*(t) \geq C_1^*(t) - \frac{3DKp(t)\Delta p(t)}{DKp(t)^2 - 2Kp(t) + 1} C_1^*(t),$$

1740 where the second inequality holds by Lemma F.9, and the last inequality holds by $\Delta p(t) \leq p(t)$
 1741 implied by Lemma D.9. When $\sigma(\cdot)$ is ReLU activation function,
 1742

$$1743 \quad C_1^*(t+1) = \frac{\pi(D-K)p(t+1) + 2(D-K)p(t+1) \arctan(\sqrt{K(D-K)} \frac{p(t+1)}{1-Kp(t+1)})}{2\pi(DKp(t+1)^2 - 2Kp(t+1) + 1)} \\ 1744 \\ 1745 \quad + \frac{(D-K)(1-Kp(t+1))}{\sqrt{K(D-K)}\pi(DKp(t+1)^2 - 2Kp(t+1) + 1)} \\ 1746 \\ 1747 \quad \geq \frac{\pi(D-K)p(t) + 2(D-K)p(t) \arctan(\sqrt{K(D-K)} \frac{p(t)}{1-Kp(t)}) + 2(D-K) \frac{1-Kp(t)}{\sqrt{K(D-K)}}}{2\pi(DKp(t)^2 - 2Kp(t) + 1) + 2\pi DK\Delta p(t)(2p(t) + \Delta p(t))} \\ 1748 \\ 1749 \quad \geq C_1^*(t) - \frac{3DKp(t)\Delta p(t)}{DKp(t)^2 - 2Kp(t) + 1} C_1^*(t),$$

1753 where the first inequality holds as the numerator is a monotonically increasing function w.r.t. $p(t)$.
 1754 Furthermore, the second inequality holds by Lemma F.9, and $\Delta p(t) \leq p(t)$ implied by Lemma D.9.
 1755 Similarly, when $\sigma(\cdot)$ is the Leaky ReLU activation function,
 1756

$$1757 \quad C_1^*(t+1) = \frac{\frac{(1+\kappa)^2\pi(D-K)}{(1-\kappa)^2}p(t+1) + 2(D-K)p(t+1) \arctan(\sqrt{K(D-K)} \frac{p(t+1)}{1-Kp(t+1)}) + 2(D-K) \frac{1-Kp(t+1)}{\sqrt{K(D-K)}}}{2\pi\frac{(1+\kappa^2)}{(1-\kappa)^2}(DKp(t+1)^2 - 2Kp(t+1) + 1)} \\ 1758 \\ 1759 \quad \geq \frac{\frac{(1+\kappa)^2\pi(D-K)}{(1-\kappa)^2}p(t) + 2(D-K)p(t) \arctan(\sqrt{K(D-K)} \frac{p(t)}{1-Kp(t)}) + 2(D-K) \frac{1-Kp(t)}{\sqrt{K(D-K)}}}{2\pi\frac{(1+\kappa^2)}{(1-\kappa)^2}(DKp(t)^2 - 2Kp(t) + 1) + \frac{2\pi(1+\kappa^2)}{(1-\kappa)^2}DK\Delta p(t)(2p(t) + \Delta p(t))} \\ 1760 \\ 1761 \quad \geq C_1^*(t) - \frac{3DKp(t)\Delta p(t)}{DKp(t)^2 - 2Kp(t) + 1} C_1^*(t).$$

1766 This completes the proof □
 1767

1768 **Lemma D.12.** For $A(t), B(t)$ defined in Lemma D.5, it holds that
 1769

$$1770 \quad 1771 \quad 1772 \quad 1773 \quad 1774 \quad \frac{A(t+1)}{A(t+1) + B(t+1)} \frac{1 - Kp(t+1)}{Kp(t+1)(Dp(t+1) - 1)} \\ 1775 \quad \geq \frac{A(t)}{A(t) + B(t)} \frac{1 - Kp(t)}{Kp(t)(Dp(t) - 1)} - \frac{A(t)}{A(t) + B(t)} \frac{2DKp(t)\Delta p(t)}{K^2p(t)^2(Dp(t) - 1)^2}. \quad (D.27)$$

1775 *Proof of Lemma D.12.* Notice that $\frac{B(t)}{A(t)}$ is a non-increasing function w.r.t. $p(t)$. Therefore, we can
 1776 derive that
 1777

$$1778 \quad 1779 \quad 1780 \quad 1781 \quad \frac{A(t+1)}{A(t+1) + B(t+1)} \frac{1 - Kp(t+1)}{Kp(t+1)(Dp(t+1) - 1)} \\ 1782 \quad = \frac{A(t+1)}{A(t+1) + B(t+1)} \left(\frac{1}{Kp(t+1)(Dp(t+1) - 1)} - \frac{1}{Dp(t+1) - 1} \right)$$

$$\begin{aligned}
&\geq \frac{A(t)}{A(t) + B(t)} \left(\frac{1}{Kp(t)(Dp(t) - 1) + \Delta p(t)(2DKp(t) + DK\Delta p(t) - K)} - \frac{1}{Dp(t) - 1} \right) \\
&\geq \frac{A(t)}{A(t) + B(t)} \frac{1 - Kp(t)}{Kp(t)(Dp(t) - 1)} - \frac{A(t)}{A(t) + B(t)} \frac{\Delta p(t)(2DKp(t) + DK\Delta p(t) - K)}{K^2 p(t)^2 (Dp(t) - 1)^2} \\
&\geq \frac{A(t)}{A(t) + B(t)} \frac{1 - Kp(t)}{Kp(t)(Dp(t) - 1)} - \frac{A(t)}{A(t) + B(t)} \frac{2DKp(t)\Delta p(t)}{K^2 p(t)^2 (Dp(t) - 1)^2},
\end{aligned}$$

where the last inequality holds $\delta p(t) \leq \frac{1}{D}$ implied by Lemma D.9. This completes the proof. \square

Now, we are ready to prove Lemma D.5.

Proof of Lemma D.5. As Lemma D.10 guarantees that $C_1^*(t)$ is monotonically increasing when $p(t) \leq \frac{1}{2\sqrt{\pi DK}}$. Consequently, when $p(t) \leq \frac{1}{2\sqrt{\pi DK}}$,

$$\begin{aligned}
C_1^*(t+1) - C_1(t+1) &\geq C_1^*(t) - C_1(t+1) = \left(1 - \frac{\eta D F_3^{(t)}}{Kp(t)C_1^*(t)}\right)(C_1^*(t) - C_1(t)) \\
&\geq \left(1 - \frac{\eta D}{K}\right)(C_1^*(t) - C_1(t)) \geq \left(1 - \frac{\eta D}{K}\right)^{t+1} (C_1^*(0) - C_1(0)) \geq 0.
\end{aligned}$$

The second inequality holds by $\frac{F_3^{(t)}}{Kp(t)} \leq \frac{1}{K}$, and $C_1^*(t) \geq 1$. The last inequality holds by the assumption of η in Theorem 3.1, and $C_1(0) = 0$. In the next, we prove that (D.17) holds when $p(t) \geq \frac{1}{2\sqrt{\pi DK}}$ by induction. We assume (D.17) holds at t -th iteration and examine the $t+1$ -th iteration. Inspired by the separating strategy in Wang et al. (2024), we consider the following two cases: (i). when $C_1(t) \leq (1 + \frac{2A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)})C_1^*(t)$ and (ii). when $(1 + \frac{2A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)})C_1^*(t) \leq C_1(t) \leq (1 + \frac{4A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)})C_1^*(t)$. For the first case, it suffices to show that

$$\begin{aligned}
&\left(1 + \frac{4A(t+1)}{5(A(t+1)+B(t+1))} \frac{1 - Kp(t+1)}{Kp(t+1)(Dp(t+1)-1)}\right)C_1^*(t+1) \\
&\geq \left(1 + \frac{2A(t)}{5(A(t)+B(t))} \frac{1 - Kp(t)}{Kp(t)(Dp(t)-1)}\right)C_1^*(t).
\end{aligned} \tag{D.28}$$

This is because if $C_1(t) \leq C_1^*(t)$, we have

$$C_1^*(t) - C_1(t+1) = \left(1 - \frac{\eta D F_3^{(t)}}{Kp(t)C_1^*(t)}\right)(C_1^*(t) - C_1(t)) \geq 0,$$

which implies that

$$C_1(t+1) \leq C_1^*(t) \leq \left(1 + \frac{4A(t+1)}{5(A(t+1)+B(t+1))} \frac{1 - Kp(t+1)}{Kp(t+1)(Dp(t+1)-1)}\right)C_1^*(t+1).$$

The last inequality is guaranteed by (D.28). On the other hand, if $C_1^*(t) < C_1(t) \leq (1 + \frac{2A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)})C_1^*(t)$, then we can also obtain that

$$\begin{aligned}
C_1(t+1) \leq C_1(t) &\leq \left(1 + \frac{2A(t)}{5(A(t)+B(t))} \frac{1 - Kp(t)}{Kp(t)(Dp(t)-1)}\right)C_1^*(t) \\
&\leq \left(1 + \frac{4A(t+1)}{5(A(t+1)+B(t+1))} \frac{1 - Kp(t+1)}{Kp(t+1)(Dp(t+1)-1)}\right)C_1^*(t+1).
\end{aligned}$$

In the next, we show that (D.28) holds. By applying the lower bounds derived in Lemma D.11 and Lemma D.12, we can derive that

$$\left(1 + \frac{4A(t+1)}{5(A(t+1)+B(t+1))} \frac{1 - Kp(t+1)}{Kp(t+1)(Dp(t+1)-1)}\right)C_1^*(t+1)$$

$$\begin{aligned}
&\geq \left(1 + \frac{2A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)}\right) C_1^*(t) + \frac{2A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)} C_1^*(t) \\
&\quad - \left(1 + \frac{4A(t+1)}{5(A(t+1)+B(t+1))} \frac{1-Kp(t+1)}{Kp(t+1)(Dp(t+1)-1)}\right) \frac{3DKp(t)\Delta p(t)}{DKp(t)^2 - 2Kp(t) + 1} C_1^*(t) \\
&\quad - \frac{A(t)}{A(t) + B(t)} \frac{2DKp(t)\Delta p(t)}{K^2 p(t)^2 (Dp(t) - 1)^2} C_1^*(t) \\
&\geq \left(1 + \frac{2A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)}\right) C_1^*(t) + \frac{2(1-Kp(t))}{15Kp(t)(Dp(t)-1)} C_1^*(t) \\
&\quad - \frac{3(4\pi+1)DKp(t)\Delta p(t)}{Kp(t)(Dp(t)-1) + 1 - Kp(t)} C_1^*(t) - \frac{10\pi DKp(t)\Delta p(t)}{Kp(t)(Dp(t)-1)} C_1^*(t) \\
&\geq \left(1 + \frac{2A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)}\right) C_1^*(t) + \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)} \left(\frac{2}{15} - \frac{(22\pi+3)Kp(t)^2}{D}\right) C_1^*(t) \\
&\geq \left(1 + \frac{2A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)}\right) C_1^*(t),
\end{aligned}$$

which finishes the proof of (D.28). In the derivation above, the second inequality holds as $\frac{A(t)}{A(t)+B(t)} \geq \frac{1}{3}$ and $\frac{1}{Kp(t)(Dp(t)-1)} \leq 5\pi$ when $p(t) \geq \frac{1}{2\sqrt{\pi DK}}$. The penultimate inequality is derived by Lemma D.9. As we demonstrated previously, (D.28) implies that (D.17) holds at the $t+1$ -th iteration for the first case. In the following, we consider the second case, where $(1 + \frac{2A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)}) C_1^*(t) \leq C_1(t) \leq (1 + \frac{4A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)}) C_1^*(t)$. For this case, it suffices to show that

$$\begin{aligned}
&\left(1 + \frac{4A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)}\right) C_1^*(t) - \frac{\eta D(1-Kp(t))}{10K(Dp(t)-1)} \\
&\leq \left(1 + \frac{4A(t+1)}{5(A(t+1)+B(t+1))} \frac{1-Kp(t+1)}{Kp(t+1)(Dp(t+1)-1)}\right) C_1^*(t+1)
\end{aligned} \tag{D.29}$$

This is because

$$\begin{aligned}
C_1(t+1) &= C_1(t) + \frac{\eta D F_3^{(t)}}{Kp(t)} \left(1 - \frac{C_1(t)}{C_1^*(t)}\right) \\
&\leq \left(1 + \frac{4A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)}\right) C_1^*(t) - \frac{\eta D F_3^{(t)}}{Kp(t)} \frac{2A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)} \\
&\leq \left(1 + \frac{4A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)}\right) C_1^*(t) - \frac{\eta D(1-Kp(t))}{10K(Dp(t)-1)} \\
&\leq \left(1 + \frac{4A(t+1)}{5(A(t+1)+B(t+1))} \frac{1-Kp(t+1)}{Kp(t+1)(Dp(t+1)-1)}\right) C_1^*(t+1),
\end{aligned}$$

where the penultimate inequality is derived by $F_3^{(t)} = A(t) + B(t)$ and $A(t) \geq \frac{Kp(t)^2}{4}$, and the last inequality is guaranteed by (D.29). To show (D.29) holds, by applying Lemma D.7, we derive an refined upper bound for $\Delta C_2(t)$ and $\Delta C_3(t)$ as follows:

$$\begin{aligned}
\Delta C_2(t) &= \frac{\eta M C_1(t)}{K\sqrt{D}} \left(\frac{F_4^{(t)}}{p(t)} - F_3^{(t)} - K C_1(t) \left(F_{2,1}^{(t)} + p(t) F_1^{(t)} \right) \right) \\
&\leq \frac{3\eta M C_1(t)}{5K\sqrt{D}} \frac{(1-Kp(t))^2}{Kp(t)(DKp(t)^2 - 2Kp(t) + 1)} A(t) \leq \frac{3(4\pi+1)\eta M p(t)(1-Kp(t))^2}{5K\sqrt{D}(DKp(t)^2 - 2Kp(t) + 1)} C_1^*(t),
\end{aligned}$$

and

$$\Delta C_3(t) = \frac{\eta M C_1(t)(1-Kp(t))}{\sqrt{D}(D-K)} \left(\frac{F_3^{(t)}}{Kp(t)} - \frac{(D-K)F_5^{(t)}}{Kp(t)(1-Kp(t))} - C_1(t) \left(F_1^{(t)} - \frac{(D-K)F_{2,2}^{(t)}}{1-Kp(t)} \right) \right)$$

$$\begin{aligned}
&\leq \frac{3\eta MC_1(t)(1-Kp(t))}{5\sqrt{D}(D-K)} \frac{1-Kp(t)}{Kp(t)(DKp(t)^2-2Kp(t)+1)} A(t) \\
&\leq \frac{3(4\pi+1)\eta Mp(t)(1-Kp(t))^2}{5(D-K)\sqrt{D}(DKp(t)^2-2Kp(t)+1)} C_1^*(t).
\end{aligned}$$

Based on these refined upper bounds for $\Delta C_2(t)$, $\Delta C_3(t)$, and the lower bounds obtained previously, we can derive that

$$\begin{aligned}
&\left(1 + \frac{4A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)}\right) C_1^*(t) \\
&\quad - \left(1 + \frac{4A(t+1)}{5(A(t+1)+B(t+1))} \frac{1-Kp(t+1)}{Kp(t+1)(Dp(t+1)-1)}\right) C_1^*(t+1) \\
&\leq \left(1 + \frac{4A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)}\right) C_1^*(t) - \left(1 + \frac{4A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)}\right) C_1^*(t) \\
&\quad + \frac{(22\pi+3)D\Delta p(t)}{Dp(t)-1} C_1^*(t) \\
&\leq \frac{(22\pi+3)D}{Dp(t)-1} \frac{D^2p(t)(1-Kp(t))}{\sqrt{D}(D^2-1)} (\Delta C_2(t) + \Delta C_3(t)) C_1^*(t) \\
&\leq \frac{3(22\pi+3)(4\pi+1)}{5} \frac{\eta D(1-Kp(t))}{K(Dp(t)-1)} \frac{D^3Mp(t)^2(1-Kp(t))^2}{(D^2-1)D(D-K)(DKp(t)^2-2Kp(t)+1)} C_1^*(t)^2 \\
&\leq \frac{\eta D(1-Kp(t))}{K(Dp(t)-1)} \frac{60\pi M}{DK^2} \leq \frac{\eta D(1-Kp(t))}{10K(Dp(t)-1)}.
\end{aligned}$$

Here, the first inequality is derived by applying the upper bound of $(1 + \frac{4A(t+1)}{5(A(t+1)+B(t+1))} \frac{1-Kp(t+1)}{Kp(t+1)(Dp(t+1)-1)}) C_1^*(t+1)$ obtained previously. The second inequality holds by applying Lemma D.9. The third inequality is derived by replacing the refined upper bound of $\Delta C_2(t)$ and $\Delta C_3(t)$. The penultimate inequality holds as $C_1^*(t) \leq \frac{1}{Kp(t)}$, and the last inequality is guaranteed by $D \geq \Omega(M)$ in the condition of Theorem 3.1. This demonstrates that (D.29) holds in the second case, which completes the proof of (D.17). \square

D.2 THREE PHASES TRAINING

In the previous section, Lemma D.2 accurately characterizes the training dynamics of $\mathbf{W}_V^{(t)}$ and $\mathbf{W}_{KQ}^{(t)}$. Specifically, it demonstrates that $\mathbf{W}_V^{(t)} = C_1(t)\mathbf{V}^*$, where $C_1(t)$ is always upper bounded by $(1 + \frac{4A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)}) C_1^*(t)$. Next, we will show that the update pattern of $C_1(t)$ differs across three distinct phases. In the first phase, $C_1(t)$ monotonically increases, approaching $C_1^*(t)$ while $p(t)$ remains close to $\frac{1}{D}$. In the second phase, $C_1(t)$ remains in a neighborhood of $C_1^*(t)$, while $p(t)$ monotonically increases. This increase exhibits modes characteristic of a tensor power progression, continuing until $p(t)$ reaches $\frac{1}{2K}$. In the third phase, the $p(t)$ will eventually converges to $\frac{1}{K}$, and $C_1^*(t)$ converges to 1, leading the loss also to converge. The formal proof is provided as follows.

Lemma D.13. Under the same conditions with Theorem 3.1, there exist $t_1 = \Theta(\eta^{-1})$, such that $C_1(t_1) \geq 0.95 \cdot C_1^*(t_1)$, and $p(t) \leq \frac{1+D^{-1/4}}{D}$ for all $t \leq t_1$.

Proof of Lemma D.13. Notice that when $C_1(t) \leq C_1^*(t)$, $C_1(t)$ is monotonically increasing. Let t_1 be the first time such that $C_1(t) \geq 0.95 \cdot C_1^*(t)$. For the conclusion regarding $p(t)$ with $t \leq t_1$, we first assume it holds and utilize it to demonstrate other conclusions, and lastly prove it by induction. Since $p(t)$ almost remain unchanged for all $t \leq t_1$, we can obtain that $0.975 \cdot C_1^*(t') \geq 0.95 \cdot C_1^*(t'')$ for all $t', t'' \leq t_1$ (This conclusion is proved in following Lemma D.14). Therefore for all $t < t_1$

$$C_1(t+1) - C_1(t) = \frac{\eta DF_3^{(t)}}{Kp(t)} \left(1 - \frac{C_1(t)}{C_1^*(t)}\right) \geq \frac{\eta DF_3^{(t)}}{Kp(t)} \left(1 - \frac{C_1(t_1-1)}{0.975 C_1^*(t_1-1)}\right) \geq \frac{\eta DF_3^{(t)}}{40Kp(t)},$$

1944 where the last inequality holds by $\frac{C_1(t_1-1)}{C_1^*(t_1-1)} \leq 0.95$. On the other hand, it is straightforward that
 1945
 1946 $C(t+1) - C(t) \leq \frac{\eta D F_3^{(t)}}{K p(t)}$. Additionally, when $\frac{1}{D} \leq p(t), p(t_1) \leq \frac{1+D^{-1/4}}{D}$, we can obtain that
 1947

- 1948 • If $\sigma(\cdot)$ is the identity map, then

1949
$$\frac{F_3^{(t)}}{K p(t)} = p(t) = \Theta\left(\frac{1}{D}\right);$$

 1950
 1951
$$C_1^*(t_1) = \frac{F_3^{(t_1)}}{K p(t_1) F_1^{(t_1)}} = \frac{\Theta(1)}{K p(t_1) (D p(t_1) - 1) + 1 - K p(t_1)} = \Theta(1).$$

 1952
 1953
 1954

- 1955 • If $\sigma(\cdot)$ is the ReLU activation function, then

1956
$$\frac{F_3^{(t)}}{K p(t)} = \frac{p(t)}{4} + \frac{p(t)}{2\pi} \arctan\left(\frac{\sqrt{K(D-K)}p(t)}{1-Kp(t)}\right) + \frac{1}{2\pi\sqrt{K(D-K)}}(1-Kp(t)) = \Theta\left(\frac{1}{\sqrt{DK}}\right);$$

 1957
 1958
 1959
$$C_1^*(t_1) = \frac{F_3^{(t_1)}}{K p(t_1) F_1^{(t_1)}} = \frac{\Theta(\sqrt{\frac{D}{K}})}{K p(t_1) (D p(t_1) - 1) + 1 - K p(t_1)} = \Theta\left(\sqrt{\frac{D}{K}}\right).$$

 1960
 1961
 1962
 1963

- 1964 • If $\sigma(\cdot)$ is the Leaky ReLU activation function, then

1965
$$\frac{F_3^{(t)}}{K p(t)} = \frac{(1+\kappa)^2 p(t)}{4} + \frac{(1-\kappa)^2 p(t)}{2\pi} \arctan\left(\frac{\sqrt{K(D-K)}p(t)}{1-Kp(t)}\right) + \frac{(1-\kappa)^2}{2\pi\sqrt{K(D-K)}}(1-Kp(t))$$

 1966
 1967
 1968
 1969
 1970
$$= \Theta\left(\frac{1}{\sqrt{DK}}\right);$$

 1971
 1972
$$C_1^*(t_1) = \frac{F_3^{(t_1)}}{K p(t_1) F_1^{(t_1)}} = \frac{\Theta(\sqrt{\frac{D}{K}})}{K p(t_1) (D p(t_1) - 1) + 1 - K p(t_1)} = \Theta\left(\sqrt{\frac{D}{K}}\right).$$

 1973

1974 Therefore, we conclude that
 1975

1976
$$t_1 = \frac{0.95 \cdot C_1^*(t_1)}{\frac{1}{t_1} \sum_{t=0}^{t_1-1} \Delta C_1(t)} = \begin{cases} \frac{\Theta(1)}{\Theta(\eta)} = \Theta(\eta^{-1}), & \text{if } \sigma(\cdot) \text{ is identity map;} \\ \frac{\Theta(\sqrt{\frac{D}{K}})}{\Theta(\eta\sqrt{\frac{D}{K}})} = \Theta(\eta^{-1}), & \text{if } \sigma(\cdot) \text{ is ReLU activation function;} \\ \frac{\Theta(\sqrt{\frac{D}{K}})}{\Theta(\eta\sqrt{\frac{D}{K}})} = \Theta(\eta^{-1}), & \text{if } \sigma(\cdot) \text{ is Leaky ReLU activation function.} \end{cases}$$

 1977
 1978
 1979
 1980
 1981

1982 Next we prove that $p(t_1) \leq \frac{1+D^{-1/4}}{D}$ by induction. Assume it holds at t -th iteration, then by
 1983 Lemma D.9 we can derive that
 1984

1985
$$\Delta C_2(t) + \Delta C_3(t) \leq \eta \frac{MD}{K^2(D-K)} \sqrt{\frac{D+1}{DK}},$$

 1986
 1987

1988 and consequently

1989
$$\Delta p(t) \leq \frac{D^2 p(t) (1 - K p(t))}{\sqrt{D} (D^2 - 1)} (\Delta C_2(t) + \Delta C_3(t)) \leq \frac{3M\eta}{\sqrt{K^5 D^3}}.$$

 1990
 1991

1992 Therefore, we can eventually conclude that

1993
$$1994 p(t_1) \leq p(0) + \sum_{t=0}^{t_1-1} \Delta p(t) \leq \frac{1}{D} + \Theta\left(\frac{M}{\sqrt{K^5 D^3}}\right) \leq \frac{1+D^{-1/4}}{D},$$

 1995
 1996

1997 where the last inequality is derived by our condition that $D = \Omega(\text{poly}(M))$ in Theorem 3.1. This
 completes the proof. \square

1998 **Lemma D.14.** For all $t', t'' \leq t_1$, where t_1 is defined in Lemma D.13, it holds that $0.975 \cdot C_1^*(t') \geq 0.95 \cdot C_1^*(t'')$.
 1999
 2000

2001 *Proof of Lemma D.14.* Notice that by the definition of $C_1^*(t)$, it is entirely determined by $p(t)$. And
 2002 for all $t', t'' \leq t_1$, we all have $\frac{1}{D} \leq p(t'), p(t'') \leq \frac{1+D^{-1/4}}{D}$. With Lemma F.1 and Lemma F.5, we
 2003 can further derive that
 2004

2005 • If $\sigma(\cdot)$ is the identity map, then
 2006

$$2007 C_1^*(t') = \frac{(D-K)p(t')}{DKp(t')^2 - 2Kp(t') + 1} \leq \frac{D-K}{\frac{D}{1+D^{-1/4}} - K(1-D^{-1/4})} \leq 1 + D^{-\frac{1}{4}}$$

$$2009 C_1^*(t') = \frac{(D-K)p(t')}{DKp(t')^2 - 2Kp(t') + 1} \geq \frac{D-K}{D-K} = 1.$$

2010 It immediately concludes that
 2011

$$2012 0.975 \cdot C_1^*(t'') - 0.95 \cdot C_1^*(t') \geq \frac{1}{40} - D^{-\frac{1}{4}} \geq 0,$$

2013 as $D \geq \Omega(1)$.
 2014

2015 • If $\sigma(\cdot)$ is the ReLU activation function, then
 2016

$$2017 C_1^*(t') = \frac{2(D-K)F_3^{(t')}}{Kp(t')(DKp(t')^2 - 2Kp(t') + 1)} \leq \frac{\frac{1}{\pi}\sqrt{\frac{D-K}{K}} + \frac{(D-K)p(t')}{2}}{1-Kp(t')}$$

$$2018 \leq \frac{1}{\pi}\sqrt{\frac{D-K}{K}} + \frac{(D-K)p(t')}{2} + \frac{Kp(t')(\frac{1}{\pi}\sqrt{\frac{D-K}{K}} + \frac{(D-K)p(t')}{2})}{(1-Kp(t'))^2}$$

$$2019 \leq \frac{1}{\pi}\sqrt{\frac{D-K}{K}} + 1 + \frac{K}{D} + \frac{2}{\pi}\sqrt{\frac{K}{D}} \leq \frac{1}{\pi}\sqrt{\frac{D-K}{K}} + 2,$$

2020 where the penultimate and last inequalities hold by utilizing Lemma F.10, and $\frac{1}{D} \leq p(t') \leq \frac{1+D^{-1/4}}{D}$, $D \geq \Omega(\text{poly}(K))$ in the conditions of Theorem 3.1. Similarly, we can also obtain that
 2021

$$2022 C_1^*(t'') = \frac{2(D-K)F_3^{(t'')}}{Kp(t'')(DKp(t'')^2 - 2Kp(t'') + 1)} \geq \frac{\frac{1}{\pi}\sqrt{\frac{D-K}{K}}}{1+DKp(t'')^2}$$

$$2023 \geq \frac{1}{\pi}\sqrt{\frac{D-K}{K}} - \frac{1}{\pi}\sqrt{\frac{D-K}{K}}DKp(t'')^2 \geq \frac{1}{\pi}\sqrt{\frac{D-K}{K}} - 1,$$

2024 where the penultimate and last inequalities hold by utilizing Lemma F.9, and $\frac{1}{D} \leq p(t') \leq \frac{1+D^{-1/4}}{D}$, $D \geq \Omega(\text{poly}(K))$ in the conditions of Theorem 3.1. Based on these two results, it
 2025 is straightforward that
 2026

$$2027 0.975 \cdot C_1^*(t'') - 0.95 \cdot C_1^*(t') \geq \frac{1}{40\pi}\sqrt{\frac{D-K}{K}} - 3 \geq 0,$$

2028 as $D \geq \Omega(\text{poly}(K))$.
 2029

2030 • If $\sigma(\cdot)$ is the ReLU activation function, then
 2031

$$2032 C_1^*(t') = \frac{2(D-K)F_3^{(t')}}{(1+\kappa^2)Kp(t')(DKp(t')^2 - 2Kp(t') + 1)} \leq \frac{\frac{(1-\kappa)^2}{\pi}\sqrt{\frac{D-K}{K}} + \frac{(1+\kappa^2)(D-K)p(t')}{2}}{(1+\kappa^2)(1-Kp(t'))}$$

$$2033 \leq \frac{(1-\kappa)^2}{(1+\kappa^2)\pi}\sqrt{\frac{D-K}{K}} + 2;$$

$$2034 C_1^*(t'') = \frac{2(D-K)F_3^{(t'')}}{(1+\kappa^2)Kp(t'')(DKp(t'')^2 - 2Kp(t'') + 1)} \geq \frac{\frac{(1-\kappa)^2}{\pi}\sqrt{\frac{D-K}{K}}}{(1+\kappa)^2(1+DKp(t'')^2)}$$

$$\geq \frac{(1-\kappa)^2}{(1+\kappa^2)\pi} \sqrt{\frac{D-K}{K}} - 1.$$

Combining these results directly leads to

$$0.975 \cdot C_1^*(t'') - 0.95 \cdot C_1^*(t') \geq \frac{(1-\kappa)^2}{40(1+\kappa^2)\pi} \sqrt{\frac{D-K}{K}} - 3 \geq 0,$$

as $D \geq \Omega(\text{poly}(K))$.

This completes the proof. \square

Lemma D.13 successfully demonstrate that at the initial phase of training, $C_1(t)$ will monotonically increases until $0.95 \cdot C_1^*(t)$, while $p(t)$ remains smaller than $\frac{1+D^{-1/4}}{D}$. Furthermore, once $C_1(t)$ reaches $0.95 \cdot C_1^*(t)$, it never falls below this threshold again. Combined with the conclusion demonstrated in Lemma D.5 that $C_1(t)$ is always upper bounded by $(1 + \frac{4A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)}) C_1^*(t)$, we can claim that $C_1(t)$ will always remain inner a neighborhood around $C_1^*(t)$. The following lemma provides a formal illustration.

Lemma D.15. Under the same conditions as Theorem 3.1 and with t_1 as defined in Lemma D.13, for all $t \geq t_1$, the following holds:

$$C_1(t) \geq \left[0.95 \vee \left(1 - \frac{4A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)} \right) \right] C_1^*(t), \quad (\text{D.30})$$

where $A(t)$ and $B(t)$ are defined same as in Lemma D.5.

Before we prove Lemma D.15, we first introduce the following lemma, which will be utilized in the proof of Lemma D.15.

Lemma D.16. For $C_1^*(t)$ defined in Lemma D.2, it always holds that

$$C_1^*(t+1) \leq C_1^*(t) + \frac{3(D-K+KC_1^*(t))}{2(DKp(t)^2-2Kp(t)+1-K\Delta p(t))} \Delta p(t). \quad (\text{D.31})$$

In addition, $C_1^*(t)$ is monotonically decreasing when $p(t) \geq \frac{2}{\sqrt{DK}}$.

Proof of Lemma D.16. We prove this lemma by considering $\sigma(\cdot)$ as the identity map, ReLU activation function, and Leaky ReLU activation function, respectively.

- If $\sigma(\cdot)$ is the identity map, then

$$\begin{aligned} C_1^*(t+1) &= \frac{(D-K)p(t+1)}{DKp(t+1)^2-2Kp(t+1)+1} \leq \frac{(D-K)p(t)+(D-K)\Delta p(t)}{DKp(t)^2-2Kp(t)+1-2K\Delta p(t)} \\ &\leq C_1^*(t) + \frac{D-K+KC_1^*(t)}{DKp(t)^2-2Kp(t)+1-K\Delta p(t)} \Delta p(t). \end{aligned}$$

In addition,

$$C_1^*(t) = \frac{D-K}{DKp(t) + \frac{1}{p(t)} - 2K},$$

which is obviously decreasing when $p(t) \geq \frac{2}{\sqrt{DK}}$.

- If $\sigma(\cdot)$ is the ReLU activation function, then

$$C_1^*(t+1) = \frac{\pi(D-K)p(t+1) + 2(D-K)p(t+1) \arctan\left(\frac{\sqrt{K(D-K)p(t+1)}}{1-Kp(t+1)}\right) + 2(D-K)\frac{1-Kp(t+1)}{\sqrt{K(D-K)}}}{2\pi(DKp(t+1)^2-2Kp(t+1)+1)}$$

$$\begin{aligned}
& \leq \frac{\pi(D-K)p(t) + 2(D-K)p(t) \arctan\left(\frac{\sqrt{K(D-K)}p(t)}{1-Kp(t)}\right)}{2\pi(DKp(t)^2 - 2Kp(t) + 1) - 2\pi K \Delta p(t)} \\
& + \frac{2(D-K)\frac{1-Kp(t)}{\sqrt{K(D-K)}} + 3\pi(D-K)\Delta p(t)}{2\pi(DKp(t)^2 - 2Kp(t) + 1) - 2\pi K \Delta p(t)} \\
& \leq C_1^*(t) + \frac{3(D-K + KC_1^*(t))}{2(DKp(t)^2 - 2Kp(t) + 1 - K\Delta p(t))} \Delta p(t).
\end{aligned}$$

In addition,

$$C_1^*(t) = \frac{D-K}{2(DKp(t) + \frac{1}{p(t)} - 2K)} + \frac{(D-K) \arctan\left(\frac{\sqrt{K(D-K)}p(t)}{1-Kp(t)}\right)}{\pi(DKp(t) + \frac{1}{p(t)} - 2K)} + \frac{\sqrt{\frac{D-K}{K}}(1-Kp(t))}{\pi(DKp(t) + \frac{1}{p(t)} - 2K)},$$

where all these three terms are monotonically decreasing w.r.t. $p(t)$, when $p(t) \geq \frac{2}{\sqrt{DK}}$. This demonstrates that $C_1^*(t)$ is monotonically decreasing when $p(t) \geq \frac{2}{\sqrt{DK}}$.

- If $\sigma(\cdot)$ is the Leaky ReLU activation function, then by a similar calculation process,

$$\begin{aligned}
& C_1^*(t+1) \\
& = \frac{\pi(1+\kappa)^2(D-K)p(t+1) + 2(1-\kappa)^2(D-K)p(t+1) \arctan\left(\frac{\sqrt{K(D-K)}p(t+1)}{1-Kp(t+1)}\right)}{2(1+\kappa^2)\pi(DKp(t+1)^2 - 2Kp(t+1) + 1)} \\
& + \frac{(1-\kappa)^2(D-K)(1-Kp(t+1))}{(1+\kappa^2)\pi(DKp(t+1)^2 - 2Kp(t+1) + 1)\sqrt{K(D-K)}} \\
& \leq \frac{\pi(1+\kappa)^2(D-K)p(t) + 2(1-\kappa)^2(D-K)p(t) \arctan\left(\frac{\sqrt{K(D-K)}p(t)}{1-Kp(t)}\right)}{2(1+\kappa^2)\pi(DKp(t)^2 - 2Kp(t) + 1) - 2\pi(1+\kappa^2)K\Delta p(t)} \\
& + \frac{2(1-\kappa)^2(D-K)\frac{1-Kp(t)}{\sqrt{K(D-K)}} + 3\pi(1+\kappa)^2(D-K)\Delta p(t)}{2(1+\kappa^2)\pi(DKp(t)^2 - 2Kp(t) + 1) - 2\pi(1+\kappa^2)K\Delta p(t)} \\
& \leq C_1^*(t) + \frac{3(D-K + KC_1^*(t))}{2(DKp(t)^2 - 2Kp(t) + 1 - K\Delta p(t))} \Delta p(t).
\end{aligned}$$

In addition,

$$\begin{aligned}
C_1^*(t) & = \frac{(1+\kappa)^2(D-K)}{2(1+\kappa^2)(DKp(t) + \frac{1}{p(t)} - 2K)} + \frac{(1-\kappa)^2(D-K) \arctan\left(\frac{\sqrt{K(D-K)}p(t)}{1-Kp(t)}\right)}{\pi(1+\kappa^2)(DKp(t) + \frac{1}{p(t)} - 2K)} \\
& + \frac{(1-\kappa)^2\sqrt{\frac{D-K}{K}}(1-Kp(t))}{\pi(1+\kappa^2)(DKp(t) + \frac{1}{p(t)} - 2K)},
\end{aligned}$$

where all these three terms are monotonically decreasing w.r.t. $p(t)$, when $p(t) \geq \frac{2}{\sqrt{DK}}$. This demonstrates that $C_1^*(t)$ is monotonically decreasing when $p(t) \geq \frac{2}{\sqrt{DK}}$.

This completes the proof. \square

Now, we are ready to prove Lemma D.15

Proof of Lemma D.15. We first prove the first part of (D.30), i.e. $C_1(t) \geq 0.95 \cdot C_1^*(t)$ for all $t > t_1$, by induction. To establish the conclusion, we consider two cases at the t -th iteration: (i). when $C_1(t) \geq 0.975 \cdot C_1^*(t)$. (ii). when $0.95 \cdot C_1^*(t) \leq C_1(t) < 0.975 \cdot C_1^*(t)$. For the first case,

2160 when $p(t) \leq \frac{1}{2\sqrt{\pi D K}}$, Lemma D.5 shows that $C_1(t) \leq C_1^*(t)$, implying that $C_1(t+1) \geq C_1(t)$.
 2161 Then we can derive that
 2162

$$\begin{aligned} 2163 \quad C_1(t+1) &\geq C_1(t) \geq 0.975 \cdot C_1^*(t) \geq 0.975 \cdot C_1^*(t+1) - \frac{3(D-K+KC_1^*(t))}{2(DKp(t)^2-2Kp(t)+1-K\Delta p(t))} \Delta p(t) \\ 2164 \\ 2165 \quad &\geq 0.975 \cdot C_1^*(t+1) - \frac{3(D-K)}{D^2} \geq 0.975 \cdot C_1^*(t+1) - 0.025 \geq 0.95 \cdot C_1^*(t+1), \end{aligned}$$

2167 where the third inequality holds by applying the lower bound of $C_1^*(t)$ demonstrated in Lemma D.16.
 2168 The forth inequality holds as $C_1^*(t) \leq \sqrt{\frac{D}{K}}$, and $\Delta p(t) \leq \frac{1}{D^2}$ guaranteed by Lemma D.9. The
 2169 penultimate inequality holds as $D \geq \Omega(\text{poly}(K))$, and the last inequality holds as $C_1^*(t) \geq 1$.
 2170 When $p(t) \geq \frac{1}{2\sqrt{\pi D K}}$, the upper bound of $C_1(t)$ established in Lemma D.5 can help to derive that
 2171

$$\begin{aligned} 2172 \quad C_1(t+1) &\geq C_1(t) - \frac{4\eta DA(t)(1-Kp(t))}{5K^2p(t)^2(Dp(t)-1)} \\ 2173 \\ 2174 \quad &\geq 0.975 \cdot C_1^*(t+1) - \frac{3(D-K)}{D^2} - \frac{4\eta DA(t)}{5K^2p(t)^2(Dp(t)-1)} \\ 2175 \\ 2176 \quad &\geq 0.975 \cdot C_1^*(t+1) - \frac{3(D-K)}{D^2} - \eta \sqrt{\frac{D}{K^3}} \geq 0.975 \cdot C_1^*(t+1) - 0.025 \geq 0.95 \cdot C_1^*(t+1). \\ 2177 \\ 2178 \\ 2179 \end{aligned}$$

2180 Here, the second inequality applies the previously obtained lower bound for $C_1(t)$. The third in-
 2181 equality holds as $A(t) \leq Kp(t)^2$, and $p(t) \geq \frac{1}{2\sqrt{\pi D K}}$. The penultimate inequality is derived by
 2182 $D \geq \Omega(\text{poly}(K))$ and $\eta \leq \mathcal{O}(MD^{-5/2})$ in the condition of Theorem 3.1. These results demon-
 2183 strate that under the first case, $C_1(t+1) \geq 0.95 \cdot C_1^*(t+1)$. Let's consider the second case, where
 2184 $0.95 \cdot C_1^*(t) \leq C_1(t) < 0.975 \cdot C_1^*(t)$. Under this case, it is obvious that $C_1(t+1)$ would be larger
 2185 than $C_1(t)$, and by the updating rule, we have

$$\begin{aligned} 2186 \quad C_1(t+1) &\geq C_1(t) + \frac{\eta D F_3^{(t)}}{40Kp(t)} \geq 0.95 \cdot C_1^*(t) + \frac{\eta D F_3^{(t)}}{40Kp(t)} - \frac{3(D-K+KC_1^*(t))}{2(DKp(t)^2-2Kp(t)+1-K\Delta p(t))} \Delta p(t) \\ 2187 \\ 2188 \quad &\geq 0.95 \cdot C_1^*(t) + \eta p(t) \left(\frac{D}{80} - \frac{3MD^3(1-Kp(t))}{\sqrt{D}(D^2-1)(D-K)K^2} \sqrt{\frac{D+1}{K}} \right) \\ 2189 \\ 2190 \quad &\geq 0.95 \cdot C_1^*(t) + \eta p(t) \left(\frac{D}{80} - \frac{4M}{K^{\frac{5}{2}}} \right) \geq 0.95 \cdot C_1^*(t). \\ 2191 \\ 2192 \\ 2193 \end{aligned}$$

2194 Here, the second inequality holds by (D.31), the third inequality holds since $F_3^{(t)} \geq \frac{Kp(t)^2}{2}$ by
 2195 Lemma F.5, $\frac{D-K+KC_1^*(t)}{DKp(t)^2-2Kp(t)+1-K\Delta p(t)} \leq 2D$, and applying the conclusion of upper bound of
 2196 $\Delta p(t)$ demonstrated in Lemma D.9. Besides, the last two inequalities is guaranteed by $D \geq$
 2197 $\Omega(\text{poly}(M, K))$. This finishes the proof of $C_1(t) \geq 0.95 \cdot C_1^*(t)$ for all $t \geq t_1$. In the next,
 2198 we prove the second part of (D.30), i.e. $C_1(t) \geq (1 - \frac{4A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)}) C_1^*(t)$. In fact,
 2199 we only need to consider the scenario where $p(t) \geq \frac{2}{\sqrt{DK}}$. This is because when $p(t) \leq \frac{2}{\sqrt{DK}}$,
 2200

$$\begin{aligned} 2201 \quad \frac{4A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)} &\geq \frac{4(1-Kp(t))}{5(Kp(t) + \frac{2}{\pi} \sqrt{\frac{K}{D-K}} (1-Kp(t))) (Dp(t)-1)} \\ 2202 \\ 2203 \quad &\geq \frac{1}{10\sqrt{DK}p(t)} \geq 0.05. \\ 2204 \\ 2205 \\ 2206 \end{aligned}$$

2207 Therefore, $C_1(t) \geq 0.95 \cdot C_1^*(t)$ guarantee that $C_1(t) \geq (1 - \frac{4A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)}) C_1^*(t)$
 2208 holds when $p(t) \leq \frac{2}{\sqrt{DK}}$. When $p(t) \geq \frac{2}{\sqrt{DK}}$, we also consider two cases: (i). when $C_1(t) > (1 -$
 2209 $\frac{2A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)}) C_1^*(t)$. (ii). when $(1 - \frac{4A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)}) C_1^*(t) \leq C_1(t) \leq$
 2210 $(1 - \frac{2A(t)}{5(A(t)+B(t))} \frac{1-Kp(t)}{Kp(t)(Dp(t)-1)}) C_1^*(t)$. Then, for the first case, at the $t+1$ -th iteration, we have
 2211

$$2212 \quad C_1(t+1) \geq C_1(t) - \frac{4\eta DA(t)(1-Kp(t))}{5K^2p(t)^2(Dp(t)-1)}$$

$$\begin{aligned}
&\geq \left(1 - \frac{2A(t)}{5(A(t) + B(t))} \frac{1 - Kp(t)}{Kp(t)(Dp(t) - 1)}\right) C_1^*(t) - \frac{4\eta DA(t)(1 - Kp(t))}{5K^2 p(t)^2 (Dp(t) - 1)} \\
&\geq \left(1 - \frac{4A(t+1)}{5(A(t+1) + B(t+1))} \frac{1 - Kp(t+1)}{Kp(t+1)(Dp(t+1) - 1)}\right) C_1^*(t+1) \\
&\quad + \frac{2A(t)}{5(A(t) + B(t))} \frac{1 - Kp(t)}{Kp(t)(Dp(t) - 1)} C_1^*(t) - \frac{4\eta DA(t)(1 - Kp(t))}{5K^2 p(t)^2 (Dp(t) - 1)} \\
&\quad - \frac{A(t)}{A(t) + B(t)} \frac{\Delta p(t)(2DKp(t) + DK\Delta p(t) - K)}{K^2 p(t)^2 (Dp(t) - 1)^2} C_1^*(t) \\
&\geq \left(1 - \frac{4A(t+1)}{5(A(t+1) + B(t+1))} \frac{1 - Kp(t+1)}{Kp(t+1)(Dp(t+1) - 1)}\right) C_1^*(t+1) \\
&\quad + \frac{1 - Kp(t)}{Kp(t)(Dp(t) - 1)} \left(\frac{C_1^*(t)}{5} - \eta \frac{4D}{5} - \frac{DC_1^*(t)\Delta p(t)}{Dp(t) - 1} \right) \\
&\geq \left(1 - \frac{4A(t+1)}{5(A(t+1) + B(t+1))} \frac{1 - Kp(t+1)}{Kp(t+1)(Dp(t+1) - 1)}\right) C_1^*(t+1) \\
&\quad + \frac{1 - Kp(t)}{Kp(t)(Dp(t) - 1)} \left(\frac{1}{5} - \frac{4}{5\sqrt{D^3}} - \frac{2}{\sqrt{D^3}} \right) \\
&\geq \left(1 - \frac{4A(t+1)}{5(A(t+1) + B(t+1))} \frac{1 - Kp(t+1)}{Kp(t+1)(Dp(t+1) - 1)}\right) C_1^*(t+1).
\end{aligned}$$

In particular, the third inequality is obtained by replacing the the lower bound of $\frac{A(t)}{A(t) + B(t)} \frac{1 - Kp(t)}{Kp(t)(Dp(t) - 1)}$ in Lemma D.12, and utilizing $C_1^*(t) \geq C_1^*(t+1)$ when $p(t) \geq \frac{2}{\sqrt{DK}}$, which is demonstrated in Lemma D.16. The forth inequality is derived by the facts $\frac{A(t)}{A(t) + B(t)} \geq \frac{1}{2}$ when $p(t) \geq \frac{2}{\sqrt{DK}}$, $A(t) \leq Kp(t)^2$, and utilizing the upper bound of $\Delta p(t)$ in Lemma D.9. Lastly, the penultimate inequality is derived as $1 \leq C_1^*(t) \leq \sqrt{\frac{D}{K}}$, $\Delta p(t) \leq \frac{1}{D^{5/2}}$, and $\eta \leq \mathcal{O}(D^{-5/2})$. This demonstrates that the second part of (D.30) holds at $t + 1$ -th iteration for the first case. On the other hand, for the second case, $C_1(t+1)$ would be strictly larger than $C_1(t)$, and it can be demonstrated that

$$\begin{aligned}
C_1(t+1) &\geq C_1(t) + \frac{2\eta DA(t)(1 - Kp(t))}{5K^2 p(t)^2 (Dp(t) - 1)} \\
&\geq \left(1 - \frac{4A(t)}{5(A(t) + B(t))} \frac{1 - Kp(t)}{Kp(t)(Dp(t) - 1)}\right) C_1^*(t) + \frac{2\eta DA(t)(1 - Kp(t))}{5K^2 p(t)^2 (Dp(t) - 1)} \\
&\geq \left(1 - \frac{4A(t+1)}{5(A(t+1) + B(t+1))} \frac{1 - Kp(t+1)}{Kp(t+1)(Dp(t+1) - 1)}\right) C_1^*(t+1) \\
&\quad + \frac{2\eta DA(t)(1 - Kp(t))}{5K^2 p(t)^2 (Dp(t) - 1)} - \frac{A(t)}{A(t) + B(t)} \frac{\Delta p(t)(2DKp(t) + DK\Delta p(t) - K)}{K^2 p(t)^2 (Dp(t) - 1)^2} C_1^*(t) \\
&\geq \left(1 - \frac{4A(t+1)}{5(A(t+1) + B(t+1))} \frac{1 - Kp(t+1)}{Kp(t+1)(Dp(t+1) - 1)}\right) C_1^*(t+1) \\
&\quad + \frac{\eta(1 - Kp(t))}{Kp(t)(Dp(t) - 1)} \left(\frac{D}{5} - \frac{2DM(1 - Kp(t))}{\sqrt{K^7}(Dp(t) - 1)} \right) \\
&\geq \left(1 - \frac{4A(t+1)}{5(A(t+1) + B(t+1))} \frac{1 - Kp(t+1)}{Kp(t+1)(Dp(t+1) - 1)}\right) C_1^*(t+1),
\end{aligned}$$

where the last inequality holds as $\frac{2DM(1 - Kp(t))}{\sqrt{K^7}(Dp(t) - 1)} \leq \mathcal{O}\left(\frac{\sqrt{DM}}{K^3}\right) \leq \mathcal{O}(D)$. This demonstrates that under the second case, we still have

$$C_1(t+1) \geq \left(1 - \frac{4A(t+1)}{5(A(t+1) + B(t+1))} \frac{1 - Kp(t+1)}{Kp(t+1)(Dp(t+1) - 1)}\right) C_1^*(t+1),$$

2268 which finishes the proof of (D.30). \square
 2269

2270 Lemmas D.15 and D.5 together establish matching lower and upper bounds for $C_1(t)$ after t_1 . Based
 2271 on these bounds, we can derive a precise training time at which $p(t)$ achieves $\frac{1}{2K}$. This result is
 2272 formally presented in the following lemma.

2273 **Lemma D.17.** Under the same conditions as Theorem 3.1, there exists $T^* = \Theta\left(\frac{KD^2}{\eta \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}\right)$,
 2274 such that $p(T^*) \geq \frac{1}{2}$.
 2275

2276 *Proof of Lemma D.17.* Notice that Lemma D.15 and Lemma D.5 guarantee that
 2277

$$2278 \quad 0.95 \cdot C_1^*(t) \leq C_1(t) \leq (4\pi + 1) \cdot C_1^*(t)$$

2279 for all $t \geq t_1$. The left hand side inequality is straightforward, and the right hand side holds because:
 2280 when $p(t) \leq \frac{1}{2\sqrt{\pi D K}}$, $C_1(t) \leq C_1^*(t) < (4\pi + 1) \cdot C_1^*(t)$; when $p(t) \geq \frac{1}{2\sqrt{\pi D K}}$,

$$2281 \quad C_1(t) \leq \left(1 + \frac{4A(t)}{5(A(t) + B(t))} \frac{1 - Kp(t)}{Kp(t)(Dp(t) - 1)}\right) C_1^*(t) \leq (4\pi + 1) \cdot C_1^*(t).$$

2282 On the other hand, Lemma D.15 and Lemma D.5 also guarantee that
 2283

$$2284 \quad C_1(t) \leq \left(1 + \frac{4A(t)}{5(A(t) + B(t))} \frac{1 - Kp(t)}{Kp(t)(Dp(t) - 1)}\right) C_1^*(t);$$

$$2285 \quad C_1(t) \geq \left(1 - \frac{4A(t)}{5(A(t) + B(t))} \frac{1 - Kp(t)}{Kp(t)(Dp(t) - 1)}\right) C_1^*(t) \quad (D.32)$$

2286 These two lower and upper bounds of $C_1(t)$ allow us to apply Lemma D.7 to derive lower and upper
 2287 bounds for $\Delta C_2(t) + \Delta C_3(t)$ as
 2288

$$2289 \quad \Delta C_2(t) + \Delta C_3(t) \leq \eta \frac{9(4\pi + 1)Dp(t)(1 - Kp(t))^2 \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}{10K(D - K)\sqrt{D}(DKp(t)^2 - 2Kp(t) + 1)} C_1^*(t);$$

$$2290 \quad \Delta C_2(t) + \Delta C_3(t) \geq \eta \frac{19Dp(t)(1 - Kp(t))^2 \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}{200K(D - K)\sqrt{D}(DKp(t)^2 - 2Kp(t) + 1)} C_1^*(t), \quad (D.33)$$

2291 where we replacing M with $\sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2$ to match the presentation in our Theorem 3.1. With
 2292 these bounds in hand, we denote T^* as the first time such that $p(t) \geq \frac{1}{2K}$. Then for all $t_1 \leq t \leq T^*$,
 2293 by applying Lemma D.9 and the upper and lower bounds of $\Delta C_2(t) + \Delta C_3(t)$ obtained in (D.33),
 2294 it can be derived that
 2295

$$2296 \quad \Delta p(t) \leq \frac{D^2 p(t)(1 - Kp(t))}{\sqrt{D}(D^2 - 1)} (\Delta C_2(t) + \Delta C_3(t)) \leq \eta \frac{(8\pi + 2) \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}{K\sqrt{DK}} p(t)^2;$$

$$2297 \quad \Delta p(t) \geq \frac{p(t)(1 - Kp(t))}{2\sqrt{D}} (\Delta C_2(t) + \Delta C_3(t)) \geq \eta \frac{\sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}{50K\sqrt{DK}} p(t)^2.$$

2298 Notice that the iterative rules for $p(t)$ satisfying the assumptions in Lemma F.11. By applying
 2299 Lemma F.11 with the initialization that $\frac{1}{D} \leq p(t_1) \leq \frac{2}{D}$, we can obtained that
 2300

$$2301 \quad T^* - t_1 \leq \frac{50D^2K}{\eta \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2} + 100(8\pi + 2)(\log D - \log K) \leq \Theta\left(\frac{D^2K}{\eta \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}\right)$$

$$2302 \quad T^* - t_1 \geq \frac{D^2K}{35\pi\eta \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2} - (\log D - \log K) \geq \Theta\left(\frac{D^2K}{\eta \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}\right).$$

2303 This results demonstrates that $T^* = t_1 + \Theta\left(\frac{D^2K}{\eta \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}\right) = \Theta\left(\frac{D^2K}{\eta \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}\right)$. This finishes the
 2304 proof. \square

2305 In the next, we provide the analysis for the last stage that $p(t)$ eventually converges to $\frac{1}{K}$. This result
 2306 is formally presented in the following lemma.

2322 **Lemma D.18.** Under the same conditions as Theorem 3.1, for any $T \geq T^*$, where $T^* =$
 2323 $\Theta\left(\frac{D^2 K}{\eta \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}\right)$ as defined in Lemma D.17, it holds that
 2324

$$\frac{1}{K} - \frac{20D(D-K)}{\sqrt{\eta K \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2(T-T^*)}} \leq p(T) \leq \frac{1}{K} - \frac{D(D-K)}{2e\sqrt{\eta K \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2(T-T^*)}}. \quad (\text{D.34})$$

2328 In addition, it holds that

$$\begin{aligned} 2329 \left| p(T)C_1(T) - \frac{1}{K} \right| &\leq \frac{2}{D}(1-Kp(T)) + \frac{1}{K}(1-Kp(T))^2 \\ 2330 &\leq \frac{40K(D-K)}{\sqrt{\eta K \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2(T-T^*)}} + \frac{400D^2(D-K)^2}{\eta \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2(T-T^*)} \end{aligned} \quad (\text{D.35})$$

2335 *Proof of Lemma D.18.* With the bounds established in Lemma D.17 and the fact that $\frac{1-Kp(t)}{p(t)} =$
 2336 $\exp\left(-\frac{C_2(t)+C_3(t)}{\sqrt{D}}\right)$, the upper and lower bounds of $\Delta C_2(t) + \Delta C_3(t)$ obtained in (D.33) can be
 2337 rewritten as

$$\begin{aligned} 2339 \Delta C_2(t) + \Delta C_3(t) &\leq \eta \frac{8\pi \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}{K^3 \sqrt{D^3}} e^{-\frac{2}{\sqrt{D}}(C_2(t)+C_3(t))}; \\ 2340 \Delta C_2(t) + \Delta C_3(t) &\geq \eta \frac{\sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}{200K^3 \sqrt{D^3}} e^{-\frac{2}{\sqrt{D}}(C_2(t)+C_3(t))}. \end{aligned}$$

2344 The upper and lower bounds of $\Delta C_2(t) + \Delta C_3(t)$ match the assumptions of Lemma F.12. By
 2345 applying the lemma, we can obtain that for all $T \geq T^*$,

$$\begin{aligned} 2346 C_2(T) + C_3(T) &\geq \frac{\sqrt{D}}{2} \log\left(\frac{\eta \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}{200K^3 D^2}(T-T^*) + e^{\frac{2}{K\sqrt{D}}}\right); \\ 2347 C_2(T) + C_3(T) &\leq \eta \frac{8\pi \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}{K^3 \sqrt{D^3}} + \frac{\sqrt{D}}{2} \log\left(\frac{8\pi\eta \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}{K^3 D^2}(T-T^*) + e^{\frac{2}{K\sqrt{D}}}\right). \end{aligned}$$

2352 Replacing this result into the formula of $p(T)$, we have

$$\begin{aligned} 2353 p(T) &= \frac{1}{K + (D-K) \exp\left(-\frac{C_2(T)+C_3(T)}{\sqrt{D}}\right)} \geq \frac{1}{K + (D-K) \exp\left(-\frac{1}{2} \log\left(\frac{\eta \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}{200K^3 D^2}(T-T^*)\right)\right)} \\ 2354 &\geq \frac{1}{K} - \frac{20D(D-K)}{\sqrt{\eta K \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2(T-T^*)}} \end{aligned}$$

2358 On the other hand, we can also derive that

$$\begin{aligned} 2360 p(T^*) &\leq \frac{1}{K + (D-K) \exp\left(-\frac{1}{2} \log\left(\frac{8\pi\eta \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}{K^3 D^2}(T-T^*) + e^{\frac{2}{K\sqrt{D}}}\right) - \frac{\eta 4\pi \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}{K^3 D^3}\right)} \\ 2361 &\leq \frac{1}{K} - \frac{D(D-K)}{2e\sqrt{\eta K \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2(T-T^*)}}. \end{aligned}$$

2366 This finishes the proof of (D.34). With this condition holds, by checking the definition of $C_1^*(T^*)$,
 2367 we can obtain that

$$2368 1 + (1-Kp(T)) \left(\frac{1}{Kp(T)} - \frac{1-Kp(T)}{(D-K)Kp(T)^2} \right) \leq C_1^*(T) \leq 1 + \frac{1-Kp(T)}{Kp(T)}.$$

2371 Plugging this result into (D.32), we derive that

$$2372 1 + (1-Kp(T)) \left(\frac{1}{Kp(T)} - \frac{2K}{D} \right) \leq C_1(T) \leq 1 + (1-Kp(T)) \left(\frac{1}{Kp(T)} + \frac{2K}{D} \right),$$

2374 which immediately leads to the final conclusion of (D.35). □

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. We first prove the first conclusion.

$$\begin{aligned} \|\mathbf{S}^{(T)} - \mathbf{S}^*\|_F &= \sqrt{\sum_{i_1=1}^D \sum_{i=1}^D \left(\mathbf{S}_{i_1,i}^{(T)} - \mathbf{S}_{i_1,i}^* \right)^2} = \sqrt{DK \left(\frac{1}{K} - p(T) \right)^2 + D(D-K) \frac{(1-Kp(T))^2}{(D-K)^2}} \\ &= \frac{D}{\sqrt{K(D-K)}} (1-Kp(T)) = \Theta \left(\frac{D^{\frac{5}{2}}}{\sqrt{\eta \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2 (T - T^*)}} \right), \end{aligned}$$

where the last inequality holds by applying the upper and lower bounds of $p(T)$ derived in Lemma D.18. This finishes the first conclusion of Theorem 3.1. Notice that in Lemma D.18, we have derived that $|C_1(T) - 1| = \Theta(1 - Kp(T))$, which directly imply that

$$\|\mathbf{W}_V^{(T)} - \mathbf{V}^*\|_F = |C_1(T) - 1| \|\mathbf{V}^*\|_F = \Theta \left(D^2 \sqrt{\frac{K}{\eta \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2 (T - T^*)}} \right) \cdot \|\mathbf{V}^*\|_F,$$

where the last inequality holds by applying the upper and lower bounds of $p(T)$ derived in Lemma D.18. This finishes the second conclusion of Theorem 3.1. For the third conclusion, notice that

$$\begin{aligned} \mathcal{L}(\mathbf{W}_V^{(T)}; \mathbf{W}_{KQ}^{(T)}) &= \frac{1}{2} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\left(\mathbf{Y}_{m,i} - \sigma \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(T)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(T)} \right) \right)^2 \right] \\ &= \frac{1}{2} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\left([f^*(\mathbf{X})]_{m,i} - \sigma \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(T)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(T)} \right) \right)^2 \right] + \frac{1}{2} \mathbb{E} [\|\mathcal{E}\|_F^2], \end{aligned}$$

where the last term is essential \mathcal{L}_{opt} , and the last inequality holds by the independence between \mathbf{X} and \mathcal{E} and the fact that \mathcal{E} is zero-mean. Since this equation holds, in the next, we directly deal with $\mathcal{L}(\mathbf{W}_V^{(T)}; \mathbf{W}_{KQ}^{(T)}) - \mathcal{L}_{\text{opt}}$. We first prove the upper bound. By utilizing the fact that $|\sigma(x) - \sigma(y)| \leq |x - y|$ for all $x, y \in \mathbb{R}$, we can derive that

$$\begin{aligned} \mathcal{L}(\mathbf{W}_V^{(T)}; \mathbf{W}_{KQ}^{(T)}) - \mathcal{L}_{\text{opt}} &= \frac{1}{2} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\left([f^*(\mathbf{X})]_{m,i} - \sigma \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(T)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(T)} \right) \right)^2 \right] \\ &\leq \frac{1}{2} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\underbrace{\left(\left(\frac{1}{K} - C_1(T)p(T) \right) \sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle + \frac{C_1(T)(1-Kp(T))}{D-K} \sum_{i_1 \notin G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right)^2}_{Z_{1,i,m}^{(T)}} \right. \\ &\quad \left. + \underbrace{\left(\frac{\|\mathbf{v}_m^*\|_2^2 C_1(T)^2 (1-Kp(T))^2}{D-K} \right)^2}_{Z_{2,i,m}^{(T)}} \right]. \end{aligned}$$

Notice that $Z_{1,i,m}^{(T)} \sim \mathcal{N}(0, \sigma_{1,m}^2)$, where $\sigma_{1,m}^2 = K \|\mathbf{v}_m^*\|_2^2 \left(\frac{1}{K} - C_1(T)p(T) \right)^2$, and $Z_{2,i,m}^{(T)} \sim \mathcal{N}(0, \sigma_{2,m}^2)$, where $\sigma_{2,m}^2 = \frac{\|\mathbf{v}_m^*\|_2^2 C_1(T)^2 (1-Kp(T))^2}{D-K}$, and they are independent. Based on the upper bounds derived in Lemma D.18, we can finally derive that

$$\begin{aligned} \mathcal{L}(\mathbf{W}_V^{(T)}; \mathbf{W}_{KQ}^{(T)}) - \mathcal{L}_{\text{opt}} &\leq \frac{1}{2} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\left(Z_{1,i,m}^{(T)} + Z_{2,i,m}^{(T)} \right)^2 \right] = \frac{D}{2} \sum_{m=1}^M \sigma_{1,m}^2 + \frac{D}{2} \sum_{m=1}^M \sigma_{2,m}^2 \\ &= \frac{DK}{2} \left(\frac{1}{K} - C_1(T)p(T) \right)^2 \sum_{m=1}^M \|\mathbf{v}_m\|_2^2 + \frac{DC_1(T)^2 (1-Kp(T))^2}{2(D-K)} \sum_{m=1}^M \|\mathbf{v}_m\|_2^2 \\ &\leq \bar{c} \frac{KD^4}{\eta(T - T^*)}. \end{aligned}$$

where the last inequality holds by applying the upper bounds for $\left(\frac{1}{K} - C_1(T)p(T) \right)^2$, and $p(T)$ derived in Lemma D.18. This completes the proof for upper bound. On the other hand, denote $Z_{3,m,i} = \sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \sim \mathcal{N}(0, K \|\mathbf{v}_m\|_2^2)$ and $Z_{4,m,i} = \sum_{i_1 \notin G^i} \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \sim \mathcal{N}(0, (D-K) \|\mathbf{v}_m\|_2^2)$,

2430 and $Z_{5,m,i}^{(T)} = p(T)Z_{3,m,i} + \frac{1-Kp(T)}{D-K}Z_{4,m,i}$. Then, by utilizing the fact that $|\sigma(x) - \sigma(y)| \geq$
2431 $|x - y| \cdot \mathbb{1}_{\{x \geq 0, y \geq 0\}}$, we can further derive that
2432

2433
$$\mathcal{L}(\mathbf{W}_V^{(T)}; \mathbf{W}_{KQ}^{(T)}) - \mathcal{L}_{\text{opt}}$$

2434
$$= \frac{1}{2} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\left([f^*(\mathbf{X})]_{m,i} - \sigma \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(T)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(T)} \right) \right)^2 \right]$$

2435
$$= \frac{1}{2} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\left(\sigma \left(\frac{Z_{3,m,i}}{K} \right) - \sigma \left(C_1(T)Z_{5,m,i}^{(T)} \right) \right)^2 \right]$$

2436
$$\geq \frac{1}{2} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\left(\left(\frac{1}{K} - C_1(T)p(T) \right) Z_{3,m,i} - \frac{C_1(T)(1-Kp(T))}{D-K} Z_{4,m,i} \right)^2 \mathbb{1}_{\{Z_{3,m,i} \geq 0\}} \mathbb{1}_{\{Z_{5,m,i}^{(T)} \geq 0\}} \right]$$

2437
$$\geq \frac{1}{2} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\left(\left(\frac{1}{K} - C_1(T)p(T) \right) Z_{3,m,i} - \frac{C_1(T)(1-Kp(T))}{D-K} Z_{4,m,i} \right)^2 \mathbb{1}_{\{Z_{3,m,i} \geq 0\}} \mathbb{1}_{\{Z_{4,m,i} \geq 0\}} \mathbb{1}_{\{Z_{5,m,i}^{(T)} \geq 0\}} \right]$$

2438
$$= \frac{1}{2} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\left(\left(\frac{1}{K} - C_1(T)p(T) \right) Z_{3,m,i} - \frac{C_1(T)(1-Kp(T))}{D-K} Z_{4,m,i} \right)^2 \mathbb{1}_{\{Z_{3,m,i} \geq 0\}} \mathbb{1}_{\{Z_{4,m,i} \geq 0\}} \right]$$

2439
$$= \frac{1}{2} \sum_{m=1}^M \sum_{i=1}^D \frac{\left(\frac{1}{K} - C_1(T)p(T) \right)^2}{4} \mathbb{E}[Z_{3,m,i}^2] + \frac{1}{2} \sum_{m=1}^M \sum_{i=1}^D \frac{C_1(T)^2(1-Kp(T))^2}{4(D-K)^2} \mathbb{E}[Z_{4,m,i}^2]$$

2440
$$- \sum_{m=1}^M \sum_{i=1}^D \frac{C_1(T) \left| \frac{1}{K} - C_1(T)p(T) \right| (1-Kp(T))}{D-K} \mathbb{E}[Z_{3,m,i} \mathbb{1}_{\{Z_{3,m,i} \geq 0\}}] \mathbb{E}[Z_{4,m,i} \mathbb{1}_{\{Z_{4,m,i} \geq 0\}}]$$

2441
$$\geq \frac{\sum_{m=1}^M \|\mathbf{v}_m\|_2^2 D C_1(T)^2 (1-Kp(T))^2}{8(D-K)}$$

2442
$$- \frac{\sum_{m=1}^M \|\mathbf{v}_m\|_2^2 D C_1(T) \left| \frac{1}{K} - C_1(T)p(T) \right| (1-Kp(T)) \sqrt{K(D-K)}}{2\pi(D-K)}$$

2443
$$\geq \frac{\sum_{m=1}^M \|\mathbf{v}_m\|_2^2 D C_1(T) (1-Kp(T))^2}{2(D-K)} \left(\frac{C_1(T)}{4} - \frac{2\sqrt{K(D-K)}}{\pi D} \right)$$

2444
$$\geq \frac{\sum_{m=1}^M \|\mathbf{v}_m\|_2^2 D (1-Kp(T))^2}{16(D-K)} \geq \frac{KD^4}{\eta(T-T^*)},$$

2445 where the last inequality holds by applying the lower bound of $1 - Kp(T)$ demonstrated in
2446 Lemma D.18. This completes the proof. \square

2447 E PROOF OF THEOREM 3.2 AND DISCUSSION OF THE WORST CASE EXAMPLE

2448 In this section, we provide a complete proof for Theorem 3.2, and a worst-case example can attain
2449 the upper bound in Theorem 3.2. We first prove Theorem 3.2 in the following.

2450 *Proof of Theorem 3.2.* We first upper bound the OOD loss by the sum of three terms as

2451
$$\mathcal{L}_{\text{OOD}}(\mathbf{W}_V^{(T)}; \mathbf{W}_{KQ}^{(T)}) = \frac{1}{2} \mathbb{E} [\|\tilde{\mathbf{Y}} - \text{TF}(\tilde{\mathbf{Z}}; \mathbf{W}_V^{(T)}; \mathbf{W}_{KQ}^{(T)})\|_F^2]$$

2452
$$= \frac{1}{2} \mathbb{E} [\|\tilde{\mathbf{Y}} - f^*(\tilde{\mathbf{X}}) + f^*(\tilde{\mathbf{X}}) - \text{TF}(\tilde{\mathbf{Z}}; \mathbf{W}_V^{(T)}; \mathbf{W}_{KQ}^{(T)})\|_F^2]$$

2453
$$= \frac{1}{2} \mathbb{E} [\|\tilde{\mathbf{Y}} - f^*(\tilde{\mathbf{X}})\|_F^2] + \frac{1}{2} \mathbb{E} [\|f^*(\tilde{\mathbf{X}}) - \text{TF}(\tilde{\mathbf{Z}}; \mathbf{W}_V^{(T)}; \mathbf{W}_{KQ}^{(T)})\|_F^2]$$

2454
$$+ \mathbb{E} [\langle \tilde{\mathbf{Y}} - f^*(\tilde{\mathbf{X}}), f^*(\tilde{\mathbf{X}}) - \text{TF}(\tilde{\mathbf{Z}}; \mathbf{W}_V^{(T)}; \mathbf{W}_{KQ}^{(T)}) \rangle]$$

2455
$$\leq \frac{1}{2} \mathbb{E} [\|\tilde{\mathbf{Y}} - f^*(\tilde{\mathbf{X}})\|_F^2] + \frac{1}{2} \mathbb{E} [\|f^*(\tilde{\mathbf{X}}) - \text{TF}(\tilde{\mathbf{Z}}; \mathbf{W}_V^{(T)}; \mathbf{W}_{KQ}^{(T)})\|_F^2]$$

$$+ \sqrt{\mathbb{E}[\|\tilde{\mathbf{Y}} - f^*(\tilde{\mathbf{X}})\|_F^2] \mathbb{E}[\|f^*(\tilde{\mathbf{X}}) - \text{TF}(\tilde{\mathbf{Z}}; \mathbf{W}_V^{(T)}; \mathbf{W}_{KQ}^{(T)})\|_F^2]},$$

where the last inequality holds by Cauchy-Schwarz inequality. Based on this decomposition, it is critical to derive the upper bound for $\mathbb{E}[\|\tilde{\mathbf{Y}} - f^*(\tilde{\mathbf{X}})\|_F^2]$ and $\mathbb{E}[\|f^*(\tilde{\mathbf{X}}) - \text{TF}(\tilde{\mathbf{Z}}; \mathbf{W}_V^{(T)}; \mathbf{W}_{KQ}^{(T)})\|_F^2]$. For the first term $\mathbb{E}[\|\tilde{\mathbf{Y}} - f^*(\tilde{\mathbf{X}})\|_F^2]$, we have

$$\mathbb{E}[\|\tilde{\mathbf{Y}} - f^*(\tilde{\mathbf{X}})\|_F^2] \leq 2\mathbb{E}[\|\tilde{\mathbf{Y}}\|_F^2] + 2\mathbb{E}[\|f^*(\tilde{\mathbf{X}})\|_F^2].$$

By the assumption that each column of $\tilde{\mathbf{Y}}$ satisfying that $\mathbb{E}[\|\tilde{\mathbf{y}}_m\|_2^2] \leq \xi$, it is straightforward that $\mathbb{E}[\|\tilde{\mathbf{Y}}\|_F^2] \leq D\xi$. On the other hand, we have

$$\begin{aligned} \mathbb{E}[\|f^*(\tilde{\mathbf{X}})\|_F^2] &= \sum_{i=1}^D \sum_{m=1}^M \mathbb{E}\left[\left[f^*(\tilde{\mathbf{X}})\right]_{m,i}^2\right] \leq \sum_{i=1}^D \sum_{m=1}^M \sum_{i' \in G^i} \frac{\|\mathbf{v}_m^*\|_2^2}{K} \mathbb{E}[\langle \mathbf{v}_m^* / \|\mathbf{v}_m^*\|_2, \tilde{\mathbf{x}}_{i'} \rangle^2] \\ &\leq \sum_{i=1}^D \sum_{m=1}^M \sum_{i' \in G^i} \frac{\mathbb{E}[\|\tilde{\mathbf{x}}_{i'}\|_2^2] \|\mathbf{v}_m^*\|_2^2}{K} \leq D\xi \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2. \end{aligned}$$

For the second term $\mathbb{E}[\|f^*(\tilde{\mathbf{X}}) - \text{TF}(\tilde{\mathbf{Z}}; \mathbf{W}_V^{(T)}; \mathbf{W}_{KQ}^{(T)})\|_F^2]$, we can derive that

$$\begin{aligned} &\mathbb{E}[\|f^*(\tilde{\mathbf{X}}) - \text{TF}(\tilde{\mathbf{Z}}; \mathbf{W}_V^{(T)}; \mathbf{W}_{KQ}^{(T)})\|_F^2] \\ &\leq \sum_{m=1}^M \sum_{i=1}^D \mathbb{E}\left[\left(\left(\frac{1}{K} - C_1(T)p(T)\right) \sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \tilde{\mathbf{x}}_{i_1} \rangle + \frac{C_1(T)(1 - Kp(T))}{D - K} \sum_{i_1 \notin G^i} \langle \mathbf{v}_m^*, \tilde{\mathbf{x}}_{i_1} \rangle\right)^2\right] \\ &\leq D \sum_{m=1}^M \sum_{i=1}^D \|\mathbf{v}_m^*\|_2^2 \left(\frac{1}{K} - C_1(T)p(T)\right)^2 \sum_{i_1 \in G^i} \mathbb{E}[\|\tilde{\mathbf{x}}_{i_1}\|_2^2] \\ &\quad + D \sum_{m=1}^M \sum_{i=1}^D \|\mathbf{v}_m^*\|_2^2 \frac{C_1(T)^2(1 - Kp(T))^2}{(D - K)^2} \sum_{i_1 \notin G^i} \mathbb{E}[\|\tilde{\mathbf{x}}_{i_1}\|_2^2] \\ &\leq \mathcal{O}\left(\frac{KD^5\xi}{\eta(T - T^*)}\right). \end{aligned}$$

Here the first inequality holds by $|\sigma(x) - \sigma(y)| \leq |x - y|$. The second inequality is established by the fact $(\sum_{i=1}^D a_i)^2 \leq D \sum_{i=1}^D a_i^2$ for all scalar a_i 's and $\langle \mathbf{v}_m^*, \tilde{\mathbf{x}}_{i_1} \rangle^2 \leq \|\mathbf{v}_m^*\|_2^2 \|\tilde{\mathbf{x}}_{i_1}\|_2^2$. Lastly, the third inequality is derived by replacing the conclusions in Lemma D.18. Combining all these derived terms into the three terms derived as the upper bound for OOD loss, we have,

$$\mathcal{L}_{\text{OOD}}(\mathbf{W}_V^{(T)}; \mathbf{W}_{KQ}^{(T)}) - \frac{1}{2}\mathbb{E}[\|\tilde{\mathbf{Y}} - f^*(\tilde{\mathbf{X}})\|_F^2] \leq \mathcal{O}\left(D^3\xi \sqrt{\frac{K \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}{\eta(T - T^*)}} + \frac{KD^5\xi}{\eta(T - T^*)}\right).$$

Let the upper bound derived above smaller than ϵ , we can derive that

$$T_\epsilon = T^* + \mathcal{O}\left(\frac{KD^6\xi^2 \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}{\eta\epsilon^2}\right) = \mathcal{O}\left(\frac{KD^6\xi^2 \sum_{m=1}^M \|\mathbf{v}_m^*\|_2^2}{\eta\epsilon^2}\right).$$

This completes the proof. \square

In the next, we discuss the construction of the worst case $\tilde{\mathbf{Y}}$, such that $\mathcal{L}_{\text{OOD}}(\mathbf{W}_V^{(T_\epsilon)}; \mathbf{W}_{KQ}^{(T_\epsilon)}) - \frac{1}{2}\mathbb{E}[\|\tilde{\mathbf{Y}} - f^*(\tilde{\mathbf{X}})\|_F^2] \geq \epsilon$ for some $T_\epsilon = \Theta(\frac{MKD^6}{\eta\epsilon^2})$ (assuming $\|\mathbf{v}_m\|_2 = 1$ and $\xi = \Theta(1)$ for simplicity). In fact, this T_ϵ can be different with the T_ϵ defined in Theorem 3.2, but at the same order w.r.t. ϵ , hence a matching result.

By the conclusions in Lemma D.18, we know that $\frac{1}{K} - p(T) = \Theta(\frac{D^2}{\sqrt{\eta KMT}})$ and $|p(T)C_1(T) - \frac{1}{K}| \leq \mathcal{O}(\frac{D}{\sqrt{\eta KMT}})$. Therefore, there exists an absolute constant c' such that $\frac{1 - Kp(T)}{|p(T)C_1(T) - \frac{1}{K}|} \geq c'D$. In addition, we let $A_{m,i}$ to denote the event such that $|\sum_{i_1 \notin G^i} \langle \mathbf{v}_m^*, \tilde{\mathbf{x}}_{i_1} \rangle| \geq$

2538 $\max\{\frac{2}{c'}|\sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \tilde{\mathbf{x}}_{i_1} \rangle|, 1\}$. We can assume the probability of $A_{m,i}$ is larger than an absolute constant. In fact, such an assumption can be easily verified on many specific distributions like Gaussian distributions. With these notations in hand, we can design $\tilde{\mathbf{Y}}$ such that its (m, i) -th entry is generated as $\tilde{\mathbf{Y}}_{m,i} = \text{sign}(\sum_{i_1 \notin G^i} \langle \mathbf{v}_m^*, \tilde{\mathbf{x}}_{i_1} \rangle) \cdot \mathbb{1}_{\{A_{m,i}\}} + f^*(\tilde{\mathbf{X}})_{m,i}$. Given this construction, we can deduce that

$$\begin{aligned}
& \mathbb{E}[\langle \tilde{\mathbf{Y}} - f^*(\tilde{\mathbf{X}}), f^*(\tilde{\mathbf{X}}) - \text{TF}(\tilde{\mathbf{Z}}; \mathbf{W}_V^{(T)}; \mathbf{W}_{KQ}^{(T)}) \rangle] \\
&= \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\left(\tilde{\mathbf{Y}}_{m,i} - f^*(\tilde{\mathbf{X}})_{m,i} \right) \left(\left(\frac{1}{K} - C_1(T)p(T) \right) \sum_{i_1 \in G^i} \langle \mathbf{v}_m^*, \tilde{\mathbf{x}}_{i_1} \rangle \right. \right. \\
&\quad \left. \left. + \frac{C_1(T)(1 - Kp(T))}{D - K} \sum_{i_1 \notin G^i} \langle \mathbf{v}_m^*, \tilde{\mathbf{x}}_{i_1} \rangle \right) \right] \\
&\geq \frac{1}{2} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\frac{C_1(T)(1 - Kp(T))}{D - K} \left| \sum_{i_1 \notin G^i} \langle \mathbf{v}_m^*, \tilde{\mathbf{x}}_{i_1} \rangle \right| \mathbb{1}_{\{A_{m,i}\}} \right] \\
&\geq \frac{D^3}{2} \sqrt{\frac{MK}{\eta T}} \mathbb{E}[\mathbb{1}_{\{A_{m,i}\}}] = \Theta\left(D^3 \sqrt{\frac{MK}{\eta T}}\right).
\end{aligned}$$

Replacing the T with $T_\epsilon = \Theta\left(\frac{MKD^6}{\eta\epsilon^2}\right)$, we can finally conclude that

$$\begin{aligned}
& \mathcal{L}_{\text{OOD}}(\mathbf{W}_V^{(T_\epsilon)}, \mathbf{W}_{KQ}^{(T_\epsilon)}) - \frac{1}{2} \mathbb{E}[\|\tilde{\mathbf{Y}} - f^*(\tilde{\mathbf{X}})\|_F^2] \\
&\geq \mathbb{E}[\langle \tilde{\mathbf{Y}} - f^*(\tilde{\mathbf{X}}), f^*(\tilde{\mathbf{X}}) - \text{TF}(\tilde{\mathbf{Z}}; \mathbf{W}_V^{(T_\epsilon)}; \mathbf{W}_{KQ}^{(T_\epsilon)}) \rangle] \geq \Theta\left(D^3 \sqrt{\frac{MK}{\eta}} \frac{\epsilon}{D^3} \sqrt{\frac{\eta}{MK}}\right) = \Theta(\epsilon).
\end{aligned}$$

This validates that the upper bound is indeed attained under our construction.

F TECHNICAL LEMMAS

In this section, we present and prove the technical lemmas we used in the proof of the previous sections.

F.1 CALCULATION DETAILS OF EXPECTATIONS

We introduce the details regarding

Lemma F.1 (Calculation of $F_1(a)$ defined in (D.2)). Let $x \sim \mathcal{N}(0, a)$, then it holds that

- If $\sigma(\cdot)$ is the identity map, then

$$\mathbb{E}[x\sigma(x)\sigma'(x)] = a.$$

- If $\sigma(\cdot)$ is ReLU activation function, then

$$\mathbb{E}[x\sigma(x)\sigma'(x)] = \frac{a}{2}.$$

- If $\sigma(\cdot)$ is Leaky ReLU activation function, then

$$\mathbb{E}[x\sigma(x)\sigma'(x)] = \frac{(1 + \kappa^2)a}{2}.$$

Here, κ is the coefficient of the Leaky ReLU activation function when the input is smaller than 0.

Proof of Lemma F.1. The first conclusion for the identity map is straightforward. When $\sigma(\cdot)$ is the ReLU activation function, we can rewrite that $x\sigma(x)\sigma'(x) = x \cdot x\mathbb{1}_{\{x \geq 0\}} \cdot \mathbb{1}_{\{x \geq 0\}} = x^2\mathbb{1}_{\{x \geq 0\}}$. Therefore, we have,

$$\mathbb{E}[x\sigma(x)\sigma'(x)] = \mathbb{E}[x^2\mathbb{1}_{\{x \geq 0\}}] = \frac{\mathbb{E}[x^2]}{2} = \frac{a}{2}.$$

2592 Besides, when $\sigma(\cdot)$ is the Leaky ReLU activation function, we can rewrite that $x\sigma(x)\sigma'(x) =$
 2593 $x^2\mathbb{1}_{\{x \geq 0\}} + \kappa^2x^2\mathbb{1}_{\{x < 0\}}$. Therefore, we have,
 2594

2595
$$\mathbb{E}[x\sigma(x)\sigma'(x)] = \mathbb{E}[x^2\mathbb{1}_{\{x \geq 0\}}] + \kappa^2\mathbb{E}[x^2\mathbb{1}_{\{x < 0\}}] = \frac{(1 + \kappa)^2\mathbb{E}[x^2]}{2} = \frac{(1 + \kappa)^2a}{2},$$

 2596

2597 which finishes the proof. \square
 2598

2599 **Lemma F.2** (Calculation of $F_2(a, b)$ defined in (D.3)). Let $x_1 \sim \mathcal{N}(0, a)$, $x_2 \sim \mathcal{N}(0, b)$ be two
 2600 independent Gaussian random variables, then it holds that

2601 • If $\sigma(\cdot)$ is the identity map, then

2603
$$\mathbb{E}[x_1\sigma(x_1 + x_2)\sigma'(x_1 + x_2)] = a.$$

 2604

2605 • If $\sigma(\cdot)$ is ReLU activation function, then

2607
$$\mathbb{E}[x_1\sigma(x_1 + x_2)\sigma'(x_1 + x_2)] = \frac{a}{2}.$$

 2608

2609 • If $\sigma(\cdot)$ is Leaky ReLU activation function, then

2611
$$\mathbb{E}[x_1\sigma(x_1 + x_2)\sigma'(x_1 + x_2)] = \frac{(1 + \kappa^2)a}{2}.$$

 2612

2613 Here, κ is the coefficient of the Leaky ReLU activation function when the input is smaller than 0.
 2614

2615 *Proof of Lemma F.2.* The first conclusion for the identity map is straightforward. For the next two
 2616 cases, we first introduce some definitions. Let $x_3 = x_1 + x_2 \sim \mathcal{N}(0, a + b)$. Then we have
 2617 $\text{Cov}(x_1, x_3) = \mathbb{E}[(x_1 + x_2)x_1] = a$, and $\mathbb{E}[x_1|x_3] = \frac{a}{a+b}x_3$. Consequently, when $\sigma(\cdot)$ is the ReLU
 2618 activation function,
 2619

2620
$$\mathbb{E}[x_1\sigma(x_1 + x_2)\sigma'(x_1 + x_2)] = \mathbb{E}[x_1x_3\mathbb{1}_{\{x_3 \geq 0\}}] = \mathbb{E}[\mathbb{E}[x_1x_3\mathbb{1}_{\{x_3 \geq 0\}}|x_3]]$$

 2621
$$= \frac{a}{a+b}\mathbb{E}[x_3^2\mathbb{1}_{\{x_3 \geq 0\}}] = \frac{a}{2(a+b)}\mathbb{E}[x_3^2] = \frac{a}{2}.$$

 2622

2623 In addition, when $\sigma(\cdot)$ is the Leaky ReLU activation function,

2625
$$\mathbb{E}[x_1\sigma(x_1 + x_2)\sigma'(x_1 + x_2)] = \mathbb{E}[x_1x_3\mathbb{1}_{\{x_3 \geq 0\}}] + \kappa^2\mathbb{E}[x_1x_3\mathbb{1}_{\{x_3 < 0\}}]$$

 2626
$$= \mathbb{E}[\mathbb{E}[x_1x_3\mathbb{1}_{\{x_3 \geq 0\}}|x_3]] + \kappa^2\mathbb{E}[\mathbb{E}[x_1x_3\mathbb{1}_{\{x_3 < 0\}}|x_3]]$$

 2627
$$= \frac{a}{a+b}\mathbb{E}[x_3^2\mathbb{1}_{\{x_3 \geq 0\}}] + \frac{\kappa^2a}{a+b}\mathbb{E}[x_3^2\mathbb{1}_{\{x_3 < 0\}}] = \frac{(1 + \kappa^2)a}{2}.$$

 2628

2629 This completes the proof. \square
 2630

2632 **Lemma F.3.** Let $x_1 \sim \mathcal{N}(0, a)$, $x_2 \sim \mathcal{N}(0, b)$ be two independent Gaussian random variables, then
 2633 it holds that

2634 • If $\sigma(\cdot)$ is the identity map, then

2636
$$\mathbb{E}[x_1\sigma(x_1)\sigma'(x_1 + x_2)] = a.$$

 2637

2638 • If $\sigma(\cdot)$ is ReLU activation function, then

2640
$$\mathbb{E}[x_1\sigma(x_1)\sigma'(x_1 + x_2)] = \frac{a}{4} + \frac{a}{2\pi} \left(\arctan \left(\sqrt{\frac{a}{b}} \right) + \frac{\sqrt{ab}}{a+b} \right). \quad (\text{F.1})$$

 2641

2642 And there exist the following matching lower and upper bounds:
 2643

2644
$$\left(\frac{a}{4} + \frac{a\sqrt{ab}}{2\pi(a+b)} \right) \vee \left(\frac{a}{2} - \frac{b\sqrt{ab}}{2\pi(a+b)} \right) \leq \mathbb{E}[x_1\sigma(x_1)\sigma'(x_1 + x_2)] \leq \frac{a}{2}. \quad (\text{F.2})$$

 2645

2646 • If $\sigma(\cdot)$ is Leaky ReLU activation function, then
 2647

$$2648 \mathbb{E}[x_1\sigma(x_1)\sigma'(x_1+x_2)] = \frac{(1+\kappa)^2a}{4} + \frac{(1-\kappa)^2a}{2\pi} \left(\arctan \left(\sqrt{\frac{a}{b}} \right) + \frac{\sqrt{ab}}{a+b} \right). \quad (F.3)$$

2650 And there exist the following matching lower and upper bounds:
 2651

$$2652 \mathbb{E}[x_1\sigma(x_1)\sigma'(x_1+x_2)] \leq \frac{(1+\kappa^2)a}{2}; \\ 2653 \mathbb{E}[x_1\sigma(x_1)\sigma'(x_1+x_2)] \geq \left(\frac{(1+\kappa)^2a}{4} + \frac{(1-\kappa)^2a\sqrt{ab}}{2\pi(a+b)} \right) \vee \left(\frac{(1+\kappa^2)a}{2} - \frac{(1-\kappa)^2b\sqrt{ab}}{2\pi(a+b)} \right). \quad (F.4)$$

2658 Here, κ is the coefficient of the Leaky ReLU activation function when the input is smaller than 0.
 2659

2660 *Proof of Lemma F.3.* The first conclusion for the identity map is straightforward. When $\sigma(\cdot)$ is
 2661 ReLU activation function, we can rewrite that $x_1\sigma(x_1)\sigma'(x_1+x_2) = x_1^2 \mathbb{1}_{\{x_1 \geq 0\}} \mathbb{1}_{\{x_1+x_2 \geq 0\}}$. Let
 2662 $z_1 = \frac{x_1}{\sqrt{a}}$ and $z_2 = \frac{x_2}{\sqrt{b}}$, then we have,
 2663

$$2664 \mathbb{E}[x_1\sigma(x_1)\sigma'(x_1+x_2)] = a \underbrace{\mathbb{E}[z_1^2 \mathbb{1}_{\{z_1 \geq 0\}} \mathbb{1}_{\{\sqrt{a}z_1 + \sqrt{b}z_2 \geq 0\}}]}_I. \quad (F.5)$$

2666 For I , by denoting $\lambda = \sqrt{\frac{a}{b}}$, we can obtain that
 2667

$$2668 I = \int_0^\infty \int_{-\lambda z_1}^\infty z_1^2 \phi(z_1) \phi(z_2) dz_1 dz_2 = \int_0^\infty z_1^2 \Phi(\lambda z_1) \phi(z_1) dz_1,$$

2671 where $\phi(\cdot)$ and $\Phi(\cdot)$ are the cumulative distribution function (c.d.f.) and probability density func-
 2672 tion (p.d.f.) for the standard Gaussian distribution respectively. We can denote that $I(\lambda) =$
 2673 $\int_0^\infty z_1^2 \Phi(\lambda z_1) \phi(z_1) dz_1$. Then, by the Leibniz integral rule, we have
 2674

$$2675 \frac{dI(\lambda)}{d\lambda} = \int_0^\infty z_1^3 \phi(\lambda z_1) \phi(z_1) dz_1 = \frac{1}{2\pi(1+\lambda^2)^2} \int_0^\infty z^3 e^{-\frac{z^2}{2}} dz = \frac{1}{\pi(1+\lambda^2)^2}.$$

2677 Additionally, since $I(0) = \frac{1}{4}$, we can derive that
 2678

$$2679 I = \frac{1}{4} + \frac{1}{2\pi} \left(\arctan \lambda + \frac{\lambda}{1+\lambda^2} \right) = \frac{1}{4} + \frac{1}{2\pi} \left(\arctan \left(\sqrt{\frac{a}{b}} \right) + \frac{\sqrt{ab}}{a+b} \right) \quad (F.6)$$

2682 Applying the result of (F.6) into (F.5), we finishes the proof of (F.1). In the next, we derive the upper
 2683 and lower bound for I_1 . By the property of c.d.f., we know that $\Phi(z) \leq 1$ for all $z \in \mathbb{R}$, which
 2684 implies that

$$2685 I \leq \int_0^\infty z_1^2 \phi(z_1) dz_1 = \frac{1}{2} \mathbb{E}[z_1^2] = \frac{1}{2}.$$

2688 Additionally, by Mills ratio, we further obtain $1 - \Phi(z) \leq \phi(z)/z$ for all $z > 0$. Based on this
 2689 result, we can obtain that

$$2690 I \geq \int_0^\infty z_1^2 \phi(z_1) \left(1 - \frac{\phi(\lambda z_1)}{\lambda z_1} \right) dz_1 = \frac{1}{2} - \frac{1}{\lambda} \int_0^\infty z_1 \phi(z_1) \phi(\lambda z_1) dz_1,$$

2693 where the second term can be calculated by

$$2694 \int_0^\infty z_1 \phi(z_1) \phi(\lambda z_1) dz_1 = \frac{1}{2\pi} \int_0^\infty z_1 e^{-\frac{z_1^2(1+\lambda^2)}{2}} dz_1 = \frac{1}{2\pi(1+\lambda^2)} \int_0^\infty z_1 e^{-\frac{z_1^2}{2}} dz_1 = \frac{1}{2\pi(1+\lambda^2)}.$$

2697 Plugging this result into the preceding inequality, we can derive that

$$2698 I \geq \frac{1}{2} - \frac{b^{\frac{3}{2}}}{2\pi\sqrt{a}(a+b)}.$$

Combining all these results and (F.6), we finally conclude that

$$\left(\frac{1}{4} + \frac{\sqrt{ab}}{2\pi(a+b)} \right) \vee \left(\frac{1}{2} - \frac{b^{\frac{3}{2}}}{2\pi\sqrt{a}(a+b)} \right) \leq I \leq \frac{1}{2}. \quad (\text{F.7})$$

Applying the result of (F.7) into (F.5), we finishes the proof of (F.2). In addition, when $\sigma(\cdot)$ is the Leaky ReLU activation function, we can similarly derive that

$$\begin{aligned} \mathbb{E}[x_1\sigma(x_1)\sigma'(x_1+x_2)] &= a\mathbb{E}[z_1^2\mathbb{1}_{\{z_1\geq 0\}}\mathbb{1}_{\{\sqrt{az_1}+\sqrt{bz_2}\geq 0\}}] + a\kappa\mathbb{E}[z_1^2\mathbb{1}_{\{z_1<0\}}\mathbb{1}_{\{\sqrt{az_1}+\sqrt{bz_2}\geq 0\}}] \\ &\quad + a\kappa\mathbb{E}[z_1^2\mathbb{1}_{\{z_1\geq 0\}}\mathbb{1}_{\{\sqrt{az_1}+\sqrt{bz_2}<0\}}] + a\kappa^2\mathbb{E}[z_1^2\mathbb{1}_{\{z_1<0\}}\mathbb{1}_{\{\sqrt{az_1}+\sqrt{bz_2}<0\}}] \\ &= (1+\kappa^2)a\mathbb{E}[z_1^2\mathbb{1}_{\{z_1\geq 0\}}\mathbb{1}_{\{\sqrt{az_1}+\sqrt{bz_2}\geq 0\}}] + 2\kappa a\mathbb{E}[z_1^2\mathbb{1}_{\{z_1<0\}}\mathbb{1}_{\{\sqrt{az_1}+\sqrt{bz_2}\geq 0\}}], \end{aligned}$$

where the last equality holds by the symmetry of z_1 and z_2 . By applying a very similar calculation process, we can obtain that

$$\mathbb{E}[z_1^2\mathbb{1}_{\{z_1<0\}}\mathbb{1}_{\{\sqrt{az_1}+\sqrt{bz_2}\geq 0\}}] = \int_{-\infty}^0 z_1^2 \Phi(\lambda z_1) \phi(z_1) dz_1 = \frac{1}{4} - \frac{1}{2\pi} \left(\arctan\left(\sqrt{\frac{a}{b}}\right) + \frac{\sqrt{ab}}{a+b} \right).$$

By replacing this result into the previous calculation, we can immediately prove (F.3). And (F.4) can be directly derived from (F.2). \square

Lemma F.4. Let $x_1 \sim \mathcal{N}(0, a)$, $x_2 \sim \mathcal{N}(0, b)$ be two independent Gaussian random variables, then it holds that

- If $\sigma(\cdot)$ is the identity map, then

$$\mathbb{E}[x_2\sigma(x_1)\sigma'(x_1+x_2)] = 0.$$

- If $\sigma(\cdot)$ is ReLU activation function, then

$$\mathbb{E}[x_2\sigma(x_1)\sigma'(x_1+x_2)] = \frac{b\sqrt{ab}}{2\pi(a+b)}.$$

- If $\sigma(\cdot)$ is Leaky ReLU activation function, then

$$\mathbb{E}[x_2\sigma(x_1)\sigma'(x_1+x_2)] = \frac{(1-\kappa)^2 b\sqrt{ab}}{2\pi(a+b)}.$$

Here, κ is the coefficient of the Leaky ReLU activation function when the input is smaller than 0.

Proof of Lemma F.4. The first conclusion for the identity map is straightforward. When $\sigma(\cdot)$ is ReLU activation function, we can rewrite that $x_2\sigma(x_1)\sigma'(x_1+x_2) = x_1x_2\mathbb{1}_{\{x_1\geq 0\}}\mathbb{1}_{\{x_1+x_2\geq 0\}}$. Let $z_1 = \frac{x_1}{\sqrt{a}}$ and $z_2 = \frac{x_2}{\sqrt{b}}$, then we have,

$$\mathbb{E}[x_2\sigma(x_1)\sigma'(x_1+x_2)] = \sqrt{ab} \underbrace{\mathbb{E}[z_1 z_2 \mathbb{1}_{\{z_1\geq 0\}} \mathbb{1}_{\{\sqrt{az_1}+\sqrt{bz_2}\geq 0\}}]}_I. \quad (\text{F.8})$$

For I , by denoting $\lambda = \sqrt{\frac{a}{b}}$, it can be calculated by

$$\begin{aligned} I &= \int_0^\infty \int_{-\lambda z_1}^\infty z_1 z_2 \phi(z_1) \phi(z_2) dz_1 dz_2 = \int_0^\infty z_1 \phi(z_1) \left(\int_{-\lambda z_1}^\infty z_2 \phi(z_2) dz_2 \right) dz_1 \\ &= \int_0^\infty z_1 \phi(z_1) \left(\frac{1}{\sqrt{2\pi}} \int_{-\lambda z_1}^\infty z_2 e^{-\frac{z_2^2}{2}} dz_2 \right) dz_1 = \int_0^\infty z_1 \phi(z_1) \left(\frac{1}{\sqrt{2\pi}} \int_{\frac{\lambda^2 z_1^2}{2}}^\infty e^{-z_2} dz_2 \right) dz_1 \\ &= \frac{1}{2\pi} \int_0^\infty z_1 e^{-\frac{z_1^2(1+\lambda^2)}{2}} dz_1 = \frac{1}{2\pi(1+\lambda^2)} = \frac{b}{2\pi(a+b)}. \end{aligned} \quad (\text{F.9})$$

Now applying the results of (F.9) into (F.8), we finish the proof when $\sigma(\cdot)$ is the ReLU activation function. In addition, when $\sigma(\cdot)$ is the Leaky ReLU activation function, we can derive that

$$\mathbb{E}[x_2\sigma(x_1)\sigma'(x_1+x_2)]$$

$$\begin{aligned}
&= \sqrt{ab} \mathbb{E}[z_1 z_2 \mathbb{1}_{\{z_1 \geq 0\}} \mathbb{1}_{\{\sqrt{a}z_1 + \sqrt{b}z_2 \geq 0\}}] + \sqrt{ab} \kappa \mathbb{E}[z_1 z_2 \mathbb{1}_{\{z_1 < 0\}} \mathbb{1}_{\{\sqrt{a}z_1 + \sqrt{b}z_2 \geq 0\}}] \\
&\quad + \kappa \sqrt{ab} \mathbb{E}[z_1 z_2 \mathbb{1}_{\{z_1 \geq 0\}} \mathbb{1}_{\{\sqrt{a}z_1 + \sqrt{b}z_2 < 0\}}] + \kappa^2 \sqrt{ab} \mathbb{E}[z_1 z_2 \mathbb{1}_{\{z_1 < 0\}} \mathbb{1}_{\{\sqrt{a}z_1 + \sqrt{b}z_2 < 0\}}] \\
&= (1 + \kappa^2) \sqrt{ab} \mathbb{E}[z_1 z_2 \mathbb{1}_{\{z_1 \geq 0\}} \mathbb{1}_{\{\sqrt{a}z_1 + \sqrt{b}z_2 \geq 0\}}] + 2\kappa \sqrt{ab} \mathbb{E}[z_1 z_2 \mathbb{1}_{\{z_1 < 0\}} \mathbb{1}_{\{\sqrt{a}z_1 + \sqrt{b}z_2 \geq 0\}}],
\end{aligned}$$

where the last equality holds by the symmetry of z_1 and z_2 . In addition, by a similar calculation process, we can obtain that

$$\mathbb{E}[z_1 z_2 \mathbb{1}_{\{z_1 < 0\}} \mathbb{1}_{\{\sqrt{a}z_1 + \sqrt{b}z_2 \geq 0\}}] = \frac{1}{2\pi} \int_{-\infty}^0 z_1 e^{-\frac{z_1^2(1+\lambda^2)}{2}} dz_1 = -\frac{1}{2\pi(1+\lambda^2)} = -\frac{b}{2\pi(a+b)}.$$

Consequently, we can finally obtain that

$$\mathbb{E}[x_2 \sigma(x_1) \sigma'(x_1 + x_2)] = \frac{(1 - 2\kappa + \kappa^2)b\sqrt{ab}}{2\pi(a+b)} = \frac{(1 - \kappa)^2 b \sqrt{ab}}{2\pi(a+b)},$$

which finishes the proof. \square

Then, based on the conclusions of Lemma F.3 and Lemma F.4, we can immediately obtain the following lemma as a corollary.

Lemma F.5 (Calculation of $F_3(a, b)$ defined in (D.4)). Let $x_1 \sim \mathcal{N}(0, a)$, $x_2 \sim \mathcal{N}(0, b)$ be two independent Gaussian random variables, then it holds that

- If $\sigma(\cdot)$ is the identity map, then

$$\mathbb{E}[(x_1 + x_2) \sigma(x_1) \sigma'(x_1 + x_2)] = a.$$

- If $\sigma(\cdot)$ is ReLU activation function, then

$$\mathbb{E}[(x_1 + x_2) \sigma(x_1) \sigma'(x_1 + x_2)] = \frac{a}{4} + \frac{a}{2\pi} \arctan\left(\sqrt{\frac{a}{b}}\right) + \frac{\sqrt{ab}}{2\pi}.$$

And there exist the following matching lower and upper bounds:

$$\frac{a}{2} \vee \left(\frac{a}{4} + \frac{\sqrt{ab}}{2\pi}\right) \leq \mathbb{E}[(x_1 + x_2) \sigma(x_1) \sigma'(x_1 + x_2)] \leq \frac{a}{2} + \frac{b\sqrt{ab}}{2\pi(a+b)} \leq \frac{a}{2} + \frac{b}{4\pi}.$$

- If $\sigma(\cdot)$ is Leaky ReLU activation function, then

$$\mathbb{E}[(x_1 + x_2) \sigma(x_1) \sigma'(x_1 + x_2)] = \frac{(1 + \kappa)^2 a}{4} + \frac{(1 - \kappa)^2 a}{2\pi} \arctan\left(\sqrt{\frac{a}{b}}\right) + \frac{(1 - \kappa)^2 \sqrt{ab}}{2\pi}.$$

And there exist the following matching lower and upper bounds:

$$\begin{aligned}
\mathbb{E}[x_1 \sigma(x_1) \sigma'(x_1 + x_2)] &\geq \frac{(1 + \kappa)^2 a}{2} \vee \left(\frac{(1 + \kappa)^2 a}{4} + \frac{(1 - \kappa)^2 \sqrt{ab}}{2\pi}\right); \\
\mathbb{E}[x_1 \sigma(x_1) \sigma'(x_1 + x_2)] &\leq \frac{(1 + \kappa)^2 a}{2} + \frac{(1 - \kappa)^2 b \sqrt{ab}}{2\pi(a+b)} \leq \frac{(1 + \kappa)^2 a}{2} + \frac{(1 - \kappa)^2 b}{4\pi}.
\end{aligned}$$

Here, κ is the coefficient of the Leaky ReLU activation function when the input is smaller than 0.

Lemma F.6 (Calculation of $F_4(a, b, c)$ defined in (D.5)). Let $x_1 \sim \mathcal{N}(0, a)$, $x_2 \sim \mathcal{N}(0, b)$, $x_3 \sim \mathcal{N}(0, c)$ be three independent Gaussian random variables, then it holds that

- If $\sigma(\cdot)$ is the identity map, then

$$\mathbb{E}[x_1 \sigma(x_1 + x_2) \sigma'(x_1 + x_2 + x_3)] = a.$$

- If $\sigma(\cdot)$ is ReLU activation function, then

$$\mathbb{E}[x_1 \sigma(x_1 + x_2) \sigma'(x_1 + x_2 + x_3)] = \frac{a}{4} + \frac{a}{2\pi} \left(\arctan\left(\sqrt{\frac{a+b}{c}}\right) + \frac{\sqrt{(a+b)c}}{a+b+c} \right).$$

And there exist the following matching lower and upper bounds:

$$\left(\frac{a}{4} + \frac{a\sqrt{(a+b)c}}{2\pi(a+b+c)}\right) \vee \left(\frac{a}{2} - \frac{ac^{\frac{3}{2}}}{2\pi\sqrt{a+b}(a+b+c)}\right) \leq \mathbb{E}[x_1 \sigma(x_1 + x_2) \sigma'(x_1 + x_2 + x_3)] \leq \frac{a}{2}.$$

2808 • If $\sigma(\cdot)$ is Leaky ReLU activation function, then
 2809

$$2810 \mathbb{E}[x_1\sigma(x_1 + x_2)\sigma'(x_1 + x_2 + x_3)] = \frac{(1 + \kappa)^2 a}{4} + \frac{(1 - \kappa)^2 a}{2\pi} \left(\arctan \left(\sqrt{\frac{a+b}{c}} \right) + \frac{\sqrt{(a+b)c}}{a+b+c} \right).$$

2812
 2813 And there exist the following matching lower and upper bounds:

$$2814 \mathbb{E}[x_1\sigma(x_1 + x_2)\sigma'(x_1 + x_2 + x_3)] \\ 2815 \geq \left(\frac{(1 + \kappa)^2 a}{4} + \frac{(1 - \kappa)^2 a \sqrt{(a+b)c}}{2\pi(a+b+c)} \right) \vee \left(\frac{(1 + \kappa^2)a}{2} - \frac{(1 - \kappa)^2 a c^{\frac{3}{2}}}{2\pi\sqrt{a+b}(a+b+c)} \right); \\ 2816 \\ 2817 \\ 2818 \mathbb{E}[x_1\sigma(x_1 + x_2)\sigma'(x_1 + x_2 + x_3)] \leq \frac{(1 + \kappa^2)a}{2}.$$

2820 Here, κ is the coefficient of the Leaky ReLU activation function when the input is smaller than 0.
 2821

2822 *Proof of Lemma F.6.* The first conclusion for the identity map is straightforward. When $\sigma(\cdot)$ is
 2823 ReLU activation function, we can rewrite that $x_1\sigma(x_1 + x_2)\sigma'(x_1 + x_2 + x_3) = x_1(x_1 +$
 2824 $x_2)\mathbb{1}_{\{x_1+x_2 \geq 0\}}\mathbb{1}_{\{x_1+x_2+x_3 \geq 0\}}$. Additionally, let $x_4 = x_1 + x_2 \sim \mathcal{N}(0, a+b)$ and $z = \frac{x_4}{\sqrt{a+b}} \sim$
 2825 $\mathcal{N}(0, 1)$. Then we have $\text{Cov}(x_1, x_4) = \mathbb{E}[(x_1 + x_2)x_1] = a$, and $\mathbb{E}[x_1|x_4] = \frac{a}{a+b}x_4$. Therefore, we
 2826 have
 2827

$$2828 \mathbb{E}[x_1\sigma(x_1 + x_2)\sigma'(x_1 + x_2 + x_3)] \\ 2829 = \mathbb{E}[x_1(x_1 + x_2)\mathbb{1}_{\{x_1+x_2 \geq 0\}}\mathbb{1}_{\{x_1+x_2+x_3 \geq 0\}}] = \mathbb{E}[\mathbb{E}[x_1(x_1 + x_2)\mathbb{1}_{\{x_1+x_2 \geq 0\}}\mathbb{1}_{\{x_1+x_2+x_3 \geq 0\}}|x_1, x_2]] \\ 2830 \\ 2831 = \mathbb{E}\left[x_1(x_1 + x_2)\mathbb{1}_{\{x_1+x_2 \geq 0\}}\Phi\left(\frac{x_1 + x_2}{\sqrt{c}}\right)\right] = \mathbb{E}\left[\mathbb{E}\left[x_1x_4\mathbb{1}_{\{x_4 \geq 0\}}\Phi\left(\frac{x_4}{\sqrt{c}}\right)|x_4\right]\right] \\ 2832 \\ 2833 = \frac{a}{a+b}\mathbb{E}\left[x_4^2\mathbb{1}_{\{x_4 \geq 0\}}\Phi\left(\frac{x_4}{\sqrt{c}}\right)\right] = a\mathbb{E}[z^2\mathbb{1}_{\{z \geq 0\}}\Phi(\lambda z)] = a\underbrace{\int_0^\infty z^2\Phi(\lambda z)\phi(z)dz}_I,$$

2836 where $\lambda = \sqrt{\frac{a+b}{c}}$. By the similar process in the proof of Lemma F.3, we can obtain that
 2837

$$2839 I = \frac{1}{4} + \frac{1}{2\pi} \left(\arctan \lambda + \frac{\lambda}{1 + \lambda^2} \right) = \frac{1}{4} + \frac{1}{2\pi} \left(\arctan \left(\sqrt{\frac{a+b}{c}} \right) + \frac{\sqrt{(a+b)c}}{a+b+c} \right)$$

2840 and

$$2841 \left(\frac{1}{4} + \frac{\sqrt{(a+b)c}}{2\pi(a+b+c)} \right) \vee \left(\frac{1}{2} - \frac{c^{\frac{3}{2}}}{2\pi\sqrt{a+b}(a+b+c)} \right) \leq I \leq \frac{1}{2}.$$

2842 Plugging these results into the previous equation of expectation, we finish the proof when $\sigma(\cdot)$ is the
 2843 ReLU activation function. In addition, when $\sigma(\cdot)$ is the Leaky ReLU activation function, we have
 2844

$$2845 \mathbb{E}[x_1\sigma(x_1 + x_2)\sigma'(x_1 + x_2 + x_3)] \\ 2846 = \mathbb{E}[x_1(x_1 + x_2)\mathbb{1}_{\{x_1+x_2 \geq 0\}}\mathbb{1}_{\{x_1+x_2+x_3 \geq 0\}}] + \kappa\mathbb{E}[x_1(x_1 + x_2)\mathbb{1}_{\{x_1+x_2 < 0\}}\mathbb{1}_{\{x_1+x_2+x_3 \geq 0\}}] \\ 2847 + \kappa\mathbb{E}[x_1(x_1 + x_2)\mathbb{1}_{\{x_1+x_2 \geq 0\}}\mathbb{1}_{\{x_1+x_2+x_3 < 0\}}] + \kappa^2\mathbb{E}[x_1(x_1 + x_2)\mathbb{1}_{\{x_1+x_2 < 0\}}\mathbb{1}_{\{x_1+x_2+x_3 < 0\}}] \\ 2848 = (1 + \kappa^2)\mathbb{E}[x_1(x_1 + x_2)\mathbb{1}_{\{x_1+x_2 \geq 0\}}\mathbb{1}_{\{x_1+x_2+x_3 \geq 0\}}] + 2\kappa\mathbb{E}[x_1(x_1 + x_2)\mathbb{1}_{\{x_1+x_2 < 0\}}\mathbb{1}_{\{x_1+x_2+x_3 \geq 0\}}].$$

2849 By utilizing a similar calculation process, we have
 2850

$$2851 \mathbb{E}[x_1(x_1 + x_2)\mathbb{1}_{\{x_1+x_2 < 0\}}\mathbb{1}_{\{x_1+x_2+x_3 \geq 0\}}] = a\int_{-\infty}^0 z^2\Phi(\lambda z)\phi(z)dz \\ 2852 \\ 2853 = \frac{a}{4} - \frac{a}{2\pi} \left(\arctan \left(\sqrt{\frac{a+b}{c}} \right) + \frac{\sqrt{(a+b)c}}{a+b+c} \right).$$

2854 Plugging this result into the previous calculations, we finish the proof. And the upper and lower
 2855 bounds for Leaky ReLU activation function can be directly derived by comparing the formulas. \square

2862 **Lemma F.7** (Calculation of $F_5(a, b, c)$ defined in (D.6)). Let $x_1 \sim \mathcal{N}(0, a)$, $x_2 \sim \mathcal{N}(0, b)$, $x_3 \sim \mathcal{N}(0, c)$ be three independent Gaussian random variables, then it holds that
 2863
 2864

- 2865 • If $\sigma(\cdot)$ is the identity map, then

$$2866 \quad \mathbb{E}[x_2\sigma(x_1)\sigma'(x_1 + x_2 + x_3)] = 0. \\ 2867$$

- 2868 • If $\sigma(\cdot)$ is ReLU activation function, then
 2869

$$2870 \quad \mathbb{E}[x_2\sigma(x_1)\sigma'(x_1 + x_2 + x_3)] = \frac{b\sqrt{a(b+c)}}{2\pi(a+b+c)}. \\ 2871 \\ 2872$$

- 2873 • If $\sigma(\cdot)$ is Leaky ReLU activation function, then
 2874

$$2875 \quad \mathbb{E}[x_2\sigma(x_1)\sigma'(x_1 + x_2 + x_3)] = \frac{(1-\kappa)^2 b \sqrt{a(b+c)}}{2\pi(a+b+c)}. \\ 2876$$

2877 Here, κ is the coefficient of the Leaky ReLU activation function when the input is smaller than 0.
 2878

2879 *Proof of Lemma F.7.* The first conclusion for the identity map is straightforward. When
 2880 $\sigma(\cdot)$ is ReLU activation function, we can rewrite that $x_2\sigma(x_1)\sigma'(x_1 + x_2 + x_3) =$
 2881 $x_1 x_2 \mathbb{1}_{\{x_1 \geq 0\}} \mathbb{1}_{\{x_1 + x_2 + x_3 \geq 0\}}$. Then we have

$$2882 \quad \mathbb{E}[x_2\sigma(x_1)\sigma'(x_1 + x_2 + x_3)] = \mathbb{E}[x_1 x_2 \mathbb{1}_{\{x_1 \geq 0\}} \mathbb{1}_{\{x_1 + x_2 + x_3 \geq 0\}}] \\ 2883 \\ 2884 = \mathbb{E}[x_1 x_2 \mathbb{1}_{\{x_1 \geq 0\}} \mathbb{1}_{\{x_1 + x_2 + x_3 \geq 0\}} | x_1, x_2] \\ 2885 \\ 2886 = \mathbb{E}\left[x_1 x_2 \mathbb{1}_{\{x_1 \geq 0\}} \Phi\left(\frac{x_1 + x_2}{\sqrt{c}}\right)\right] \\ 2887 \\ 2888 = \int_0^\infty \int_{-\infty}^\infty x_1 x_2 \Phi\left(\frac{x_1 + x_2}{\sqrt{c}}\right) \phi(x_1) \phi(x_2) dx_1 dx_2 \\ 2889 \\ 2890 = \int_0^\infty x_1 \frac{1}{\sqrt{2\pi a}} e^{-\frac{x_1^2}{2a}} \underbrace{\left(\int_{-\infty}^\infty x_2 \Phi\left(\frac{x_1 + x_2}{\sqrt{c}}\right) \frac{1}{\sqrt{2\pi b}} e^{-\frac{x_2^2}{2b}} dx_2\right)}_I dx_1 \\ 2891 \\ 2892$$

2893 We can utilize the integral by parts to derive that
 2894

$$2895 \quad I = -\sqrt{\frac{b}{2\pi}} \int_{-\infty}^\infty \Phi\left(\frac{x_1 + x_2}{\sqrt{c}}\right) de^{-\frac{x_2^2}{2b}} - \sqrt{\frac{b}{2\pi}} \Phi\left(\frac{x_1 + x_2}{\sqrt{c}}\right) e^{-\frac{x_2^2}{2b}} \Big|_{-\infty}^\infty + \sqrt{\frac{b}{2\pi}} \int_{-\infty}^\infty e^{-\frac{x_2^2}{2b}} d\Phi\left(\frac{x_1 + x_2}{\sqrt{c}}\right) \\ 2896 \\ 2897 = \frac{1}{2\pi} \sqrt{\frac{b}{c}} \int_{-\infty}^\infty e^{-\frac{x_2^2}{2b} - \frac{(x_1 + x_2)^2}{2c}} dx_2 = \frac{1}{2\pi} \sqrt{\frac{b}{c}} \int_{-\infty}^\infty e^{-\frac{(x_2 + \frac{b}{b+c}x_1)^2}{2\frac{b}{b+c}} - \frac{x_1^2}{2(b+c)}} dx_2 = \frac{b}{\sqrt{2\pi(b+c)}} e^{-\frac{x_1^2}{2(b+c)}}$$

2901 Now substitute this result of I back into the outer integral for the calculation for expectation, then
 2902 we have

$$2903 \quad \mathbb{E}[x_2\sigma(x_1)\sigma'(x_1 + x_2 + x_3)] = \frac{b}{2\pi\sqrt{a(b+c)}} \int_0^\infty x_1 e^{-\frac{x_1^2}{2a} - \frac{x_1^2}{2(b+c)}} dx_1 \\ 2904 \\ 2905 = \frac{b}{2\pi\sqrt{a(b+c)}} \frac{a(b+c)}{a+b+c} \int_0^\infty e^{-\frac{(a+b+c)x_1^2}{2a(b+c)}} d\frac{(a+b+c)x_1^2}{2a(b+c)} \\ 2906 \\ 2907 = \frac{b\sqrt{a(b+c)}}{2\pi(a+b+c)}. \\ 2908 \\ 2909$$

2911 This finish the proof when $\sigma(\cdot)$ is ReLU activation function. In addition, when $\sigma(\cdot)$ is Leaky ReLU
 2912 activation function, we can derive that

$$2913 \quad \mathbb{E}[x_2\sigma(x_1)\sigma'(x_1 + x_2 + x_3)] \\ 2914 = \mathbb{E}[x_1 x_2 \mathbb{1}_{\{x_1 \geq 0\}} \mathbb{1}_{\{x_1 + x_2 + x_3 \geq 0\}}] + \kappa \mathbb{E}[x_1 x_2 \mathbb{1}_{\{x_1 < 0\}} \mathbb{1}_{\{x_1 + x_2 + x_3 \geq 0\}}] \\ 2915 + \kappa \mathbb{E}[x_1 x_2 \mathbb{1}_{\{x_1 \geq 0\}} \mathbb{1}_{\{x_1 + x_2 + x_3 < 0\}}] + \kappa^2 \mathbb{E}[x_1 x_2 \mathbb{1}_{\{x_1 < 0\}} \mathbb{1}_{\{x_1 + x_2 + x_3 < 0\}}]$$

$$= (1 + \kappa^2) \mathbb{E}[x_1 x_2 \mathbb{1}_{\{x_1 \geq 0\}} \mathbb{1}_{\{x_1 + x_2 + x_3 \geq 0\}}] + 2\kappa \mathbb{E}[x_1 x_2 \mathbb{1}_{\{x_1 < 0\}} \mathbb{1}_{\{x_1 + x_2 + x_3 \geq 0\}}].$$

By applying a similar calculation process, we can derive that

$$\mathbb{E}[x_1 x_2 \mathbb{1}_{\{x_1 < 0\}} \mathbb{1}_{\{x_1 + x_2 + x_3 \geq 0\}}] = \frac{b}{2\pi\sqrt{a(b+c)}} \int_{-\infty}^0 x_1 e^{-\frac{x_1^2}{2a} - \frac{x_1^2}{2(b+c)}} dx_1 = -\frac{b\sqrt{a(b+c)}}{2\pi(a+b+c)}.$$

Applying this result, we finish the proof. \square

Lemma F.8. Let $x_1 \sim \mathcal{N}(0, a)$, $x_2 \sim \mathcal{N}(0, b)$ be two independent Gaussian random variables, then it holds that

- If $\sigma(\cdot)$ is the identity map, then

$$\mathbb{E}[\sigma(x_1)\sigma(x_1 + x_2)] = a.$$

- If $\sigma(\cdot)$ is ReLU activation function, then

$$\mathbb{E}[\sigma(x_1)\sigma(x_1 + x_2)] = \frac{a}{4} + \frac{a}{2\pi} \arctan\left(\sqrt{\frac{a}{b}}\right) + \frac{\sqrt{ab}}{2\pi}$$

- If $\sigma(\cdot)$ is Leaky ReLU activation function, then

$$\mathbb{E}[\sigma(x_1)\sigma(x_1 + x_2)] = \frac{(1 + \kappa)^2 a}{4} + \frac{(1 - \kappa)^2 a}{2\pi} \arctan\left(\sqrt{\frac{a}{b}}\right) + \frac{(1 - \kappa)^2 \sqrt{ab}}{2\pi}. \quad (\text{F.10})$$

Here, κ is the coefficient of the Leaky ReLU activation function when the input is smaller than 0.

Proof of Lemma F.8. The first conclusion for the identity map is straightforward. When $\sigma(\cdot)$ is ReLU activation function or leaky ReLU activation function, we can utilize the fact that $x\sigma'(x) = \sigma(x)$ to re-write that

$$\mathbb{E}[\sigma(x_1)\sigma(x_1 + x_2)] = \mathbb{E}[(x_1 + x_2)\sigma(x_1)\sigma'(x_1 + x_2)] = \mathbb{E}[(x_1 + x_2)\sigma(x_1)\sigma'(x_1 + x_2)].$$

And this term has already been calculated in Lemma F.5. Hence we finish the proof. \square

F.2 ARITHMETIC INEQUALITIES

Lemma F.9. Let a, b, c be three positive scalars, it holds that

$$\frac{c}{a+b} \geq \frac{c}{a} - \frac{bc}{a^2}$$

Proof of Lemma F.9.

$$\frac{c}{a+b} - \frac{c}{a} = -\frac{bc}{(a+b)a} \geq -\frac{bc}{a^2}.$$

This completes the proof. \square

Lemma F.10. Let a, b, c be three positive scalars, it holds that

$$\frac{c}{a-b} \leq \frac{c}{a} + \frac{bc}{(a-b)^2}$$

Proof of Lemma F.10.

$$\frac{c}{a-b} - \frac{c}{a} = \frac{bc}{(a-b)a} \leq \frac{bc}{(a-b)^2}.$$

This completes the proof. \square

2970 F.3 SEQUENCE ITERATION BOUND
2971

2972 The following lemmas characterize the increase of a positive sequence with matching lower and
2973 upper bounds. Similar conclusions and proofs can be found in Jelassi et al. (2022); Cao et al.
2974 (2023); Meng et al. (2024); Zhang et al. (2024a; 2025). We include the proof here for completeness.

2975 **Lemma F.11.** Consider a positive sequence $\{x_t\}_{t=0}^{\infty}$ satisfying the following iterative rules:

$$2977 \quad x_{t+1} \geq x_t + \eta \cdot c_1 \cdot x_t^q; \\ 2978 \quad x_{t+1} \leq x_t + \eta \cdot c_2 \cdot x_t^q,$$

2980 where $c_2 \geq c_1 > 0$ are positive constants. For any $v > x_0$, let T_v denote the first index t such that
2981 $x_t \geq v$. Then, for any constant $\zeta > 0$, the following bounds on T_v hold:

$$2983 \quad T_v \leq \frac{1 + \zeta}{\eta c_1 x_0^{q-1}} + \frac{(1 + \zeta)^q c_2 \log(\frac{v}{x_0})}{c_1}, \quad (\text{F.11})$$

2985 and

$$2987 \quad T_v \geq \frac{1}{(1 + \zeta)^q \eta c_2 x_0^{q-1}} - \frac{\log(\frac{v}{x_0})}{(1 + \zeta)^{q-1}}. \quad (\text{F.12})$$

2990 *Proof of Lemma F.11.* To prove the bounds, let \mathcal{T}_g be the first iteration such that $x_t \geq (1 + \zeta)^g x_0$.
2991 Furthermore, define g^* as the smallest integer satisfying $(1 + \zeta)^{g^*} x_0 \geq v$. This implies

$$2993 \quad \frac{\log(\frac{v}{x_0})}{\log(1 + \zeta)} \leq g^* < \frac{\log(\frac{v}{x_0})}{\log(1 + \zeta)} + 1.$$

2995 For $t = \mathcal{T}_1$, we use the lower bound iteration:

$$2998 \quad x_{\mathcal{T}_1} \geq x_0 + \sum_{t=0}^{\mathcal{T}_1-1} \eta c_1 x_t^q \geq x_0 + \mathcal{T}_1 \eta c_1 x_0^q,$$

3001 from which we can deduce that

$$3002 \quad \mathcal{T}_1 \leq \frac{x_{\mathcal{T}_1} - x_0}{\eta c_1 x_0^q}. \quad (\text{F.13})$$

3005 Utilizing the upper-bound iteration for $x_{\mathcal{T}_1}$ and the condition $x_{\mathcal{T}_1-1} \leq x_0(1 + \zeta)$, we get

$$3006 \quad x_{\mathcal{T}_1} \leq x_{\mathcal{T}_1-1} + \eta c_2 x_{\mathcal{T}_1-1}^q \leq x_0(1 + \zeta) + \eta c_2 x_0^q (1 + \zeta)^q. \quad (\text{F.14})$$

3008 Combining the results from (F.13) and (F.14) leads to

$$3009 \quad \mathcal{T}_1 \leq \frac{\zeta}{\eta c_1 x_0^{q-1}} + \frac{(1 + \zeta)^{q-1} c_2}{c_1}.$$

3012 The case for $g > 1$ is handled similarly. Using the lower bound iteration from \mathcal{T}_{g-1} to \mathcal{T}_g – 1:

$$3013 \quad x_{\mathcal{T}_g} \geq x_{\mathcal{T}_{g-1}} + \sum_{t=\mathcal{T}_{g-1}}^{\mathcal{T}_g-1} \eta c_1 x_t^q \geq x_{\mathcal{T}_{g-1}} + \eta c_1 (\mathcal{T}_g - \mathcal{T}_{g-1}) x_0^q (1 + \zeta)^{q(g-1)}, \quad (\text{F.15})$$

3016 and the difference $x_{\mathcal{T}_g} - x_{\mathcal{T}_{g-1}}$ can be upper bounded using the upper bound iteration and $x_{\mathcal{T}_{g-1}} \leq$
3017 $x_0(1 + \zeta)^g$ and $x_{\mathcal{T}_{g-1}} \geq x_0(1 + \zeta)^{g-1}$:

$$3019 \quad x_{\mathcal{T}_g} - x_{\mathcal{T}_{g-1}} \leq x_{\mathcal{T}_{g-1}} + \eta c_2 x_{\mathcal{T}_g}^q - x_{\mathcal{T}_{g-1}} \leq \zeta (1 + \zeta)^{g-1} x_0 + \eta c_2 x_0^q (1 + \zeta)^{gq}. \quad (\text{F.16})$$

3021 Combining (F.15) and (F.16), we derive that

$$3022 \quad \mathcal{T}_g \leq \mathcal{T}_{g-1} + \frac{\zeta}{\eta c_1 x_0^{q-1} (1 + \zeta)^{(g-1)(q-1)}} + \frac{(1 + \zeta)^q c_2}{c_1}. \quad (\text{F.17})$$

3024 Taking a telescoping sum of the results of (F.17) from $g = 1$ to $g = g^*$ and by the fact that $T_v \leq \mathcal{T}_{g^*}$,
 3025 we finally get (F.11). For the lower bound, we proceed similarly starting with $t = \mathcal{T}_1$. We use the
 3026 upper bound iteration:

$$3028 x_{\mathcal{T}_1} \leq x_0 + \sum_{t=0}^{\mathcal{T}_1-1} \eta c_2 x_t^q \leq x_0 + \mathcal{T}_1 \eta c_2 x_0^q (1 + \zeta)^q.$$

3029 Substitute that $x_{\mathcal{T}_1} - x_0 \geq \zeta x_0$, we get

$$3032 \mathcal{T}_1 \geq \frac{\zeta}{\eta c_2 x_0^{q-1} (1 + \zeta)^q}. \quad (\text{F.18})$$

3033 A similar derivation for $g > 1$ using the upper bound iteration gives:

$$3036 x_{\mathcal{T}_g} \leq x_{\mathcal{T}_{g-1}} + \sum_{t=\mathcal{T}_{g-1}}^{\mathcal{T}_g-1} \eta c_2 x_t^q \leq x_{\mathcal{T}_{g-1}} + \eta c_2 (\mathcal{T}_g - \mathcal{T}_{g-1}) x_0^q (1 + \zeta)^{gq}. \quad (\text{F.19})$$

3037 The difference $x_{\mathcal{T}_g} - x_{\mathcal{T}_{g-1}}$ can also be lower bounded by utilizing the fact that $x_{\mathcal{T}_{g-1}-1} \leq x_0 (1 + \zeta)^{g-1}$:

$$3042 x_{\mathcal{T}_g} - x_{\mathcal{T}_{g-1}} \geq x_{\mathcal{T}_g} - x_{\mathcal{T}_{g-1}-1} - \eta c_2 x_{\mathcal{T}_{g-1}-1}^{q-1} \geq \zeta (1 + \zeta)^{g-1} x_0 - \eta c_2 x_0^q (1 + \zeta)^{(g-1)q}. \quad (\text{F.20})$$

3043 Combining the results from (F.19) and (F.20), we obtain that,

$$3045 \mathcal{T}_g \geq \mathcal{T}_{g-1} + \frac{\zeta}{\eta c_2 x_0^{q-1} (1 + \zeta)^{g(q-1)+1}} - \frac{1}{(1 + \zeta)^q}. \quad (\text{F.21})$$

3046 Taking a telescoping sum of the results of (F.21) from $g = 1$ to $g = g^* - 1$ and by the fact that
 3047 $T_v \geq \mathcal{T}_{g^*-1}$, we finally get (F.12). \square

3048 **Lemma F.12.** Let x_t be a positive sequence for $t \geq 0$. Assume x_t satisfies the iterative formula

$$3052 x_{t+1} = x_t + c_1 e^{-c_2 x_t}$$

3053 for given constants $c_1, c_2 > 0$. Then, for all $t \geq 0$, the sequence x_t is bounded as follows:

$$3055 \frac{1}{c_2} \log(c_1 c_2 t + e^{c_2 x_0}) \leq x_t \leq c_1 e^{-c_2 x_0} + \frac{1}{c_2} \log(c_1 c_2 t + e^{c_2 x_0}).$$

3056 *Proof of Lemma F.12.* First, we establish the lower bound for x_t . We introduce a continuous-time
 3057 sequence \underline{x}_t , $t \geq 0$ defined by the integral equation with the same initial value.

$$3060 \underline{x}_t = \underline{x}_0 + c_1 \cdot \int_0^t e^{-c_2 \underline{x}_\tau} d\tau, \quad \underline{x}_0 = x_0. \quad (\text{F.22})$$

3061 Observe that \underline{x}_t is clearly an increasing function of t . Hence, we obtain

$$3064 \underline{x}_{t+1} = \underline{x}_t + c_1 \cdot \int_t^{t+1} e^{-c_2 \underline{x}_\tau} d\tau$$

$$3065 \leq \underline{x}_t + c_1 \cdot \int_t^{t+1} e^{-c_2 \underline{x}_t} d\tau$$

$$3066 = \underline{x}_t + c_1 \exp(-c_2 \underline{x}_t)$$

3067 for all $t \in \mathbb{N}$. By comparing the preceding inequality with the iterative formula for $\{x_t\}$, the
 3068 comparison theorem implies that $x_t \geq \underline{x}_t$ for all $t \in \mathbb{N}$. Equation (F.22) possesses an exact solution
 3069 given by

$$3073 \underline{x}_t = \frac{1}{c_2} \log(c_1 c_2 t + e^{c_2 x_0}).$$

3074 Thus, we have

$$3077 x_t \geq \frac{1}{c_2} \log(c_1 c_2 t + e^{c_2 x_0})$$

3078 for all $t \in \mathbb{N}$. This concludes the derivation of the lower bound.
 3079

3080 Next, we derive the upper bound for x_t . We have
 3081

$$\begin{aligned} x_t &= x_0 + c_1 \cdot \sum_{\tau=0}^{t-1} e^{-c_2 x_\tau} \\ &\leq x_0 + c_1 \cdot \sum_{\tau=0}^t e^{-\log(c_1 c_2 \tau + e^{c_2 x_0})} \\ &= x_0 + c_1 \cdot \sum_{\tau=0}^t \frac{1}{c_1 c_2 \tau + e^{c_2 x_0}} \\ &= x_0 + \frac{c_1}{e^{c_2 x_0}} + c_1 \cdot \sum_{\tau=1}^t \frac{1}{c_1 c_2 \tau + e^{c_2 x_0}} \\ &\leq x_0 + \frac{c_1}{e^{c_2 x_0}} + c_1 \cdot \int_0^t \frac{1}{c_1 c_2 \tau + e^{c_2 x_0}} d\tau, \end{aligned}$$

3094 where the second inequality utilizes the lower bound for x_t derived in the first part of the lemma's
 3095 result. Consequently, we obtain
 3096

$$\begin{aligned} x_t &\leq x_0 + \frac{c_1}{e^{c_2 x_0}} + \frac{1}{c_2} \log(c_1 c_2 t + e^{c_2 x_0}) - \frac{1}{c_2} \log(e^{c_2 x_0}) \\ &= c_1 e^{-c_2 x_0} + \frac{1}{c_2} \log(c_1 c_2 t + e^{c_2 x_0}). \end{aligned}$$

3101 This completes the proof. □
 3102

3103 G PROOF OF THE CASE WHEN $D = K$

3104
 3105 In this section, we provide the theoretical results for the special case $D = K$. Under this setting, the
 3106 ground-truth softmax scores reduce to a trivial rank-one structure that $\mathbf{S}^* = \frac{1}{D} \mathbf{1}_D \mathbf{1}_D^\top$. Consequently,
 3107 the initialization $\mathbf{W}_{KQ}^{(0)} = \mathbf{0}_{D \times D}$ already yields $\mathbf{S}^{(0)} = \frac{1}{D} \mathbf{1}_D \mathbf{1}_D^\top$, achieving an exact recovery of \mathbf{S}^*
 3108 at the start of training. As a result, the gradient with respect to \mathbf{W}_{KQ} remains zero throughout the
 3109 optimization, and the problem effectively reduces to optimizing the single parameter matrix \mathbf{W}_V .
 3110 Under this reduced setting, the loss becomes strongly convex in \mathbf{W}_V , and gradient descent enjoys
 3111 a linear convergence rate, which is much faster than the $\Theta(1/T)$ rate established in Theorem 3.1.
 3112 Since Theorem 3.1 provides matching upper and lower bounds and is therefore tight and can not be
 3113 improved, this linear convergence phenomenon is exclusive to the degenerate case $D = K$. This
 3114 explains why the proof strategy for Theorem 3.1 does not extend to the $D = K$ setting.
 3115

3116 Now, we present the following Theorem G.1 to characterize the loss convergence when a one-layer
 3117 transformer is supervised by a teacher model $f^*(\cdot)$ with $\mathbf{S}^* = \frac{1}{D} \mathbf{1}_D \mathbf{1}_D^\top$.
 3118

3119 **Theorem G.1.** Suppose that $\eta \leq \frac{1}{2}$, then for any $t > 0$, the excess loss is minimized as
 3120

$$\mathcal{L}(\mathbf{W}_V^{(t)}, \mathbf{W}_{KQ}^{(t)}) - \mathcal{L}_{\text{opt}} \leq \frac{\sum_{m=1}^M \|\mathbf{v}_m\|_2^2}{2} e^{-\eta(t-1)}.$$

3122 Before we provide the proof for Theorem G.1, we first provide and prove the following lemma.
 3123

3124
 3125 **Lemma G.2.** Under the same conditions of Theorem 3.1, there exist a time dependent non-negative
 3126 scalar $C(t)$, such that
 3127

$$\mathbf{w}_{V,m}^{(t)} = C(t) \cdot \mathbf{v}_m^*, \text{ for all } m \in [M]; \tag{G.1}$$

3128 and $C(t)$ has the following closed formulation:
 3129

$$C(t) = (1 - \eta F_1(1))^{t-1},$$

3130 where the function $F_1(\cdot)$ is defined in (D.2). In addition, $\mathbf{W}_{KQ}^{(t)}$ remains zero throughout the training.
 3131

3132 *Proof of Lemma G.2.* W.L.O.G., we assume that \mathbf{v}_m^* is already normalized, and $\mathbf{\Gamma}_m =$
 3133 $[\mathbf{v}_m^*, \boldsymbol{\xi}_{m,2}, \dots, \boldsymbol{\xi}_{m,d}] \in \mathbb{R}^{d \times d}$ be an orthogonal matrix with \mathbf{v}_m being its first column. We prove
 3134 this lemma by induction. Since these two conclusions holds at initialization with $C(0) = 0$. It is
 3135 sufficient to prove that $\nabla_{\mathbf{w}_{V,m}} \mathcal{L}(\mathbf{W}_V^{(t)}; \mathbf{W}_{KQ}^{(t)}) = c(t) \cdot \mathbf{v}_m^*$ and $\nabla_{\mathbf{w}_{KQ}} \mathcal{L}(\mathbf{W}_V^{(t)}; \mathbf{W}_{KQ}^{(t)}) = \mathbf{0}$, when
 3136 assuming $\mathbf{w}_{V,m}^{(t)} = C(t) \cdot \mathbf{v}_m^*$ and $\mathbf{W}_{KQ}^{(t)} = \mathbf{0}$. Notice that $\mathbf{W}_{KQ}^{(t)} = \mathbf{0}$ implies that $\mathbf{S}_{i',i}^{(t)} = 1/D$ for
 3137 all $i', i \in [D]$. By the gradient calculations demonstrated in Lemma D.1, we have
 3138

$$\begin{aligned}
 \nabla_{\mathbf{w}_{V,m}} \mathcal{L}(\mathbf{W}_V^{(t)}; \mathbf{W}_{KQ}^{(t)}) &= - \sum_{i=1}^D \sum_{i_1=1}^D \mathbb{E} \left[\left[\mathbf{Y}_{m,i} - \sigma \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \right] \right. \\
 &\quad \cdot \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{S}_{i_1,i}^{(t)} \right) \mathbf{x}_{i_1} \mathbf{S}_{i_1,i}^{(t)} \Big] \\
 &= - \underbrace{\sum_{i=1}^D \sum_{i_1=1}^D \mathbb{E} \left[\mathbf{Y}_{m,i} \sigma' \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \frac{\mathbf{x}_{i_1}}{D} \right]}_{I_1} \\
 &\quad + \underbrace{\sum_{i_1=1}^D \mathbb{E} \left[\sigma \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \sigma' \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \mathbf{x}_{i_1} \right]}_{I_2} \quad (G.2)
 \end{aligned}$$

3156 For I_1 , we have

$$\begin{aligned}
 I_1 &= \sum_{i=1}^D \sum_{i_1=1}^D \mathbb{E} \left[\mathbf{Y}_{m,i} \sigma' \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \frac{\mathbf{\Gamma}_m \mathbf{\Gamma}_m^\top \mathbf{x}_{i_1}}{D} \right] \\
 &= \sum_{i=1}^D \sum_{i_1=1}^D \mathbb{E} \left[[f^*(\mathbf{X})]_{m,i} \sigma' \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \frac{\langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle}{D} \right] \cdot \mathbf{v}_m^* \\
 &\quad + \sum_{i=1}^D \sum_{i_1=1}^D \sum_{k=2}^d \mathbb{E} \left[[f^*(\mathbf{X})]_{m,i} \sigma' \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \frac{\langle \boldsymbol{\xi}_{m,k}, \mathbf{x}_{i_1} \rangle}{D} \right] \cdot \boldsymbol{\xi}_{m,k} \\
 &= \sum_{i=1}^D \sum_{i_1=1}^D \mathbb{E} \left[[f^*(\mathbf{X})]_{m,i} \sigma' \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \frac{\langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle}{D} \right] \cdot \mathbf{v}_m^*.
 \end{aligned}$$

3172 The first quality holds as \mathcal{E} is mean-zero and independent with \mathbf{X} , and the last equality holds as the
 3173 orthogonality between \mathbf{v}_m^* and $\boldsymbol{\xi}_{m,k}$ implies that $\langle \mathbf{v}_m^*, \mathbf{x}_{i_2} \rangle$ is independent with $\langle \boldsymbol{\xi}_{m,k}, \mathbf{x}_{i_1} \rangle$ for all
 3174 $i_1, i_2 \in [D]$. Notice that $[f^*(\mathbf{X})]_{m,i} = \frac{1}{D} \sigma \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right)$ and $\sigma' \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) =$
 3175 $\sigma' \left(\frac{C(t)}{D} \sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right) = \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right)$. Consequently, $\langle \boldsymbol{\xi}_{m,k}, \mathbf{x}_{i_1} \rangle$ is a mean-zero
 3176 Gaussian random variable, and independent with both $[f^*(\mathbf{X})]_{m,i}$ and $\sigma' \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right)$ si-
 3177 multaneously, implying that
 3178

$$\begin{aligned}
 &\mathbb{E} \left[[f^*(\mathbf{X})]_{m,i} \sigma' \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \langle \boldsymbol{\xi}_{m,k}, \mathbf{x}_{i_1} \rangle \right] \\
 &= \mathbb{E} \left[[f^*(\mathbf{X})]_{m,i} \sigma' \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \right] \mathbb{E}[\langle \boldsymbol{\xi}_{m,k}, \mathbf{x}_{i_1} \rangle] = 0.
 \end{aligned}$$

Based on previous results, by plugging $[f^*(\mathbf{X})]_{m,i} = \frac{1}{D}\sigma(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle)$ and utilizing the definition of $F_1(a)$ in (D.2), we can further derive that

$$\begin{aligned} I_1 &= \sum_{i=1}^D \sum_{i_1=1}^D \mathbb{E} \left[\frac{1}{D} \sigma \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right) \sigma' \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \frac{\langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle}{D} \right] \cdot \mathbf{v}_m^* \\ &= \frac{1}{D} \mathbb{E} \left[\sigma \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right) \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right) \sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right] \cdot \mathbf{v}_m^* = F_1(1) \cdot \mathbf{v}_m^*. \end{aligned}$$

The second equality is derived by fact that $\sigma(ax) = a\sigma(x)$ and $\sigma'(ax) = \sigma'(x)$ if $a \geq 0$. Then we can conclude the final result by the definition of $F_1(a)$ in (D.2). Similar to the process of handling I_1 , we have the following for I_2 :

$$\begin{aligned} I_2 &= \sum_{i_1=1}^D \mathbb{E} \left[\sigma \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \sigma' \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \mathbf{\Gamma}_m \mathbf{\Gamma}_m^\top \mathbf{x}_{i_1} \right] \\ &= \frac{C(t)}{D} \mathbb{E} \left[\sigma \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right) \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right) \sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right] \cdot \mathbf{v}_m^* = C(t) F_1(1) \cdot \mathbf{v}_m^*. \end{aligned}$$

Plugging the calculation results for I_1 and I_2 into (G.2), we can immediately derive that $\nabla_{\mathbf{w}_{V,m}} \mathcal{L}(\mathbf{W}_V^{(t)}; \mathbf{W}_{KQ}^{(t)}) = c(t) \cdot \mathbf{v}_m^*$, which, as we stated previously, directly conclude (G.1). In addition, we can further calculate that

$$\mathbf{w}_{V,m}^{(t+1)} = C(t+1) \cdot \mathbf{v}_m^* = (C(t) + \eta F_1(1)(1 - C(t))) \cdot \mathbf{v}_m^*,$$

which implies $C(t)$ possesses the updating rules as:

$$C(t+1) = C(t) + \eta F_1(1)(1 - C(t)).$$

Subtracting 1 on both sides of the equation above and rearranging the terms, we can obtain that

$$1 - C(t+1) = (1 - \eta F_1(1))(1 - \eta C(t)) = \dots = (1 - \eta F_1(1))^t (1 - \eta C(0)) = (1 - \eta F_1(1))^t.$$

This proves the closed formulation of $C_1(t)$. In the next, we prove that $\nabla_{\mathbf{w}_{KQ}} \mathcal{L}(\mathbf{W}_V^{(t)}; \mathbf{W}_{KQ}^{(t)}) = \mathbf{0}$. By Lemma D.1, we have

$$\begin{aligned} &\sqrt{D} \nabla_{\mathbf{w}_{KQ}} \mathcal{L}(\mathbf{W}_V^{(t)}; \mathbf{W}_{KQ}^{(t)}) \\ &= -\frac{1}{D^2} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\left[[f^*(\mathbf{X})]_{m,i} - \sigma \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \right] \sigma' \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \right. \\ &\quad \left. \cdot \sum_{i_1=1}^D \sum_{i_2=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle (\mathbf{p}_{i_1} - \mathbf{p}_{i_2}) \mathbf{p}_i^\top \right] \\ &= -\frac{1}{D^2} \sum_{m=1}^M \sum_{i=1}^D \underbrace{\mathbb{E} \left[[f^*(\mathbf{X})]_{m,i} \sigma' \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \sum_{i_1=1}^D \sum_{i_2=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{p}_{i_1} \mathbf{p}_i^\top \right]}_{I_3} \\ &\quad + \underbrace{\frac{1}{D^2} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[[f^*(\mathbf{X})]_{m,i} \sigma' \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \sum_{i_1=1}^D \sum_{i_2=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{p}_{i_2} \mathbf{p}_i^\top \right]}_{I_4} \\ &\quad + \underbrace{\frac{1}{D^2} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\sigma \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \sigma' \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \sum_{i_1=1}^D \sum_{i_2=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{p}_{i_1} \mathbf{p}_i^\top \right]}_{I_5} \end{aligned}$$

$$\begin{aligned}
 & - \frac{1}{D^2} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\underbrace{\sigma \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \sigma' \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right)}_{I_6} \sum_{i_1=1}^D \sum_{i_2=1}^D \langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle \mathbf{p}_{i_2} \mathbf{p}_i^\top \right]. \tag{G.3}
 \end{aligned}$$

In the next, we discuss the value of I_3 , I_4 , I_5 , and I_6 respectively. For I_3 , it can be calculated as

$$\begin{aligned}
 I_3 &= C(t) \sum_{m=1}^M \sum_{i_1=1}^D \mathbb{E} \left[\sigma \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right) \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right) \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right] \mathbf{p}_{i_1} \sum_{i=1}^D \mathbf{p}_i^\top \\
 &= \frac{C(t)}{D} \sum_{m=1}^M \mathbb{E} \left[\sigma \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right) \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right) \sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right] \sum_{i_1=1}^D \mathbf{p}_{i_1} \sum_{i=1}^D \mathbf{p}_i^\top \\
 &= MC(t) F_1(1) \sum_{i_1=1}^D \mathbf{p}_{i_1} \sum_{i=1}^D \mathbf{p}_i^\top.
 \end{aligned}$$

The second equation holds as $\mathbb{E} \left[\sigma \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right) \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right) \sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right]$ takes identical value for all $i_1 \in [D]$ as they follows the same distribution. Similarly, for I_4 , we can calculate it as

$$\begin{aligned}
 I_4 &= \frac{C(t)}{D} \sum_{m=1}^M \mathbb{E} \left[\sigma \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right) \sigma' \left(\sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right) \sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right] \sum_{i_2=1}^D \mathbf{p}_{i_2} \sum_{i=1}^D \mathbf{p}_i^\top \\
 &= MC(t) F_1(1) \sum_{i_2=1}^D \mathbf{p}_{i_2} \sum_{i=1}^D \mathbf{p}_i^\top.
 \end{aligned}$$

This implies that $I_3 = I_4$. Through a similar calculation, we can also get

$$I_5 = I_6 = MC^2(t) F_1(1) \sum_{i_2=1}^D \mathbf{p}_{i_2} \sum_{i=1}^D \mathbf{p}_i^\top.$$

Plugging the results that $I_3 = I_4$, and $I_5 = I_6$ into (G.3), we immediately concludes that $\nabla_{\mathbf{W}_{KQ}} \mathcal{L}(\mathbf{W}_V^{(t)}; \mathbf{W}_{KQ}^{(t)}) = \mathbf{0}$. This completes the proof. \square

With the conclusions of Lemma G.2, we are ready to prove Theorem G.1.

Proof of Theorem G.1. Since we have demonstrated in Lemma G.2 that $\mathbf{W}_{KQ}^{(t)} = \mathbf{0}$, implying $\mathbf{S}^{(t)} = \frac{1}{D} \mathbf{1}_D \mathbf{1}_D^\top$. We can decompose and simplify the loss as

$$\begin{aligned}
 \mathcal{L}(\mathbf{W}_V^{(t)}; \mathbf{W}_{KQ}^{(t)}) &= \frac{1}{2} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\left(\mathbf{Y}_{m,i} - \sigma \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \right)^2 \right] \\
 &= \frac{1}{2} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\left([\mathbf{f}^*(\mathbf{X})]_{m,i} - \sigma \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \right)^2 \right] + \frac{1}{2} \mathbb{E} [\|\mathcal{E}\|_F^2],
 \end{aligned}$$

where the last term is essential \mathcal{L}_{opt} , and the last inequality holds by the independence between \mathbf{X} and \mathcal{E} and the fact that \mathcal{E} is zero-mean. Since this equation holds, in the next, we directly deal with $\mathcal{L}(\mathbf{W}_V^{(t)}; \mathbf{W}_{KQ}^{(t)}) - \mathcal{L}_{\text{opt}}$. By utilizing the fact that $|\sigma(x) - \sigma(y)| \leq |x - y|$ for all $x, y \in \mathbb{R}$, we can derive that

$$\mathcal{L}(\mathbf{W}_V^{(t)}; \mathbf{W}_{KQ}^{(t)}) - \mathcal{L}_{\text{opt}} = \frac{1}{2} \sum_{m=1}^M \sum_{i=1}^D \mathbb{E} \left[\left([\mathbf{f}^*(\mathbf{X})]_{m,i} - \sigma \left(\sum_{i_1=1}^D \frac{\langle \mathbf{w}_{V,m}^{(t)}, \mathbf{x}_{i_1} \rangle}{D} \right) \right)^2 \right]$$

$$\leq \frac{1}{2D} \sum_{m=1}^M \mathbb{E} \left[\left(\left(1 - C(t) \right) \sum_{i_1=1}^D \langle \mathbf{v}_m^*, \mathbf{x}_{i_1} \rangle \right)^2 \right] = \frac{(1 - C(t))^2 \sum_{m=1}^M \|\mathbf{v}_m\|_2^2}{2}.$$

Notice that we have derived $1 - C(t) = (1 - \eta F_1(1))^{t-1} \leq e^{-\eta F_1(1)(t-1)} \leq e^{-\eta(t-1)/2}$ in Lemma G.2, where the last inequality holds as $F_1(1) \geq \frac{1}{2}$ demonstrated by Lemma F.1. Plugging this result into the upper bound above, then we completes the proof. \square

H ADDITIONAL EXPERIMENTS

In this section, we present additional experimental results on transformer learning of bilinear teacher models under more general training data distributions.

Each batch of training data $(\mathbf{X}_n, \mathbf{Y}_n)_{n=1}^N$ is generated with \mathbf{X}_n drawn from either (i). a Student-t distribution with $df = 5$; or (ii). a mean-centered Gumbel distribution with $loc = 0$ and $scale = 1$. We then repeat the learning experiments for the six types of teacher models described in Section 4. Except for the change in the input data distribution, all other configurations remain identical to those in the Gaussian-data experiments.

The results are demonstrated in the following Figures 6, 7, 8, and 9. Figure 6 and 7 report the results when training data are generated from Student-T distribution, while Figure 8 and 9 report the results when training data are generated from mean-centered Gumbel distribution. We could observe that all these results seems almost identical to those demonstrated in main body. Specifically, for both different distributed training data, we can still observe that the curves of training loss have slopes approximately -1 on their tails, and the curves of O.O.D. loss have slopes approximates -0.5 . These results empirically shows that the $\Theta(1/T)$ convergence rate for training loss and $\mathcal{O}(1/\sqrt{T})$ convergence rate for O.O.D. loss still hold, even the model are trained on Gaussian data. In addition, we can also observe that the trained softmax attention scores $\mathbf{S}^{(T)}$ perfectly replicate the patterns of \mathbf{S}^* , almost identical to the results obtained on Gaussian data.

Figure 6: Excess training loss, excess OOD test loss (both in log-log scales), and cosine similarity between the value matrix \mathbf{W}_V of one layer transformer (2.4), and ground truth value matrix \mathbf{V}^* . These results are presented for experiments where training data is generated from Student-T distribution.

3374 Figure 7: Heatmap of attention score matrix $S^{(T)}$ when the training loss converges. These results
 3375 are presented for experiments where training data is generated from Student-T distribution.
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384

3395 Figure 8: Excess training loss, excess OOD test loss (both in log-log scales), and cosine similarity
 3396 between the value matrix W_V of one layer transformer (2.4), and ground truth value matrix V^* .
 3397 These results are presented for experiments where training data is generated from mean-centered
 3398 Gumbel distribution.
 3399
 3400
 3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

Figure 9: Heatmap of attention score matrix $S^{(T)}$ when the training loss converges. These results are presented for experiments where training data is generated from mean-centered Gumbel distribution.