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ABSTRACT

Transformers have achieved great success across a wide range of applications, yet
the theoretical foundations underlying their success remain largely unexplored.
To demystify the strong capacities of transformers applied to versatile scenarios
and tasks, we theoretically investigate utilizing transformers as students to learn
from a class of teacher models. Specifically, the teacher models covered in our
analysis encompass convolution layers with average pooling, graph convolution
layers, and various classic statistical learning models, including sparse token se-
lection models (Sanford et al.l 2023; [Wang et al., 2024) and group-sparse linear
predictors (Zhang et al.,[2025). When learning from this class of teacher models,
we prove that one-layer transformers with simplified “position-only” attention can
successfully recover all parameter blocks of the teacher models, thus achieving the
optimal population loss. Building upon the efficient mimicry of trained transform-
ers towards teacher models, we further demonstrate that they can generalize well
to a broad class of out-of-distribution data under mild assumptions. The key in our
analysis is to identify a fundamental bilinear structure shared by various learning
tasks, which enables us to establish unified learning guarantees for these tasks
when treating them as teachers for transformers.

1 INTRODUCTION

Transformers have rapidly become a cornerstone in the field of modern machine learning, demon-
strating exceptional performance and versatility across diverse applications, including natural lan-
guage processing (Vaswani et al.,|2017; |[Radford et al., 2019; |OpenAll 2023} Devlin, |2018} |Achiam
et al., 2023} |Vig & Belinkovl 2019; [Touvron et al., [2023} |Ouyang et al., 2022), computer vision
(Dosovitskiy et al., 2020; Rao et al} [2021; [Liu et al., 2021} [Yuan et al.| [2021)), and reinforcement
learning (Jumper et al.l 2021} |Chen et al.| 2021} Janner et al., 2021} Reed et al., [2022)). Acting as
the critical component of transformers, self-attention layers assign varying weights to features based
on their relevance and embedded positional context. This design principle intuitively endows trans-
formers with a remarkable ability to efficiently process both structural and positional information, as
empirically validated in numerous applications mentioned above. However, despite their profound
impact, the theoretical foundations of transformers, especially the mechanisms of how self-attention
layers work, remain largely unexplored due to their intricate architecture.

Some recent theoretical studies aimed to understand transformers by analyzing their capability in
solving specific tasks (Zhang et al.| [ 2024b; |Frei & Vardil 2025} Jelassi et al.| [2022; Wang et al.,[2024;
Zhang et al., [2025). Specifically, |[Zhang et al.| (2024b)) considered in-context linear regression, and
demonstrated that for Gaussian data, a one-layer transformer with linear attention can perform linear
regression based on the context, and then apply the obtained linear model to make predictions on
query data. Later, |Frei & Vardi|(2025)) further extended the setting to in-context linear classification,
and studied the in-context benign overfitting phenomena when learning from Gaussian mixture data.
Jelassi et al.| (2022) investigated a specific data model based on the ’patch association’ assumption,
where an image is divided into disjoint partitions, and patches within the same partition share similar
characteristics. They theoretically demonstrate that a one-layer vision transformer (ViT) can extract
the spatial structure among patches when trained on this data model. [Wang et al.| (2024) studied
a problem termed ’sparse token selections’, where the objective is to find the average of several
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tokens from specific positions, and they proved that a one-layer transformer can successfully solve
this task on Gaussian data when the positional information of the target positions is embedded into
the query token. [Zhang et al.[(2025)) considered a group sparse linear model, where the input’s label
is determined by features from only one of several input feature groups (the ’label-relevant group’),
and prove that for Gaussian data, a trained one-layer transformer can achieve correct classification
by identifying features from this group and learning the ground truth linear classifier. Although these
works have offered valuable insights into the underlying mechanisms of transformers, their focus on
very specific learning tasks limits the generality of their theoretical findings, prompting us to seek a
unified theoretical framework accounting for a broader range of examples.

Despite the distinctions among the model simplifications and technical assumptions, we observe that
for some learning tasks discussed above, including the sparse token selection (Sanford et al.| 2023;
Wang et al.| [2024), the group sparse linear predictors (Zhang et al.l [2025), and patch association
(Jelassi et al.l 2022)), their true responses are essentially given by bilinear functions. In addition,
the linear attention studied in |[Zhang et al.| (2024a)); Frei & Vardi| (2025) inherently constitutes a
bilinear structure with respect to its parameter matrices. Motivated by this observation, we define a
general class of “teacher models” that employ a bilinear structure, and investigate the setting where
one-layer transformers are trained as “student” models under the supervision from these teacher
models. Our framework not only encompasses the learning tasks from prior works but also covers
popular, previously unexplored models such as convolution layers with average pooling and graph
convolution layers on regular graphs. The purpose of our analysis is to establish unified theoretical
guarantees for one-layer transformer models trained with gradient descent in learning this class of
teacher models.

The major contributions of this work are as follows.

* We theoretically demonstrate that one-layer transformers trained via gradient descent can effec-
tively recover a general class of teacher models. To support this claim, we establish a tight con-
vergence guarantee for the population loss, with matching upper and lower bounds at the rate of
S} (%), where T is the iteration number of gradient descent. We also establish out-of-distribution
generalization bounds for the obtained transformer model and demonstrate that it is competitive
with the teacher model over a wide rage of learning tasks. This illustrates the effectiveness and
robustness of transformer models in learning from diverse teacher models.

* Our theory covers some settings studied in recent works (Wang et al.| 2024} |[Zhang et al., [2025).
Compared with Wang et al.| (2024) where the authors give learning guarantees for sparse token
selections with a convergence rate O(%), our study confirms the results, and offers slightly
tightened theoretical guarantees by demonstrating a © (%) convergence rate with matching upper
and lower bounds. Compared with Zhang et al.| (2025) which mainly focuses on group sparse
linear classification, our work provides complementary results and demonstrates that transformers
can also perform efficient group sparse linear regression.

* Experiments on both synthetic and real-world data are conducted to verify our theory through the
examples of learning a convolution layer with average pooling, learning a graph convolution layer
with regular graphs, learning sparse token selection, and group sparse linear regression. In all
experiments, we can observe clear loss convergence and parameter convergence that match our
theory. The experiments setup does not exactly match our theory assumptions, indicating that our
theory conclusions can also hold in more practical training setups and real-data learning tasks.

2 PROBLEM SETUP
In this section, we introduce the definition of the teacher models we study in this paper, and give
various examples covered in our definition.
We consider a teacher model with an input matrix X € R%*? of the following form:
(X)) =o(V*XS™), 2.1

where V* € RMxd jg the ground truth value matrix of the teacher model, and S* € RP*D jg
the ground truth softmax scores. Each column of S* has K non-zero entries equivalent to % In
addition, o (-) denotes either an identity map, ReLU, or Leaky ReLU activation function.
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The teacher models defined in (2.I)) can cover a general class of functions (models). Notably, when
K =1 and all the non-zero entries of S* appear on its diagonal, S* equals the identity matrix Ip. In
this scenario, the teacher model (2.1)) reduces to f*(X) = o(V*X), and can be seen as a single-layer
neural network. Besides this naive example where S* = I, the teacher model (2.I) also includes
some other common architectures and models. We discuss these examples in the following.

Example 2.1 (Single convolutional layer with average pooling). We consider a convolution layer
consisting of convolution operation, average pooling, and then the activation function. The convo-
lution operation is essentially performed by taking inner products between each convolution ker-
nel with each patch of the input. We consider a convolution layer with M (vectorized) kernels

vi,..., V), and consider an input consisting of D (vectorized) patches x1,...,Xp. In average
pooling, we take averages according to a partition of the D patches. Let G = {¢1,92,...,9,} be a

disjoint partition of [D], forming J pooling groups with |g;| = K, j € [J]. Then the final output of
this convolution layer corresponding to the j-th pooling group and the m-th kernel is given as

1 )
a(K Z(an,va)) =o(v} X1, /K), m e [M], j €[],
1€9g;
where o is the activation function, X = [x1,Xa,...,xp] € R¥P and 1, € RP is a vector whose

entries are 1 for indices in g;, and 0 otherwise. Then, we can summarize all outputs into a matrix:
Foxn(X) = o(V*X([1,,,...,1,,]/K) € RM*/,

where V* = [vi,...,v},]T € RM*4 Here, the j-th column of Fenn(X) corresponds to the output
of j-th pooling group g;, and m-th row of Fonn(X) corresponds to the output of m-th kernel v},

To formulate the convolution layer above as a teacher for transformers, we further specify the cor-
respondence between each input patch and the output. The teacher model can then be given as
J*(X) = o(V*XS*), where the i-th column of S* is 1, /K, with g; being the group containing i.

Example 2.2 (Single graph convolution layer on a regular graph). Let A € RP*P be an adjacency
matrix of a degree-(K — 1) regular graph with D nodes, and X = [x;,Xs,...,Xp] € R¥¥ be the
feature matrix of this graph, with each column x; (for all ¢ in [D]) representing the d-dimensional
feature vector of the i-th node. A typical single graph convolution layer (Kipf & Welling, [2017)),
with weight matrix V* € RM*4 is defined as

Fgen(X) = o(V* XD /2AD1/?), (2.2)

where A = A +1 p is the adjacency matrix with self-connections added, and D is the diagonal
degree matrix of A.Fora degree-(K — 1) regular graph, each node has K — 1 neighbors, and hence
each column of A contains K ones and D — K zeroes, and D=K- I~D. Thgejore, the GNCN defined
in (Z.2) is equivalent to a f*(X) = o(V*XS*) with V* and S* = D~/2AD~/?2 = A/K.
Example 2.3 (Sparse token selection model (Sanford et al.| 2023 Wang et al [2024)). Let X =
[X1,X2,...,Xp] € R*D be a sequence of d-dimensional tokens. Given a K -element index set
g C [D], the goal of sparse token selection is to (i) select the tokens x;, i € g, and (ii) take an
average over the selected tokens. Hence, we can define

1
FSTS(X) = E Z X
1€9
Then it is clear that f*(X) = o(V*XS*) with V* =1p, S* = £1,-1], € RP*P and () being
identity map is equivalent to Fsys(X), except that f*(X) duplicates the output D times to match
the output dimensions of a self-attention layer.

Example 2.4 (Group sparse linear predictors (Zhang et al., 2025)). Let X = [x1,Xa,...,Xp]| €
R¥*D be a sequence of d-dimensional feature groups. For a given ground truth vector v* € R%,
and a label-relevant group index ¢*, the group sparse linear predictor will first search for the variable
group x; corresponding to the label-relevant index ¢*, and then calculate its inner product with the
ground truth vector v*. Hence, we define

Fasip = (V¥ %4+).

Consider a teacher model f*(X) = o(V*XS*) with V* = v* by reducing M to 1, S* = e; - 1},
and o () being identity map. Then similar to Example[2.3] f*(X) duplicates the output of Fgsip(X)
for D times, and is essentially equivalent to Fs p(X).



Under review as a conference paper at ICLR 2026

One-layer transformer. A one-layer transformer model [Vaswani et al.| (2017); |Dosovitskiy et al.
(2020) can be defined as

ZTWIW,Z
TR(Z; Wy ; Wo; W) = o | Wy ZS KQ) . 2.3
( viWo; Wg) 0( % < /D ) (2.3)

In this formulation, Z represents the input matrix of the transformers, obtained by concatenating the
original feature matrix X with its positional encoding matrix P. Specifically, for each column x;
(for all i € [D]) of the original feature matrix X, we concatenate it with the position encoding vector
Pi, which contains the positional information of this specific index, to generate a column of Z as
z; = [x;,p;]". The complete positional encoding matrix is denoted as P = [p1,Pa;---,Pp]
and we employ an orthogonal design for P, meaning that P is an D x D orthogonal matrix. For
analytical convenience, the practice of concatenating feature and positional encoding matrices has
been widely adopted in recent theoretical studies (Nichani et al., 2024; Bai et al.| 2024; Wang et al.
2024; Zhang et al., 2025). Furthermore, S(-) : RPXP — RP*P denotes the softmax operator,
which implements the softmax function column-wisely, and Wy, Wq, W g represent the value
matrix, query matrix, and key matrix in a typical self-attention structure, respectively. Instead of
studying the typical structure (2.3), we consider a moderately simplified “position-only” softmax
self-attention in this paper, which is defined as

P WP

TE(Z; Wy Wio) = o | Wy XS
( viWkq) 0( v < 7D

)) =o(WyXS) e RM*P (24)

In comparison with the typical single-head self-attention architecture (2.3), our model (2.4) is sim-
plified from the following two aspects: (i). We re-parameterize the original key matrix W g and
query matrix W into one trainable key-query matrix W g, which has been adopted in almost
theoretical studies regarding the optimization of transformers (Tian et al.||2023;[Zhang et al.l|2024bj
Wang et al.} 2024} [Huang et al., [2024; [Fre1 & Vardil 2025; Zhang et al., 2025} |He et al.|, 2025)). (ii).
We employ an architecture such that only the positional encoding matrix P is involved when calcu-
lating the softmax attention score, and the value matrix Wy, only interacts with the feature matrix
X. To illustrate a rationale for this design, consider the following one-layer transformers:

— ~ Z"WgoZ
TF(Z; Wv; Wgkq) = U(WyZS(\/gQ)), (2.5)

where the entire input matrix Z is involved in both the calculation of attention score and interac-
tions with the value matrix. Empirical observations (illustrated in Figure (1)) reveal that when the

transformer model TF in (2-5) is used to learn a teacher model f* in (2.1)), substantial training pre-
dominantly occurs in the left block of Wv and the ‘bottom-right’ block of N4 k@- These actively
trained blocks map to Wy, and W k¢ respectively in our model (2.4), while other parameter blocks
of TF exhibit negligible changes from their initial values. Consequently, our model (2.4)) can be con-
sidered essentially equivalent to the transformer model TF if these rarely updated blocks within WV

and Wk are fixed to zero. This strategy of fixing certain transformer parameters during training
is widely adopted in the theoretical studies on the optimization of transformers (Wu et al., 2023}
Tarzanagh et al.| 2023a; [Huang et al.,[2024; Sakamoto & Sato, [2024; [Frei & Vardi, [2025; He et al.,
2025), and analogous “position-only” attention structures are also adopted in [Jelassi et al.| (2022);
Wang et al.| (2024).

3  MAIN RESULTS

In this section, we demonstrate our theoretical conclusions of utilizing a one-layer transformer (2.4)
to learn a given teacher model f* in (2.I). For a teacher model f* parameterized with the ground
truth value matrix V* and ground truth softmax scores S*, the observed label Y for an input matrix
X is assumed to be generated as:

Y = f*(X) + &£ =0(V*XS*) + £ € RM*P, (3.1
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Figure 1: Visualization of parameter matrices for the transformer TF in (2:3), obtained after training
to learn the teacher model f* and achieving loss convergence. The formal illustration of the loss
function and training algorithm is provided in the next section.

where £ € RM*P is a noise matrix independent of X and following a zero-mean distribution. To
train a one-layer transformer (2.4), we consider the population mean squared error as the objective
loss function. Specifically, given an input-label pair (X, Y), the loss function is defined as

1
LWy; Wgq) = SExy (1Y = TF(Z; Wv; Wko) 7] (3.2)

Here, each column of X is assumed to independently follow the standard Gaussian distribution

during the training stage of (2.4), i.e. x; RS (0,14) for all ¢ € [D]. Due to the variance introduced
by the noise component £, even the loss of the ground truth model f* has an irreducible term, and
we denote this term as the optimal loss, i.e.

1 1
Lopt = 5Ex v [[Y = f*(X)[IF] = SE[I€NE]-

To evaluate the performance of one-layer transformer with different Wy and W g, we consider
the excess loss defined as: L(Wy; Wgg) — Lopt. While the choice population loss implicitly
suggests an infinite training data set—a scenario not feasible in practice—it significantly simplifies
the technical challenges of conducting a rigorous optimization analysis for transformer models. This
approach enables us to focus on the global optimization trajectories, and has been adopted in most of
the recent theoretical studies regarding the optimization of transformer models (Zhang et al.|[2024bj
Huang et al., [2024; [Wang et al.| 2024 Jelassi et al.| 2022} [Frei & Vardi, 2025 |Zhang et al., [2025).

For the training objective loss (3.2), we utilize the gradient descent to derive the optimal solutions
for the value matrix Wy, and key-query matrix W g . The iterative rule for Wy, and W g g during
the learning process can be expressed as

W =W T, LW W) 33)
Wit = Wity = nVwig LW s With), (3.4)

where 7 is the learning rate, and the initializations are set as WSJ ), Wg?)Q = 0. Based on these pre-
liminaries, the following theorem characterizes the convergence of gradient descent (3.3) and (3.4).

Theorem 3.1. Suppose that D > Q(poly(M, K)), n < O(M~'D~>/?). Under these conditions,

there exists T* = © (ﬁ) , such that for all 7" > T, the following results hold.
m=1 IVm

1. The attention scores achieved by the one-layer transformer (2.4), match the ground truth softmax
scores of the teacher model: S(7) at the T-th iteration satisfies that

R e |
VSN vilaT
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2. The value matrix Wy of the one-layer transformer (2.4) aligns with the ground truth value matrix
of the teacher model:

K
wh v —e[D? | — | V.
Wy I 1Yy Vi ll2T IVl

3. The excess loss is minimized with matching lower and upper bounds:
cKD* cKD*
nT nT
where ¢ and ¢ are two positive constants satsifying ¢ < ¢.

S E(WE/T)vwgq?;) - ‘copt S

The proof of Theorem [3.1] is given in Appendix [C} Theorem [3.1 demonstrates that a one-layer
transformer can learn the teacher model f* formulated in from two aspects. The first and
second results show that the one-layer transformer’s value matrix Wg ) and attention scores S()
converge (in the Frobenius norm) to the teacher model’s ground truth value matrix V* and softmax
scores S*, respectively. This reveals that a one-layer transformer trained via gradient descent can
correctly recover the teacher model by accurately learning all its core components. The third result
in Theorem shows that the training loss will eventually converge to the optimal loss at a rate of

S} (}2—?4) This convergence result enjoys matching upper and lower bounds and is hence tight.
As illustrated in Examples[2.3|and[2.4] our definition of the teacher model f* covers the sparse token
selection task studied in (Wang et al.,|2024) and the group sparse linear prediction task studied in
(Zhang et al.,[2025). Therefore, by applying Theorem[3.1] we can expect results that are comparable

to these existing works. Specifically, for learning the sparse token selection task, [Wang et al.|(2024)

established learning guarantees of one layer transformers with a convergence rate of O(IO%T)&
3.1

When we reduce our general teacher-student setup to the task of sparse token selection, Theorem
gives a convergence rate of @(%), with matching upper and lower bounds. Therefore, our result
recovers the conclusions in [Wang et al.| (2024) with slightly improved and tightened theoretical
guarantees. Regarding group sparse linear prediction, we note that [Zhang et al.|(2025)) studied this
task mainly under the classification setting. Our results in Theorem [3.1] provides complementary
results to|Zhang et al.| (2025)) by covering group sparse linear regression.

The learning guarantee in Theorem [3.1]is established under the assumption that the data input matrix
X is Gaussian, and the target response matrix Y is provided by the teacher with noises. Here, we can
also study the out-of-distribution (OOD) generalization guarantee of the obtained transformer model
on data without such assumptions. Specifically, we consider any feature and response matrices

X € RIxD, Y € RM*D with bounded second moments, and establish bounds on the OOD loss
1 ~ ~
Loop(Wy; Wkq) = iEi’? Y = TF(Z; Wv; Wkq)||7]
by comparing it with the loss achieved by the teacher model. We have the following theorem.

Theorem 3.2. Suppose that D > Q(poly(M, K)) and n < O(M~*D~5/2). In addition, the OOD

input pairs (X, Y) satisfy the condition that each column X; and y; has finite second moments, i.e.
there exists a constant £ > 0 such that E[||x;||3], E[||y:||3] < £ for all i € [D]. Then for any € > 0,

62 M * 12
there exists T, = O ( KD¢ Zn’:z:l HV’"”2) such that for any T' > T, the OOD loss satisfies that:

1 ~ ~
Loon (W W) < SE[IY - (X)) +e.

Theorem requires only the mild assumption that X and Y have bounded second moments.
Notably, the response matrix Y need not be generated by or correlated with the output of the teacher
model f*(X). Therefore, the term 1E[||'Y — f*(X)||%.] measures the teacher model’s O.0.D. test
loss, analogous to the role of Lop in Theorem@ This shows that the trained transformer’s O.0.D.
loss exceeds that of the teacher model by at most ¢, demonstrating its robustness to distribution
shift. In addition, although it is challenging to establishing a matching lower bound for all pairs
(X,Y) like Theorem a worst-case Y can be constructed to demonstrate that this upper bound
is attainable, thereby validating the tightness of Theorem [3.2] The complete proof of Theorem [3.2]
and the worst-case example are provided in Section D}
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4 EXPERIMENTS

In this section, we present our experimental results. As detailed in Section 2] the teacher model can
cover various models, including (i). convolution layer with average pooling, (ii). graph convolution
layer on a regular graph, (iii). sparse token selection model, and (iv). group sparse linear predictor.
Our experiments also focus on these four cases.

We conduct experiments on both synthetic data and real-world data sets, respectively. For experi-
ments on synthetic data, we follow the exact definitions in Section [2]to build up teacher models f*
corresponding to each of the four cases above, and train the student transformer on Gaussian data.
For experiments on real-world datasets, we pre-train a teacher CNN on the MNIST dataset, whose
first convolution layer is then served as the teacher model to train the student transformer.

4.1 SYNTHETIC DATA EXPERIMENTS

We begin by detailing the common experimental setups on synthetic data. Given parameters d and
D, an orthogonal matrix P € RP*P is randomly generated to serve as the positional encoding
matrix, and remains fixed throughout the entire training procedure. We adopt an online gradient
descent algorithm to simulate training over the population loss. At each iteration, we sample a new
batch of N = 100 standard d x D Gaussian matrices, i.e. {X,L}ﬁ[: C R*P_ For each X,, with
n € [N], its corresponding label Y, = f*(X,,) + &,, where &, € RM*D is another independently
sampled Gaussian matrix. We concatenate each X,, with the fixed positional encoding matrix P to
form Z.,, as the inputs to the transformer Subsequently, a gradient descent update is performed using

this batch of N = 100 data pairs {(Z,, Y, )}2_,. Furthermore, we also generate another batch of
N = 100 data pairs {(Z,,, Y,,)})_, following the almost identical procedure, except that each X,

n=1
is generated from the exponential distribution. This batch of data pairs {(Z,,, Y,,)}2_; is prepared
for calculating the excess OOD loss, defined as Loop — i 25:1 1Y, — f*(Xn)|%.

In the next, we introduce the distinct settings for different tasks, specifically the ground-truth soft-
max score matrices S*. For the task of learning a convolution layer with average pooling, we set
D = 36 and K = 4, where the pooling groups are partitioned by aggregating the K neighbor
patches into a group. Given this partition of pooling groups, the ground truth softmax score of the
teacher model can be formulated into a diagonal block matrix as S* = %Diag(leK7 v 1rxk),
with totally D /K blocks. For the task of learning a graph convolution layer, we consider a ’cycle-
graph’ with D = 20 nodes, where each node is connected to exactly two other nodes, i.e. the ¢-th
node is connected to its adjacent nodes (¢ — 1) and (¢ + 1). Under this setup, the ground-truth
softmax score S* is constructed as follows: for each column 4, the entries at rows (i —1),, and
(i+1) are set to 1/K with K = 3, while all other entries are zero. For both the tasks of learning
the sparse token selection model and the group sparse linear predictor, we set the total number of
tokens/feature groups D = 20, and randomly generate K indices from [D] as indices of target to-
kens/ label-relevant group, where KX = 4 and 1 respectively. In these two sets of tasks, the rows
representing the target tokens/ label-relevant group equal to 1/ K, while other rows are filled with 0.

Excess loss over iterations (log-log) Excess OOD loss over iterations Cosine similarity between Wy and V*

1

—— ReLU CNN
Leaky ReLU CNN
-+ —— ReLUGCN -1 —— RelUGCN
—— Leaky ReLU GCN —— Leaky ReLU GCN
— sTs — sTs
—— @sLp — GsLP

—— ReLUCNN
Leaky ReLU CNN

—— ReLUCNN
Leaky ReLU CNN
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(a) Excess training loss (log-log) (b) Excess OOD test loss (log-log) (c) Cosine similarity
Figure 2: Excess training loss, excess OOD test loss (both in log-log scales), and cosine similarity

between the value matrix Wy, of one layer transformer (2.4), and ground truth value matrix V*.
These results are presented for six experimental sets, which originate from four distinct tasks.
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For the task of learning CNN and GCN, we conduct two sets for each with ReLU and Leaky ReLU
respectively. Experiment results are given in Figures [2]and 3] Figure [2(a)] and Figure 2(b)] demon-
strate the convergence curves for the excess training loss and the excess OOD test loss (both in
log-log scales). We can clearly observe that both the excess training loss and the OOD test loss
converge to a small value on all six sets of experiments. After initial iterations, the curves for excess
training loss appear almost straight with slopes equal to -1, and excess OOD loss curves have ap-
proximate —0.5 slopes. These observations validate the %1 /T') convergence rate in Theorem (3.1}

and O(1/+/T) convergence rate in Theorem Figure displays the cosine similarity curve be-

tween the value matrix WS), and the ground truth value matrix V*. It shows that Wg,t) directionally
aligns with the ground truth value matrix V* in all six experiments since the very beginning.

Furthermore, Figure[3]provides the heatmaps of the attention scores when the loss converges. Specif-
ically, Figure [3(a)] and Figure respectively display the attention scores when learning a convo-
lution layer with ReLU and Leaky ReLU. In both figures, the attention scores exhibit a diagonal
block matrix pattern, where each diagonal block has approximately equal values 1/4. Figure
and Figure[3(d)|show the attention scores when learning a graph convolution layer on a cycle graph.
Specifically, the attention scores show a pattern of a cyclic tridiagonal matrix, with all the significant
entries having approximately equal values 1/3. Figure[3(e)]and Figure [3(f)|show the attention scores
when learning a sparse token selection task and group sparse linear predictor. We can observe that
only the rows corresponding to the target positions are assigned significant values in both tasks. In
summary, all these patterns match the ground truth softmax scores, which are described previously.

Attention score ST Attention score S(T Attention score 57
|| 03
02 0.2
02
0.1 0.1
0.1
0.0 0.0 0.0
-0.1
-0.1 -0.1
-0.2
-0.2 -02
] -0.3
(a) ReLU CNN (b) Leaky ReLU CNN (¢) ReLU GCN
Attention score ST - Attention score 5 Attention score 57
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01 —0.05 —0.25

-0.10
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—0.15

-0.75

| -0.3 -0.20

(d) Leaky ReLU GCN (e) Sparse token selection (f) Group sparse linear predictor

Figure 3: Heatmap of attention score matrix S(*) when the training loss converges. The results are
presented for six different experimental sets, indicated by the captions of sub-figures.

4.2 REAL DATA EXPERIMENTS

We also conduct experiments on the MNIST dataset. Each image is normalized and resized to 27 x 27
pixels. We train a two-layer CNN with M = 16 convolution kernels, each having a 3 x 3 kernel
size. Given the 27 x 27 image dimensions, each image is divided into D = 81 patches. An average
pooling layer with a 3 x 3 pooling receptive field (i.e K = 9) is additive to the first convolution layer,
and then cascaded with activation and a linear layer for classification. This two-layer CNN is trained
by minimizing the cross-entropy loss, achieving a moderate test accuracy of about 71% on the test
set after 20 epochs. After training of this teacher CNN, its first convolution layer with average
pooling is extracted as the teacher model f*, with its hidden-layer outputs supervising a one-layer
transformer (2.4)). The training of the one-layer transformer is still conducted on the MNIST dataset,
and the mean-squared loss is employed for optimization.
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Figure 4: Training loss and cosine similarity between the value matrix Wy, of the one-layer trans-
former (2.4)), and convolution kernel matrix V* of the pre-trained teacher CNN.

(a) teacher CNN (b) ReLU result (c) Leaky ReLU result (d) Example image

Figure 5: Heatmap of the ground truth softmax scores of average pooling, Heatmap of the attention
scores S(T) of trained one-layer transformer when loss converges, and an image example in MNIST.

The experiment results are given in Figure [4] and Figure 5| Figure [d(a)] displays the training loss
curves. We can observe that for both ReLU and Leaky ReLU, the training loss very quickly con-
verges to a small value. Figure demonstrates the cosine similarity curve between the value
matrix WS) of the transformer and the convolution kernel matrix V* of the teacher convolution
layer. The similarity rises above 0.9, indicating that the transformer successfully learns the ground-
truth value matrix of the teacher model. Furthermore, Figure provides the heatmap of the
ground truth softmax score derived from the teacher CNN’s average pooling layer. Figure [5(b)and
Figure respectively present heatmaps of attention scores at convergence for the transformers
with ReLU and Leaky ReLU activations. We can observe that both the attention scores achieved
by transformers can capture the pattern of the ground truth softmax scores, with notable exceptions
in the first and last nine rows in the softmax heatmap. We remark that the failure in learning these
rows of ground-truth softmax scores is due to the fact that they correspond to MNIST image patches
that are mostly all background (all zero). Figure [5(d)] highlights the image regions corresponding
to failed-to-learn softmax scores, marked by yellow rectangles. We can see that they are indeed
boundary regions and are mostly pure background. Consequently, they offer minimal informative
content to the model, explaining why transformers can not attend to these positions. Overall, it is
clear that the real-world data experiments corroborate our theory.

5 CONCLUSIONS AND LIMITATIONS

In this paper, we provide the theoretical guarantee that a one-layer transformer can learn a class of
teacher models, covering a wide range of common models in machine learning. Specifically, we
establish a tight convergence bound at the rate of @(%) for the population loss. We also establish
out-of-distribution generalization bounds for the obtained transformer model, demonstrating its ro-
bustness. To empirically support our findings, we conduct experiments on both synthetic data and
real data, and all results align with our theoretical conclusion. Our current theory focuses on one-
layer models, and we make certain simplifications and assumptions on the model and data, which
present a limitation. We believe establishing teacher-student learning guarantees for more complex

models and under midler assumptions is an interesting and promising further work direction.
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A NOTATIONS

Given two sequences {x,, } and {y,, }, we denote x,, = O(y,,) if there exist some absolute constant
Cy > 0and N > 0 such that |z,| < Ci|y,| for all n > N. Similarly, we denote =, = Q(y,,) if
there exist Co > 0 and N > 0 such that |z, | > Cs|y,| for all n > N. We say z,, = O(y,,) if
xn, = O(yy) and z,, = Q(yy,) both holds. We use O(+), Q(+), and O(+) to hide logarithmic factors
in these notations respectively. Moreover, we denote x,, = poly(y,) if ,, = O(y2) for some
positive constant D, and z,, = polylog(y,) if z, = poly(log(y,)). For two scalars a and b, we
denote a V b = max{a,b} and a A b = min{a,b}. For any n € N, we use [n] to denote the set

{1,2,---,n}. In addition, we use 1,, to denote a n-dimensional vector with all 1 entries. For an
index set g, 1, denotes a vector whose entries are 1 for indices in g, and 0 otherwise. Let A;,..., A,
be n matrices with the same dimensionality d; X dg, then Diag(A, ..., A,,) is and; X nds diagonal
block matrix, with Ay, ..., A, being the block entries.

B ADDITIONAL RELATED WORKS

Optimization of transformers. There exist multiple recent works studying the optimizations of
transformers, most of which focus on the single-layer architecture. |[Zhang et al.[ (2020); Kunstner,
et al.[ (2023); Pan & Li| (2023)); Li et al.| (2024a) investigate performance comparison between the
adaptive methods and SGD under different settings from both theoretical and empirical perspec-
tives. L1 et al.[(2023b)) investigates the optimal parameters of transformers applied to a masked topic
structure model similar to the Bert framework through a two-stage training regime/lldiz et al.|(2024);
Chen et al.[(2024a) explain the mechanism of attention from the perspective of Markov chains. [Tian
et al.| (2023;[2024) study the training dynamics of transformers, jointly with a decoder layer and a
fully-connected layer, respectively. [Li et al.|(2024b)) analyzes transformer training behavior in the
context of one-nearest neighbor selection. |Gao et al.| (2024) addresses the global convergence of
transformers given certain prerequisites. |Tarzanagh et al.|(2023aib) demonstrates that single-layer
attention mechanisms can converge directionally towards the hard margin solution typical of Sup-
port Vector Machines (SVMs). Furthermore, L1 et al.|(2023a) presents a generalization error bound
for vision transformers optimized using stochastic gradient descent. Furthermore, many other ex-
isting works investigate the optimization of transformers under the so-called “in-context learning”
settings (Chen et al., [2024b; Huang et al.| 2024} [Zhang et al.l 2024bjc; [Nichani et al.| 2024} |Huang
et al.,[2025)). Based on the framework proposed in (Zhang et al.,|2024b), Huang et al.|(2024)) extends
this result to one-layer softmax attention transformers. |Siyu et al.|(2024) investigates the multi-head
self-attention under this setting, and summarizes two distinct patterns among all heads. |[Nichani et al.
(2024) demonstrates that when solving in-context learning tasks with latent causal structure, trans-
formers can encode the latent causal graph. |Huang et al.| (2025)) demonstrates that Chain of Thought
(CoT) prompting enables Transformer models to learn to perform multi-step gradient descent and
effectively recover true weights.

Teacher-student framework for training neural networks. We also introduce some related theo-
retical works regarding the training of a “student” neural network under the guidance of a “teacher
model” (Brutzkus & Globerson, [2017; Tianl 2017 Soltanolkotabi, [2017;|Goel et al., 2018 Du et al.,
2018bfa; Zhou et al.l 2019; Liu et al.,[2019; |Xu & Du, |2023)). Several studies establish convergence
guarantees for gradient descent in specific ReLU network settings: Brutzkus & Globerson| (2017)
demonstrated polynomial-time global convergence for one-hidden-layer non-overlapping convolu-
tional ReLU networks with Gaussian inputs; [Tian| (2017)) characterized critical points and proved
gradient descent convergence for two-layer ReLU student-teacher networks under Gaussian inputs;
and |Du et al.| (2018bfa) provided polynomial-time recovery guarantees for learning convolutional
ReLU filters and networks, respectively, using (stochastic) gradient descent, even with potential
spurious minimizers and for general or Gaussian inputs. Furthermore, Zhou et al.| (2019) and [Liu
et al.| (2019) showed that methods like perturbed gradient descent with noise annealing or specific
normalizations and initializations can achieve polynomial-time global convergence in convolutional
neural networks (including ResNets) despite the presence of spurious local optima. Research fo-
cusing on single ReLU scenarios includes [Soltanolkotabi| (2017)’s analysis of linear convergence
for a single ReLU in a high-dimensional Gaussian model with structured weights, and Xu & Du
(2023)’s finding that over-parameterizing a student network to learn a single target ReLU neuron
under Gaussian inputs can surprisingly slow convergence. Finally, Goel et al. (2018) introduced
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Convotron, a provably efficient algorithm for one-hidden-layer convolutional networks with general
patches, achieving global convergence through noise-tolerant stochastic updates without requiring
special initialization or learning rate tuning.

C PROOF OF THEOREM 3.1

In this section, we provide a detailed proof for Theorem We first introduce several notations
used in the following proof. For each i € [D], we use G* to denote the index set to which the
entries of i-th column of S* is %, ie. S5, = % if ¢/ € G* and 0 otherwise. With this notation,

we can express that [f*(X)] = = o(vi X1gi)) = £0(Xeqi(Vin,Xir)). In addition we let
V= [vi,vh, ..., v T, and Wy = [wy, Wy, ..., wyar) | € RMX4 Based on this notation,
it is equivalent to consider the gradient descent updating regarding each wy.,, for all m € [M],
expressed as

t+1 t t t
Wi = Wi, 1V LW W), (B
In the following proof, we will consider the gradient descent updating details for each wg)m and

derive the conclusion for Wg) based on the result of WS)

“m for all m € [M]. For simplicity of
presentation, we assume that each v}, is normalized in the remaining sections, i.e. ||[v},|2 = 1
for all m € [M], without loss of generality (W.L.O.G.). However, our theoretical findings and
proofs can be directly extended to the case where v, is not normalized. For each v}, letT',, =

Vi, &m.2s s &m.d) € RY*? be an orthogonal matrix with v,,, being its first column. (Actually, if
v is not normalized, the first column of I',,, will be ﬁ.)

Furthermore, we introduce several definitions regarding the expectations of Gaussian random vari-
ables. Let 21 ~ N(0,a), 2 ~ N(0,b), and z5 ~ N(0, ¢) be three independent Gaussian random
variables. In addition, o(-) can be the identity map, the ReLU activation function, and the Leaky
ReLU activation function, with s denoting the coefficient of the Leaky ReLU activation function
when the input is negative. Specifically, when o(+) indicates the Leaky ReLU activation function,
o(r) = x>0} + k1 {z<0}. Then, based on these notations, we define that

Fi(a) = E[zy0(21)0’ (21)); (C2)
Fy(a,b) = Elzi0(z1 + 22)0" (21 + 22)]; (C.3)
F3(a,b) = E[(z1 + 2)o(x1)0’ (21 + 22)); (C4)
Fy(a,b,c) = E[z10(z1 + 22)0’ (21 + 22 + 23)]; (C.5)
Fs(a,b,c) = E[zao(x1)0’ (21 + 22 + 23))]. (C.6)

We provide the detailed calculations for these expectations in Section

C.1 DETAILED GRADIENT DESCENT UPDATING RULES

In this subsection, we introduce and prove several lemmas regarding the calculation details regarding
the gradient descent iterative rule (C.I)) and (3.4).

Lemma C.1. The gradient descent updating regarding Wg)m for all m and W%)Q, which have been
defined in (C.I)) and (3.4), can be rewritten as

D D D D
w032 37 | [V o oS o (3 o il v o

i=114;=1 i1=1 i1=1
(C.7)
n M D D D
t+1 t t t t t
Wi = Wi+ 5 33 [ S sil)o( ist)
m=1i=1 i1=1 ii=1
D D
3 Yol pe | e
i1=11i3=1
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Proof of Lemma[C.1] By the chain rule of derivatives, we have
Wi = W = 1w LW W) = Wil = 5V E[IY = TF(Z Wy W) 7]

— g Z Z VWV,mE[(Ym’,i — O(WS)XS(t))m,J)Q]

m’/=1i=1
M D D 2
n ) (t) (t)
—3 E E Vwy,mE [Ym/ﬂ —a( E (wvm,,x“>S Z)} ]

m'=11i=1 i1=1
D D D D
t t t t t t
—w) a3 E [Ym,i - ( 5wl )S) )] ( S wl) xS Z)xhsﬁl ] ,
i=1141=1 i1=1 11=1

where the last equality holds simply by the chain rule of differentiation. This proves (C.7). Next for
Wk, we havech

1 n
Wit = Wity — nVw o LW Widh) = Wi, — 5 VWi B[IY — TF(Z; Wv; Wkq)|l%]

M D
=W, - g S VWi E[(Yimi — o(WEXS®),, )?]

m=1 1=1
M D D D
t t t
— W, Y S E [Ym. _ o-( S w8 )} (z w0 i Sggl)
m=1 i=1 11=1 i1=1
PW'. p;
Vwio (wﬁ)nl)TXS<\/%Q> . (C.9)

I
For the derivative calculation of I, we have

) D w
PW'\ p; PWiqPpi
o) KQPi t w ids
=3 Vo (W 7X], {5( @>}i1=2<w§,1,L,Xil>v v H@)]

i1=1 i1=1
Pw(f) ;
- Fet 3 (=757,

(t)
PwW p,
in=1 d|:7Q:|
v D i

D (®
WK bi
5 i) 2[5 (FE )] pnl = 3 3 il xS < poel
io=1 11,22

i1=1 i1=11i9741

)
o[,

(C.10)

The last equality holds as S'(a) = diag(a) — S(a)S(a)” € R%*< for any vector a € R?, and
consequently,

PW P PW (), p: BN s
[3,(Pw%piﬂ {S<¢5)L (1‘[‘9(@ . =S (18, ifin =iy

? - {S(nggpiﬂ {S<PW%)‘9pi)] ShiSi !
— =-8,7.S; " otherwise.
v D “ v D i 1,27 %2
By substituting the result of I from (C.I0) into (C.9), we complete the proof of (C.8). O

The next lemma demonstrates that the training dynamics of wg)m forallm € [M]and WE,?Q exhibit

specific patterns. Analyzing the training processes described in (C.1)) and (C.2T) can be reframed as
an investigation into the coefficients of these patterns.

"Here we slightly abuse the notation of S(-). If the input is a D-dimensional vector, S(-) denotes the
softmax function from R” + R®. If the input is a D; x Ds-dimensional matrix, S(-) represents the softmax
operator which implements the softmax normalization defined above column-wisely.
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Lemma C.2. Under the same conditions of Theorem [3.1] there exist a time dependent non-negative
scalar C (), and non-negative, monotonically increasing scalars C(t) and C5(t), such that

wg)m =C4(t) - v}, forallm € [M];

W%) _02 Z Z lepz Z Z pnpz .

i=14,€G? =114, ¢G?

Due to the specific pattern of W( o demonstrated above, there exist a time dependent scalar p(t),
such that SS)Z = p(t) for all i € [D] and i1 € G'. Otherwise, Sgl)_’i = %’}?). Additionally,

L < p(t) < + and p(t) is monotonically increasing. Based on the definition of p(t), C1(t), Ca(t),
and C3(t) have the following iterative rules:

() (t)
Ci(t+1) = Cu(t) + Dn<£’(t> (t)Ffw) = Ci(1) + ”[?ii) (1 - gi(éi)

®
Cz(t+1)=02(t)+n01\(/%M (;(%—Fé ) Cl()( F{ +p(t )F(t))>;

B Ci(MA-Kpt) (( By (D - K)E" o (D-K)FY
U= GO s ) (&%‘mmoﬂﬁwﬂ‘“@@3‘14®w>

2 2
where F{"' = Ry (Kp(t) + SFEO0) B = Ry(p)?, (K - Dp(t)? + S5O0,
F) = B (G0l Kp(t)? + CEROSPOR) D — By (Kp(t)?, S5O0 ), B =

(D-K)
Fi(p)?, (K — p()?, S5202), 7 = By (Kp()?, SR, D DO 08 ang
" F(t)
Cilt) = o

We establish these conclusions by induction. It can be easily verified that all these conclusions hold

at t = 0, since the parameters are initialized as W( ) — 0prxq and W Q = 0p«p. However, for
the sake of conciseness and coherence in the presentation, we rearrange the contents of Lemma[C.2]
into Lemma [C;—éf] and Lemma @], including the relevant details regarding Wy, and W re-
spectively. To prevent the proof of a single Lemma [C.2] from becoming overly lengthy, we prove

Lemmas[C.4] and [C.§] separately.

As we use induction, we assume that the conclusions of both Lemma[C.4]and LemmalC.8|hold at the
current iteration. We then demonstrate that the conclusion of either Lemma[C.4]or LemmalC.8]holds
at the next iteration, depending on which lemma we are proving. It is important to clarify that this
is not circular reasoning; all these contents can indeed be organized into a single Lemma|[C.2] It is
reasonable to assume that all conclusions hold for each iteration and to verify that these conclusions
remain valid for the next iteration, as long as we rigorously demonstrate their validity at the outset.

In the following, we introduce and prove Lemma @] and Lemma @] respectively. Besides, the
7 7

notations defined in Lemma containing p(t), Fy ’, Fg(tl), F2(t2), F, Fit)’ and F5(t) will remain
consistent unless stated otherwise.

We first introduce and prove a lemma regarding the ratio between Fl(t) and Fét), which will be
utilized in the proof of Lemma

Lemma C.3. Under the same conditions of Theorem for F; ft) and F3(t) defined in Lemma
it holds that

150
Kp(t) < 5 < VDEp(0)
1

Proof of Lemma By Lemma[E.T|and Lemma [E.5] we can derive that

17
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e If o(-) is the identity map, then

2l (D — K)Kp(t)? D-K
il = Kp(t > Kp(t);
Fg(t) DKp(t)? —2Kp(t) +1 P )DKp(t) + ﬁt) —2K — p(t)
(t) _ 2 _
R (D-KOKp@F ® D-K < VDRp(®

FY - DKp(t)2 —2Kp(t) + 1 DKp(t) + -t — 2K —

e If o(-) is ReLU activation function, it is also straightforward that

B 2D- )Rt . D-K .
0 = DEp()? — 2K 7 = Kplt) L > Kl
Fy p(t) p(t) + DKp(t) + 555 — 2K
On the other hand, by Lemma|E.3] it can be derived that
2
PO 20— ) (M5 + 3500 - Kp ()
FO - DKp(t)? —2Kp(t) + 1
_K()( D-— K D-K 1— Kp(t) )
PO\DRp() + 5 ok VK a(DEp(t)? —2Kp() + 1)

<Kp(t) (\/7 \/ﬁ ><\/7p()

where the penultimate inequality holds since DKp(t) +

1-Kp(t)
Kp(t)2—2Kp(t)+1
( ) while denominator is increasing w.r.t. p(t). Therefore, it takes the maximum value when

Kp _
p(t) = -, and consequently DKp(i)Z—zgv(t)H <\ 2K

* If o(+) is Leaky ReLU activation function, by utilizing a similar calculation, it holds that

s — 2K > 2VDK - 2K, and

is a decreasing function w.r.t. p(t) as the numerator is decreasing w.r.t.

Y 2(D — ) LR Ke(e)” _ Kp(t)—— D= EIp(®)
FO T (14 £)2(DEp(t)> — 2Kp(t) +1) P DK = 2Kp(t) +1 =

O _ 2D - K ¢ Lo a1~ Kt)
2O (1+ kP (DEp(0? ~2Kp(1) +1)

Kp(t);

< VDKp(t).

This completes the proof. O

Lemma C.4 (Restatement of Lemma|C.2] the first part). Under the same conditions of Theorem|[3.1]
there exist time dependent non-negative scalars C (t), such that

wvm = C4(t) - vy, forallm e [M], (C.11)
where (' (t) has the following iterative rule:
(t) (t)
t+1) = Ci(t) + D 2 HFD ) =t 5_(1- 12
Cilt+ 1) = i) + D 35 - GOR” ) =au + T8 (1- S e
here Cf (t) = —
where 1( ) = W

Proof of Lemma|C.4] First at the initialization ¢ = 0, we have Wg) ) = Onrva, satisfying (C.11).
Next, we assume that at ¢-th iteration, the conclusion of (C.IT) still holds, and we will prove that it
continues to hold at the ¢ 4 1-th iteration. Actually, it suffices to show that

Very LW W) = e1(t) - v, for allm € [M], (C.13)

H’L’
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where ¢4 (t) is a time-dependent scalar. By Lemma [C.1] we have

D D M D D
Vo LW W) == 3 3 8| Yo = (30 wlxsl ) o' ( X <w<vi>m,xi1>s5:>,i)xhsgfz]

i=141=1 L i1=1 i1=1

D D D

SIS EA( S
i=1li1=1 L i1=1
I
D D i D D
33| S ) (b s

i=1id1=1 L i1=1 i1=1

Iz

D
Z <W$7)7n,a Xiy >S§f)71) F”Ll—‘;xil SEf),z‘|
D

[/(X)] o( oW, xi1>s§f?i) (Vi xi1>s§?ﬂ-] Vi,

i1=1

D
[f* (X)} m,ioj ( Z <w§/t7)ma Xy >S§f)71) <€m,k7 X11>SS),1‘| : €7n,k
i1=1

D

[1*(X)] a( oW xi1>s§f?i) (Vi xi1>s£-?,¢,] Vi

i1=1

The first quality holds as &£ is mean-zero and independent with X, and the last equality
holds as the orthogonality between v, and &,, ) implies that (v  x;,) is independent with

(€mkrxiy) for all iy,iy € [D]. Notice that [f*(X)] = = #o(Xcqi(Vi, %)) and
D t D . D ; t
o' (0 (Wi i )S5) = 0 (Cr(6) 0 (Vi xi)SE) = 0/ (00 (Vi %081
Consequently, (&, k,X;,) is a mean-zero Gaussian random variable, and independent with both
[f*(X)] L. and o’ ( Zi[j:l <w$’)m, Xi, >S§f)7) simultaneously, implying that
D
. t t t
E [[f <X>]m,ia'( > <w<v_,1n,xh>s§3i) <sm,k,xh>s;3i]
i1=1
D
2[00, (32 i)
i1=1
Based on previous results, by plugging [f*(X)] . = #0(3; cqi (Vi Xi,)) and utilizing the
definition of F3(a, b) in (C.4), we can further derive that

]E[<£m,ka Xi1>] =0.

D D D
1
L = E Z]E [g< Z <V'TmXi1>)OJ< Z <W$;)maXL1>SE?,z> < Z <V'Tnvx7,1>s£?,z>‘| : V;kn
=1 i1 EG? 11=1 11=1
=L S 3 nxap)o (X )+ X (v KR
p(t)K ‘ ‘ m M1 ‘ ‘ m M1 . m M1 D—K
i=1 i1 €GH i1 €GY i1¢G?
: _ZKvaXiJP(t) + .Zv<vm7Xi1>D—K—>‘| Vi
i1 €EG? 21€G’

_ D 2 (1_Kp(t))2 * DF(t) *
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The second equality is derived by fact that o(az) = ao(z) and o'(az) = o’'(x) if a > 0, and
the definition of p(t). The penultimate equality holds as )~ i (Vi Xi,)p(t) ~ N(0, Kp(t)?),

2
Yieci (Vi xi, ) 20 A0, %), and they are independent. Then we can conclude

the final result by the definition of F3(a,b) in (C.4). Similar to the process of handling I;, we have
the following for I5:

D D D D
=Y Y e Yl sl )o (3w, ,Xi1>sg;3i)rmrgxilsg;3i]

i=1 =1 i1=1 i1=1
D
. . 1— Kp(t)
—aOYE|o( X whxn0+ X whx) 510 )
i=1 11 EG? 11 ¢G?
. . 1-Kp(t . . 1-EKp( .
.o'/< Z (v, xi)p(t) + Z (vm,xi1>Dl;§>)( Z (v, %, )p(t) + Z <Vm,xi1>Di§)>] v
i1 EG? 71 ¢G7' i1 EG? Z1¢G'L
2
1— Kp(t
= DC1(t)Fy (Kp(t)2 + (D_p(K))) v, = DO v,

where the last equality holds by Lemma [E.Il Plugging the calculation results for I; and I
into (C.14), we can immediately derive (C.13), which, as we stated previously, directly con-
clude (C.11). In addition, we can further calculate that

(t)

F.
wi ) =Ci(t+1) - vi, = (cl(t) + Dn(K;(t) - Cl(t)Fl(t)>> v

which finishes the proof of (C.12)). Next, we prove that C (¢) is always non-negative by induction.
Obviously Cy(t) > 0, and we prove that Cy (¢ + 1) > 0 by assuming that C;(¢t) > 0. Firstly, we
define that

_ 5
Kp(t)F{"
Then based on the definition of C; (t), the iterative rule for C () can be re-written as
(t)
nDEy Ci(t)
Ci(t+1)=Cy(t 1-— .
e n =i+ e (1- 2

From the iterative rule above, it is clear that if Cy(t) < Cj(¢), then C1(t + 1) > Cy(t), and
Ci(t 4+ 1) < Cyi(t) if C1(t) > Cf(t). Notice that Lemma [C.3]| immediately implies that 1 <

Ci(t) <4/ %. We can conclude that once C1(¢) surpasses 4/ %, then it starts to decrease until it

Ci(t)

becomes lower than 4/ %. Therefore, we have

D F® D Kp(t)* + 1/ pigp(t) (1 — Kp(t))
cl(t)<\/;+DnK;(t) <\/;+D77 %ol

\/?+UD<p(t)+ co g - Ke0)) <+ 22 < [P

where the second inequality holds as Fét) < Kp(t)? + / 525%p(t) (1 — Kp(t)) demonstrated in

Lemma and the last inequality holds by the condition of 7 that 7 < O(D~5/2) in Theorem
Now we prove that C(t + 1) > 0 holds for both cases: C1(t) < C(t) and Cy(t) > Cf(t). If
Ci1(t) < Cf(t), then it is straightforward that C1 (¢t + 1) > C1(t) > 0. If C1(¢t) > C5(¢), then we
have

Ci(t+1) > C1(t) — nDCy(t) Fi(t)
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DnCy(t) (DKp(t)* — 2Kp(t) + 1)

> Cy(t) - D_K

D+ 1 (DKp(t)*> —2Kp(t) + 1
= 1=Dn—¢ ( DK !
oy, [DH1ID 1

=TT TKE K T2

Here, the second inequality holds as Fl(t) < BEp (t)QD:QI?p (t)+1 implied by Lemma The second
inequality holds by C(t) < \/ZEL, and C1(t) > Cj(t) > 1. The third inequality holds as

DKp(t)>—2Kp(t)+1 < 225 when & < p(t) < +. The last inequality holds by the condition of
nthatn < O(D~5/?)in Theorem- 3.1l This finishes the proof that C (t) is always non-negative. [J

O]
In the proof above, we introduce the definition of a proxy C5(t) = m, and utilize this proxy
p(t)ry

to provide an upper bound for C1(t). In fact, C;(t) can be regarded as a “stationary point” of the
iterative rule for C (¢) in (C.12)). Inspired by the proof techniques proposed in[Wang et al.|(2024), we
introduce the followmg lemma, which offers a more refined upper bound for C (¢). We demonstrate
this lemma prior to Lemma@], as its conclusion will be utilized in the proof of Lemma|C.§]

Lemma C.5. Suppose all conditions of Theorem hold, and Cy(t), C}(t) are as defined in
Lemmal[C.4] In addition, define that

Kp(t)? if o(-) is identity map;
At) = %”2 + K;insrtf arctan <7W) if o(-) is ReLU activation function;
(1+n)24Kp(t)2 + (14@);{(?(02 arctan (7”1(1(_%;)?)1)(”) if o(+) is Leaky ReLU activation function,
(C.15)
and
0 if o(-) is identity map;
B(t) ={ 3= e ( )(1— Kp(t)) if o(+) is ReLU activation function; (C.16)

(1 ”) v/ oep(t) (1 — Kp(t)) if o(-) is Leaky ReLU activation function.

Then it always holds that

=1+ 5(A(t) + B(®) Kp(t) (Dp(t) 1) Jeic, €1

Specifically, when p(t) < \/73137, this upper bound can be tighter as C1 (t) < C5 ().

Remark C.6. In fact, by checking the definition of F?ft) in Lemma and its calculated value in
Lemma we can conclude that Fg(t) = A(t) + B(1).

In addition, we also have the following lemma, which provides further calculation results when the
conclusion of Lemma[C.5]holds. This result will be utilized in the proof of Lemma [C.8]

Lemma C.7. Suppose C1(t), Cf (t) as defined in Lemma|C.4] and satisfying that
_ A(t) 1 — Kp(t) .
0= (+ 4 5 Tt (Dp(t) — 1) Jei)
for some scalar o« < 1, then it holds that
(t) 2
() 0 (1) (1 - Kp(t))
g~ B - KOO+ 0R) = e e
R’ o-rfF" ” )(F(” B (D—K)FQ(;)) _ 1— Kp(t)
Kp(t) Kp(t)(1—Kp®) 7 \""  1=Kp(t) )~ Kp(t)(DKp(t)2—2Kp(t)+1)

(1 —a)A(t);

(1—a)A(t).
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Proof of Lemma|C.7] We prove this lemma when o (-) is the identity map, ReLU activation func-
tion, and Leaky ReLU activation function, respectively. When o(-) is the identity map, utilizing
LemmalE.T] Lemma|E.2] Lemmal|E.5] Lemma[E.6] and Lemma|E.7] we can obtain that

2 2
) _ 2, (L=Kp®)” oo o _ (L= Kp@®)”
Fy7 = Kp(t) tp ok ) = p(t)%; FQQ_Wv
Y =Kpt)? FP =p)? Y=o (C.18)
Then combined with the definition of A(t), B(t) in Lemmal|C.5] we can derive that
(t)
e o (®) ()
- F7 - K F t)F,
S~ B KGO (EY R
(t)
Fy (t) < 1— Kp(t) ) w0 (1)
MmO (144 Ko (FY + pt)F
R oo o) T ) KOO (i +pF?)
_1- Kp(t)A(t) B ( N aAlt) 1— Kp(t) ) (1 - Kp(t))(Dp(t) — 1) A
Kp(t) A(t) + B(t) Kp(t)(Dp(t) — 1) ) DKp(t)* — 2Kp(t) + 1
2
1— Kp(t
_ (1 - Ep(t)) (1—a)A(t).
Kp(t)(DKp(t)2—2Kp(t)+1)
where the first inequality holds by applying Cy(¢) = (1 + O(A(t)—&(-té(t) Kp(lt;(gggg_l))Cf(t) and

B(t) = 0, the second inequality holds by applying the definition of Cj(¢) and the calculation results
illustrated in (C.I8)). Similarly, we can also derive that

F?ft) (D= K)Fét) B ® (D—K)Fé,tz)
ko) Kp(t)(1 - Kp) (- )

AWM L Ep() Dp(t) — 1

- Kp(t) (1 * Kp(t)(Dp(t) — 1)) DKp(t)? — 2Kp(t) + 1

B 1— Kp(t) .

~ Kp(t)(DEp(t)? — 2Kp(t) + 1) (1= )A(H).

This finishes the proof when o(-) is identity map. When o(-) is the ReLU activation function,
utilizing Lemma [E.T} Lemma [E.2] Lemmal|E.5} Lemma[E.6| and Lemmal|E.7} we can obtain that

A(t)

o _ Ept)  (L-Kp®)" o _p® o _ (L-Kp®)”
R R T/ s R *T’ Fa. *W’
2
F = Kpf) Ki;r arctan < o Kp( )p ) + o DI_(Kp(t)(l — Kp(t)) = A(t) + B(t);
po _ P’ N PI?  iom ( K(D — K)W)) K(D — K)p(t)*(1 - Kp(t))
4 27 1— Kp(t) 2r(DKp(t)? — 2Kp(t) + 1)
_ (D - K)p(t)? _
)+ DKp(t)? —2Kp(t) + 1 (®);
0 _ p(t) (1~ Kp(t)” K 19
° " 2n(D - K)(DKp(t)? - 2Kp(t) +1) V D — K~ ‘
Then combined with the definition of A(t), B(t) in Lemmal|C.5] we can derive that
(t)
i%t) B~ KCy ) (B + () )
_EY Lo (1 L CA()  1-Kp@) )Ci‘(t)Kp(t)(l — Kp(t) (Dp(t) — 1)
Cpt)y P A(t) + B(t) Kp(t)(Dp(t) — 1) 2(D - K)
B g (U — VLN £y (1 = Kp(t)) (Dp(t) — 1)
p(t) ° A(t)+ B(t) Kp(t)(Dp(t) — 1) ) DKp(t)? = 2Kp(t) +1
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Y A(t)

_1-Kp(t) aA(t) 1— Kp(t) ) (1—Kp(t))(Dp(t) —
N )] DKp(t)? —2Kp(t) +1

"oty (1 AW + B(O) Kp() (Dp(t) -

(1-Kp(t))(Dp(t)—1) aA(t) 1 — Kp(t) (1-Kp(t))(Dp(t)-1)
DRp( —akpi)+1 2~ <”A(t>+3(t) Kp(l) (Dp(t)—l)) DR —2kpty+1 2P
_ (1—Kp(t)’ (0 _ aAMB()
_Kp(t)(DKp(t)22Kp(t)+1)<(1 A(t)+B(t)>A(t) A(t)+B(t)>
(1 B Kp(t))2 _ Oé)A(t)

" Kp(t)(DKp(t)2—2Kp(t)+1) (
Similarly, we also have
(t) (t) . D_K)F®
ol )(f)m ) Y (- i)
_ B 1— Kp(t) B(t) (1 p oA > — Kp(t) ) P (Dp(t) - 1)
Kp(t) Kp(t)(DKp(t)2—2Kp(t)+1) A(t)+ (Dp(t) 1) ) DKp(t)?—2Kp(t)+1

(1 0A) 1 Kp() Dp<>71
- (Kpu) (14 2072 50 = (D(t) - 1)) DRp(0)? — 2Kp(0) + 1)‘4(“

N I 1— Kp(t) 3 ( . aA(t) 1— Kp(t) ) Dp(t) — B(®)
Kp(t) Kp(t) (DKp(t)2 —2Kp(t) +1) A(t)+DB(t) Kp(t) (Dp(t) — 1) DKp(t)?—2Kp(t)+1
B 1— Kp(¢) _ aA(Y) ~ aA()B(t)
 Kp(t)(DEp(t)2—2Kp(t)+1) <(1 A(t)+B(t)>A(t) A(t)+B(t)>
- 1— Kp(t) .
- Kp(t)(DEp(t)2—2Kp(t)+1) (1= a)A®).
This completes the proof of the scenario that o () is ReLU activation function. For the case that o (-)
is the Leaky ReLU activation function, utilizing Lemma[E.T| Lemma|[E.2] Lemma|E.5] Lemma[E.6|
and LemmalE.7} we can obtain that
0 _ (L+Ep(t)?  (+r)(1-Kp®)’ o (+s2p(t)? o _ (1+r3)(1 = Kp(t)®
= 2 + 2(D — K) = 2 p P22 = 2(D — K)? ’
)2 2 — k)2 /K k)2
Fgft) G )4Kp(t) + u )27er arctan ( = Kp( Fop(t ) u o ) DI_(KP(t)(l — Kp(t))
= A(t) + B(t);
P (LERPP(0? (=R (\/ K)p(t ) L A= R VED - Kp(t)*(1 ~ Kp(t))
4 4 21 1- Kp( ) 21(DKp(t)2 — 2Kp(t) + 1)
_ (D — K)p(t)? _
=AM+ DKp(t)? — 2Kp(t) + 1B (®);
0 _ (1= r)%p(t) (1= Kp(t)® K (C.20)

°  2n(D - K)(DKp(t)2 - 2Kp(t) + 1) V D — K~
Then the remaining proof is entirely identical to that of the ReL.U activation function, when replacing
the values of these terms demonstrated in (C.20). O

Based on the conclusion of Lemma|C.5/and Lemma|[C.7] we are now prepared to prove Lemma|C.8]
We will address the proof of Lemma [C.5]after completing the proof of Lemma

Lemma C.8. Under the same conditions of Theorem [3.1] there exist time dependent non-negative,
monotonically increasing scalars Cy(¢) and C5(t), such that

D D
Wi =Cat) > > pipl —Cs(®)> > pip, - c.21)

i=14,eGi i=1i1¢Gi
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Due to the specific pattern of W%)Q demonstrated in (C.21)), there exist a time dependent scalar

p(t), such that S(t) = p(t) forall i € [D] and i1 € G*. Otherwise, st = %’y). Additionally,

71,2 91,
+ < p(t) < + and p(t) is monotonically increasing. Based on the definition of p(t), Ca(t) and
C'3(t) have the following iterative rules

(t)
Colt +1) =Ca(t) +n M ( [1{ (F4 - Fé”) - o) (FY +p(t)Ff”)> ; (C.22)

Vb \®\(0
(t) (t) _ (t)
cg<t+1>—cs<t>nCl(t)M“_Kp(t”(( Fs” _(D-K)F ))>C’1(t)<F1(t)(D K)F“)).

VD(D - K) Kp(t) Kp(t)(1 - Kp(t 1-Kp(t)
(C.23)

Proof of Lemma Similarly, it can be easily verified that the initialization Wg?)Q = Opxp sat-
isfies (C.21)). Assuming it holds at the ¢-th iteration, we aim to prove that it continues to hold at the
t + 1-th iteration. To do this, it suffices to show that

D
Vw o LW W) = et Z S papl v Y pupl (C.24)

i=14,€G? =1 i, ¢G?

where ¢, (t) and ¢3(t) are two time-dependent non-positive scalars. By Lemma[C.1} we have

\/>VWKQ (WS), W(t) )

M D D D
= _ZZE |:[f*( m,i (Z WVWNX“ SEI)L>:| (Z<W$,)7n7xll>s§?,z)
m=1i=1 =1 i1=1
Z Z WVm’ Xll Sg)zsg)z (pll _plz)p:‘|
11 112 1

D D D
E [ (Z W‘(;)m,X“ 21 1) Z Z WVm’Xll Sg ZSZQ zpllpz
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(C.25)

In the next, we discuss the value of I3, Iy, I, and I respectively. For I3, it can be calculated as

D D
Z <V:n7xi1>)o'/< Z <W$/t)m,X“>S£21> Z< ( S(t zpl’pz Z SZQ i

m=1i=1 i1 EGT i1=1 i'=1 i2=1
I D
Cl t * *
- ((t)) SY SE 0<<Vm,xi/>p(t) . <Vm,xi1>p(t)>
p m=1i=1 4Gt i1 €GP i #i!
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() + X <v;;,xz-1>p<t>+Z<v;,xi1>1lg_f(§(“))<v;,x i >]pypz

i1 EGiq A4 i gGi

-a’(<v:n,xi/>1‘Kp“)+Z<vfn,xi1>p<t>+ > i) i ) s >p<t>]pzpl

i1 €GY i1¢Gi G171

_Gi)M 2 , (L-Kp
S (e, 1 g, L HOY S 5

i=1 4Gt
2
Ci()M , (1= Kp(h)* (D— K~ 1)(1- Kp(t)
Fs| Kp(t i
T Tepy L PO e DR ;;}lp i
(t) D (t) D
F F
TRp) 2 2L PPt et ) pepl
i=14' Gt i=14'¢Gt
Notice that (v}, xy)p(t) ~ N(0,p(t)?), Zz’leGi,il;ﬁi' (Vins iy )p(t) ~ N (0, (K — 1)p(t)?), and
2
ZiléGi (v, xh)%p(t) N(0, %) are three independent Gaussian random variables.

Consequently, the first term in the penultimate equality is derived by the definition of Fy(a, b, ¢)

. . . * * — — 2

in @C3). Similarly, 2, ¢ i (Vi X6, )p() ~ N0, Kp(£)2), (v, %) S5 ~ N (0, SHEB05),
2

and 3 cqig i <v7*n,xi1>%7;§t) ~ N(0, (D_K(_g)f}(_)fp(t)) ) are three independent Gaussian

random variables. Therefore, the second term in the penultimate equality is derived by the definition

of F5(a,b,c) in (C.6). Similarly, for I, we can calculate it as

M D D D
L= YN E [( 5 i o' (30 il xsl ) (3 <wg)m,x“>sg>l>1 > 80,pip]

m=1 i=1 i1 EGT i1=1 11=1 12=1
M D
Ci(t . . . 1—-Kp(t
— Gl S S Efo( 3 waxan®)o! (X Whexip) + 3 (i) A
Kp(t) ; Rt s L D-K
m=1 i=1 i1 €G? i1 €G? 11 ¢G?
(X vhexadnl) + 3 ) ) S 8. pipl
heG z’leci ig=1
2. D
Ci(t)M o (1- T, (t)M (1-Kp(t)) o (1-Kp(t)) T
= Fo Kp(t)s —22 i F3| Kp(t); ————— i D;
K 3 p()? D— K Zzpz P; D K)K() 3 p() D—K Zzpzpz
i=1i, € Gt 1=1i,¢G?
MF” D Ci(t)M (1 — Kp(t)) F{Y &
3 Z Z p12p1, (D( K K t Z Z pZ2pz
i=1 Gt p 1=1 ¢ Gt

The penultimate equality holds by the definition of F3(a,b) in (C.4), as D, cqi (Vi Xi,)p(t) ~

N(0,Kp(t)?), and 3=, oqi (Vi Xiy ) LB A (0, %) are two independent Gaussian
random variables. Additionally, I5 can be calculated as

M D D D D
2 Z Z Z E < Z XZ] i1 z) ( Z m’Xll ng z)< ; ] bip T Z S’E;),’L

m=1i=14¢=1 11=1 i1=1 ig=1

=Cy(t 2%%21&[ <i ' s§1>l) (

m=1i=14'€G? i1=1

£ 0Py Y B o Livnons)o

m=1i=14'€G* i1=1

mo Xig ng)z> (Vin Xi/>p(t)‘| pPi'D;

Xh ng 1)< mvxi’> D_ K pi/p;r

olt

11:1
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2 D
1— Kp(t
= 07 (302, (5 - Dy + CSEIOLY S 57 gy
=14 eG?
2
L,/ (1-Kp(t)) , (D—K-1)(1-Kp(t)
+Mcl(t) F2< (D—K)2 7Kp(t) + (D K ;Z%;ﬁ pz’pz
D
= MC1 (02" ST pup] + MCy(4)*FyY Z > pip;,
i=14'€G" 1=1i'¢G?

where the penultimate equality utilize the definition of F3(a, b) in (C.3). Similarly, for I, we have

Z (S s ) (3 st ) (S i sifz)]zsmpwpz

=11i= i1=1 i1=1 i1=1 ip=1

= MC(t F(t)z > pip] +MCi(t)? F(“1 Kp Z > pi.p; -

i=1 45€G? i=1 ¢ G?

Combining all these results of I3, Iy, I5, and Is, and plugging them into (C.23)), we obtain that

(1) D
—_ Cl\(/%M (Il( (i&) - F?f“) — Ci(t) (FQ(? +p ”)) > > pip/

~ =
CiM(-Kp@) (( K" (D-K)F" o (D-K)F)
T (D-KWD ((Kp(t) Kp(t)(l—Kp(t))> Cl“( U TR )Zszpz

=1’ ¢ G?
= — eyt Z > pip! +oaslt Z > pip]

=1 eGt i=14¢¢G?

It remains to show that c3(¢) and c3(t) are always non-negative. Notice that Lemma [C.5 guarantee
the assumption of Lemma[C.7] By carefully compare the formulas and applying Lemma we
can obtain that

KV Dey(t) (1 - Kp(t))’
MOVt © 5Kp(t)(DKp(t)2_2Kp(t)+1)A(t) > 0.

Since we have proved that C(t) is always non-negative in Lemma this result implies that
co(t) > 0. Similarly, for c3(t), we have

VD(D — K)cs(t) S 1 — Kp(t)
MCy(t)(1-Kp(t)) — 5Kp(t)(DKp(t)?—2Kp(t)+1
This proves that c3(t) > 0, and we conclude that

(t)
Calt +1) =Caft) 47 L ( (B ) - e (#8) +p<t)Ff“)>;

_ ClOM-Kp@t) (( F” (D - K)FY o (D-K)F)
ol ) =G == 5 k) ((Ki(t)‘f(pa)(l—ffp(t)))‘Cl“’<F1 )

which completes the proof of (C.21)), (C.22)) and (C.23). It remains to prove the conclusions regard-
ing Sg)z and p(t). By the orthogonality among the positional encodings p;’s, it is straightforward
that for all ¢,i, € [D],

A 0.
) (t) >

(t) Cg(t) if ’L'1 € Gi;
p“WKQ P {—03(t) if i1 ¢ G".
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Then by the definition of S, when i; € G*

Tw(f) ;
o P (%) B exp (c;%)>
et WP C:
0o (] e (S 0 by ()
1 (t)
C2(0)+Cs(t)
K+(D—K)exp(— 2\/53 )

Since C(t) and C3(t) are non-negative and monotonically increasing scalars, we immediately con-
clude that & < p(t) < +, and p(t) is also monotonically increasing. Now, we successfully prove
all the conclusions of Lemma|[C.8] O

Lastly, before we prove Lemma [C.5] we first introduce and prove the following Lemma [C.9]
Lemma [C.10] Lemma|C.T1] and Lemma|C.12] which will be utilized for proof of Lemma|C.3]

Lemma C.9. Under the same conditions as Theorem3.1]and p(t) as defined in Lemma|C.2] it holds
that

p(t) (1 — Kp(t)) D?p(t)(1 — Kp(t))

(AC(t) + ACs(t)) < Ap(t) <

(AC(t) + AC3(t));

2vD ~ VD(D*-1)
ACH(t) + ACs(t) gnKz(Aglz S R
where Ap(t) = p(t + 1) — p(t), ACs(t) = Ca(t + 1) — Ca(t), and AC5(t) = Cs(t + 1) — Cs(t).

Proof of Lemma[C.9} By the definition of p(t) in Lemma|C.2] it can be derived that

Ap(t) = plt +1) — plt) = . - 1
K+(D7K)exp(*%) K‘F(D*K)GXI)(*%)
1 1

= Ca(t)+C3(t) ACa()+ACs(1)\ Ca () +Ca (1)

K-l—(D—K)exp(—%)(l_%) KHD_K)GXP(_%)
(AC,(t) + ACs(t)) (D — K) exp ( — %)
VD K+(D_K)exp(_%)(l_wﬂ {KHD_K)QXP(_%)}
Ca(t)+C3s(t)
ACH(t) + ACs(t) (D — K)exp ((— 20

- 2

VD — ACs(t) — ACs(1) (K4 (D~ K)exp - 020}

_AG(t) + AGs(E)
VD — ACy(t) — ACs(t)

Additionally, applying the update rules for Cy(¢) and C5(¢) derived in Lemma along with a
similar calculation to the one used in the proof of Lemma|[C.7] we obtain that

MC(t) (FP ) MCi(t) 1 (D — K)p(t)
AG(T) < K\IF(() FS)‘”K\}B (K (t)”)“‘“”(DKp(t)?2Kp<t>+1‘1>3“’

(1—Kp )(Dp(t) 1)

p(t)(1 — Kp(t))

M) (1- Kp(t)
= mﬁ< wot) O KO D) - 1) +1- Kp()B“)>
MCi(t) 1 — Kp(t) () MCi(t) 1 — Kp(t) K
<y DL I o < (MO LBEO (e + o e gept 1 - Kn) )
_ M [D+1
=2\ DK
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Here, the penultimate inequality holds as C1(t) < 4/ % and % <p(t) < % Similarly, we can
also derive that
MCy(t)(1 = Kp(t)) FY M D+1
ACH(1) <1 1 (1) ( p(t)) Fy <n 1
VD(D - K)  Kp(t) K(D-K)\V DK

Combining these results, we have

MD ID+1 1
ACQ(t) +A03(t) < ’I7K2(D — K) K =D

where the last inequality holds by the condition that n < O(M~'D~%/2)in Theorem Replacing
these results, we finally prove that

D?p(t)(1 — Kp(t))

Ap(t) < D= 1) (ACy(t) + AC3(t)).
On the other hand, since ACy(t) + AC5(t) is sufficiently small, we can also have
1 1

> —

Ap(t) - K D o K . CQ(t)+C3(t) 1 o ACz(t)+AC3(t) K D . K . Cz(t)+C3(t)
+( ) exp v =5vp + ( ) exp B,
Ca(t)+C5(t)
ACs(t) + ACy(t) (D= K)exp ( - T) p(t)(1 = Kp(t))
> 75 5 = 75 (ACo(t) + ACs(1)).
2 [KJr(DfK)eXp(f7@@%3(0)} 2

This completes the proof. O

Lemma C.10. For C (t) defined in Lemma|C.2] it hols that Cf (¢) is monotonically increasing w.r.t

1
t when p(t) < NI

Proof of Lemma[C.10} As Lemma [C.8|demonstrates that p(t) is always monotonically increasing.

Consequently, it suffices to show that C7(¢) is monotonically increasing w.r.t. p(t) when p(t) <

5 \/7:1)71(' In the following, we discuss the three scenarios where o(-) is the identity map, ReLU

activation function, and Leaky ReLU activation function, respectively. When o(-) is the identity
map,

B (D — K)p(t) B D-K
~ DEp(t)? = 2Kp(t) + 1 DKp(t) + 5t — 2K

Ci(t)

1

Thr 8 the denominator

It is straightforward that C7 (¢) is monotonically increasing when p(t) <
is decreasing. When o (-) is the ReLU activation function, we have

7(D — K)p(t) + 2(D — K)p(t) arctan ( K(D - K)-2W ) +2(D — K)—=Kp(®)

. 1=Kp(®) VK (D-K)
Cr(t) = .

2r(DKp(t)?2 —2Kp(t) + 1)

By applying basic calculus, we can derive that

2r(r — 1)(D — K)(DKp(t)> — 2Kp(t) + 1) — 2(D — K) (wp(t) + \/ﬁ)zxﬂc(pp(t) -1)

dCi (1) .
N 2

dp(t) 4m?(DKp(t)? — 2Kp(t) + 1)
- 3n(D— K)(1 —4rDKp(t)?)  3n(D - K)(1 —2V/7DKp(t))

Tan?(DEp(t)? — 2Kp(t) +1)°  4x2(DKp(t)? — 2Kp(t) +1)°

b

which is positive when p(t) < 5 \/73DiK' Therefore, we can conclude that when p(t) < 5 \/T}D;K,

Cy (t) is monotonically increasing w.r.t. p(¢). Similarly, when o(-) is the Leaky ReLU activation
function, we also have,

(1+k)*m(D—K)p(t) +2(1-1)* (D~ K)p(t) arctan (/K(D—K) 5 ) + 2(1—@%1)—1()%
2(1+ w2)m(DKp(t)? —2Kp(t) + 1) ’

Cr(t) =
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and
_ _ 2 _ _ _ I
aci) _ 2n(r — 1)(D — K)(DEp(t)? — 2Kp(t) + 1) — 2(D — K) (Wp(t) + \/m)élﬂ'K(Dp( )—1)
dp(t) ~ 4n?(DKp(t)? — 2Kp(t) + 1)°

- 3n(D — K)(1—4rDKp(t)?)  3n(D — K)(1 —2V7DKp(t))

T an?(DKp(t)? — 2Kp(t) +1)°  ax2(DKp(t)? — 2Kp(t) +1)*
which proves that C; (¢) is monotonically increasing w.r.t. p(t) when p(t) < m. O
Lemma C.11. For Cf(t) defined in Lemma|C.2] it holds that

DKp(t)Ap(t
Cilt+1) > O (1) — = DBPOBPE (C.26)

DKp(t)2 —2Kp(t) +1 !

Proof of Lemma|C.11) We prove (C.26) for o(-) is identity map, ReLU activation function, and
Leaky ReLU activation function, respectively. When o (-) is identity map,

(D — K)p(t+1) S (D = K)p(t)

G+ = DR+ 17 —2Kpi = 1) 71 = DEp)? —3Kp(t) + 1+ DE AP 2p(0) + Bp(0))
<y DEAp(t)(2p(t) + Ap(t )) 3DKp(t)Ap(t)
>0 Dy —akpny +1 2 DO Drpp —apn 1T
(

where the second inequality holds by Lemma and the last inequality holds by Ap(t) < p(t)
implied by Lemmal|C.9] When o (-) is ReLU activation function,

(D — K)p(t +1) + 2(D — K)p(t + 1) arctan (\/K(D — K) 50 1) 4 2(D — K) K2l

Cit+1) = p— S
1 = 2n(DKp(t +1)2 — 2Kp(t + 1) + 1)
- B — p(t) _ ) _1=Kp@®)
> m(D — K)p(t) +2(D — K)p(t) arctan (/K (D — K)1525) +2(D — K) VE(D-K)

2m(DKp(t)? —2Kp(t) + 1) + 2 DK Ap(t)(2p(t) + Ap(t))
. 3DKp(t)Ap(t) .
ch(t)iDKp(t)g_QKp(t)_i_l 1()7

where the first inequality holds as the numerator is a monotonically increasing function w.r.t. p(t).
Furthermore, the second inequality holds by Lemmal|E.8] and Ap(t) < p(t) implied by Lemmal|C.9]
Similarly, when o (-) is the Leaky ReLU activation function,

()" m(DK) (4 1) 4 2(D— K)p(t+1) arctan (/K (D—K)2ED_) 4 o(D— K)M

(1-+)?2 1-Kp(t+1) \/
Ci(t+1)= 27 (14r2) —
=2 (DKp(t+1)2 —-2Kp(t+1)+1)
(I4+)*n (D-K) _ — p(t) _ 1-Kp(t)
) p(t) +2(D — K)p(t) arctan (/K (D — K)1555) +2(D - K) TR
B 22 (DKp(t)? — 2Kp(t) + 1) + LI DR Ap(t)(2p(t) + Ap(t))
] 3DKp(t)Ap(t) ]
> — .
2 Ci®) DKp(t)2 — 2Kp(t) + 101 ®)
This completes the proof O
Lemma C.12. For A(t), B(t) defined in Lemma|C.3] it holds that
At +1) 1—-Kp(t+1)
A(t+ 1)+ B(t+1) Kp(t+1)(Dp(t + 1) — 1)
A(t) 1 - Kp(t) Al®)  2DKp(t)Ap(t)
> — 5 (C.27)
A(t)+ B Kp(t)(Dp(t) — 1) A(t) + BO) K2p(1)2 (Dp(t) — 1)
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Proof of Lemma[C.12] Notice that ﬁg t; is a non-increasing function w.r.t. p(t). Therefore, we can
derive that

A(t+1) 1—-Kp(t+1)
A(t+1)+B(t+1) Kp(t +1)(Dp(t +1) — 1)

A(t+1) 1 1
TAt+ 1)+ B+ 1) (Kp(t +1)(Dp(t+1) — 1) - Dp(t+1) - 1)
0 ( 1 1 )
T A(t) + B(t) \ Kp(t)(Dp(t) — 1) + Ap(t) (2DKp(t) + DK Ap(t) — K) - Dp(t) —
() 1— Kp(t) A Ap() (2DKp(t) + DK Ap(t) — K)
“A() + B(#) Kp(t)(Dp(t) — 1) A(t) + B(t) (62 (Dp(t) — 1)

A(t) 1-Kpt) AQ) 2DKp( )Ap(t)

TA(t) + B(t) Kp(t)(Dp(t) — 1) A(t) + B(t) K2p(t)2(Dp(t) — 1)*

where the last inequality holds op(t) < % implied by Lemma This completes the proof. [
Now, we are ready to prove Lemma|C.3]

Proof of Lemmam As Lemma [C.10| guarantees that C(¢) is monotonically increasing when
p(t) < 2\/; Consequently, whe np t) < ﬁ,

(t)
Ci(t+1)— Ch(t+1) > C(t) — Cult +1) = (1 - IM) (c;(t) —am)

(1 _ Zf) (Cf(t) NAOE (1 _ ’;?) (ci0) - 0) =0

®
The second inequality holds by If;—(t) < %, and C}(t) > 1. The last inequality holds by

the assumption of 7 in Theorem and Cl( ) = 0. In the next, we prove that (C.I7) holds
when p(t) > 5 \/73[)7 by induction. We assume (C.17) holds at ¢-th iteration and examine the
t + 1-th iteration. Inspired by the separating strategy in Wang et al.| (2024), we consider the fol-

lowing two cases: (i). when Cy(t) < (1 + 5(A(2t;‘J(r%(t)) Kp(lt)_(giggil))Cl*(t) and (ii). when

2A(¢) 1— Kp(t) . AA(E) 1—Kp(t) .
(1 + st sy memore=—)C1(1) < C1(1) < (1+ s sy memmsm—n) Ct (). For
the first case, it suffices to show that

(1+5(A(tt41()tj_31()t+1)) Kp(t1+_1)f((l];§(:_+ll))—1)>cl (t+1) = <1+ 5(A(2t§14(-t)B(t))Kp(1é)_§§9p(§t))_ ))Ci‘(t).
This is because if C; () < C}(t), we have o
Cit) - Ci(t+1) = (1 _ f%) (i - ) = 0.
which implies that
Ci(t+1) <Ci(t) < (” 5(A(ti41()t++31<)t+1)) Kp(t1+_1)f((gg(:+ll))_1)>Cf(t+1).

The last inequality is guaranteed by (C:28). On the other hand, if C}(t) < Ci(t) < (1 +
2A(¢) 1—Kp(t)
5(A(t)+B(t)) Kp(t)(Dp(t)—1)

)Ci (t), then we can also obtain that

24()  1-Kpl) .
(t)+B(t)) Kp(t)(Dp(t)—1) ) ci)

Ci(t+1) < Cy(t) < (”5(;1
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4A(t+1) 1— Kp(t+1) .
< (”5(A<t+1>+B<t+1>> e )

In the next, we show that (C.28) holds. By applying the lower bounds derived in Lemma [C.11|and
Lemmal[C.12] we can derive that

4A(t+1) 1— Kp(t+1) .
( 5(A(t+1)+B(t+1)) Kp(t+1)(Dp(t+1)1)>Cl(t+1)
24(t) L Kplt) . 24(t) CKp)
><”5<A(t>+B<t>> Kp(t) (Dplt) ))Cl O Sam+B0) & <t>(Dp<t> i)
4A(t+1) 1-Kp(t+1) 3DKp(t)Ap(t) .
( S(AG+1)+B(+1) Kp<t+1><Dp<t+1>—1>> DRp(? —2Kp(t) 1101
A DR
A(t) + B(t) K2p(t)2(Dp(t) — 1)°
24(1) L Kpt) ). 201 - Kp(t)) ..
2 (” 5(A() + B(D) Kp(t (Dp<t>—1>>cl O B (e -1) T
_ 3(m +1)DKp(t)Ap(t) CHt) — 107 DKp(t)Ap(t) cr )
Ep(t)(Dp(t)—1) + 1 - Kp(t) "~ Kp(t)(Dp(t) —1) *
2A(t) 1— Kp(¢) . 1— Kp(¢) 2 (22m+ 3)Kp(t)?\ ..
= (” 5[0+ BD) Kp(D (Dp<t>—1)>cl O O Dp() 1) (15 D )Cl ()
2A(1) 1— Kp(t) .
- (” 5CA(0)+ B(®) Kp(t) (Dp(t)— ))Cl ()

which finishes the proof of (C.28). In the derivation above, the second inequality holds as

A(t) 1 1 1 . . .
0150 2 3 and GO < 57 when p(t) > NS The penultlmte inequality
is derived by Lemma [C.9] As we demonstrated previously, (C.28) implies that (C.I7) holds at

the ¢t + 1-th iteration for the first case. In the following, we consider the second case, where
2A(t) 1—Kp(t) ¥ 1A(t) 1—Kp(t) "

(1 + st By Temoen 1) C1 () < C1(0) < (14 st Ba) Temoen—) Ct () For

this case, it suffices to show that

(1 4A(1) 1— Kp(t) > Ot () — nD(1-Kp(t))
5(A(t)+B(t)) Kp(t)(Dp(t)—-1) ) 10K (Dp(t)—1)

<( N 4A(t+1) 1—-Kp(t+1)
- 5(A(t+1)+B(t+1)) Kp(t+1)(Dp(t+1)—1)

This is because

(t)
Ci(t+1) =Cy(t) + D (1 - Cl(t))

)c;‘ (t+1) (C.29)

Kp(t) C1(t)
(1+ 4A(t) 1— Kp(t) ) o t) - nDEY  2A(1) 1— Kp(t)
B 5(A(t)+B(t)) Kp(t)(Dp(t)-1) Kp(t) 5(A(t) + B(t)) Kp(t)(Dp(t) — 1)
4A(t) 1— Kp(t) e MD(1—= Kp(t))
= (H 5(A(t)+B(t)) Kp(t)(Dp(t)—1) > el 10K (Dp(t) — 1)
4A(t+1) 1—Kp(t+1) .
_( 5(A(t+1)+B(t+1)) Kp(zt+1)(Dp(t+1)—1))C1 (t+1),

where the penultimate inequality is derived by Fgft) = A(t) + B(t) and A(t) > , and the last
inequality is guaranteed by (C.29). To show (C.29) holds, by applying Lemma we derive an
refined upper bound for AC5(t) and AC5(t) as follows:

®
acy(t) = BEH (D 50— kwo(#9 + pi0r”)
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_ 3nMCa (1) (1- Kp(t)’
5KvVD Kp(t)(DKp(t)2—2Kp(t)+1)

3(4m + VnMp(t) (1 — Kp(t)”
A0 = S UBDRpeE—2p0+1)
and
nMCy(t)(1-Kp(t)) [ F" __ (D=K)F; Y B (t)_(D_K)Fz(,tz)
A =""000 K <Kp<t> Tty 0 (# )
377MC’1(t)(1 Kp(t )) 1— Kp(t) Al
- 5/D(D-K) Kp(t)(DKp(t)>—2Kp(t)+1)
3n + DoMp() (1= Kp(®)” .,
= 5(D — K)VD(DKp(t)2—2Kp(t)+1)

Based on these refined upper bounds for AC5(t), AC5(t), and the lower bounds obtained previously,
we can derive that

4A(t) 1— Kp(t) B 4A(t+1) 1— Kp(t+1)
<1+5(A(t)+3(t)) Kp(t)(DP(t)—1)>Cl W <1+ 5(A(t+1)+B(t+1)) Kp(7f+1)(17p(zf+1)—1))C1 (t+1)
4A(1) 1 — Kp(t) e A(t) 1— Kp(t) .
<(“ s Kp<t>(Dp<t>—1)>Cl 0~ (1*50a07+ B0y o ) T
(227 + 3)DAp(t) ..
Dy -1 1)
(227 + 3)D D?p(t)(1 — Kp(t)) .
< Dy -1 VD" 1) (ACH(t) + ACs(t))Cr(t)
_3(227 4 3) (47 + 1) nD (1 — Kp(1)) D3Mp(t)* (1 — Kp(t))* o
- 5 K(Dp(t)—1) (D?—1)D(D — K)(DKp(t)2—2Kp(t)+1) '

_nD(1L— Kp(t) 60mM _ nD(1-Kp(t))
~ K(Dp(t)—1) DK? ~ 10K (Dp(t)—1)

Here, the first inequality is derived by applying the upper bound of (1 +

4A(t41) 1—Kp(t4+1) " . . . .
SAG+1) T BT Kp(t+1)(gpi+1)1))01 (t + 1) obtained previously. The second inequality

holds by applying Lemma The third inequality is derived by replacing the refined upper bound
of ACs(t) and AC3(t). The penultimate inequality holds as C7 (t) < ﬁ(t), and the last inequality
is guaranteed by D > Q(M) in the condition of Theorem [3.1] This demonstrates that (C-29) holds
in the second case, which completes the proof of (C.17). O

C.2 THREE PHASES TRAINING

In the previous section, Lemma accurately characterizes the training dynamics of W%f) and

W(t) Specifically, it demonstrates that Wg,t) = C1(t)V*, where C1(t) is always upper bounded

by (1 + 5(A(th’;‘f])3(t)) Kp(lt)_(giggfl))Cf (t). Next, we will show that the update pattern of C ()

differs across three distinct phases. In the first phase, C(¢) monotonically increases, approaching
Cj (t) while p(t) remains close to . In the second phase, C1(t) remains in a neighborhood of
C5(t), while p(t) monotonically increases. This increase exhibits modes characteristic of a tensor
power progression, continuing until p(t) reaches 5%. In the third phase, the p(t) will eventually

converges to %, and C' (t) converges to 1, leading the loss also to converge. The formal proof is
provided as follows.

Lemma C.13. Under the same conditions with Theorem [3.1} there exist t; = ©(n~1), such that
Ci(t1) > 0.95 - Ci(t1), and p(t) < HL2 forall ¢ < #.

Proof of Lemma Notice that when C1 (t) < C5(t), C1(t) is monotonically increasing. Let 1
be the first time such that Cy(t) > 0.95 - C(¢). For the conclusion regarding p(t) with ¢ < ¢, we
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first assume it holds and utilize it to demonstrate other conclusions, and lastly prove it by induction.
Since p(t) almost remain unchanged for all ¢ < ¢;, we can obtain that 0.975-C5(t') > 0.95-C5 (")
for all ¢, " < t; (This conclusion is proved in following Lemma|C.14)). Therefore for all ¢ < #;

_ nDEY @)\ _ nDFY Ch(t; — 1) nDF
Cult+1) = ) = Ty ( - c*<t>> 0 <1‘ c*m—l)) =010k

0.975
where the last inequality holds by Ciitlig < 0.95. On the other hand, it is straightforward that

Ct+1)—-Ct) < n]lgF(t) Additionally, when & < p(t), p(t;) < %, we can obtain that

o If o(-) is the identity map, then

FyY 1
o -a(5),
(t1)
Ci(t) = i = oW) =0(1).

Kp(t)F"™  Kp(t1)(Dp(t:) — 1) + 1 — Kp(t1)

e If o(-) is the ReLU activation function, then

Y pt) () KD — K)p(t) 1 Y
R - E 1= Kp(t) )5 o= ) =@<m)’
t1 D
Cr(ty) = B 9(\/;) 29( 2)-
Kp(t) P~ Kp(t)(Dp(tr) — 1) + 1 — Kp(t) i

* If o(-) is the ReLU activation function, then
B (LRl (=)t
Kp(t) 4 27
Fg(tl) . @( %) _@( B)

Kp(t)F™  Ep(t)(Dp(ty) = 1) + 1 — Kp(tr) K

VE(D — K)p(t )+ (1-r)?
1 - Kp( ) o91\/K(D — K)

arctan (

Ci(t) =

Therefore, we conclude that

% =0(n1), if o(-)is identity map;
D
t = 0.95-Cy(t1) :<(\/;D)) =0(n~t), ifo(-)is ReLU activation function;
= ; = s
% t1 AC1 ( ) 6 QK)
of — ) =0(n~1), ifo(-)is Leaky ReLU activation function.
"W x

Next we prove that p(t;) < 1+DD by induction. Assume it holds at ¢-th iteration, then by

Lemmal[C.9]we can derive that

_._ MD D+1
="k20-K)\ DK

AC(t) + AC3(t)

and consequently

D?p(t)(1 — Kp(t)) 3Mn
Ap(t) < AC,(t) + ACs(t)) < ——.
) < T (80,0 + ACK0) <
Therefore, we can eventually conclude that
t1—1 —1/4
M 1+ D
+ZAp @( K5D3)s 5

where the last inequality is derived by our condition that D = €(poly(}M)) in Theorem This
completes the proof.
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Lemma C.14. For all ¢', " < t1, where ¢; is defined in Lemma|C.13] it holds that 0.975 - C§ (¢') >
0.95 - C5(t").

Proof of Lemma Notice that by the definition of C (t), it is entirely determined by p(¢ i And

for all ¢/,t"” < t1, we all have % <pt),pt") < #. With Lemmaand LemmaE.5| we
can further derive that

o If o(+) is the identity map, then

D — K)p( D-K 1
Ci(t) = (, ol ), < —5 ——<1+D7%
DKp(t) —2Kp(t)—|—1 m—K(l—D_/)
(D — K)p(t") D-K
HAE 12 =1
Cilt) DKp(t')? —2Kp{t')+1 ~ D - K
It immediately concludes that
1
0.975 - CF(t") = 0.95- C{(t') > 45 — D™% >0,

as D > Q(1).
e If o(-) is the ReLU activation function, then

1 /D-—K | (D—K)p(t)
T K + 2p

2(D — K)F{"

= Kp(@) (DEp(E)? —2Kp(t) +1) 1— Kp(t)
1 /D-K (D—K) ) Kp(t )( \/W_F(D K)p(t))
<LK, T

D— K D — K
g +1+—+

where the penultlmate and last inequalities hold by ut111z1ng Lemma and 5 < p(t') <
#, D > Q(poly(K )) in the conditions of Theoremm Similarly, we can also obtain that

(t”) l D—K
o) = 2(D — K)Fy L VR
T Kp() (DK p(t7)2 — 2Kp(t") + 1) — 1+ DEp(t")?
2 /D K l /D KDK //22l (DI—(K_L
™

where the penultimate and last 1nequa11t1es hold by utilizing Lemma and % < p) <

EE S ey S I Q(poly(K)) in the conditions of Theoremﬂ Based on these two results, it is

straightforward that

1 D—-K
975 - Cr(t” — | —-3>
0.975- Cf(t") = 0.95- C{(t) > fo-\/ =G — 320,
as D > Q(poly(K)).
* If o(-) is the ReLU activation function, then
/ 1-x)®> /D— 1+£%)(D—K)p(t’
*(t/>_ Q(D—K)F?Et) < ( 7\') DKK+(+ )(2 ple)
T 1+ R2)Kp(t) (DEp(t)? — 2Kp(t') +1) ~ (1+K2)(1 - Kp(t'))

(1-x)? |D-K
- (14K K

+ 2;

2D — K)F" N S NE
(14 K2)Kp(t")(DKp(t')? = 2Kp(t') +1) ~ (1+r)2(1+ DKp(t")?)

Ci(t) =
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(1-kx)? |D-K
Z(l+f€2)7T K - b

Combining these results directly leads to

1—k)? D-K
975 CH(E) — 0.95 - CH(t) > — -
0975 C1(t") = 0.95- C1(t) =2 A\ ~ &

as D > Q(poly(K)).
This completes the proof. O

Lemma successfully demonstrate that at the initial phase of training, C4 (¢) will monotonically

increases until 0.95 - C}(¢), while p(¢) remains smaller that 1D % Fyrthermore, once C(t)

reaches 0.95- C7 (t), it never falls below this threshold again. Combined with the conclusion demon-

. . A — *
strated in Lemmathat C1(t) is always upper bounded by (1+ 5(A(4t)_~(_tj)g(t)) Kp(lt)(ID{igg_l) )O3 (¢),

we can claim that C(¢) will always remain inner a neighborhood around C; (¢). The following
lemma provides a formal illustration.

Lemma C.15. Under the same conditions as Theorem and with ¢; as defined in Lemma |C.13]
for all ¢ > ¢4, the following holds:

LA(t) 1— Kp(t) .
a= [0'95 (1~ 500+ B T o = )] o

where A(t) and B(t) are defined same as in Lemma|C.3]

Before we prove Lemma|C.15] we first introduce the following lemma, which will be utilized in the
proof of LemmalC.13]

Lemma C.16. For C; () defined in Lemma|C.2] it always holds that
3(D— K + KCi(t))
2(DKp(t)? — 2Kp(t) + 1 — KAp(t))

Ci(t+1)<Ci(t) + Ap(t). (C.31)

In addition, C} () is monotonically decreasing when p(t) > \/12)7.

Proof of Lemma|C.16] We prove this lemma by considering o (-) as the identity map, ReLU activa-
tion function, and Leaky ReLU activation function, respectively.

¢ If o(-) is the identity map, then

_ (D - K)p(t+1) < (D= Kp(t) + (D = K)Ap(t)

 DKp(t+1)2 —2Kp(t+1)+1 ~ DKp(t)2 —2Kp(t) + 1 — 2K Ap(t)
D — K + KC(t) Aot

DEp(1)2 = 2Kp(1) + 1 — Kap) P

Cr(t+1)

<Cy(t) +

In addition,

e If o(-) is the ReLU activation function, then

(L — t+1) +2(D— t+1)arctan ( Yo P74 oD ) =2PUAD)
(D—K)p(t+1) +2(D—K)p(t+1) (mpmn) (D— ) =Ee)

—Kp(t+1) K(D-K
Ci(t+1) = ( )

2n(DKp(t+1)2 —2Kp(t+ 1)+ 1)
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m(D—K)p(t)+2(D— K)p(t) arctan (Kl(_’f;ipﬁ)f(“) +2(D—K)%+3W(D—K)Ap(t)
on(DEp(t)2 — 2Kp(t) + 1) — 27K Ap(?)

3(D — K + KCi(t))
DKp(t)> — 2Kp(t) + 1 — KAp(t))

<

<Ci) + 5 ( Ap(t).

In addition,

it = D-K . (D—K) arctan (*W) w/%(l—Kp(t))
vt 2(DKp(t)+ 55 —2K) T(DEp(t)+ 55 —2K) m(DEp(t)+ 515 —2K)’

where all these three terms are monotonically decreasing w.r.t. p(t), when p(t) > \/57. This
2

demonstrates that C(¢) is monotonically decreasing when p(t) > TR

e If o(-) is the Leaky ReLU activation function, then by a similar calculation process,

Ci(t+1)
VK (D=K)p(t+1) -
_77(1+fi)2(D7K)p(t+1) +2(1—k)%(D—K)p(t+1) arctan (T@fl)) + 2(1%)2(/34()%
B 2(1+x2)m(DKp(t +1)2 —2Kp(t+1) + 1)
K(D-K)p(t) 1—Kp(t)
<7r(1+n)2(D7K)p(t)+2(1fn)2(D7K)p(t)arctan (7&_%)&(1%)2(04()\/%
- 2(1+k%)m(DKp(t)? — 2Kp(t) + 1) — 2m(1+k2) K Ap(t)
N 3r(1+k)2(D—K)Ap(t)
214+r2)7(DKp(t)? — 2Kp(t) + 1) — 2w (14+k2) K Ap(t)
3(D-K+KCi(t
<Ci(0) + ( ) apr).
2(DKp(t)? — 2Kp(t) + 1 — KAp(t))
In addition,
v K(D-K)p(t) Z
i) = (1+#)%(D - K) (1-k)*(D-K) arctan( 17Kp(t)p ) (1—k)2\/ ZZE (1-Kp(t))
! 2(1+k2) (DEp(t)+ 55 —2K) m(1+82) (DEp(t) + 5 —2K) m(1+r2) (DEp(t) + 55 —2K)
. . 2 .
where all these three terms are monotonically decreasing w.r.t. p(t), when p(t) > 757 This
demonstrates that C(¢) is monotonically decreasing when p(t) > \/LQW'
This completes the proof. O
Now, we are ready to prove Lemma|C.1
Proof of Lemma We first prove the first part of (C.30), i.e. C1(t) > 0.95-C5(¢t) forall ¢ > ¢;,
by induction. To establish the conclusion, we consider two cases at the ¢-th iteration: (i). when
Ci(t) > 0.975 - Cf(t). (i). when 0.95 - C¥(t) < C1(t) < 0.975 - C;(t). For the first case, when
p(t) < ﬁ, Lemma|C.5|shows that Cy (t) < C5(t), implying that C7 (¢ + 1) > C4(¢). Then we
can derive that
3(D - K + KCi(t))
Ci(t+1) >Ci(t) > 0.975-C1(t) > 0975 - CT(t + 1) — Ap(t

3(D - K)
D2

where the third inequality holds by applying the lower bound of C7 (¢) demonstrated in Lemma
The forth inequality holds as C7(t) < (/2. and Ap(t) < 3> guaranteed by Lemma The

>0.975 - CF(t+1) — >0.975- CF(t+1) —0.025 > 0.95 - CF(t + 1),
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penultimate inequality holds as D > Q(poly(K)), and the last inequality holds as Cj(t) > 1.

When p(t) > Nﬁ’ the upper bound of C (¢) established in Lemmacan help to derive that

DA~ Kp(t))
5K2p(1)2 (Dp(t) — 1)

Ci(t+1) 2Ca(t) —

3D-K)  4yDA()
>
0975 Ci{t+1) = =5 — e )
>0.975- CF(t+1) — w - m/% > 0.975- CH(t+1) — 0.025 > 0.95 - C: (¢ + 1),

Here, the second inequality applies the previously obtained lower bound for Cy(¢). The third in-
equality holds as A(t) < Kp(t)?, and p(t) > 5 \/73[)7. The penultimate inequality is derived by
D > Q(poly(K)) and n < O(MD~5/2) in the condition of Theorem These results demon-
strate that under the first case, C1(t + 1) > 0.95 - C5(t + 1). Let’s consider the second case, where
0.95- CF(t) < Cy(t) < 0.975 - CF(¢). Under this case, it is obvious that C; (¢ + 1) would be larger
than C1(t), and by the updating rule, we have

(t) (t) x

nDEy" . nDF) 3(D - K + KC;(t))

S8 > 0.95- Ch(t - Ap(t
40K p(t) = 10+ 10Kp(t)  2(DKp(t)? — 2Kp(t) + 1 — KAp(t)) ®)

D 3MD3(1 — Kp(t)) D+1
>0.95- CT(t) + np(t )(80 VD(D? —1)(D — K)K? \/7)

D 4M
>0.95- Cy(t) + np(t )<80 K3> >0.95- CF ().

Ci(t+1) >Ci(t) +

Here, the second inequality holds by (C.31), the third inequality holds since Fét) > %ﬁ by
D—K+KCj (t)
DKp(t)2—2Kp(t)+1—KAp(t)
Ap(t) demonstrated in Lemma Besides, the last two inequalities is guaranteed by D >
Q(poly(M, K)). This finishes the proof of Cy(t) > 0.95 - Cj(t) for all ¢ > ¢;. In the next,

we prove the second part of (C:30), i.e. Cy(t) > (1 — 5(A?t?£tg(t)) Kp(i;(gggg—l))cf (t). In fact,

we only need to consider the scenario where p(t) > \/[2)7. This is because when p(t) < \/37,

Lemma < 2D, and applying the conclusion of upper bound of

LA(t) L Kplt) A(1 - Kp(t) .
5(A(t) + B(t)) Kp(t)(Dp(t) — 1) — 5(Kp(t) n %\/g(l _ Kp(t))) (Dp(t) —1)  10VDKp(t)

Therefore, C1(t) > 0.95 - Cj (t) guarantee that Cy (t) > (1 — S(A?t’;‘i%(t)) Kpé)_(ggggil))Cf(t)
holds when p(t) < \/;7. When p(t) > \/%, we also consider two cases: (i). when C (t) > (1 —
sCath B T =) Cr (). ). when (1 — s s wmiriomn ) Ci (1) < Ci(t) <
(1- 5(A(t;14(-1%(t)) Kp(lt)(gpg; 7 )C5 (t). Then, for the first case, at the ¢ + 1-th iteration, we have
AnDA(t)(1 — Kp(t))

5K2p(t)?(Dp(t) — 1)

> 0.05.

Ci(t+1) 2Ci(t) -

C aap L Kplt) o AnDAM( — Kp(t)
Z(l 5CA(L) + B() Kp(D)(Dplt) - >>01 O = S K2ty (Dp(t) - 1)
4A(t+1) 1— Kp(t +1) .
= (1 - 5(A(t+1)+ B(t+1)) Kp(t+1)(Dp(t +1) — 1))01 (t+1)
24()  1-Kp(t) .. . 4nDAW( - Kp(t))

T S{AW+B() Kp(t)(Dp(t) 1) 10 5y p(t)*(Dp(t) — 1)

A Ap(t)(2DKp(t)+DEAp(t)— )C*(t)
A(t)+B(1) K2p(t)?(Dp(t) — 1)° '
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4A(t+1) 1— Kp(t+1)
2<1 THAGT D) LB+ 1) Kplt+ D(DpE 1 1) - 1))01 (t+1)
L 1-Kp) (Ci) 1D _DCi <t>Ap<t>)
Ko Opt) )\ 5 "5 Dplt)—
4A(t+1) 1— Kp(t+1) .
2(“ S(A(t+ 1)+ B+ 1) Kplt + )(Dp<t+1>1>)cl““)
1— Kp(t) 14 2 >
Kp()(Dp(t) —1)\5 5D VD?

) 1— Kp(t+1)
5(A(t+1)+ B(t+1)) Kp(t+1)(Dp(t +1) — 1)

)c;(tﬂ).

In particular, the third inequality is obtained by replacing the the lower bound of

A Kp *
A(t)fj)B(t) Kp(lt)(ng; 7y in Lemma | and utilizing C5(t) > C7(t + 1) when p(t) > \/%,

which is demonstrated in Lemma (C.16] The forth inequality is derived by the facts T t%(t) >3 1

when p(t) > ﬁ, A(t) < Kp(t)?, and utilizing the upper bound of Ap(#) in Lemma|C.9| Lastly,

the penultimate inequality is derived as 1 < Cj(t) < \/2, Ap(t) < 5, and n < O(D~%/2).

This demonstrates that the second part of (C.30) holds at ¢ 4 1-th iteration for the first case. On
the other hand, for the second case, C(t + 1) would be strictly larger than C (), and it can be
demonstrated that

Ci(t+1) >Cu(t) + 2’7DA(2(1 - Kp(ti)

5K?p(t)?(Dp(t) — 1)
B 4A(t) 1— Kp(t) . 2nDA(t)(1 — Kp(t))
Z<1 5(A(t) + B() Kp(t)(Dp(t) - 1)) O Sk (Dp(0) - 1)
4A(t+1) 1— Kp(t+1) i}
Z<1 TGt )+ B+ 1) Kplt+ D(Dpt+ 1) - 1))01 (t+1)
n 2nDA(t)(1 — Kp(t)) B A(t)  Ap(t) (2DKp(t)+DKAp(t)—K) o )
5K2p(t)?(Dp(t) —1)  A(t)+B(t) K2p(t)2(Dp(t) — 1)2 1
4A(t+1) 1— Kp(t+1) i
=\ 5(A(t+1) + B(t+ 1)) Kp(t +1)(Dp(t +1) — 1)>C1 t+1)

N 17(1 — Kp(t)) (D B 2DM(1 — Kp(t)))
Kp(t)(Dp(t) =1) \5 VK7 (Dp(t) — 1)
4A(t +1) 1— Kp(t+1) .
TG ) 1 BU T ) Kot + D(Dpli - 1) - 1)>Cl (t+1),

where the last inequality holds as M < 0(%) < O(D). This demonstrates that

\/F(Dp(t)—l) -
under the second case, we still have
4A(t+1) 1-Kp(t+1)
Cit+1)>(1—-
it+1) = ( 5(A(t+1)+ B(t+1)) Kp(t+1)(Dp(t+1) — 1)

which finishes the proof of (C.30). O

Jeite+ 1),

Lemmas|C.15]and|C.5|together establish matching lower and upper bounds for Cl( ) after t1. Based
on these bounds, we can derive a precise training time at which p(t) achieves 53 K This result is
formally presented in the following lemma.

Lemma C.17. Under the same conditions as Theorem , there exists 7" = @(MKiw*),
N2 m=1 IViall2
such that p(T™*) > 1.
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Proof of Lemma Notice that Lemma|[C.15]and Lemma [C.5] guarantee that
0.95-C7(t) < Ci(t) < (4m+1) - C1(t)

forallt > t;. The left hand side inequality is straightforward, and the right hand side holds because:
when p(t) < 2\/7 Cy(t) < Cf(t) < (4w +1) - C(t); when p(t) > 2\/7

4A(t) 1-—- Kp(t) * *
Gt < (1 T 5(AQ) + BO) Kp(o) (Dp(t) 1) ) Cith) < 4 +1)- G10).

On the other hand, Lemma|[C.15]and Lemma|C.3]also guarantee that

4A(t) 1— Kp(t) . 4A(t) 1— Kp(t) )
(l - 5(A() + B(1) Kp(t) (Dp(t) - 1) ) G =a s (1 54 + B() Kp(t) (Dol1) =1) )01 (t).
(C.32)

These two lower and upper bounds of C' (¢) allow us to apply Lemmato derive lower and upper
bounds for ACy(t) + AC5(t) as

9(4m + 1) Dp(t) (1 — Kp(t))” Sl Vil
10K (D — K)VD(DKp(t)2—2Kp(t)+1)

19Dp(t) (1 — Kp(t))* SN Ivi, 2 cr ) (€33)

200K (D — K)vVD(DKp(t)2—2Kp(t)+1)

AC,(t) + ACs(t) < Ci(t);

ACy(t) + ACs(t) >

where we replacing M with Z'rn:l [V, ||z to match the presentation in our Theorem With
these bounds in hand, we denote 7 as the first time such that p(¢) > ﬁ Then forall t; <t < T,
by applying Lemma|C.9]and the upper and lower bounds of AC5(t) + AC5(t) obtained in (C:33),
it can be derived that

D2p(t)(1 — Kp(t)) ML) Sy Vil

Ap(t) < NI Ty (ACa(t) + ACs(1)) < N p(t)%;
p(t) (1 — Kp(1)) et Viallz
Ap(t) > T(A@(t) + ACs(t)) > ==l s oK m p(t)*.

Notice that the iterative rules for p(t) satlsfylng the assumptlons in Lemma [E.10} By applying
Lemmaw1th the initialization that = < p(ty) S =, we can obtained that

D?K D?’K
T —t1 < __ WK +100(87 + 2)(log D — log K) < 6()

< — M os
772 |Vm||2 Uzm:1 va”?
DK D?*K
Tty > - (longogK)2®<M>.
3571 3 ey Vi ll2 N m= 1Viall2
This results demonstrates that T* = ¢; + © (1:)2’71() =0 (13271() This finishes the

1 IVl N3 1Vl

proof. O

In the next, we provide the analysis for the last stage that p(t) eventually converges to % This result
is formally presented in the following lemma.

Lemma C.18. Under the same conditions as Theorem for any T > T*, where T* =
@(%) as defined in Lemma|C.17| it holds that

an 1
1 20D(D — K 1 D(D—-K
L 0D(D - K) <oy < L M( ) . (©34)
VK SN v lo(T — T7) 20\ 0K SN (v, o(T — T*)
In addition, it holds that
1 2 1 2
T T — —=| < —=(1—-Kp(T — (1 — Kp(T
p(T)CUT) = =] < 5 (1= Kp(T)) + = (1 - Kp(T))
40K(D — K 400D?%(D — K)?
. 0K (D - K) 00D(D - K) ©35)

M * *
IS Vo =17 1t V(T =)
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Proof of Lemma[C.18] With the bounds established in Lemma and the fact that 17;({5(0 =
exp (— W), the upper and lower bounds of AC5(t) + AC3(t) obtained in (C.33) can be

rewritten as

M *
ACH(t) + ACs(t) < T 2em=1 Vinllz - 25 (c2+000)

K3vD3 ’
Z]\/Ifl [Viallz — = (C (t)+C. (t))
ACy(t) + ACs(t) > nem=11"ml12 = 75(C2 s(t))
2(t) 3(1) 27 200K3v/ D3

The upper and lower bounds of AC5(t) + AC5(t) match the assumptions of Lemma By
applying the lemma, we can obtain that for all 7" > T™,

VD (nZﬁf_l Vi ll2

D _2_
T T)> —1 T-T" vD |;
Co(1) + Ca(1) = Y og (gm0 ),

87 Yot Vill2 VD (8705 s Villz e it
Cz(T)'i‘C:s(T)S??KS—\/ﬁ—FTlOg K52 (T—-T")+exvD ).
Replacing this result into the formula of p(7"), we have
1 1
p(T) = DO © L low (1or—y [vi, D .
K+ (D~ K)exp (— LOEEM) ™ k4 (D~ K)exp (- 4 log (“Sgigbdpil2 (T - 74)))
1 20D(D - K)
- K M
VB SN valla(T —T7)
On the other hand, we can also derive that
(1) < :
p = - -
K+ (D~ K)exp (— 4log (*5plinlz (7 — 1+) 4 o707 — M ippfvile )
1 D(D - K)
S R

2e\/nEK SN [[vi |o(T — T*)

This finishes the proof of (C.34). With this condition holds, by checking the definition of C} (1),
we can obtain that

| |~ Kp(T) * |~ Kp(T)
Ve 0500 (g~ B sy ) < CHD <14

Plugging this result into (C.32)), we derive that

1+ (1 - Kp(T)) (Kpl(T) - 25) < Cy(T) <1+ (1— Kp(T)) <Kp1(T) + 25)

which immediately leads to the final conclusion of (C.33).

Now, we are ready to prove Theorem [3.1]

Proof of Theorem[3.1] We first prove the first conclusion.
2 & 2 1 2 (1— Kp(T))?
_ s(T) _ g ) =\/DK( = —p(T D(D — K)o/
A PRACHELS x ~P0) PP TG e

D Dt
_(1Kp(T))—@< )
K(D-K) VI IVl (T =T

-
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where the last inequality holds by applying the upper and lower bounds of p(T") derived in
Lemma This finishes the first conclusion of Theorem Notice that in Lemma [C.18] we
have derived that |C,(T) — 1| = ©(1 — Kp(T')), which directly imply that

K
Wy, I 03 m_y [V ll2(T = T7)

where the last inequality holds by applying the upper and lower bounds of p(T') derived in
Lemma This finishes the second conclusion of Theorem For the third conclusion, no-

tice that
WD w1 Sy Bl (v () s\’
( Vv o KQ)iizz m,i — O Z<WVm7X11> 01,0
m=1i=1 11=1
LMD D 1
* T T
2 | (1000, o Swihxs)) | + el
m=1 i=1 i1=1

where the last term is essential Lp¢, and the last inequality holds by the independence between X
and & and the fact that £ is zero-mean. Since this equation holds, in the next, we directly deal with

E(Wg); WE{TC))) — Lopt. We first prove the upper bound. By utilizing the fact that |0 () — o (y)| <
|z — y| for all z,y € R, we can derive that

D
LW WD) ~ Lopy = Z ZEK ,i”(Z<W(VT’31’X“>S§1T2>) ]

m=1i=1 i1=1

M D - 2
<;;§E[( (% —Cl(T)p(T)) <§i<v’i"xil>+ Cl(T)g_;(fp(T)) %fﬁ“x’”) ]
A Z(D)

1,i,m 2,i,m

Notice that Z\%) =~ N(0,0%,,), where 0f = K|lv[3(% — CL(T)p(T )) ,and Z{%)

1,4,m 2,9,m
N(0,03,,), where 03, = Iva 3¢ (T) (1 Kp(T))” , and they are independent. Based on the upper
bounds derived in Lemma@} we can ﬁnally derlve that
(7). (@) (1) (™ ) D <~
‘C(WV ?WKQ 0pt< ;;E{<lem Z2zm) :l Zalm 5;02,771
DKL ) S vl + DL KAD) 5y e
2 K i Vmll2 2(D — K) Vmll2
m=1 m=1
. KD*
C—————————.
(T -T%)

where the last inequality holds by applying the upper bounds for (4 — C1(T)p(T ))2 and p(T) de-
rived in Lemma-Thls completes the proof for upper bound. On the other hand, denote Z3 ,,, ; =
e (Vi Xi) ~ N0, K|[vin3) and Zymi = 3 gci (Vi %) ~ N(0,(D = K)l|lvin|[3),
and Zng)H = p(T)Zs i + 22D 7, ., ;. Then, by utilizing the fact that |o(z) — o(y)| >
|z —y| - L{z>0,y>0}, We can further derive that

(U(Z}m> - a(Ol(T)Z§27i))2]

m=11i=1 i1=1 m=11i=1
N D 2
1 1 O (T)1—Kp(T
25 —~ E_lE[<<K _Cl(T)p(T))ZS,ml - D_K Z4mz :I]-{de,>O}:I]-{Z(7;7)L >0}
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M D 5
1 1 C1(T)(1— Kp(T))
22;;E[<<K — Ol(T)p(T>>Z3 m,i D_K Z4,m,i ]1{23””720}]l{Z‘*MviZO}]l{Zé’TTL’iZo}
M D )
1 1 C1(T)(1—Kp(T))
2 n; ;E K(K - Cl(T)p(T)) Zmi = D-K Zam,i | Y zy 201 124 0 120}
M D /1 2 M D
_1 (g —C(Mp(T)" 1 CL(TR(1 = Kp(T)? ...,
2 mz::I 1,2: 4 Bl m.il 2 mz:: ; 4D - K)2 E[Z4 il

=1 1
B i i C1(T)| g — CL(T)p(T)|(1 — Kp(T))

DK E[Z3m,il{zs .. ;504 B[ Zam,il{z, . ;>0})

M v l3DCHT)? (1 — Kp(T))? Sy IV I3DCL(T)| % — CL(T)p(T)|(1 — Kp(T))/K(D — K)

>

8(D - K) - 27(D — K)
Yo IVl BDCH(T) (1 = Kp(T)* <Cl(T) 2/K(D- K))
- 2(D-K) 4 D
o X [V[BD( — Kp(T)* KD
- 16(D — K) = (T = T*)

where the last inequality holds by applying the lower bound of 1 — Kp(7T') demonstrated in
Lemma This completes the proof. 0

D PROOF OF THEOREM [3.2] AND DISCUSSION OF THE WORST CASE
EXAMPLE

In this section, we provide a complete proof for Theorem and a worst-case example can attain
the upper bound in Theorem [3.2] We first prove Theorem[3.2]in the following.

Proof of Theorem[3.2] We first upper bound the OOD loss by the sum of three terms as
Loon(Ws WD) = SEIIY — TRz Wi W)
= SE[IY — F1(X) + £(X) - TEE WD W3]
=SE(IY ~ ()13 + SB[ (X) - TRZ W W3]
FE[(Y — f7(X). f*(X) - TF(Z: W Wilp))]

<SEIY ~ £ R3] + SB[/ (X) — TRZ W W) 3]

+VE[IY - £ X)I2]E[|£(X) — TFZ W W2,

where the last inequality holds by Cauchy-Schwarz inequality. Based on this decomposition it is
critical to derive the upper bound for E [[|'Y — f*(X)||%] andE[Hf*( )—TF(Z; W&,T W )|| 2]
For the first term E [||? — f*(f()”%] , we have

E[IY - /*X)7] < 2E[IY 7] + 2B/~ (X))

By the assumption that each column of Y satisfying that E[[|¥,||2] < &, it is straightforward that
E[['Y]%] < DE. On the other hand, we have

~ D ~ M v* 2
SIS BH DI TR IED B) DI DL (ENT A B HE

=1 m= i=1m=1¢eG?

M
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<ii 5 Ell% H Ivi i3 <DfZ e 2
> mll2-

i=1 m=14' G’ m=1
For the second term E [||f*(}~() — TF(Z; WE,T); W%Té) |2.], we can derive that

E[|l/*(X) — TF(Z; W W) 2]

M D 2 _ 2
<3S vl (- cmn)) X sl g+ 030 S v A 5 g

m=1i=1 i eGi m=1i=1 i1¢G?

5

<o ED*E

- \n(T =T

Here the first inequality holds by \U( ) —o(y)| < |z — y|. The second inequality is established
by the fact (322, a;)* < DY P | a2 for all scalar a;’s and (vZ,, %, )% < [|[vE[12]%i, ||3. Lastly,

the third inequality is derived by replacing the conclusions in Lemma [C.I8] Combining all these
derived terms into the three terms derived as the upper bound for OOD loss, we have,

. WOy _ LEiy _ %112 s [ K e lIvil3 . KD%
Loon (Wi W) - 38(IY - ()] < o Doy [Fmar kbl TP,

Let the upper bound derived above smaller than €, we can derive that
M X
oy o KDE S IVRIEY _ (KD o, Ival
‘ e ne?
This completes the proof. O

In the next, we discuss the construction of the worst case Y such that £00D(W(T <), W(T ))

%E[HY - X )||F] > ¢ for some T, = @(Mn%) (assuming ||[v,,]l2 = 1 and £ = ©(1) for
simplicity). In fact, this 7, can be different with the T, defined in Theorem @], but at the same
order w.r.t. ¢, hence a matching result.

By the conclusions in Lemma , we know that & — p(T)) = @(#j\n) and |p(T)C1(T) —
%| < O(ﬁ). Therefore, there exists an absolute constant ¢’ such that %
dD. In addition, we let A, ; to denote the event such that [}, .qi(vy,, X))l

max{Z| > iveqi Vi, Xiy )|, 1}, We can assume the probability of Ay, ; is larger than an abso-
lute constant. In fact, such an assumption can be easily verified on many specific distributions like
Gaussian distributions. With these notations in hand, we can design Y such that its (m, 1)-th entry
is generates as Y, ; = sign(};, ¢qi (Vim, X)) - Lga, i + F*(X) . - Given this construction, we
can deduce that

E[(Y — f4(X), f*(X) = TF(Z; W, W)

(x?m,i - f*(fi)m,i) (5 -@pm) ¥ oz + “HE=2EL 5 <v:win>)]

i1 €GP i1 ¢G?

D3 /MK I MK
Iga,, z}] E[]]'{Am 1}] 9<D3 T)'
11¢G7’ n

VoIV

’ E vmvxll

Replacing the T with 7. = © (2L é;D ), we can finally conclude that

zoon<w§f>-w§?¢;>—4@[||¥ FX)I2]
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ZE[(Y - (R0, (%) - TRE W WD = o( 0% 25 1 [0 ) — et

This validates that the upper bound is indeed attained under our construction.

E TECHNICAL LEMMAS

In this section, we present and prove the technical lemmas we used in the proof of the previous
sections.

E.1 CALCULATION DETAILS OF EXPECTATIONS

We introduce the details regarding
Lemma E.1 (Calculation of F(a) defined in (C.2))). Let z ~ A (0, a), then it holds that

o If o(-) is the identity map, then
Elzo(x)o'(z)] = a.

* If o(+) is ReLU activation function, then

Elzo ()0’ (z)] = ‘21
o If o(-) is Leaky ReLU activation function, then
1 2
Elzo(z)o'(z)] = w.

Here, & is the coefficient of the Leaky ReL.U activation function when the input is smaller than 0.

Proof of LemmalE.1} The first conclusion for the identity map is straightforward. When o (-) is the
ReLU activation function, we can rewrite that zo(2)o’(z) = @ - 210 - Lzsop = #*L{z>03-
Therefore, we have,

E[x? a

Elzo(x)o’(z)] = E[IQ]I{QEEO}] = % =3

Besides, when o(-) is the Leaky ReLU activation function, we can rewrite that zo(x)o’(z) =
21,0y + K22*1{;<0). Therefore, we have,

(1+k)?E[z?] (1+k)%a

E[zo(2)o’(z)] = E[2*1{p>0y] + £ El2*Lip<0y] = 5 =

which finishes the proof. O

Lemma E.2 (Calculation of Fy(a,b) defined in (C3)). Let z; ~ N(0,a), zo ~ N(0,b) be two
independent Gaussian random variables, then it holds that

o If o(-) is the identity map, then

Elxi0(z1 + 22)0" (21 + 22)] = a.
* If o(-) is ReLU activation function, then

a
Elz10(z1 + 22)0' (21 + 32)] = 9

o If o(-) is Leaky ReLU activation function, then

(1+K%)a
2 .
Here, & is the coefficient of the Leaky ReL.U activation function when the input is smaller than 0.

Elzi0(z1 4+ 22)0’ (21 + x2)] =
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Proof of Lemmal|E.2} The first conclusion for the identity map is straightforward. For the next two
cases, we first introduce some definitions. Let z3 = x; + x2 ~ N(0,a + b). Then we have
Cov(z1,z3) = E[(71 + 2)z1] = a, and E[z1|73] = {5 73. Consequently, when o(-) is the ReLU
activation function,

E[zi0(x1 + x2)0’ (21 + x2)] = Elr12315,>01] = E[]E[I1$3]].{I320}|$3

_a a 9

1]
BETY Elrs] =2

E[z311z,50y) = Natd)

In addition, when o () is the Leaky ReLU activation function,

Elzi0(z1 + 22)0’ (21 + 22)] = Elz1231 {4,501 + £°E[z1231 {4, <0})
= E[E[xlxg,]l{mzoﬂxg]] + K2E[E[l‘1x31{zg<o}|x3”
a K2a (1+r%)a
= — FE[z21 ~
a + b [‘rd {I320}] + a + b 2

This completes the proof. O

E231{p5<0}] =

Lemma E.3. Let 77 ~ N (0,a), zo ~ N(0,b) be two independent Gaussian random variables,
then it holds that

e If o(-) is the identity map, then
Elzi0(z1)0’ (z1 + 22)] = a.

* If o(-) is ReLU activation function, then

Elxi0(z1)0’ (x1 + 22)] = % + ;T(arctan ( Z) + a\/j?l;)). (E.1)

And there exist the following matching lower and upper bounds:

(a avab ) v (a bvab

4 + 2n(a+b) 2 2n(a+b) E2)

NS

) < E[zi0(z1)0’ (21 + 22)] <

* If o(-) is Leaky ReLU activation function, then

Efryo(z1)o’ (2 + 2)] = LT (L= r)%a (arctan (\/z) | Yab ) (E.3)

4 2T

And there exist the following matching lower and upper bounds:

((1 +k)2%a L= @%M) y ((1 +52a  (1—r)*bVab

4 2m(a + b) 9 - 27 (a + ) > < Elzio(z1)o’ (21 + 22)] <
(E.4)

Here, « is the coefficient of the Leaky ReL.U activation function when the input is smaller than 0.

(1+x?)a
-

Proof of Lemma|E.3] The first conclusion for the identity map is straightforward. When o(-) is
ReLU activation function, we can rewrite that z10(21)0” (1 + #2) = 271,501 L (s, 42,50} Let

21 = L\/la and zo = %, then we have,

Elz10(21)0’ (21 + 22)] = aB[27 112,20y Lf saay 4 vBenoy] - (E.5)

I

For I, by denoting A = \/@ , wWe can obtain that

= /O; Ao)o(a)dadza = [ 28 ) olar)don,
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where ¢(-) and ®(-) are the cumulative distribution function (c.d.f.) and probability density func-
tion (p.d.f.) for the standard Gaussian distribution respectively. We can denote that I(\) =

J5° #1® (A21) ¢(21)dz1. Then, by the Leibniz integral rule, we have

dI(A)_ “ 3 1 003*7 =
D —/O A¢(A1)o(z1)dz = 27r(1+)\2)2/0 serde= e

Additionally, since 1(0) = i, we can derive that

1 1 1 1 %
I =-4 —| arctan X + L = —+ ——| arctan 2 + b (E.6)
14 A2

4 2w 4 27 b a+b

Applying the result of (E.6) into (E.3)), we finishes the proof of (E.I). In the next, we derive the
upper and lower bound for ;. By the property of c.d.f., we know that ®(z) < 1 for all z € R, which
implies that

1, 1

I< /0 2¢(21)dz, = iE[zl] =5

Additionally, by Mills ratio, we further obtain 1 — ®(z) < ¢(z)/z for all z > 0. Based on this
result, we can obtain that

I> /0 210(21) (1 - ¢(/\)\2le)> dz; = % - %/O 219(21)p(A21)d21,

where the second term can be calculated by

oo Ao )d 1 [ _z%(1+A2>d 1 - —ﬁd !
| sonetaan = o [ ae w2 e = ey

Plugging this result into the preceding inequality, we can derive that

1 b3
.
2 2myala+Db)
Combining all these results and (E.6), we finally conclude that
1 Vab 1 b2 1
-4+ — |V —F—F——F | I < - E.7
<4+27r(a+b)> (2 277\/6(a+b)>_ =3 E&7)

Applying the result of (E.7) into (E.3), we finishes the proof of (E.2). In addition, when o(-) is the
Leaky ReLU activation function, we can similarly derive that

I

E[xla(xl)g’(g;l + 3;‘2)] = G'E[Z%]l{zlzo}]1{\/5214,_\/&220}} + aH]E[Z%]l{Zl<O}]1{\/EZ1+\/EZ220}]
+arkEF L1250y Ly ao 4 Vo <oy] T AR ELRT L1 <oy L a4 vBea <oy
= (1+ #)aB[F L2011 a4y soy] T 260E Lz <0} L a4 0y

where the last equality holds by the symmetry of z; and z5. By applying a very similar calculation
process, we can obtain that

0
11 a Vab
E[211 21<0) Lz, 4 VB2 20)) :/ 5@ (A1) d(zn)dar =  — 27T<eurctan< b) + b>.

—0o0

By replacing this result into the previous calculation, we can immediately prove (E.3). And (E.4)
can be directly derived from (E.2). O

Lemma Ed4. Let ;1 ~ AN (0,a), o ~ N(0,b) be two independent Gaussian random variables,
then it holds that

e If o(+) is the identity map, then
Elxeo(z1)0' (x1 + 22)] = 0.
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* If o(-) is ReLU activation function, then

Elzyo(z1)o’ (x1 + x2)] =

* If o(+) is Leaky ReLU activation function, then

(1 — x)%bVab

Elzoo(21)0’ (21 + 22)] = 2m(a + b)

Here, k is the coefficient of the Leaky ReL.U activation function when the input is smaller than 0.

Proof of LemmalE.4] The first conclusion for the identity map is straightforward. When o (-) is
ReLU activation function, we can rewrite that z20(z1)0" (21 + 22) = 217215, 501 L {2, 425>0}-

Let z; = % and 29 = %, then we have,

E[!EQO’((EI)JI(I'l + iCQ)] = \/GEE[leQ]]'{ZlZO}]]'{\/Ez1+\/52220}] . (ES)

I

For I, by denoting \ = \/@ , it can be calculated by

I = /0 ‘/)\Z1 2122¢(Zl)¢(22)d21d22 :A Zl¢(2’1) <//\Zl Zz¢(22)d22> le

= _— 2 d d = E—— Z2d d
/o z19(z1) ( o /)\Zl z9€ z2> 21 ; z19(71) ( o Jz e 22> 21

1 [ _zas? 1 b

= —_— d = == .
o Jy ¢ T PN T A1) T 2mat b

(E.9)

Now applying the results of (EJ9) into (E3), we finish the proof when o(+) is the ReLU activation
function. In addition, when o (-) is the Leaky ReLU activation function, we can derive that

]E[.TQO'(.Tl)O'/(Il + 332)] :\/%E[leﬂ]‘{zlzo}]]‘{\/Ezl-&-\szQzO}} + \/CEHE[lez]].{Z1<O}1{\/521+\/52220}]
+ RVabEz1221 12,5011 e 4 ims<oy] T F VAE[21221 (2, <0y L ey 1 vBes <0))
:(1 + HQ)M]E[“Z?I{ZQO}]l{\/az1+ﬁ2220}] + 2H\/CEE[’21’Z2]]‘{ZI<0}]]‘{\/azl+\/52220}]’

where the last equality holds by the symmetry of z; and z5. In addition, by a similar calculation
process, we can obtain that

10 e 1 b
Elz1221 0z <0y L aey 4 voma0y) = 50 /_Oo ae T da= (1A% 2m(a+b)
Consequently, we can finally obtain that

(1 -2k +r2)bVab (1 —k)?bVab

Elzgo(21)0’ (21 + 22)] = 27(a + b) -~ 2m(a+b)

which finishes the proof. O

Then, based on the conclusions of Lemma [E.3] and Lemma [E:4] we can immediately obtain the
following lemma as a corollary.

Lemma E.5 (Calculation of F3(a,b) defined in (C4)). Let 21 ~ N(0,a), zo ~ N(0,b) be two
independent Gaussian random variables, then it holds that

o If o(+) is the identity map, then
E[(z1 + z2)o(z1)0’ (x1 + 22)] = a.
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* If o(-) is ReLU activation function, then

E[(z1 + z2)0(x1)0" (21 + 2)] = % + % arctan (ﬁ) + \g—f’

And there exist the following matching lower and upper bounds:

a a Vab a bvab a b
= S+ )< ! <-4 — 7 <4
2\/<4+ 271_) 7E[(£C1+CL‘2)O’({E1)O' (1’1+$2)]72+2ﬂ_(a+b) 724‘47‘_

o If o(-) is Leaky ReLU activation function, then
, (14 k)a  (1-k)a a (1 —k)*>Vab
E[(z1 + x2)o(z1)0' (z1 + 22)] = 1 + 5 arctan 5 + —

And there exist the following matching lower and upper bounds:

(1+r)a, ((1%)% (1—&)2\/%)

Elzi0(z1)o’ (21 + 22)] > B 1 27
Elos0(@0)0" @1 + 2] < (1+; )a (12;25()/)% < (1+; Ja (1—4;:) b

Here, & is the coefficient of the Leaky ReL.U activation function when the input is smaller than O.

Lemma E.6 (Calculation of Fy(a,b, ¢) defined in (C.3)). Let 1 ~ N(0,a), o ~ N(0,b), x3 ~
N (0, ¢) be three independent Gaussian random variables, then it holds that

o If o(+) is the identity map, then
Elzi0(z1 + 22)0" (21 + 22 + 23)] = a.
* If o(+) is ReLU activation function, then

, _g i a+b (a+b)C
Elzi0(z1 4+ 22)0’ (x1 4+ 22 + 33)] = 4+2W<arctan< >+ at+b+c)

C

And there exist the following matching lower and upper bounds:

<a+ a (a+b)0)v<a ac? ><E[£U (21 + 22)0" (21 + 2o + 23)] <
- — - o o
4 2m(a+b+c) 2 orvatblatbre)) — S

NS

o If o(-) is Leaky ReLU activation function, then

Elzi0(z1 + x2)0’ (21 + 22 + 23)] = (1+ )% + (1- ) (arctan <\/a 1— b) + Vit b)c>.

4 2m a+b+c
And there exist the following matching lower and upper bounds:
(1+&)2a (1 —k)%ay/(a+ b)c) ((1 +r%)a (1 —k)2ac? )
Elzio(z1 + x22)0' (21 + 22 + 23)] > + v - ;
(e + 0001 +22-+ )] 2 (] e e
1+ k%)a
Elzi0(z1 + 22)0’ (21 + 22 + 23)] < %

Here, & is the coefficient of the Leaky ReL.U activation function when the input is smaller than 0.

Proof of LemmalE.6] The first conclusion for the identity map is straightforward. When o () is
ReLU activation function, we can rewrite that x10(z1 + x2)o’(x1 + 22 + 23) = z1(x +
22) Lo, 42501 Lay ta0+2s>0}- Additionally, let x4 = x1 + 22 ~ N(0,a + b) and z = \/% ~
N(0,1). Then we have Cov (21, z4) = E[(z1 + 22)21] = a, and E[z1|24] = 55x4. Therefore, we
have

Elzi0(z1 + 22)0’ (21 + 2 + 3)]
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=Elz1 (21 + 22) Lz, 42520} Loy tantas>0)] = E[E[r1 (@1 + 22) Lo, 12,20} Loy 4as 10520} 71, 2]

T+ x x a x
ZE[M(% +$2)1{x1+z220}‘1’< 1 2)} =E E{xlxﬂ{mzo}@(\%) x4H = ME[ﬁﬂ{uzo}‘I’(ﬁﬂ

NG

:aIE[ZQIL{ZZO}@()\z)] = a/ooo 220(\2)¢(2)dz,

I

where \ = “7“7. By the similar process in the proof of Lemma we can obtain that

11 A 11 a+b (a+Db)c
I=>+—(arctanrA+—— ) = =+ —( arctan |/
4+27r(arcan +1+>\2> 4+27r<arcan( c >+ at+bte

and

1 (a+b)c 1 2 1

I 2 LSS AS VA e <I<-—.

4 2m(a+b+c) 2 2mva+bla+b+c) 2
Plugging these results into the previous equation of expectation, we finish the proof when o (+) is the
ReLU activation function. In addition, when o (-) is the Leaky ReLU activation function, we have

Elzi0(z1 + x2)0’ (21 + 2 + 3)]
=E[z1(z1 + 22)L{z; +2,20} L{wy +antas>03] + KE[21(21 + 22) L0, 105 <0} Liay +aa+a5>0}]

+ RE[z1 (21 + 22) 12, 42020} Ly tastas<0y] + K E[21(21 + 22) (e, 12 <0) Lay pas 4a5<03)
=(1+ &*)E[z1(z1 + 22) Lz, 425501 Ly taatws>01] + 2RE[@1(21 + 22) Ly 420 <01 Ly 42342550} -

By utilizing a similar calculation process, we have

4 27 c a+b+c

0
a a a+b a+b)c
E[xl(xl + $2)1{z1+12<0}1{11+x2+1320}] = a/ ZQ@(AZ)QS(Z)dZ == <arctan (\/ ) + \/( )

— 00

Plugging this result into the previous calculations, we finish the proof. And the upper and lower
bounds for Leaky ReL.U activation function can be directly derived by comparing the formulas. [

Lemma E.7 (Calculation of F;(a,b, ¢) defined in (C.6)). Let 1 ~ N(0,a), 2 ~ N(0,b), x3 ~
N (0, ) be three independent Gaussian random variables, then it holds that

o If o(-) is the identity map, then

Elzeo(z1)o’ (z1 + 22 + x3)] = 0.

* If o(-) is ReLU activation function, then

by/a(b+ c)

Elzgo(z1)0’ (21 + 22 + 23)] = 2m(@a+b+o)

o If o(-) is Leaky ReLU activation function, then

(1 —k)2b\/a(b+ c)

Elzoo(21)0’ (21 + 2 + x3)] = 21(a+ b+ c)

Here, & is the coefficient of the Leaky ReL.U activation function when the input is smaller than 0.

Proof of Lemma[E77] The first conclusion for the identity map is straightforward. =~ When
o(-) is ReLU activation function, we can rewrite that zoo(x1)o’(z1 + 22 + x3) =
122114, >0y L {2, 422+ 250} - Then we have

E[z20(21)0’ (21 + 22 + 23)] = E[z1221 (2,50} Lz 420+ 25>0}]

=K [xle]].{wl ZO} ]]'{$1+I2+21320} "rl? ‘1:2}
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X1+ o
=E 1 P
)
o0 o)
xr + 33‘2)
= ;Cl.%'g )¢(1‘2)d$1d1‘2
o LM
oo 1 2 (o) 1 22
:/ 1 e (/ 2<I><$1 +x2> e_£d$2> dxy
0 2ma o Ve 27b
We can utilize the integral by parts to derive that
/b / £C1+£C2 de‘g— iq) T1 + X /b / 1 + X2
2m Ve Ve
’ _ (wa+ b+c¢1) 22
\/7/ ﬁ (r1+12) _ \/7\/ 2 b(, 2(b+c) de _ b e z(b-}-(‘)
2w (b+ c)

Now substitute this result of I back into the outer integral for the calculation for expectation, then
we have

H
2

b © 3
Elzso(x1)o' (21 + 29 + 23)] = — —— Tie” 2@ T30 dy
[z20(21)0" (21 + 22 + 23)] e " 1
b a(b+ c) /°° ,<a2+?b+:>§?d(a+b+c)x% by/a(b+ c)
= 6 a c — .
2my\/a(b+c)a+b+c 2a(b+ ¢) 2n(a+b+c)

This finish the proof when o (+) is ReLU activation function. In addition, when o (+) is Leaky ReLU
activation function, we can derive that

Elzgo(z1)o’ (21 + 22 + 23)] =E[21221 (4,50} L{a) 4 2a a5 >0)] + FE[T1221 (4, <0y Loy 1ant2s>0}]
+ kE[21221 {2,501 Lo, +aatas<0}] + K E@1221 (2, <0y Lz, +as+25<0}]
= (14 *)E[@1221 (5,50} L{z1 4 ws 2550} + 26E[1221 (5, <01 Ly 42342550} -
By applying a similar calculation process, we can derive that
2
Elr1221 15, <0} Lz, +as4as>0}] = QWW / 1€ —5e- del = —Mbb—:—ci)'
Applying this result, we finishes the proof. O

E.2 ARITHMETIC INEQUALITIES

Lemma E.8. Let a, b, c be three positive scalars, it holds that

¢ ¢ b
a+b " a a?

Proof of LemmalE.8]

c c be be
a+b a  (a+ba = a?
This completes the proof. O

Lemma E.9. Let a, b, c be three positive scalars, it holds that

c <E+ be
a—b " a (a—10)?

Proof of Lemma[E-9}

I < .
a—-b a (a=0ba " (a—0b)?
This completes the proof. O
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E.3 SEQUENCE ITERATION BOUND

The following lemmas characterize the increase of a positive sequence with matching lower and
upper bounds. Similar conclusions and proofs can be found in [Jelassi et al.| (2022); |Cao et al.
(2023); Meng et al.|(2024); Zhang et al.|(2024a};2025)). We include the proof here for completeness.

Lemma E.10. Consider a positive sequence {x}7°, satisfying the following iterative rules:

Tip1 > Te+1-c1 -

Tppr < xp4n- o xd,

b

where co > ¢; > 0 are positive constants. For any v > x¢, let T}, denote the first index ¢ such that
x; > v. Then, for any constant ¢ > 0, the following bounds on 7, hold:

1+¢  (1+)%log(3x)
+

q—1
1C1T C1

T, <

, (E.10)

and

1 log (%)
T, > — 0, E.11
= 05 et A+ Q) E.1D

Proof of Lemma|E.I0} To prove the bounds, let 7, be the first iteration such that z, > (1 + ¢)9x.
Furthermore, define g* as the smallest integer satisfying (1 + ¢ )9" o > v. This implies
log (-~ log(=
g(35) <g < ()
log(1 4 ¢) log(1+¢)
For t = 771, we use the lower bound iteration:

+ 1.

Ti—1
or > a0+ Y neraf > xo + Tinerxd,
t=0
from which we can deduce that
T — Xo
ne

Ti < (E.12)

Utilizing the upper-bound iteration for z7; and the condition 27, —1 < 2¢(1 + (), we get
rr < aqo Fneerd ) <ao(l+C) + neaxd(1+ )7 (E.13)
Combining the results from (E.12) and (E.I3)) leads to

I SN s
_nclxg_l c1

The case for g > 1 is handled similarly. Using the lower bound iteration from 74_; to T, — 1:
Ty—1
r7, 2 X7, , + Z newxd > x4+ nei(Ty — Tg—1)zd(1 + ¢)ala=1), (E.14)
t=Ty—1

and the difference x7, — x7,_, can be upper bounded using the upper bound iteration and z7, 1 <
zo(1+¢)9 and z7,_, > zo(1+ ()9 "

vy, — a1, <x7,_1+ 770230% -z, <¢(1+ ¢)9 twg + neaxd (14 ¢)92. (E.15)
Combining (E:T4) and (E.I3)), we derive that
14 ()¢
To < Tyor + — ¢ + (14 )%z (E.16)
neixzd™ (1 + ¢)le=Dle-1) c1
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Taking a telescoping sum of the results of (E.I6) from g = 1to g = ¢* and by the fact that T}, < 7,
we finally get (E.10). For the lower bound, we proceed similarly starting with ¢ = 7;. We use the
upper bound iteration:
Ti-1
xr <z + Z neaxd < xo + Tineaxd (1 + )%
t=0

Substitute that z; — x9 > (zo, we get

T > % (E.17)
neazy (14 )4
A similar derivation for g > 1 using the upper bound iteration gives:
Ty—1
v, Swr o+ Y neer] < wy, A+ nea(Ty = Ty-n)ad(1+ ()% (E.18)
t=Ty—1

The difference x7, — 27, , can also be lower bounded by utilizing the fact that x7, | 1 < zo(1 +
Qs

T, — T, > X7, — LT, -1 — 7702qu;_1171 > C(1+¢)9 g — neard (1 + C)(gfl)q. (E.19)
Combining the results from and (E:19), we obtain that,

¢ 1
neaa (14 QJola=D+ - (147

Taking a telescoping sum of the results of (E20) from ¢ = 1 to g = g* — 1 and by the fact that
Ty > Tg+—1, we finally get (E-TT). O

Lemma E.11. Let z; be a positive sequence for ¢ > 0. Assume z; satisfies the iterative formula

Tg > Tg—1+

(E.20)

Ty = Ty +cre” P
for given constants c;, co > 0. Then, for all ¢ > 0, the sequence x; is bounded as follows:

1 1
P log(cicat + €770) < xp < cre” 20 4 - log(cycat + €9270).
2 2

Proof of Lemma[ET1] First, we establish the lower bound for z;. We introduce a continuous-time
sequence z,, t > 0 defined by the integral equation with the same initial value.

t
T, =5+ cC1- / e & dr,  zy = . (E.21)
0

Observe that z, is clearly an increasing function of ¢. Hence, we obtain
t+1
Ty =2, +C1e / e % dr
t

t+1
Sz ta / e~ “%dr
t

=z, + c1exp(—caz,)

for all ¢ € N. By comparing the preceding inequality with the iterative formula for {z;}, the
comparison theorem implies that z; > z, for all ¢ € N. Equation (E.21]) possesses an exact solution
given by

1

Ty = — log(0162t + 602w0).

C2

Thus, we have

C2:Eo)

1
xy > — log(cieot + €
C2
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for all t € N. This concludes the derivation of the lower bound.

Next, we derive the upper bound for z;. We have

t—1
Ty =To +C1 - g e
7=0

t
_ cazQ
S To+cp - § e log(cicaT+e )
=0

t

1
=x9+cy- E _
i c1CoT + ec2%o
T=

= + a + E 71
=2 c1 -
0 ec2To ! 1 C1C2T + ec2%o
T=

<x9+ dr

C1 t 1

oo T 1 oz a7
ec2ro 0 C1C2T + e“2%o
where the second inequality utilizes the lower bound for z; derived in the first part of the lemma’s
result. Consequently, we obtain

C1

e(}zZo

xy < xo +

1 1
+ — log(cieat + €7270) — — log(e®™0)
C2 C2

1
= c1e” 2% + —log(creot + €7270).
C2

This completes the proof. O
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