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ABSTRACT

Transformers have achieved great success across a wide range of applications, yet
the theoretical foundations underlying their success remain largely unexplored. To
demystify the strong capacities of transformers applied to versatile scenarios and
tasks, we theoretically investigate utilizing transformers as students to learn from
a class of teacher models. Specifically, the teacher models covered in our analy-
sis encompass convolution layers with average pooling, graph convolution layers,
and various classic statistical learning models, including a variant of sparse token
selection models (Sanford et al.,2023;|Wang et al.,|2024) and group-sparse linear
predictors (Zhang et al.,[2025). When learning from this class of teacher models,
we prove that one-layer transformers with simplified “position-only” attention can
successfully recover all parameter blocks of the teacher models, thus achieving the
optimal population loss. Building upon the efficient mimicry of trained transform-
ers towards teacher models, we further demonstrate that they can generalize well
to a broad class of out-of-distribution data under mild assumptions. The key in our
analysis is to identify a fundamental bilinear structure shared by various learning
tasks, which enables us to establish unified learning guarantees for these tasks
when treating them as teachers for transformers.

1 INTRODUCTION

Transformers have rapidly become a cornerstone in the field of modern machine learning, demon-
strating exceptional performance and versatility across diverse applications, including natural lan-
guage processing (Vaswani et al.,|2017; |[Radford et al., 2019; |OpenAll 2023} Devlin, |2018} |Achiam
et al., 2023} |Vig & Belinkovl 2019; [Touvron et al., [2023} |Ouyang et al., 2022), computer vision
(Dosovitskiy et al., 2020; Rao et al} [2021; [Liu et al., 2021} [Yuan et al.| [2021)), and reinforcement
learning (Jumper et al.l 2021} |Chen et al.| 2021} Janner et al., 2021} Reed et al., [2022)). Acting as
the critical component of transformers, self-attention layers assign varying weights to features based
on their relevance and embedded positional context. This design principle intuitively endows trans-
formers with a remarkable ability to efficiently process both structural and positional information, as
empirically validated in numerous applications mentioned above. However, despite their profound
impact, the theoretical foundations of transformers, especially the mechanisms of how self-attention
layers work, remain largely unexplored due to their intricate architecture.

Some recent theoretical studies aimed to understand transformers by analyzing their capability in
solving specific tasks (Zhang et al.| [ 2024b; |Frei & Vardil 2025} Jelassi et al.| [2022; Wang et al.,[2024;
Zhang et al., [2025). Specifically, |[Zhang et al.| (2024b)) considered in-context linear regression, and
demonstrated that for Gaussian data, a one-layer transformer with linear attention can perform linear
regression based on the context, and then apply the obtained linear model to make predictions on
query data. Later, |Frei & Vardi|(2025)) further extended the setting to in-context linear classification,
and studied the in-context benign overfitting phenomena when learning from Gaussian mixture data.
Jelassi et al.| (2022) investigated a specific data model based on the ’patch association’ assumption,
where an image is divided into disjoint partitions, and patches within the same partition share similar
characteristics. They theoretically demonstrate that a one-layer vision transformer (ViT) can extract
the spatial structure among patches when trained on this data model. [Wang et al.| (2024) studied
a problem termed ’sparse token selections’, where the objective is to find the average of several
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tokens from specific positions, and they proved that a one-layer transformer can successfully solve
this task on Gaussian data when the positional information of the target positions is embedded into
the query token. [Zhang et al.[(2025)) considered a group sparse linear model, where the input’s label
is determined by features from only one of several input feature groups (the ’label-relevant group’),
and prove that for Gaussian data, a trained one-layer transformer can achieve correct classification
by identifying features from this group and learning the ground truth linear classifier. Although these
works have offered valuable insights into the underlying mechanisms of transformers, their focus on
very specific learning tasks limits the generality of their theoretical findings, prompting us to seek a
unified theoretical framework accounting for a broader range of examples.

Despite the distinctions among the model simplifications and technical assumptions, we observe that
for some learning tasks discussed above, including a variant of the sparse token selection (Sanford
et al., 2023 Wang et al.| |2024), the group sparse linear predictors (Zhang et al., 2025), and patch
association (Jelassi et al) [2022), their true responses are essentially given by bilinear functions.
In addition, the linear attention studied in [Zhang et al.| (2024a)); [Fre1 & Vardi| (2025) inherently
constitutes a bilinear structure with respect to its parameter matrices. Motivated by this observation,
we define a general class of “teacher models” that employ a bilinear structure, and investigate the
setting where one-layer transformers are trained as “student” models under the supervision from
these teacher models. Our framework not only encompasses the learning tasks from prior works but
also covers popular, previously unexplored models such as convolution layers with average pooling
and graph convolution layers on regular graphs. The purpose of our analysis is to establish unified
theoretical guarantees for one-layer transformer models trained with gradient descent in learning
this class of teacher models.

The major contributions of this work are as follows.

* We theoretically demonstrate that one-layer transformers trained via gradient descent can effec-
tively recover a general class of teacher models. To support this claim, we establish a tight con-
vergence guarantee for the population loss, with matching upper and lower bounds at the rate of
C) (%), where 7' is the iteration number of gradient descent. We also establish out-of-distribution
generalization bounds for the obtained transformer model and demonstrate that it is competitive
with the teacher model over a wide rage of learning tasks. This illustrates the effectiveness and
robustness of transformer models in learning from diverse teacher models.

* Our theory covers a wide range of learning tasks, including some settings closely related to those
studied in (Wang et al.l 2024} Zhang et al., 2025). Specifically,[Wang et al.|(2024) study a type of
“sparse token selection” task where the goal is to select a number of target input tokens specified
by a query column, and then output their average. Assuming that the positions of the target tokens

are randomly generated for each data point, the authors establish an O(%) convergence rate.
In comparison, our setting covers a slightly different task where the target positions are fixed but
are not explicitly fed to model, and our theoretical results demonstrate a tight © (%) convergence
rate with matching upper and lower bounds. Compared with Zhang et al.| (2025) which focuses
on group sparse linear classification, our work provides complementary results and demonstrates
that transformers can also perform efficient group sparse linear regression.

» Experiments on both synthetic and real-world data are conducted to verify our theory through the
examples of learning a convolution layer with average pooling, learning a graph convolution layer
with regular graphs, learning sparse token selection, and group sparse linear regression. In all
experiments, we can observe clear loss convergence and parameter convergence that match our
theory. The experiments setup does not exactly match our theory assumptions, indicating that our
theory conclusions can also hold in more practical training setups and real-data learning tasks.

2 PROBLEM SETUP

In this section, we introduce the definition of the teacher models we study in this paper, and give
various examples covered in our definition.

We consider a teacher model with an input matrix X € R%*? of the following form:

FH(X) = o(V*XS"), @.1)
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where V* € RM* ig the ground truth value matrix of the teacher model, and S* € RP*P is
the ground truth softmax scores. Each column of S* has K non-zero entries equivalent to % In
addition, o(-) denotes either an identity map, ReLU, or Leaky ReLU activation function.

The teacher models defined in (2.1)) can cover a general class of functions (models). Notably, when
K =1 and all the non-zero entries of S* appear on its diagonal, S* equals the identity matrix I 5. In
this scenario, the teacher model (2.T)) reduces to f*(X) = o(V*X), and can be seen as a single-layer
neural network. Besides this naive example where S* = Ip, the teacher model (2.1) also includes
some other common architectures and models. We discuss these examples in the following.

Example 2.1 (Single convolutional layer with average pooling). We consider a convolution layer
consisting of convolution operation, average pooling, and then the activation function. The convo-
lution operation is essentially performed by taking inner products between each convolution ker-
nel with each patch of the input. We consider a convolution layer with M (vectorized) kernels

vi,..., Vs, and consider an input consisting of D (vectorized) patches x1,...,xp. In average
pooling, we take averages according to a partition of the D patches. Let G = {g1,92,...,9s} be a

disjoint partition of [D], forming J pooling groups with |g,;| = K, j € [J]. Then the final output of
this convolution layer corresponding to the j-th pooling group and the m-th kernel is given as

1 T .
o SV} ) = o(viI X1, /K), m € M. j € L],
1€g;
where o is the activation function, X = [x1, X2, ...,Xp| € R4*D and 1, € RP is a vector whose
entries are 1 for indices in g;, and 0 otherwise. Then, we can summarize all outputs into a matrix:

Fonn(X) = o(V*X[1,,,...,1,,]/K) € RM*/,

where V* = [vi,...,v},]T € RM*4 Here, the j-th column of Fenn(X) corresponds to the output
of j-th pooling group g;, and m-th row of Fonn(X) corresponds to the output of m-th kernel v},

To formulate the convolution layer above as a teacher for transformers, we further specify the cor-
respondence between each input patch and the output. The teacher model can then be given as
J[*(X) = o(V*XS*), where the i-th column of S* is 1, /K, with g; being the group containing i.

Example 2.2 (Single graph convolution layer on a regular graph). Let A € R”*? be an adjacency
matrix of a degree-(K — 1) regular graph with D nodes, and X = [x;,Xa,...,Xp] € R™P be the
feature matrix of this graph, with each column x; (for all ¢ in [D]) representing the d-dimensional
feature vector of the i-th node. A typical single graph convolution layer (Kipf & Welling| [2017),
with weight matrix V* € RM*4 is defined as

Foen(X) = o(V* XD /2AD1/?), (2.2)

where A = A + I, is the adjacency matrix with self-connections added, and D is the diagonal
degree matrix of A.Fora degree-(K — 1) regular graph, each node has K — 1 neighbors, and hence
each column of A contains K ones and D — K zeroes, and D=K1I p. Therefore, the GCN defined
in (Z2) is equivalent to a f*(X) = o(V*XS*) with V* and * = D~ Y/2AD~!/2 = A /K.

Example 2.3 (Sparse token selection model (Sanford et al., 2023; Wang et al.} 2024)). Let X =
[X1,Xs2,...,Xp] € R¥P be a sequence of d-dimensional tokens. Given a K -element index set

g C [D], the goal of sparse token selection is to (i) select the tokens x;, i € g, and (ii) take an
average over the selected tokens. Hence, we can define

1
FSTS(X) = ? ZXZ
1€9
Then it is clear that f*(X) = ¢(V*XS*) with V* =1p, §* = £1,-1], € RP*P and o(-) being
identity map is equivalent to Fsrs(X), except that f*(X) duplicates the output D times to match
the output dimensions of a self-attention layer.

Remark 2.4. The “sparse token selection” task defined in Example 2.3]is slightly different from
that studied in Wang et al.|(2024)). In our setting, the index set g is specified as part of the learning
objective and therefore remains fixed across all inputs. In contrast, [Wang et al.| (2024)) considers a
setting in which ¢ is provided as part of the input, allowing target positions to vary between different
inputs. We remark that despite the difference, our learning task and that studied in|Wang et al.|(2024])
essentially lead to very similar learning dynamics. We provide a detailed discussion in Appendix |[C]
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Example 2.5 (Group sparse linear predictors (Zhang et al., 2025))). Let X = [x1,X2,...,Xp] €
R¥*D be a sequence of d-dimensional feature groups. For a given ground truth vector v* € R%,
and a label-relevant group index ¢*, the group sparse linear predictor will first search for the variable
group x; corresponding to the label-relevant index ¢*, and then calculate its inner product with the
ground truth vector v*. Hence, we define

Fosip = (V¥ %5+).

Consider a teacher model f*(X) = o(V*XS*) with V* = v* by reducing M to 1, S* = e; - 1},
and o () being identity map. Then similar to Example[2.3] f*(X) duplicates the output of Fgsip(X)
for D times, and is essentially equivalent to Fs p(X).

One-layer transformer. A one-layer transformer model [Vaswani et al.| (2017); |Dosovitskiy et al.
(2020) can be defined as

ZTW]WoZ
TR(Z; Wy Wo; Wg) = o| Wy ZS KQ) . 2.3
( viWo; Wg) U( % < /D > (2.3)

In this formulation, Z represents the input matrix of the transformers, obtained by concatenating the
original feature matrix X with its positional encoding matrix P. Specifically, for each column x;
(for all i € [D]) of the original feature matrix X, we concatenate it with the position encoding vector
Pi, which contains the positional information of this specific index, to generate a column of Z as
z; = [x;,p;]". The complete positional encoding matrix is denoted as P = [p1,Ppa,---,Pp]
and we employ an orthogonal design for P, meaning that P is an D x D orthogonal matrix. For
analytical convenience, the practice of concatenating feature and positional encoding matrices has
been widely adopted in recent theoretical studies (Nichani et al., 2024} Bai et al.,|2024; [Wang et al.|
2024; Zhang et al., 2025). Furthermore, S(-) : RPXP — RP*P denotes the softmax operator,
which implements the softmax function column-wisely, and Wy, Wq, W g represent the value
matrix, query matrix, and key matrix in a typical self-attention structure, respectively. Instead of
studying the typical structure (2.3), we consider a moderately simplified “position-only” softmax
self-attention in this paper, which is defined as

P WP

TE(Z; Wy Wixo) = o | Wy XS
( viWkq) 0( v < 7D

)) =o(WyXS) e RM*P (24)

In comparison with the typical single-head self-attention architecture (2.3), our model 2.4) is sim-
plified from the following two aspects: (i). We re-parameterize the original key matrix W g and
query matrix W into one trainable key-query matrix W g, which has been adopted in almost
theoretical studies regarding the optimization of transformers (Tian et al.||2023;[Zhang et al.l[2024b;
Wang et al., 2024} [Huang et al., [2024; [Fre1 & Vardil 2025; Zhang et al., 2025} |He et al.}, 2025). (ii).
We employ an architecture such that only the positional encoding matrix P is involved when calcu-
lating the softmax attention score, and the value matrix Wy, only interacts with the feature matrix
X. To illustrate a rationale for this design, consider the following one-layer transformers:

— ~ Z"WgoZ
TF(Z; Wyv; Wkq) = U(WvZS(\/gQ)>, (2.5)

where the entire input matrix Z is involved in both the calculation of attention score and interac-
tions with the value matrix. Empirical observations (illustrated in Figure (1)) reveal that when the
transformer model TF in is used to learn a teacher model f* in (2.1)), substantial training pre-
dominantly occurs in the left block of Wy, and the ‘bottom-right” block of W . These actively
trained blocks map to Wy, and W k¢ respectively in our model (2.4), while other parameter blocks
of TF exhibit negligible changes from their initial values. Consequently, our model (2.4)) can be con-
sidered essentially equivalent to the transformer model TF if these rarely updated blocks within Wy,
and Wk are fixed to zero. This strategy of fixing certain transformer parameters during training
is widely adopted in the theoretical studies on the optimization of transformers (Wu et al., 2023}
Tarzanagh et al.| 2023a; [Huang et al.,[2024; Sakamoto & Sato, [2024; [Frei & Vardi, [2025; He et al.,
2025)), and analogous “position-only” attention structures are also adopted in Jelassi et al.[ (2022);
Wang et al.| (2024).
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Figure 1: Visualization of parameter matrices for the transformer TF in (2:3), obtained after training
to learn the teacher model f* and achieving loss convergence. The formal illustration of the loss
function and training algorithm is provided in the next section.

3 MAIN RESULTS

In this section, we demonstrate our theoretical conclusions of utilizing a one-layer transformer (2.4)
to learn a given teacher model f* in (2.I). For a teacher model f* parameterized with the ground
truth value matrix V* and ground truth softmax scores S*, the observed label Y for an input matrix
X is assumed to be generated as:

Y = f*(X) + £ =0o(V*XS*) + £ € RM*P, (3.1)

where £ € RM*P i a noise matrix independent of X and following a zero-mean distribution. To
train a one-layer transformer (2.4), we consider the population mean squared error as the objective
loss function. Specifically, given an input-label pair (X,Y), the loss function is defined as

1
,C(Wv;WKQ) = E]EX7Y [HY—TF(Z;W{/;WKQ)H%]. (32)
Here, each column of X is assumed to independently follow the standard Gaussian distribution
dd

during the training stage of (Z.4), i.e. x; R (0,1) forall i € [D]. Due to the variance introduced
by the noise component £, even the loss of the ground truth model f* has an irreducible term, and
we denote this term as the optimal loss, i.e.

1 1
Lopt = 3Ex ¥ [IY = /" (X)I}] = SE[IE]3]-
To evaluate the performance of one-layer transformer with different Wy and W g, we consider
the excess loss defined as: L(Wy; Wgg) — Lopt. While the choice population loss implicitly
suggests an infinite training data set—a scenario not feasible in practice—it significantly simplifies
the technical challenges of conducting a rigorous optimization analysis for transformer models. This
approach enables us to focus on the global optimization trajectories, and has been adopted in most of
the recent theoretical studies regarding the optimization of transformer models (Zhang et al.| [2024b;;
Huang et al., [2024; [Wang et al.| 2024 Jelassi et al.| 2022} [Frei & Vardi, 2025 |Zhang et al., [2025).

For the training objective loss (3.2), we utilize the gradient descent to derive the optimal solutions
for the value matrix Wy, and key-query matrix W g . The iterative rule for Wy, and W g g during
the learning process can be expressed as

WU = W — ) Vw, LW WE,); 33)
Wich = Wit = 1V wieo LWV W), (3.4)

where 7 is the learning rate, and the initializations are set as Wg’ ), Wg?g;) = 0. Based on these pre-

liminaries, the following theorem characterizes the convergence of gradient descent (3.3)) and (3.4).
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Theorem 3.1. Suppose that D > Q(poly(M, K)), n < O(M~*D=5/2). Under these conditions,
there exists T* = © (ﬁ) , such that for all 7" > T, the following results hold.
F

1. The attention scores achieved by the one-layer transformer (2.4), match the ground truth softmax
scores of the teacher model: S(7) at the T-th iteration satisfies that

£ IV*[lpv/nT )

2. The value matrix Wy of the one-layer transformer (2.4)) aligns with the ground truth value matrix

of the teacher model:
K
=0(D*/— |

3. The excess loss is minimized with matching lower and upper bounds:

QKD (T) cK D4
< - <
< L(W ( )W ) Lopt < =,

n
where ¢ and ¢ are two positive constants satisfying ¢ < ¢.

Hs(T) —

Wi v

The proof of Theorem [3.1] is given in Appendix [D} Theorem demonstrates that a one-layer
transformer can learn the teacher model f* formulated in from two aspects. The first and

second results show that the one-layer transformer’s value matrix Wg/T) and attention scores S(T)
converge (in the Frobenius norm) to the teacher model’s ground truth value matrix V* and softmax
scores S*, respectively. This reveals that a one-layer transformer trained via gradient descent can
correctly recover the teacher model by accurately learning all its core components. The third result
in Theorem [3.1] shows that the training loss will eventually converge to the optimal loss at a rate

4
of 6(%). The third result characterizes the convergence of the training loss. It shows that the

4 . .
excess loss decreases at the rate © (%), with matching upper and lower bounds. We note that the

factor D* indicates that the convergence takes a large number of iterations when the sequence length
D is large. However, the matching lower bound in Theorem [3.1] confirms that this rate is already
optimal and cannot be improved under our current setting. In fact, this polynomial dependence on D
originates from two intrinsic aspects of the learning task: (i) Since the loss is the squared Frobenius
distance between two M x D matrices, it necessarily aggregates errors over all D columns, and
thus scales proportionally with the sequence length; (ii) The 1/+/D factor appears in the gradients
of W k¢ and requires W ¢ to scale larger to achieve sufficient convergence, thereby introducing
additional factors of D into the convergence rate.

As illustrated in Examples [2.3]and 2.3] our teacher model f* encompasses settings that are closely
related to the learning tasks studied in [Wang et al.|(2024) and |Zhang et al.| (2025). For the “sparse
token selection” problem, Theorem [3.1]establishes a learning guarantee for the setting in which the
target index set is fixed by the learning objective and not provided as part of the input. This offers
a complementary perspective to the settings in [Wang et al.| (2024)), where the target index set is
given as a part of input, and may vary across different data points. Under our setting, Theorem [3.1]
yields a tight @(T) convergence rate with matching upper and lower bounds, sharper than the

O(log(T) ) guarantee obtained under the different problem formulation of (Wang et al.| (2024) A de-
tailed comparison between the convergence rate is provided in Appendix egarding group-sparse
linear prediction,Zhang et al| (2025)) focus primarily on the classification setting, while Theorem[3.]
delivers a complementary result by addressing the regression setting.

The learning guarantee in Theorem [3.1]is established under the assumption that the data input matrix
X is Gaussian, and the target response matrix Y is provided by the teacher with noises. Here, we can
also study the out-of-distribution (OOD) generalization guarantee of the obtained transformer model
on data without such assumptions. Specifically, we consider any feature and response matrices

X ¢ RIxD s Y € RM*D with bounded second moments, and establish bounds on the OOD loss

Loop(Wy; Wkq) = Q]Ef( v [||? - TF(ZWWWKQ)H%]
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by comparing it with the loss achieved by the teacher model. We have the following theorem.

Theorem 3.2. Suppose that D > Q(poly(M, K)) and n < O(M~*D~5/2). In addition, the OOD

input pairs ()N(, ?) satisfy the condition that each column X; and y; has finite second moments, i.e.
there exists a constant ¢ > 0 such that E[||x;||3], E[||y:||3] < & for all i € [D]. Then for any € > 0,

. KD M |lvi 3 i :
there exists 7. = O m =12 ) such that for any 7' > T, the OOD loss satisfies that:

ne?

1 ~ ~
Loon (W W) < SE[IY - (X)) +e.

Theorem requires only the mild assumption that X and Y have bounded second moments.
Notably, the response matrix Y need not be generated by or correlated with the output of the teacher
model f*(X). Therefore, the term 1E[||'Y — f*(X)||% ] measures the teacher model’s 0.0.D. test
loss, analogous to the role of L,p¢ in Theorem This shows that the trained transformer’s O.0.D.
loss exceeds that of the teacher model by at most €, demonstrating its robustness to distribution
shift. In addition, although it is challenging to establishing a matching lower bound for all pairs
(X,Y) like Theorem a worst-case Y can be constructed to demonstrate that this upper bound
is attainable, thereby validating the tightness of Theorem [3.2] The complete proof of Theorem [3.2]
and the worst-case example are provided in Section [E]

4 EXPERIMENTS

In this section, we present our experimental results. As detailed in Section 2] the teacher model can
cover various models, including (i). convolution layer with average pooling, (ii). graph convolution
layer on a regular graph, (iii). sparse token selection model, and (iv). group sparse linear predictor.
Our experiments also focus on these four cases.

We conduct experiments on both synthetic data and real-world data sets, respectively. For experi-
ments on synthetic data, we follow the exact definitions in Section 2] to build up teacher models f*.
For experiments on real-world datasets, we pre-train a teacher CNN on the MNIST dataset, whose
first convolution layer is then served as the teacher model to train the student transformer.

4.1 SYNTHETIC DATA EXPERIMENTS

We begin by detailing the common experimental setups on synthetic data. Given parameters d and
D, an fixed orthogonal matrix P € RP*P serves as the positional encoding matrix We adopt an
online gradient descent algorithm to simulate training over the population loss. At each iteration, we
sample a new batch of N = 100 standard d x D Gaussian matrices, i.e. {X, }_; C R?*P_ Foreach
X,, with n € [N], its corresponding label Y,, = f*(X,,) + &,, where &, € RM*D is another in-
dependently sampled Gaussian matrix. We concatenate each X,, with the fixed positional encoding
matrix P to form Z,, as the inputs to the transformer Subsequently, a gradient descent update is per-
formed using this batch of N = 100 data pairs {(Z,,, Y,,)}\_,. Furthermore, we also generate an-

other batch of NV = 100 data pairs {(Zm ?n) N_, following the almost identical procedure, except
that each X, is generated from the exponential distribution. This batch of data pairs {(Z,,, Y,,) }

n=1

is prepared for calculating the excess OOD loss, defined as Loop — 75 Zle 1Y, — f*(X,) l|%.

In the next, we introduce the distinct settings for different tasks, specifically the ground-truth soft-
max score matrices S*. For the task of learning a convolution layer with average pooling, we set
D = 36 and K = 4, where the pooling groups are partitioned by aggregating the K neighbor
patches into a group. Given this partition of pooling groups, the ground truth softmax score of the
teacher model can be formulated into a diagonal block matrix as S* = %Diag(l KxKs--s LExK)s
with totally D /K blocks. For the task of learning a graph convolution layer, we consider a ’cycle-
graph’ with D = 20 nodes, where each node is connected to exactly two other nodes, i.e. the ¢-th
node is connected to its adjacent nodes (¢ — 1) and (¢ 4+ 1). Under this setup, the ground-truth
softmax score S* is constructed as follows: for each column ¢, the entries at rows (i —1),4, and
(i+1) are set to 1/K with K = 3, while all other entries are zero. For both the tasks of learning
the sparse token selection model and the group sparse linear predictor, we set the total number of
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tokens/feature groups D = 20, and randomly generate K indices from [D] as indices of target to-
kens/ label-relevant group, where K = 4 and 1 respectively. In these two sets of tasks, the rows
representing the target tokens/ label-relevant group equal to 1/ K, while other rows are filled with 0.

Excess loss over iterations (log-log) 2 Excess OOD loss over iterations (log-log) Cosine similarity between Wy, and V"
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Figure 2: Excess training loss, excess OOD test loss (both in log-log scales), and cosine similarity
between the value matrix Wy, of one layer transformer (2.4), and ground truth value matrix V*.
These results are presented for six experimental sets, which originate from four distinct tasks.

For the task of learning CNN and GCN, we conduct two sets for each with ReLU and Leaky ReLU
respectively. Experiment results are given in Figures[2]and [3] Figure [2(a)] and Figure 2(b)| demon-
strate the convergence curves for the excess training loss and the excess OOD test loss (both in
log-log scales). We can clearly observe that both the excess training loss and the OOD test loss
converge to a small value on all six sets of experiments. After initial iterations, the curves for excess
training loss appear almost straight with slopes equal to —1, and excess OOD loss curves have ap-
proximate —0.5 slopes. These observations validate the %1 /T') convergence rate in Theorem [3.1]

and O(1/ VT ) convergence rate in Theorem Figure displays the cosine similarity curve be-

tween the value matrix Wg) , and the ground truth value matrix V*. It shows that Wg) directionally
aligns with the ground truth value matrix V* in all six experiments since the very beginning.

Furthermore, Figure[3|provides the heatmaps of the attention scores when the loss converges. Specif-
ically, Figure [3(a)| and Figure [3(b)] respectively display the attention scores when learning a convo-
lution layer with ReLU and Leaky ReLU. In both figures, the attention scores exhibit a diagonal
block matrix pattern, where each diagonal block has approximately equal values 1/4. Figure [3(c)
and Figure [3(d)|show the attention scores when learning a graph convolution layer on a cycle graph.
Specifically, the attention scores show a pattern of a cyclic tridiagonal matrix, with all the significant
entries having approximately equal values 1/3. Figure [3(e)|and Figure show the attention scores
when learning a sparse token selection task and group sparse linear predictor. We can observe that
only the rows corresponding to the target positions are assigned significant values in both tasks. In
summary, all these patterns match the ground truth softmax scores, which are described previously.

4.2 REAL DATA EXPERIMENTS

We also conduct experiments on the MNIST dataset. Each image is normalized and resized to 27x27
pixels. We train a two-layer CNN with M = 16 convolution kernels, each having a 3 x 3 kernel
size. Given the 27 x 27 image dimensions, each image is divided into D = 81 patches. An average
pooling layer with a 3 x 3 pooling receptive field (i.e K = 9) is additive to the first convolution layer,
and then cascaded with activation and a linear layer for classification. This two-layer CNN is trained
by minimizing the cross-entropy loss, achieving a moderate test accuracy of about 71% on the test
set after 20 epochs. After training of this teacher CNN, its first convolution layer with average
pooling is extracted as the teacher model f*, with its hidden-layer outputs supervising a one-layer
transformer (2.4). The training of the one-layer transformer is still conducted on the MNIST dataset,
and the mean-squared loss is employed for optimization.

The experiment results are given in Figure 4] and Figure [5| Figure [(a)] displays the training loss
curves. We can observe that for both ReLU and Leaky ReLU, the training loss very quickly con-
verges to a small value. Figure 4(b)] demonstrates the cosine similarity curve between the value

matrix Wgﬁ) of the transformer and the convolution kernel matrix V* of the teacher convolution
layer. The similarity rises above 0.9, indicating that the transformer successfully learns the ground-
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Figure 3: Heatmap of attention score matrix S(7) when the training loss converges. The results are
presented for six different experimental sets, indicated by the captions of sub-figures.
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(a) Training loss on MNIST dataset (b) Cosine similarity between parameter matrices

Figure 4: Training loss and cosine similarity between the value matrix Wy of the one-layer trans-
former (2.4)), and convolution kernel matrix V* of the pre-trained teacher CNN.

truth value matrix of the teacher model. Furthermore, Figure 5(a)] provides the heatmap of the
ground truth softmax score derived from the teacher CNN’s average pooling layer. Figure [5(b)] and
Figure respectively present heatmaps of attention scores at convergence for the transformers
with ReLU and Leaky ReLU activations. We can observe that both the attention scores achieved
by transformers can capture the pattern of the ground truth softmax scores, with notable exceptions
in the first and last nine rows in the softmax heatmap. We remark that the failure in learning these
rows of ground-truth softmax scores is due to the fact that they correspond to MNIST image patches
that are mostly all background (all zero). Figure [5(d)| highlights the image regions corresponding
to failed-to-learn softmax scores, marked by yellow rectangles. We can see that they are indeed
boundary regions and are mostly pure background. Consequently, they offer minimal informative
content to the model, explaining why transformers can not attend to these positions. Overall, it is
clear that the real-world data experiments corroborate our theory.

5 PROOF SKETCH OF THEOREM [3.1]

In this section, we outline the major steps in the proof of Theorem[3.1] For simplicity, here we focus
the case where o(-) is the identity map. More details, including more general choices of o(-), are
formally proved in Appendix [D} The proof consists of three main steps:
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(a) teacher CNN (b) ReLU result (c) Leaky ReLU result (d) Example image
Figure 5: Heatmap of the ground truth softmax scores of average pooling, Heatmap of the attention
scores S(T) of trained one-layer transformer when loss converges, and an image example in MNIST.

Step 1. Structures of Wy and W g during training. A critical step in our proof is to show that
throughout training, the parameter matrices Wy and W ¢ preserve the following decompositions:

D D
W =0tV Wi, =Y S pepl G, Y pip!
=1 1/€Gi =1 L'&Gl
where G* denotes the index set of entries of value 1/K in i-th column of S*. The details of this
conclusion are given in Lemma Based on the decompositions, we can express S(*) as: Sff )t =

1 el i gt _ exp(=(C2(1)+C5 (1) /VD) if i i
K+ (D—K) exp(—(Ca ()1 C5 (1)) /D) if i € G,Si/,i = KA(D—K) exp(—(Ca(t)+C3(8))/VD) if ¢ ¢G.
Comparing these results with the definition of the teacher model f*(-), we can further observe that

W S Vie i) 51 S 58" e Oa(t) + Calt) — .

In this way, the original optimization analysis regarding full matrices Wy, and W ¢ is simplified
into studying the updates of three scalars C (), Ca(t), Cs(t).

Step 2. Accurate characterization of convergence that C;(t) — 1 and Cs(¢t) + Cs(t) — oo.
The decompositions obtained in Step 1. implies that the coefficients C (t), Ca(t), C3(t) essentially
follow gradient descent starting from zero initialization minimizing the loss
2 2
~ D-K KC,y K
L(C1,Ca,C3) o K [1 - o | T CH1 - _ C3+C3 ] ’
K+ (D-K)e 7 K+ (D-K)e b
We remark that this expression of £(C}, Cy, Cs) corresponds to the special case where o(-) is the

identity map. The general formulation for o(-) is activation is deferred to Lemma Then by
carefully analyzing the training dynamics, we can show that for sufficiently large 7',

D*VK VD 1| V*]|Z

T)—1= T T) = 1 F

Cy(T) ®<|V*||p TT)’ Co(T) + C3(T) = Y2 log (@( s
The details are provided in Lemmas [D.2][D.3] [D.13] [D.I8] and [F12

Step 3. Final convergence results. Combining the convergence rates obtained in Step 2. and the
formulations of S(™) and Wg,T) in Step 1., we can further obtain that ||S(") — S*|p, ||W€,T) -

V*|r =06 (ﬁ) Under mean-squared loss, the @(#) convergence of the matrices S() and V(*)

directly suggests that loss will decay at the rate of © (), which finishes the proof.

)T+6K2¢5>.

6 CONCLUSIONS AND LIMITATIONS

In this paper, we provide the theoretical guarantee that a one-layer transformer can learn a class of
teacher models, covering a wide range of common models in machine learning. Specifically, we
establish a tight convergence bound at the rate of @(%) for the population loss. We also establish
out-of-distribution generalization bounds for the obtained transformer model, demonstrating its ro-
bustness. To empirically support our findings, we conduct experiments on both synthetic data and
real data, and all results align with our theoretical conclusion. Our current theory focuses on one-
layer models, and we make certain simplifications and assumptions on the model and data, which
present a limitation. We believe establishing teacher-student learning guarantees for more complex

models and under midler assumptions is an interesting and promising further work direction.

10
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A NOTATION

In this section, we introduce the key notations we use throughout paper. We first introduce the
following mathematical notations.

Mathematical notations. Given two sequences {x,} and {y,}, we denote =, = O(y,,) if there
exist some absolute constant C; > 0 and N > 0 such that |x,,| < C|y,| for all n > N. Similarly,
we denote x,, = Q(yy,) if there exist C2 > 0 and N > 0 such that |z,| > Csly,| foralln > N.
We say z, = O(yy) if z, = O(y,) and x,, = Q(y,) both holds. We use O(-), €2(-), and O(+)
to hide logarithmic factors in these notations respectively. Moreover, we denote x,, = poly(y,,) if
x, = O(yL) for some positive constant D, and x,, = polylog(y,,) if z,, = poly(log(ys)). For two
scalars a and b, we denote a V b = max{a, b} and a A b = min{a, b}. For any n € N, we use [n]
to denote the set {1,2,--- ,n}. In addition, we use 1,, to denote a n-dimensional vector with all 1
entries. For an index set g, 1, denotes a vector whose entries are 1 for indices in g, and 0 otherwise.
Let Aq,..., A, be n matrices with the same dimensionality d; X da, then Diag(A4,...,A,)isa
ndy X nds diagonal block matrix, with Ay, ..., A, being the block entries.

In addition, we also provide a summary table of the key variables in our study in Table[T]

Table 1: Key variables and their meanings.

Symbol Meaning
A% Ground truth value matrix in f*, a M x D matrix.
S* Ground truth softmax score matrix in f*, a D x D column-stochastic matrix.
D Sequence length (number of input tokens).
d Feature dimension of each token.
K Number of none zero entries in each column of S*. It can represent:

(i) the pooling size in CNN and pooling layer,

(i1) the number of neighbors of GCN layer,

(iii) the number of target tokens in sparse token selection,
(iv) it equals to 1 in group-sparse linear models.

G Target index set of i-th input token, namely S;; = + if i’ € G*, and 0 otherwise.
t, T Number of gradient descent iterations.
n Learning rate.
Wy, Wgkq Parameter matrices of the transformer.
L Population loss (objective function).
Lo.0.D Out of distribution loss.

Cy(t), Ca(t ,‘Cg (t) Coefficients of the decompositions of Wy, and W g during the training.

B ADDITIONAL RELATED WORKS

Optimization of transformers. There exist multiple recent works studying the optimizations of
transformers, most of which focus on the single-layer architecture. [Zhang et al.| (2020); Kunstner
et al.| (2023); Pan & Li| (2023)); L1 et al.|(2024a) investigate performance comparison between the
adaptive methods and SGD under different settings from both theoretical and empirical perspec-
tives. |Li et al.|(2023b) investigates the optimal parameters of transformers applied to a masked topic
structure model similar to the Bert framework through a two-stage training regime/Ildiz et al.|(2024);
Chen et al.[(2024a) explain the mechanism of attention from the perspective of Markov chains. [Tian
et al.| (2023;[2024) study the training dynamics of transformers, jointly with a decoder layer and a
fully-connected layer, respectively. [Li et al|(2024b)) analyzes transformer training behavior in the
context of one-nearest neighbor selection. |Gao et al.[ (2024) addresses the global convergence of
transformers given certain prerequisites. [Tarzanagh et al.| (2023ajb) demonstrates that single-layer
attention mechanisms can converge directionally towards the hard margin solution typical of Sup-
port Vector Machines (SVMs). Furthermore, |Li et al.| (2023a) presents a generalization error bound
for vision transformers optimized using stochastic gradient descent. Furthermore, many other ex-
isting works investigate the optimization of transformers under the so-called “in-context learning”
settings (Chen et al., |2024b; Huang et al.| 2024; Zhang et al.| 2024bjc; |[Nichani et al., 2024} |Huang
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2025). Based on the framework proposed in (Zhang et al.| 2024b), Huang et al.|(2024) extends
this result to one-layer softmax attention transformers. Siyu et al.[(2024) investigates the multi-head

self-attention under this setting, and summarizes two distinct patterns among all heads. [Nichani et al.|
(2024) demonstrates that when solving in-context learning tasks with latent causal structure, trans-
formers can encode the latent causal graph. Huang et al.|(2025)) demonstrates that Chain of Thought
(CoT) prompting enables Transformer models to learn to perform multi-step gradient descent and
effectively recover true weights.

Teacher-student framework for training neural networks. We also introduce some related theo-
retical works regarding the training of a “student” neural network under the guidance of a “teacher

model” (Brutzkus & Globerson| 2017} [Tian, Soltanolkotabi, 2017 |Goel et al.l 2018 [Du et al.,

2018bffa; [Zhou et al.,[2019; [Liu et al., [2019; Xu & Dul 2023). Several studies establish convergence
guarantees for gradient descent in specific ReLU network settings: Brutzkus & Globerson| (2017)

demonstrated polynomial-time global convergence for one-hidden-layer non-overlapping convolu-
tional ReLU networks with Gaussian inputs; characterized critical points and proved
gradient descent convergence for two-layer ReLU student-teacher networks under Gaussian inputs;
and [Du et al| (2018bja) provided polynomial-time recovery guarantees for learning convolutional
ReLU filters and networks, respectively, using (stochastic) gradient descent, even with potential
spurious minimizers and for general or Gaussian inputs. Furthermore, Zhou et al| (2019) and
(2019) showed that methods like perturbed gradient descent with noise annealing or specific
normalizations and initializations can achieve polynomial-time global convergence in convolutional
neural networks (including ResNets) despite the presence of spurious local optima. Research fo-
cusing on single ReLU scenarios includes [Soltanolkotabil (2017)’s analysis of linear convergence
for a single ReLU in a high-dimensional Gaussian model with structured weights, and
(2023)’s finding that over-parameterizing a student network to learn a single target ReLU neuron
under Gaussian inputs can surprisingly slow convergence. Finally, (2018) introduced
Convotron, a provably efficient algorithm for one-hidden-layer convolutional networks with general
patches, achieving global convergence through noise-tolerant stochastic updates without requiring
special initialization or learning rate tuning.

C COMPARISON WITH WANG ET AL.|[(2024)

In this section, we compare the essential optimization dynamics inWang et al| and our works.
Wang et al| (2024) and our work both rely on the symmetry of Gaussian data and the uniform
distribution among the target tokens expected to be selected. A critical technical step shared by
both analyses is to simplify the optimization regarding the full parameter matrices to investigate the
evolutions of several specific scalars, as demonstrated in Lemma 3.2 in [Wang et al.| (2024) and in
our Lemma|[D.2] Specifically, the analysis in[Wang et al] (2024) tracks the evolution of two scalars,
a(t) and C(¢), for which the coefficients are essentially minimizing the loss

~ d a 1)? K ’
ﬁ(O[,C)ZZ(l)_[()[K(D_K)(K+(D_K)€—C _K> +a2<1_K—|—(D—K)€_C> ‘|7

(C.1)

as demonstrated on top of Page 31 in[Wang et al.| (2024).

As demonstrated in Lemma our analysis focus on the scalars C' (t), Ca(t), C3(t). When the
teacher model is reduced to the “sparse token selection” task defined in Example 23] with V* = I
and without activation function, the coefficients Cy (t), C2(t), C3(t) essentially minimize the loss

~ ~dD C 1\
B0 =53 5 K010 o0 K
K 2
+012(1 — _%03) 1 (C.2)
K+ (D—-K)e Vb

Comparing these two loss functions in (C.2) and (C.2), we can observe that they essentially share
the same function structure. Specifically, if we regard % in (C.I) as one term, playing the role
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as C'in (C), then these two functions only differ by a factor D. Therefore, while the setting of the
“sparse token selection” task in our work is different from that considered in/Wang et al.|(2024), they
can be formulated into an essentially identical optimization problem. Notably, the loss in (C.2) is
only the special case in our setting with V* = I; and without activation function, while the general
case is much more complicated and provided in Lemma|[D.2] Therefore, the setting considered in
our work is more general compared with that in [Wang et al.| (2024), from a technical perspective.
This also highlights that establishing a tight convergence rate with a matching lower bound indeed
constitutes a technical advantage of our work.

D PROOF OF THEOREM [3.1]

In this section, we provide a detailed proof for Theorem [3.1} We first introduce several notations
used in the following proof. For each i € [D], we use G* to denote the index set to which the
entries of i-th column of S* is 1, i.e. Sy, = % if ¢/ € G* and 0 otherwise. With this notation,

k7
we can express that [f*(X)] = = o(vi/X1gi)) = £0(X;cqi (Vi Xir)). In addition we let
V= [vi,vs,...,vi] T, and Wy = [wy1,Wya,...,wy]| € RM*4 Based on this notation,

it is equivalent to consider the gradient descent updating regarding each wy,, for all m € [M],
expressed as

with = wil iV, LW W), D.1)

In the following proof, we will consider the gradient descent updating details for each w%f)m and

derive the conclusion for W(t) based on the result of w(t) for all m € [M]. For simplicity of
presentation, we assume that each v, is normalized in the remaining sections, ie. ||[vi |2 =1
for all m € [M], without loss of generality (W.L.0.G.). However, our theoretical findings and
proofs can be directly extended to the case where v,,, is not normalized. For each v}, letT',, =
Vi, &m2,s s &m.a) € RY*? be an orthogonal matrix with v,,, being its first column. (Actually, if

v is not normalized, the first column of I',,, will be H\:,*il\z)

Furthermore, we introduce several definitions regarding the expectations of Gaussian random vari-
ables. Let z1 ~ N(0,a), z2 ~ N(0,b), and z3 ~ N(0, c) be three independent Gaussian random
variables. In addition, o(-) can be the identity map, the ReLU activation function, and the Leaky
ReLU activation function, with s denoting the coefficient of the Leaky ReLU activation function
when the input is negative. Specifically, when o (-) indicates the Leaky ReL.U activation function,
o(r) = xl;>0y + k1 {z<0}. Then, based on these notations, we define that

Fi(a) = E[zy0(x1)0’ (z1)]; (D.2)
Fy(a,b) = Elz10(21 + 22)0” (21 + 22)}; (D.3)
F3(a,b) = E[(z1 + 22)0(z1)0" (z1 + 22)); (D4)
Fy(a,b,c) = E[zi0(x1 + x2)0’ (21 + 22 + 3)); (D.5)
Fs(a,b,c) = E[zgo(z1)0’ (21 + 22 + 23)]. (D.6)

We provide the detailed calculations for these expectations in Section [FI]

D.1 DETAILED GRADIENT DESCENT UPDATING RULES

In this subsection, we introduce and prove several lemmas regarding the calculation details regarding
the gradient descent iterative rule (D.1I)) and (3.4).
(t)

Lemma D.1. The gradient descent updating regarding wy,,, for all m € [M] and W%)Q, which
have been defined in (D.I) and (3.4), can be rewritten as

D D
1
W) _ Vm+nzznz[ ~o( S xSl ) |o (z<w<;>m,x“>s5?z)xhsf?z],

1= 111 1 ’il—l i1:1
{D.7)

D

" D
W%gl) W(t L Z ZEH — a( Z<W§/t)m7le E?ZH (Z WVWXn Ei)

m=1 =1 11=1 i1=1

!

17
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D D
: Z Z <Wg)mvxn>sg)zsg)l(pn - Piz)pz‘T] . (D.8)

i1=liz=1
Proof of Lemma(D.1] By the chain rule of derivatives, we have

Wg:;l) = WE;’)m - vav,,mﬁ(wg); W%)Q) = WS,)m - ngv,mE[”Y - TF(Z; Wy, WKQ)||2F]

M D
—wi g 3 Ve E[(Yr — o(WIPIXS®),,0 )%

m/=1i=1
D 2
[Ym/ﬂ» — 0( Z (WS’%,,XH)SE?Z)} ]

n M D
=wi) — 3 2. 2 VB

m/=1i=1 i1=1
D D D D
t t t t t t
SRR 9ok | RS oL RO AL
i=11d1=1 i1=1 i1=1

where the last equality holds simply by the chain rule of differentiation. This proves (D.7). Next for
Wik, we have(h

1 n
Wica! = Wi = 1Vwio LW s W) = Wiy — 5 Vw, E[|Y — TF(Z: Wy Wieq) 7]

n
= Wi, — 3 SN VWi E[(Yini — o(WHXSD),, )]

D D
Yoo X xS ) | (3 i xS

m=1i=1 i1=1 11=1
0 Txq( PWiQP;
VWieo (Wym) XS(\/E> : (D.9)

I
For the derivative calculation of I, we have

D Pw(t) pi D PW(t) .
1= 3 P[5 (75| = ST 5 (75|

11=1 i1=1
Pw(t) pi
RGN
=) Y Ll Gy [
=" = d[PWKsz} VD i,
vD |,
D D (t) D
1 ® [ /(PWKQPi)] T ® ® q® T
A" , X; S ——— P = Wm,Xi S2 ZS,LZ i — Pi i -
\/Ezlz::l< V,m 1>i22=:1 \/5 il,i2p2p i;i§1< v, 1> 1,712, (p1 pz)p

(D.10)

The last equality holds as §’(a) = diag(a) — S(a)S(a)” € R%*? for any vector a € R?, and
consequently,

PW b PW ., p; _ ®) if iy = io:
cewimny_[[s()], (- [s(2582)], ) = stha-sto. i -
s [ Y EQPi i "
1,12

= ® ®
vD - {S(PW\/%ZW )} ‘ {S<PW\/’%QPL)] = fSEf)JSEQi, otherwise.
71 12
By substituting the result of I from (D.10) into (D.9), we complete the proof of (D). O

"Here we slightly abuse the notation of S(-). If the input is a D-dimensional vector, S(-) denotes the
softmax function from R” + R®. If the input is a D; x Ds-dimensional matrix, S(-) represents the softmax
operator which implements the softmax normalization defined above column-wisely.

18
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The next lemma demonstrates that the training dynamics of wg)m forall m € [M]and WE,?Q exhibit

specific patterns. Analyzing the training processes described in (D.T)) and (D.21)) can be reframed as
an investigation into the coefficients of these patterns.

Lemma D.2. Under the same conditions of Theorem [3.1] there exist a time dependent non-negative
scalar C (t), and non-negative, monotonically increasing scalars C(t) and C5(¢), such that

Wg/t)m = Cy(¢t) - v}, forallm € [M];

D D
W =®> > pupl ~GHY. Y pipl

i=14i,€Gi i=14,¢Gi
Due to the specific pattern of W o demonstrated above, there exist a time dependent scalar
1

p(t) = — Ca4Ca(®
K+ (D —-K)e VD

such that Sz(f)z = p(t) for all i € [D] and i; € G*. Otherwise, ng)l = %”() Additionally,

L <p(t) < + and p(t) is monotonically increasing. Based on the definition of p(t), C1(t), Ca(t),
and C53(t) have the following iterative rules:

0) @)
Ci(t+1)=Cy(t )+Dn<lfp( 5 (t)F. <t)) =Cy(t) + ”I?;:;) <1 - g%?g),

(t)
Calt +1) = Ca(0) + 4 L (;(?ﬂ RY) - 01<>(Féf1’+p<t>Ff“)>;

o GOMA-Kp) (( AY (D -K)FY N\ o (D-K)F}})
Cs(t+1) = Cs(t)—n (( ))) cl<t>(F1 TR

VD(D - K) Kp(t) Kp(t)(1 — Kpl(t

where F{" = By (Kp(t)? + CF2O0) B} = By(p(t)?, (K - Dp(t)? + S5O0,
Fi = Po SR Kot + RSt ), 7Y = By (Kp(02, U552 ), PO =

(D-K) -
—Kp(t))* t -K D-K-1)(1-K
Fy(p(0)%, (K — Dp(t)2, S50 ), B = By (Kp(t)?, Ui, (51%()2 2, and
()
Ci(t) = —%5 __ In addition, based on all these definitions, the coefficients Cy(t), Ca(t), and

( Kp(t)F”
Cs5(t) are essentlally minimizing the following loss function by gradient descent

* 2
L(Cy,Cs, C _ DIV [pep 7_0 c2(1-1p)’| = DIVI2 Fy
1,Co,C3) = ( ) ip)] +CT(1—Kp D||V*||%Fs(C1,p).
2(D — K)
where ¢, is an absolute constant such that c; = T(5()isidentity map} + %]l{g(.)is ReLU} T
1+“ 1{o(.)is Leaky ReLU} - In addition, F(Cy, p) is defined as
0; If o (-)is identity map
2 1 p\/K(DfK) 1 (1—Kp)\/? X Y . .
P — pCi (Kp<,r arctan (1_Kp ) 2) + bk ), If o(-)is ReLU activation

1-Kp 2 m/D—-K

)

(1 — k)?pC? <Kp(71r arctan <p”K(D_K)> - 1> + W) If o(-)is Leaky ReLU activation

We establish these conclusions by induction. It can be easily verified that all these conclusions hold

att = 0, since the parameters are initialized as Wg/) = O0prxq and W KQ = 0p«p. However, for
the sake of conciseness and coherence in the presentation, we rearrange the contents of Lemma[D.2]
into Lemma [D.4] and Lemma [D.8] including the relevant details regarding Wy, ,,, and W g, re-
spectively. To prevent the proof of a single Lemma [D.2] from becoming overly lengthy, we prove

Lemmas [D.4]and [D.8]separately.

19



Under review as a conference paper at ICLR 2026

As we use induction, we assume that the conclusions of both Lemma[D.4]and Lemma|D.8|hold at the
current iteration. We then demonstrate that the conclusion of either Lemma[D.4]or Lemma[D.§holds
at the next iteration, depending on which lemma we are proving. It is important to clarify that this
is not circular reasoning; all these contents can indeed be organized into a single Lemma[D.2] It is
reasonable to assume that all conclusions hold for each iteration and to verify that these conclusions
remain valid for the next iteration, as long as we rigorously demonstrate their validity at the outset.

In the following, we introduce and prove Lemma and Lemma respectively. Besides, the
notations defined in Lemma containing p(t), Fl(t), F2(t1) , FQ(tQ) F3(t), F4(t), and F5(t) will remain
consistent unless stated otherwise.

We first introduce and prove a lemma regarding the ratio between Fl(t) and Fgft), which will be
utilized in the proof of Lemma|[D.4]

Lemma D.3. Under the same conditions of Theorem for F 1(0 and Fg(t) defined in Lemma
it holds that
F(t)

Kp(t) < < VDKp(?).

PO
Proof of Lemma|D.3] By Lemma[F.I]and Lemma[F3] we can derive that

o If o(+) is the identity map, then
A" (D-K)Ep@#)?® D-K
Fg(t) DKp(t)2 —2Kp(t) +1

A (D-K)Ept)?® Kp(t) D-K
RO DEp()? —2Kp(t) +1 "V DKp(t) + b — 2K

* If o(-) is ReLU activation function, it is also straightforward that
FO  AD-k)RH Kplt) D-K N
F®O = DEp(t)? —2Kp(t) + 1 DEp(t) + 55 — 2K ~
On the other hand, by Lemma[F3] it can be derived that

F1<t><2(D—K(K”(“ 5B p()(1 — Kp( )))

@* DKp(t)2 — 2Kp(t) + 1

- D-K D-K 1— Kp(t)
) (DKp(t) todg 2K VK n(DE(02 — 2Kp(0) + 1)>

<Kp(t) <\/7 \/ﬁ ><Fp()

where the penultimate inequality holds since DKp(t) +

(1)21(5;2)“) 77 is a decreasing function w.r.t. p(t) as the numerator is decreasing w.r.t.

(t) — 2K > 2vDK — 2K, and

DKp

p(t) while denominator is increasing w.r.t. p(t). Therefore, it takes the maximum value when
1—Kp(t D—K

p(t) = 7. and consequently 57— )275(;@)“ </ S

* If o(+) is Leaky ReLU activation function, by utilizing a similar calculation, it holds that

(D — K)p(t) ,
DRp()? —2Kp(t) 11 = KPl);

O 2D - K) (1+r)*Kp(t)*

@ = T+ )2 (DEp()? = ;Kp(t) 1) Kp®)

2(D — K)((1+n)22Kp(t)2 + (1;:)2 Dl_pr<t)(1 _ Kp(t)))
(1+k)2(DKp(t)? — 2Kp(t) + 1)

—= <

< VDKp(t).
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This completes the proof. O

Lemma D.4 (Restatement of Lemma|D.2] the first part). Under the same conditions of Theorem|[3.1]
there exist time dependent non-negative scalars C (¢), such that

(®)

Wy, = Ci(t) - vy, forallm € [M], (D.11)
where C (t) has the following iterative rule:
(t) (t)
Ci(t+1) = Ci(t) + Dy 2 — CL(F ) = Cu(t S (1- D.12
41) = Gt + ool g - cunrt?) = o+ To8s (1- ). @
here Cf(t) = —Fi
where 1( ) = W

Proof of Lemma|D.4} First at the initialization ¢ = 0, we have Wg/o ) = 0pxq, satisfying (D.T1).
Next, we assume that at ¢-th iteration, the conclusion of (D.I1) still holds, and we will prove that it
continues to hold at the ¢ 4 1-th iteration. Actually, it suffices to show that

VWVmE(WS),W(t) ) =ci(t) - vy, forallm € [M],
where ¢ (t) is a time-dependent scalar. By LemmaD.1] we have

(D.13)

D D T D D
VWV,WE(Wg); W%)Q) = — Z Z E |:Ym,i - O'< Z <W$;)m’ le >:| < Z WVm7XY1 t) )lesl(f)z‘|
i=li=1 | =1 =1
D D T D
- Z Z E Ym,io—/ < Z <w$)m’ X11>Sz(f)z>xllsz(f)z‘|
i=1i;=1 | =1
Iy
D D T D D
33| S S ) (bl
i=1i;=1 L Nij=1 =1
Iz
(D.14)
For I, we have
D D D
L= YE Ym,ia’( S wi)xi,)st Z)r rszlsEf)Z]
i=1i1=1 ir=1
D D D
* t t) *
=S N E|[r (x>]m_g/( Z<w$,z7xil>s§1%)< )81 ] Vi
i=11d;=1 =1
D

()

1Z

D
(Z WVm’Xll 4 )<€m7kaxi1> i1 ;| €mk

( (1) ) W xi) ]

Wyimo Xy
The first quality holds as &£ is mean-zero and independent with X, and the last equality
holds as the orthogonality between v}, and &, implies that (v} , x;,) is independent with

(&mk> %) for all iy,i; € [D]. Notice that [f*(X )] Lo (Yieqi (Vi xi)) and

?O'
o' (XP_(wi xi)80) = o (Ci() ) s“’) = o' (2P (vi.xi)SY)).

z1:1<v;knvxi1> 01,8
Consequently, (£m7 k,Xi,) is a mean-zero Gaussian random variable, and independent with both

D

!

11=1

*
77L'

0
Sll [

S(t)

11,

)

[f*(X)] .. and o'( Efl) 1 (wg)m, Xi, >S§f ;) simultaneously, implying that
D
E [[f*(X)] m,ial ( Z <W$)m’ X4y >S(t) ) <£m,k7 Xy >S£1)1]
i1=1
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D
_E l[f*(X)]m,ia( 5 (w4038, )81 [El(E s ] = 0.
=1
Based on previous results, by plugging [f*(X)}mi = %J(Zileci (v}, ,x;,)) and utilizing the
definition of F3(a, b) in (D.4), we can further derive that
D D
¢ ¢ . ¢ *
L = K ZE[ < Z 77L’XL1>>OJ< Z<W\(/)m’xl1>sgl)z> < Z<V7mxi1>sgl),i>‘| Vi
i1 EG? i1=1 i1=1
: 1 - Kp(t)
SR L F [ (3 waexipl0)or (3 o0+ Y i) 500 )
=1 i1 EGH i1 EGH i1¢G7’
_Z<vm,xi1>p<t> + _Zv<vm7xi1>D_K)] v,
i1€G? i1 ¢G?

b » (L-Kp)*\ . _ DR .

The second equality is derived by fact that o(az) = ao(z) and o’(az) = o'(z) if @ > 0, and

the definition of p(t). The penultimate equality holds as Y~ i (Vi Xi,)p(t) ~ N(0, Kp(t)?),
2
Yirgci{Vins xh)%ﬁﬂ ~ N (0, %), and they are independent. Then we can conclude

the final result by the definition of F3(a,b) in (D.4). Similar to the process of handling I;, we have
the following for Is:

D D
U( Z Wg)m7xn>s§1)z) (Z<W$)m7xn>s£f)1)r FszlsEf)vl

1=111=1 i1=1 i1=1
. 1— Kp(t
Xt ZH«:[ (3 whoxadnt)+ ¥ om0 )
i1 EG? L1¢Cv‘1
(S i+ 3 x5 )
i1 €G? ZlgG"
(X whxadot) + }Z<vm,x“>D_K)] Vi
11 €GY ’LI¢G7’

= pesor (s + SO v = poyr? v,

where the last equality holds by Lemma Plugging the calculation results for /3 and I
into (D.14), we can immediately derive (D.I3), which, as we stated previously, directly con-
clude (D.TI). In addition, we can further calculate that

()
F.
w%f;l) Ci(t+1) v} = (C’l(t) + Dn< 3 _ Cl(t)Fl(t))> v

Kp(t)

which finishes the proof of (D.12). Next, we prove that Cy (¢) is always non-negative by induction.
Obviously C;(t) > 0, and we prove that Cy (t + 1) > 0 by assuming that C4 (¢) > 0. Firstly, we
define that

F
Kp(t)F{"
Then based on the definition of C(t), the iterative rule for C (¢) can be re-written as

_ 77DF3(t) ~ Gi(t)
Gl =0+ TG0 (1 cm))'

Ci(t) =
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From the iterative rule above, it is clear that if Cy(t) < Cj(¢), then Ci(t + 1) > Cy(t), and
Ci(t +1) < Cy(t) if C1(t) > C;(t). Notice that Lemma immediately implies that 1 <

Ci(t) < 4/ %. We can conclude that once C1(¢) surpasses 4/ %, then it starts to decrease until it

becomes lower than 4/ %. Therefore, we have

D F(t) D Kp(t)2 + %p(t) (1 — Kp(t))
02\ + Py < + 2 570

\/§+nD<p(t)+ K<D1_K)(1Kp(t))>§ %Jr%S D[J(rl’

where the second inequality holds as F. St) < Kp(t)? + 4 [ 5= p(t 1 — Kp( )) demonstrated in

Lemma and the last inequality holds by the condition of 7 that n g O(D~ 5/ 2)in Theorem
Now we prove that Cy(t + 1) > 0 holds for both cases: C1(t) < C(t) and Cy(t) > Cf(t). If
Cy(t) < C5(t), then it is straightforward that Cy(t + 1) > Cy(¢) > 0. If C1(¢) > C5(¢), then we
have

Ci(t+1) > Ci(t) — nDC1(t) Fy ()
_ DnCi(t)(DEp(t)* — 2Kp(t) +1)

= U1

D-K
D+1(DKp(t)? —2Kp(t)+1
51 pyy /P (DER() p(t) +1)
K D—-K
D+1D _ 1
>1— > =
= TN TR KT

Here, the second inequality holds as Fl(t) < DEp (t);_j?p (t)+1 implied by Lemma The second

inequality holds by C;(¢) < ‘/%, and Cy(t) > C’f (t) > 1. The third inequality holds as

DEKp(t)?—2Kp(t)+1 < 222 when & < p(t) < +. The last inequality holds by the condition of
nthaty) < O(D~%/2) in Theorem|[3.1} This finishes the proof that C (¢) is always non-negative. [J

In the proof above, we introduce the definition of a proxy C§(t) = and utilize this proxy

FY
Kp)F"”
to provide an upper bound for C(t). In fact, C(¢) can be regarded as a “stationary point” of the
iterative rule for Cy (¢) in (D.12). Inspired by the proof techniques proposed in[Wang et al.|(2024), we
introduce the followmg lemma, which offers a more refined upper bound for C' (t). We demonstrate

this lemma prior to Lemma|[D.8] as its conclusion will be utilized in the proof of Lemma[D.§]

Lemma D.5. Suppose all conditions of Theorem hold, and C;(t), C(t) are as defined in
Lemma[D.4] In addition, define that

Kp(t)? if o(-) is identity map;
Alt) = %t)g + Kgm arctan <7W) if o(-) is ReLU activation function;
(1+f~:)24Kp(t) + (17:<)271r(1)(t)2 arctan <7W) if o(+) is Leaky ReLU activation function,
(D.15)
and
0 if o(+) is identity map;
B(t) = = \/T (1 - Kp(t)) if o(-) is ReLU activation function; (D.16)
Q-w)y \/7 p(t)(1 — Kp(t)) if o(-) is Leaky ReLU activation function.
Then it always holds that
O1(t) < (1 L 24l L~ Kp(t) )C;‘(t), (D.17)
5(A(t) + B(t)) Kp(t)(Dp(t) — 1)

23



Under review as a conference paper at ICLR 2026

Specifically, when p(t) < this upper bound can be tighter as C4 (t) < C; ().

1
2vV/rDK’
Remark D.6. In fact, by checking the definition of F. ?Et) in Lemma and its calculated value in
Lemma we can conclude that F?St) = A(t) + B(t).

In addition, we also have the following lemma, which provides further calculation results when the
conclusion of Lemma|[D.5|holds. This result will be utilized in the proof of Lemma[D.8]

Lemma D.7. Suppose C1(t), C; (t) as defined in Lemma|[D.4] and satisfying that

_ A(t) 1 — Kp(t) .
0= (1+ o5y B I (Dn(t) - 1))01 2
for some scalar o < 1, then it holds that
- (1) Y _ (1= Kp(t)’ .
Ol F\Y — Ky (t) (FM +p(t)Fy ) = Kot (DR p(t—2Kp(0)+1) (1 —a)A(t);
28 (D - K)FY (D—K)F}) 1 - Kp(t)

- _ (1) _ _ YT
Ep(t)  Kp(t)(1 - Kp(t)) l(t)(Fl 1—Kp(t)> Kp(t)(DKp(t)LzKp(t)H)(1 JA()

Proof of Lemma[D.7] 'We prove this lemma when o (-) is the identity map, ReLU activation func-
tion, and Leaky ReLU activation function, respectively. When o (-) is the identity map, utilizing
Lemma[FI] Lemma[F2} Lemma[E3} Lemma|F.6] and Lemma[E7] we can obtain that

2 2

) _ o (1-KEp(1)" (&) _ 12, @ _ (1—Kp(t))”

A =R+ e B =0 B =g g
FY = Kpt):; FY=pt)* F =0 (D.18)

Then combined with the definition of A(t), B(t) in Lemmal[D.5] we can derive that

)
i%t) ~ FY — KO (t) (FZ(? + p(t)Fl(t))
_EY (t) 1 — Kp(t) . (t) )
_ﬁ ~F® (1 + O T e T )KCl (t) (FQ,1 + p(t) )
_1-Kp(t) B aA(t) 1— Kp(¢) (1— Kp(t))(Dp(t) — 1)
40~ (5 K(0) (Dp(t) — 1)) DR — 2Kp(0) +1 1)
(1 - Kp(t)’

~ Kp(t)(DEp(t)?—2Kp(t)+1) (1—a)A().

where the first inequality holds by applying Cy () = (1 + aA(t‘;‘it])B,(t) Kp(lt;(gggg_l))C’f(t) and
B(t) = 0, the second inequality holds by applying the definition of C}(¢) and the calculation results
illustrated in (D.18)). Similarly, we can also derive that

A (0-K)F 0 _ (D-K)F
Kp(t) Kp(t)(1— Kp(t)) 1(t) (Fl 1-Kp(t) )
_ AR ( 1 - Kp(t) ) Dp(t) —1 Alt)
Kp(t) Kp(t)(Dp(t) — 1) ) DKp(t)? — 2Kp(t) + 1
1 - Kp(t)

" Kp(t)(DKp(t)2 — 2Kp(t) + 1) (1 —a)A(t).

This finishes the proof when o(-) is identity map. When o(-) is the ReLU activation function,
utilizing Lemma [F.I] Lemma[F.2] Lemma[F.3] Lemma[F.6] and Lemma[F.7] we can obtain that

o Kp©? | (1- Kp(1))* p(t)’ (1 - Kp(t))?

O _ . op®
2 20D—-K) = 2 7 %27 2AD-K)2’
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1— Kp(t) 2rV D - K

O O (VEZII0) D01 )
1— Kp(t) 2r(DKp(t)? —2Kp(t) + 1)

= Kp(t)? + KpETt)Q arctan < KD - K)p(t)) + L K p(t) (1 - Kp(t)) = A(t) + B(t);

(D = K)p(t)? ,
DRpE —akp T15 0

) _ p(t) (1 — Kp(1))’ i
o 2n(D — K)(DEp(t)? — 2Kp(t) + 1) \/;' (D.19)

Then combined with the definition of A(t), B(t) in Lemma|D.5] we can derive that

(1)
B pw
p(t)

— KCy(4) (Féff + p(t)Fl(t))
_BY g ( L oAl 1-Ep() )Cf(t)Kp( ) (1= Kp(t)) (Dp(t) = 1)
0 A®) + B(t) Kp(t) (Dp(t) — 1) 2(D— K)
B <1 L oAl 1-Kp( )Fé”( Kp(t)) (Dp(t) 1)
O A(t) + B() Kp(t)(Dp(t) — 1)) DEp(t)? — 2Kp(t) + 1
_1—Kp(t) B aA(t) 1— Kp(t) (1 - Kp(t)) (Dp(t) — 1)
40~ (s B Kp(0) (Dp(t) — )) DRp(0? — 2Kp() +1 1)
(L= Kp()(Dp(t) 1) oy < aA(t) 1— Kp(t) ) (L= Kp(t)(Dp(t) 1)
DKp(t)2—2Kp(t)+1 A(t)+B(t) Kp(t)(Dp(t)—1) ) DKp(t)?—2Kp(t)+1

(1 - Kp(t)? <(1_ aA(t) )A(t)_aA(t)B(t)>

~ Kp(t)(DEp(t)2—2Kp(t)+1) A(t)+B(t) A(t)+B(t)

_ (1 - Kp(t)>2 (1
Kp(t)(DKp(t)?—2Kp(t)+1)

—Q)A(t).

Similarly, we also have

B - 0 _ (D-K)F;)
Kp(t)  Kp(t)(1 - Kp(t)) ) <F1 1-Kp(t) )
Kp(t)  Kp(t)(DEp(t)?—2Kp(t)+1)

_<1+ aA(t)  1-Kp(t) ) F(Dp(t) - 1)
A(t)+B(t) Kp(t)(Dp(t)—1) ) DKp(t)?—2Kp(t)+1

(o QAl)  1-Kp(t) Dp(t)
- (Kpu) (1+ 35+ P 0 (Dp(t) 1) ) DR s T 1>A“>

n I 1—Kp(t)
Kp(t) Kp(t)(DKp( )2—2Kp(t)+1)
_<1+A<Q)A( ) ( ( ) )DKzo(D)Z( >2Kp( OESI R
1~ Kp(t) aA(#)B(t)
" Kp(t) (DEp(1)2—2Kp(D) ( (t)_A(t)—i—B(t))
1 - Kp(t)

~ Kp(t)(DKp(t)2—2Kp(t)+ )(

JA(?).
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This completes the proof of the scenario that o (-) is ReLU activation function. For the case that o (-)
is the Leaky ReLU activation function, utilizing Lemma[F.I} Lemma[F2] Lemma[F35] Lemma[F.6]
and Lemmal[E7] we can obtain that

P _ A R)Ep@)?  (1+ k) (1 — Kp())”
v 2 2(D - K) ’
o +rp0? o A+ (- Ep(t)®
o= be="pwp
o (1+r)PKp(t)*  (1—k)?Kp(t)* K(D - K)p(t)
F( ) — 1 o arctan ( T Kp(t) )
_ k)2
P L K p) (1 - Kp(0) = A() + B():
0 _ (L+r)p(t)* | (1—r)*p(t)? (D — K)p(t)
F,7 = 4 o arctan < = Kp(l) )
(1-r)*VK(D - K)p(t)*(1 - Kp(t)) _ A) + (D — K)p(t)?

2r(DKp(t)? —2Kp(t) + 1) DEKp(t)2 — 2Kp(t) + 1 (t);
PO kv (Ul G Kp(t))’ K

~ 2n(D - K)(DKp(t)2 —2Kp(t) +1) V D — K~

(D.20)

Then the remaining proof is entirely identical to that of the ReL.U activation function, when replacing
the values of these terms demonstrated in (D.20)). O

Based on the conclusion of Lemma|D.5|and Lemma[D.7] we are now prepared to prove Lemma[D.g§]
We will address the proof of Lemma after completing the proof of Lemma[D.§]

Lemma D.8. Under the same conditions of Theorem [3.1] there exist time dependent non-negative,
monotonically increasing scalars C(t) and C5(t), such that

D D

Wi =Cat) > > pipl —Cs(®)>. > pip,- (D21)

i=1 i) eC =1 i gGi
Due to the specific pattern of W;?Q demonstrated in (D.21)), there exist a time dependent scalar
p(t), such that S{”; = p(t) forall i € [D] and i; € G". Otherwise, S\, = 15521 Additionally,

+ < p(t) < + and p(t) is monotonically increasing. Based on the definition of p(t), C2(t) and
C'5(t) have the following iterative rules

vD \K\pt) °?

_ ClOMO-Kp@t) (( F” (D - K)FY @ (D-K)F{})
G+ =G5~ k) ((Ki(tfz(p(w(l—z(io(t))) ~an(H -

(t)
Colt +1) =Cy(t) +n M (1 <F4 - F”) - o) (Y +p<t)Ff”)> ; (D.22)

In addition, based on all these definitions, the coefficients Cy(t), Ca(t), and C3(t) are essentially
minimizing the following loss function by gradient descent

~ coeD||V*||2
L(C1,C2,C3) = 2(D|| Igf

[K(D - K)(Il( - 01p>2 +CF (1 - Kpﬂ — D|V*|[%Fs(Cr,p).
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where ¢, is an absolute constant such that c; = 1{5(.)isidentity map} T %]]-{a(-)isReLU} +

#1{0(,) is Leaky ReLU} - In addition, Fs(C1, p) is defined as

0; If o (-)is identity map
. pC? (K;D(Tlr arctan (@) — %) + %) ; If o(-)is ReLU activation
6=
(1 —k)2pC? (Kp( arctan <W> - %) + 7(; K#)ﬁ>. If o(-)is Leaky ReLU activation

Proof of Lemma[D:8) Similarly, it can be easily verified that the initialization W )y = Op p sat-
isfies (D.21). Assuming it holds at the ¢-th iteration, we aim to prove that it continues to hold at the
t + 1-th iteration. To do this, it suffices to show that

D
Vw o LW W) = —e(t Z > papl e S pipl (D.24)

i=1i,€G? i=1 4, ¢G1
where c»(t) and ¢3(t) are two time-dependent non-positive scalars. By Lemma D.1] we have

\/>VWKQ (WS),W(” )
M D

D D
s | [GESINE O SITRE S | L OaLE ey
m=1i=1 =1 i1=1
Y (w8 Z<ph—p@>p:]
i1=1ix=1

M D r D D D T

- 3E [f*(X)]mﬂ-o’< Z<w8>m,xh>s£?i) SN i xS pip/

m=1 i=1 L 11=1 i1=11i2=1 J

I3
M D B D D D b
+> 3 E [f*(xnm,ia’(Z<w$3m,xh>82f3i) oS w8 S pip!
m=1i=1 L 11=1 i1=1142=1 J
Iy
M D M D D D D 7
t t t t t t t
+Y Y E a( Z<w<v,z,xﬁ>s§3i)o'( Z<wé,z,xi1>S§1?i) >3 Wi xa)SH S pi ]
m=11i=1 L 11=1 i1=1 i1=112=1 _
Is

M D B D D D D T
SISO M RO NC D 9P DL LR
m=1i=1 [ i1=1 i1=1 i1=14y=1 |

(D.25)

In the next, we discuss the value of I3, Iy, I5, and Ig respectively. For I3, it can be calculated as

D D
< » Xiy ) (Z W\(/t)m’x’bl t)l) Z< ( S(t zpl,pz Z Szg [

/=1 ip=1

oW+ ¥ <v:;,xi1>p<t>)

i1€G iy A1/
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() + X <v;;,xz-1>p<t>+Z<v;,xi1>1lg_f(§(“))<v;,x i >]pypz

i1 EGiq A4 i gGi

-a’(<v:n,xi/>1‘Kp“)+Z<vfn,xi1>p<t>+ > i) i ) s >p<t>]pzpl

i1 €GY i1¢Gi G171

_Gi)M 2 , (L-Kp
S (e, 1 g, L HOY S 5

=14 Gt
2
Ci(t)M ( ,» (L= Kp(t)” (D—-K-1)(1-Kp(t) )
+ Fs| Kp(t)~, , i D;
ST N o 9 DK Z% pepi
F(t) D F(t) D
——=3 "> pep + ) ) pip]
=1 @Gt i=14'¢Gt

Notice that (v, x;/)p(t) ~ N(0, p(t)?), Zz‘leGi,igéi’ (v, %, )p(t) ~ N(0, (K — 1)p(t)?), and
Yigc (v;,xh}lgy}gﬂ ~ N(0, %) are three independent Gaussian random vari-
ables. Consequently, the first term in the penultimate equality is derived by the definition of
Fi(a.b.c) in OF). Similarly. 3, o (Vi X )p(t) ~ N(0, Kp(t)*). (v, xi0) 55

1-Kp(t))? % 1-Kp(t D—K—1)(1-Kp(t))? :
N(07 %)’ and ZilgGi,il;ﬁi’ <Vmaxi1>Df];£) ~ N(Ov ( (D)—(K)z p(h) ) are three in-
dependent Gaussian random variables. Therefore, the second term in the penultimate equality is
derived by the definition of F5(a, b, ¢) in (D.6). Similarly, for I, we can calculate it as

M D D D
1 *
1353530 i )o (S twlon ) (Sin s S5
m=1i=1 iheGi =1 ii=1 ia=1
C1(t) L& , . ) 1 - Kp(t)
:K (t) Z ZE o Z <Vm,X“>p(t) o Z <Vm,Xi1>p(t) + Z <Vmﬂxi1>ﬁ
pit) =i iheG hEG h¢G
1— Kp(t
. ( Z <V:mxi1>p(t) + Z <V:nvxi1>D_I;((v)>‘| Z Sg)zpzzpz
i1€G? Ar-tel iz=1
Ci(t)M Kp
= 1(K) F3 <Kp(t),(DK>ZZ Pi,D;
1=1j, Gt
Ci(t)M (1-Kp(t)) ( , (1— Kp )
F3| Kp(t)5 in Py
ST r R S 22, pupl
t) D ()M(I—Kp Fg(t) D
Z Z pzzpz (D K Kp Z Z 7/2pl
=1 j,€G? 1= 112¢G’

The penultimate equality holds by the definition of F3(a,b) in (D.4), as 3, i (Vi Xi,)p(t) ~

N0, Kp(t)?), and 32, o (Vi Xi,) LB o A (0, %) are two independent Gaussian
random variables. Additionally, I5 can be calculated as

D
(Z 'ln’X'Ll Sz(f)z) <Z Vm,X“ ng)l)< m’xl ]pl/pz Z Ez)ﬂ

11= 1 7,1:1 22 1

= Ot ZZ ZE[ (Z * X0 sgf)l) (ED: LX) SE?7>< Xw>p(t)] pip;

m=1i=14'€G* 11=1 i1=1

M D D

03> ) E

m=1i=114=1
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S - - (t) 1 — Kp(t) T
+ Gt ZZZE g Z<V X, )S 111 o’ Z mo Xiy Szh (Vins Xir) D_K Pi'P;
m=1i=14'€G? i1=1 11=1
1— Kp(t D
= MCy(t)*F, <P(t)2, (K — 1)p(t)? + (D_p(K))> >N pep/
i=14'€G’
(1— Kp( D—K-1)(1-Kp(
+ MOyt 2F2( p ,Kp(t)2+( (1 - Kt )Zszpz
(D — K)? = s
D
= MCy()*F} > > pop! + MCi(1)*FSY Z > pipi,
i=1i'eGi i=1 i/ g G

where the penultimate equality utilize the definition of F3(a, b) in (D.3). Similarly, for Is, we have

Z (S xS )o (S s (X o, sifz)]zsmpmpz

=11i= i1=1 i1=1 i1=1 io=1

= MCy(t F(t)z 3 pup] +MCi(1)? F(t)l Kp Z > pupi-

i=14,eG? = 1’L2¢G’

Combining all these results of I3, Iy, I5, and I, and plugging them into (D.25)), we obtain that

VWKQE(W(t)' W(t) )

CL(t)M o — ‘ ’
- GO (B - ) - (2 05) )3 5 el

=14/ eG?

GOMA-Ep) (( K (D -K)FY N\ o (D—K)F)
T -KWVD <(Kp(t) Kp(t)(l—Kp(t))> Cl(t)(Fl 1= Ep(t) >;%¥1pzpl

——o)Y Y pip +a)d D pep

i=1ieGi i=1i¢Gi

It remains to show that co(¢) and c3(t) are always non-negative. Notice that Lemma D.5] guarantee
the assumption of Lemma|[D.7} By carefully compare the formulas and applying Lemma [D.7] we
can obtain that

KvDes(t) _ (1- Kp(t))?
MCiy(t) ~ 5Kp(t)(DKp(t)2—2Kp(t)+1)

A(t) >0
Since we have proved that Cy(t) is always non-negative in Lemma this result implies that

co(t) > 0. Similarly, for c3(t), we have

VD(D - K)es(t) 1 - Kp(t)
MCy(t)(1-Kp(t)) — 5Kp(t)(DKp(t)>—2Kp(t)+1

A 0
) (t) >

This proves that c3(t) > 0, and we conclude that

®
ot +1) =Ch(t) + nCl\(/%M <[1( (f;ée) - Fé”) - o) (FY +p(t)F1‘”)> :

_ cMa-Kpw)({ F (D -K)F" o (D—K)F3
R N TS ((Kﬁ(tfkp(w(l—f(?o(t)))‘Cl“)<F1 =l

which completes the proof of (D.21)), (D-22) and (D.23). It remains to prove the conclusions regard-
ing ng)z and p(t). By the orthogonality among the positional encodings p;’s, it is straightforward
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that for all i,4, € [D],

Cg(t) if ’L'1 € Gi'
Tw ;= : K
Pi, WrQPi = {—cg(t) if iy ¢ G.
Then by the definition of S, when i, € G°
P Wi,pi Ca(t)
g _ exp (71\5 ) _ exp( \5)
e 2221 exp (piTzV\‘/’(%t)Qpi) K exp (%&?) + (D — K)exp ( - C%?)
1
T K+ (D K)ex (_ C2(t)+03(t)) = (0)
P VD
Since C(t) and C5(t) are non-negative and monotonically increasing scalars, we immediately con-
clude that & L <pt) < + - and p(t) is also monotonically increasing. Lastly, it remains to formulate

excess loss into an expresswn of excess loss. By the parameter forms in Lemma|[D.2] we have
5(017 Ca, Cs) =L(Wy,Wgkq) — Lopt

2
4 i 77L7Xi'> - Ci(1 — K %
=E Z Z ( < EG ) - G<C1p Z (Vi Xir) + % Z <vm,xi/>)> ]
m=1 i=1 i’eGi i'¢Gi
M D * 2 M D 2
" i mexi’ % C ].— K *
=303 m|o(Zree XY 5 S e lo(0 Y (v + S0 Z<vm,xz>)]
m=1 i=1 m=1i=1 i EGE i ¢G?
17 Is
M D
i’ i 7n7 C 1 _K %
—2ZZE U(Z GG;( )U(Clp Z Vmax’b 1(Dpr) Z <Vm5Xi/>>‘| .
m=1i=1 ireqi Tes
Iy

For the term I and Ig, by the fact that E[o'(1)?] = ¢,a when & ~ N(0, a), we can directly calculate
that
Collvin 13
I = :
7 K )
ceCt(1 — Kp)*|[v;, 13
D-K '
In addition, by utilizing the conclusions in Lemma[F.8] we can conclude that
DI|[v;ull3Fs(C1.p)
5 .

Ig = CUKpQC%HV;kn”% +

Iy = coC1p|| Vi, |13 —

Plugging all these results, we completes the proof that

; ¢ D[V |[3 L C o ’ P

L(Cy,Cs, C) = K(D-K)( - Cp) +C3(1-Kp) | = DIV |3 Fe(Cr,p)
20D — K)

Now, we successfully prove all the conclusions of Lemma[D.§] O

Lastly, before we prove Lemma we first introduce and prove the following Lemma
Lemma[D.10] Lemma|[D.T1] and Lemma [D.12] which will be utilized for proof of Lemma [D.3]

Lemma D.9. Under the same conditions as Theorem[3.1]and p(t) as defined in Lemma|D.2] it holds
that

p(t)(1 — Kp(t))
2/D

ACy(t) + ACh(t) < nKQ(J\glz &V g
where Ap(t) = p(t + 1) — p(t), ACa(t) = Ca(t + 1) — Co(t), and ACs(E) = Cy(t +1) — Cy(2).

D?p(t) (1 — Kp(t))
VD(D? - 1)

(AC(t) + ACs(t)) < Ap(t) < (AC(t) + ACs(t));
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Proof of Lemma[D.9, By the definition of p(t) in Lemma|D.2] it can be derived that
1 1

Ap(t) = p(t+1) —p(t) = -
K+(D—K)exp(—%) K+(D_K)exp<_%)
1 1
s Ca(t)+Cs(t) ACy()TAC() Ca()+Cs(t)
B (ACa(t) + ACs (1)) (D — K)exp ( — €0
Ca(t)+Cs (1) AC (1) +ACs(t) Ca(t)+Cs (1)
VB[ + (D K)owp (G20 (1 SGOBGYTT (D~ 1) oxp [ - G0
Ca(t)+Cs(t)
ACy(t) + ACs(t) (D~ K)exp (- 0]
= VD - ACy(t) — ACs(t o405\ ]°
A1)~ ACYD) [1¢ 4 (0 Ky 200
ACs(t) + ACs(t)
= t)(1 — Kp(t
VD - a0 - acy "N K20
Additionally, applying the update rules for C5(t) and C5(t) derived in Lemma along with a
similar calculation to the one used in the proof of Lemma|D.7] we obtain that
MC(1) < 2 m)
ACs(t) <n —— —F
0= o
MC(t) ( 1 ) ( (D — K)p(t) >
= — 1A+ —1|B(t
”K@< o~ )40+ (Drer apr et~ ) 2O
MCi(t) (1 — Kp(t 1-K D
MO (1K ( (>>( p(t) - 1) B(t)>
KD Kp(t) (t)(Dp(t) — 1) + 1 — Kp(t)
MCy(t) 1= Kp(t) o) Cl(t) 1 - Kp(t) ( 2 K )
F;7 <n Kp(t)" + — t)(1— Kp(t
<y LR ) <y MO LI (a2 4 o b1 = Kp(0)
< M /D+1
="g2\ DK
Here, the penultimate inequality holds as C; (t) < y/ZH and 5 < p(t) < +. Similarly, we can
also derive that
MOy (t) (1 - Kp(t)) F"
ACH(H) < 1 () (1 - Kpt) F3” _ M D+1

VD(D-K) Kpt) ~"KD-K)\V DK

Combining these results, we have

MD /D +1 1

where the last inequality holds by the condition that n < O(M~'D~%/2)in Theorem Replacing
these results, we finally prove that

D?p(t)(1 - Kp(t))

Ap(t) < ACy(t) + ACs(1)).
) < D D (G + ACKD)
On the other hand, since AC5(t) + AC5(t) is sufficiently small, we can also have
1
Ap(t) =
- Ca(t)+Cs(t) AC; (t)+AC3(t)
K—l—(D—K)eXp(— 2\53 )(1— 22\53 )

1

K+(D7K)exp<—w>
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Ca()+Cs(t)
ACy(t) + ACs(t) (D*K>exp(* D )

> 2
WD K+ (D~ K)exp (- 04000)]
p(t)(1 - Kp(t))
= ACy(t) + ACs(1)).
D (ACKE) + ACK(D)
This completes the proof. O

Lemma D.10. For C(t) defined in Lemma|D.2] it hols that Cj (¢) is monotonically increasing w.r.t

1
t when p(t) < ONETT

Proof of Lemma[D.10} As Lemma [D.8| demonstrates that p(t) is always monotonically increasing.
Consequently, it suffices to show that C7 (¢) is monotonically increasing w.r.t. p(t) when p(t) <
5 \/7:1)71(' In the following, we discuss the three scenarios where o(-) is the identity map, ReLU
activation function, and Leaky ReLU activation function, respectively. When o(-) is the identity
map,

(D — K)p(t) D-K

Ci(t) = DKp(t)2 — 2Kp(t) + 1 - DKp(t) +

o 2K

It is straightforward that C} (¢) is monotonically increasing when p(t) < ﬁ, as the denominator

is decreasing. When o (-) is the ReLU activation function, we have

7(D — K)p(t) +2(D — K)p(t) arctan (/K(D = K) 52 ) +2(D — K)%
2m(DKp(t)? — 2Kp(t) + 1) '

By applying basic calculus, we can derive that

dCs(t) >27r(7r —1)(D — K)(DKp(t)> — 2Kp(t) + 1)

Cr(t) =

dp(t) ~ a2 (DKp(t)? — 2Kp(t) + 1)°
20D — K) (Wp(t) n \/ﬁ)llwff(Dp(t) —1)

4x2 (DKp(t)? — 2Kp(t) + 1)
- 3m(D — K)(1 — 4rDKp(t)?) N 37(D - K)(1 —2vV7DKp(t))
T4r2(DKp(t)? — 2Kp(t) +1)*  4x?(DKp(t)? — 2Kp(t) +1)°
which is positive when p(t) < - \/73DiK' Therefore, we can conclude that when p(t) < 5 TrlD —,

Cy (t) is monotonically increasing w.r.t. p(¢). Similarly, when o(-) is the Leaky ReLU activation
function, we also have,

(4R a(D=K)p(t) + 2(1—k)*(D—K)p(t) arctan ( K(D-K) 17%?(0)
Ci(t) = 2(1 + k2)m(DKp(t)2 — 2Kp(t) + 1)
(1-r)*(D-K)(1-Kp(t))

K(D—K)(1+ &2)n(DKp(t)2 — 2Kp(t) + 1)

b

and
dci () o 2r(m — 1)(D — K)(DKp(t)*> — 2Kp(t) + 1)
dp(t) — 4n?(DKp(t)? — 2Kp(t) + 1)°
2D — K) (7p(t) + ks ) K (D(1) 1)
- r(DEp(t)? — 2Kp(t) +1)°

_3m(D— K)(1—47DKp(t)?) N 37(D — K)(1 —2vmDKp(t))

Tan?(DEp(t)? — 2Kp(t) +1)°  4x2(DKp(t)? — 2Kp(t) +1)*
which proves that C¥(¢) is monotonically increasing w.r.t. p(t) when p(t) < —~ O

2vVrDK "

32



Under review as a conference paper at ICLR 2026

Lemma D.11. For C7 () defined in Lemma|[D.2] it holds that

3DKp(t)Ap(t) .
DRp(0E — 2kp) 101 1 (D.26)

Ci(t+1) > Ci(t) —

Proof of Lemma|D.11} We prove (D.26) for o(-) is identity map, ReLU activation function, and
Leaky ReLU activation function, respectively. When o(+) is identity map,

(D-Kp(t+1) (D~ K)p(t)

Crt+1) = DKp(t+1)2 —2Kp(t+1)+1 ~ DKp(t)2 — 2Kp(t) + 1 + DK Ap(t)(2p(t) + Ap(t))
. DK Ap(t)(2p(t) + Ap(t )) . 3DKp(t)Ap(t) .
=GO Drer —akpin 1 = G D ek 1
(

~—
/\
v

where the second inequality holds by Lemma and the last inequality holds by Ap(¢
implied by Lemma[D.9} When o(-) is ReLU activation function,

m(D — K)p(t + 1) +2(D — K)p(t + 1) arctan (/K (D — K) 50

. B T—Kp(i+1)
Cilt+1) = 2n(DKp(t +1)2 —2Kp(t +1) + 1) .
. (D — K)(1 — Kp(t+1))
K(D — K)n(DKp(t +1)2 — 2Kp(t +1) + 1)
(D — K)p(t) + 2(D — K)p(t) arctan (/K (D — K) 585) +2(D — K)%
= 3m(DKp(t)® — 2Kp(t) + 1) + 2n DK Ap(D) (2p() + Ap(0))
. 3DKp(t)Ap(t)
> C (1)

- DKp(t)2 — 2Kp(t) + 1 1)

where the first inequality holds as the numerator is a monotonically increasing function w.r.t. p(¢).
Furthermore, the second inequality holds by Lemma[F.9] and Ap(t) < p(t) implied by Lemma|D.9
Similarly, when o (-) is the Leaky ReLU activation function,

%p(tﬂ) +2(D—K)p(t-+1) arctan (/K (D= K) et ) + 2(D—K)%
Ci(t+1) =

S (DEp(t+1)% = 2Kp(t + 1) + 1)

Q) m(DK) (1) 4 2(D — K)p(t) arctan (/K (D — K) 28— 4 2(D — K) =X

(1-x)? 1-Kp(t) VK(D—K)
L) (DEp()? — 2Kp(t) + 1) + 2L DK Ap(1) (2p(1) + Ap(t))
3DKp(t)Ap(t)

> Ci(t) — 1(t).

= Cr(t) DKp(t)2 —2Kp(t) + 1 ()
This completes the proof O
Lemma D.12. For A(t), B(t) defined in Lemma|D.53] it holds that

Alt+1) 1—Kp(t+1)
A(t+1)+B(t+1) Kp(t+1)(Dp(t +1) — 1)
At 1— Kp(t) A(t) 2D K p(t)Ap(t)

) [—
=400 + BO) Kp(t)(Dp(t) 1) A() + B K2p(0)(Dpl(t) — 1) (D27)

Proof of Lemma|D.12] Notice that 38 is a non-increasing function w.r.t. p(t). Therefore, we can
derive that

1-Kp(t+1)
t+1) Kp(t+1)(Dp(t+1)—1)

1 1
Alt+1)+B t+1)(Kp(t+1)(Dp(t+1)—1) B Dp(t+1)—1>
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A(t) ( 1 1 )
T A(t) + B(t) \ Kp(t)(Dp(t) — 1) + Ap(t) (2DKp(t) + DKAp(t) — K) - Dp(t) —

A(t) 1— Kp(t) At)  Ap(t) (2DKp(t) + DKAp(t) — K)
“A() + B(t) Kp(t)(Dp(t) — 1) A(t) + B(t) 02(Dp(t) — 1)

A(t) 1 - Kp(t) A(t) 2DKp( ) p(t)

> b
TA(t) + B(t) Kp(t)(Dp(t) = 1) A(t) + B(t) K2p(t)2(Dp(t) — 1)°
where the last inequality holds dp(t) < % implied by Lemma This completes the proof. O

Now, we are ready to prove Lemma[D.5}

1
p(t) < 2\/7 Consequently, whe np t) < 52—,

Proof of Lemma@ As Lemma 0| guarantees that C}(¢) is monotonically increasing when

CDED
Cilt+1)— Calt+1) > Ci(t) — Ci(t +1) = <1 - Klié’)%m)) (ci - )

(1 _ K) (ci) - auw) = (1 _ ’}?)m (ci0) ) =0

®
The second inequality holds by If;—(t) < %, and C5(t) > 1. The last inequality holds by
the assumption of 7 in Theorem [3.1} and C;(0) = 0. In the next, we prove that (D.17) holds
when p(t) > \/T}DiK by induction. We assume holds at ¢-th iteration and examine the
t + 1-th iteration. Inspired by the separating strategy in [Wang et al.| (2024)), we consider the fol-

lowing two cases: (i). when Cy(t) < (1 + 5(A(2;)44(_%( - Kp(i;(gggig—l))cf (t) and (ii). when

2A(t 1-Kp(t * 4A(t 1-Kp(t *
(1 + seacyi sy meomae=n) C1 () < Cut) < (1+ sei sy memmae—n) €7 (1)- For
the first case, it suffices to show that
JA(E+ 1) 1= Kp(t+1) >
1+ Cr (141
( 5+ 1)+ B+ 1) Kp(D(Dp(t+1) -1 ) T
2A(t) 1 — Kp(t) )
> (14 CH (D). (D.28)
( 5(A(t)+B(1)) Kp(t)(Dp(t)—1) )

This is because if C (t) < Cf(t), we have

(t)
i) - e+ 1) = (1- 2l ) (i - i) 2o

which implies that
4A(t+1) 1—Kp(t+1)
t+1)+B(t+1)) Kp(t+1)(Dp(t+1)—1)

The last inequality is guaranteed by (D:28). On the other hand, if C7(t) < Ci(t) < (1 +

2A(¢) 1—Kp(t) . .
ST B Kp(t)(DZ(t)_l) )C7 (t), then we can also obtain that

2A(t) 1 - Kp(t) )

Cit+1) < CGi(t) < (1+ 5(A(t)+B(t)) Kp(t)(Dp(t)_1)>cl (t)
4A(t+1) 1— Kp(t+1) )

< ( + 5(A(t+1)+B(t+1)) KP(tJrl)(Dp(tH)l))Cl (t+1).

In the next, we show that (D.28)) holds. By applying the lower bounds derived in Lemma [D.TT]and
Lemma|[D.12] we can derive that

( N 4A(E+1) 1—Kp(t+1)
5(A(t+1)+B(t+1)) Kp(t+1)(Dp(t+1)—

Ci(t+1) <CT(t) < <1+5(A( )Cl*(t+1).

1)>Cf(t+1)
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A(t) — Kp(t) 2A(t) 1 Kp(t)

* ( *
(1 sea07 50 oo 1))01 O+ 5w+ 50) Koty (Dp()—1) 1)
B <1+ 14 (t+ ) 1= Kp(t+1) ) SDEROAN) (0
5(A(t+1)+B(t+1)) Kp(t+1)(Dp(t+1)—1) ) DKp(t)? — 2Kp(t) +1 '
AR 2DKp(t)Ap(t) Cr )
A(t) + B(t) K2p(t)2(Dp(t) — 1)°
240)  1-Kp(t) .. 21— Kplt) ..
2 (1 50a0y 4 B ) o0 (Dp<t>—1)>c OF Brpm e -1
_ 3(4m+1)DKp(t)Ap(t) CH ) — 10 DK p(t)Ap(t) cr )
Kp(t)(Dp(t)—1) +1—Kp(t) """ Kp(t)(Dp(t) —1)
2A(t) 1— Kp(t) . 1— Kp(t) 2 (221 +3)Kp(t)* ..
—<1+5<A<t>+B<t>>Kp<t>(Dp<t>—1)> % Ko Dp()-1) (% Bl )i

z (” 5+ B(0) Kp(d) (Dp(t)—1) ) T

which finishes the proof of (D.28). In the derivation above, the second inequality holds as
A(t) 1 1 1 . . .

m Z 3 and W S 57 when p(t) Z aDE' The penultlmate lnequahty

is derived by Lemma [D.9] As we demonstrated previously, implies that (D.I7) holds at

the ¢t + 1-th iteration for the first case. In the following, we consider the second case, where

2A(t) 1—Kp(t) . 4A(1) 1—Kp(t) )
(1 + sam+ s "o ono=0)C10) < C() < (1 + sams s mromaam=n) Ci (1) For

this case, it suffices to show that
(1+ 4A(t) 1— Kp(t) ) ‘(1) — nD(1-Kp(t))
5(A(t)+B(t)) Kp(t)(Dp(t)-1) ) 10K (Dp(t)—1)
<( N 4A(t+1) 1—Kp(t+1)
- 5(A(t+1)+B(t+1)) Kp(t+1)(Dp(t+1)—1)

This is because

(*)
Cr(t+1) =Ci (1) + 2L (1 - Cl(t))

24A(t) 1—Kp(t) ) .
)

)Cf (t41) (D.29)

"oy \' G
4A(t) 1— Kp(t) .o nDEY  2A(1) 1— Kp(t)
<("+ sea 5 () (Dp(t) 1) )i~ ey sy B Kot oD
1AM 1-Kp() ... uD(1-Kp(t)
<( 5+ B T Ty ) 1O~ 0% (oot - 1

<( N 4A(t+ 1) 1—-Kp(t+1)
- 5(A(t+1)+B(t+1)) Kp(t+1)(Dp(t+1)—1)

Jeite.

where the penultimate inequality is derived by Fj ) = — A(t) + B(t) and A(t) > X2 Kp(t)® , and the last
inequality is guaranteed by (D.29). To show @D holds, by applying Lemma m we derive an
refined upper bound for AC5(t) and AC3(t) as follows:

F®
a0t = BIOD (B 0 gcouo(#9 +pi0ri"))

_ 3MOi () (1 Kp(t))?

3(4m + 1)nMp(t) (1 - Kp(t))?

5KvVD Kp(t)(DKp(t)2—2Kp(t)+1) All) < 5KVD(DKp(t)2—2Kp(t)+1) crte).
and
MO (-Epw) ( B (D-K)FRY W (D—K)F}')
AC3(t) = DD —K) (Kp(t) Fo) (1 = Kp®) Ci(t) (F1 1—Kp(t) >
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- 3nMCy(t)(1-Kp(t)) 1— Kp(t)
5v/D(D—K)  Kp(t)(DKp(t)2—2Kp(t)+1
3(dn + Dudp() (1= Kp(0)” .

= 5(D — K)VD(DKp(t)2—2Kp(t)+1)

Based on these refined upper bounds for AC5(t), AC5(¢), and the lower bounds obtained previously,
we can derive that

)A(t)

(st 507 Ko 0wt ) 5O
- <1+5( (t—i—l()t:Bl()t—i—l)) Kp(t1+_1)l(<g;t(: +11))_1)>Ci‘(t+1)
- <1+ 5<Aéﬁ; (#) K Pgt)_(é;p(it))— 1) ) = (1 - 5(Aé§4it1)3(t)) Kpftfﬁg)_ 1) )CT ()
P e

(227 +3)D D?p(t)(1 — Kp(t))
" Dp(t)-1  V/D(D?-1)
_3(22m +3)(4r + 1) nD(1 - Kp(t)) D3Mp(t)* (1 — Kp(t))” Cr(t)?
- 5 K(Dp(t)—1) (D?—1)D(D — K)(DKp(t)2—2Kp(t)+1) '
_nD(1—Kp(t)) 60M _ nD(1-Kp(t))

~ K(Dp(t)-1) DK? ~ 10K (Dp(t)—1)

(ACH(t) + ACs(t))Cr (1)

Here, the first inequality is derived by applying the upper bound of (1 +

4A(t+1 1= Kp(t+1 X . . . .
5(A(t+1§f32t+1)) Kp(t+1)([p)fnt-"t_+)1)71))cl (t + 1) obtained previously. The second inequality

holds by applying Lemma The third inequality is derived by replacmg the refined upper bound
of AC;(t) and AC3(t). The penultimate inequality holds as C7 (1) < & ( 77» and the last inequality

is guaranteed by D > (M) in the condition of Theorem [3.1] This demonstrates that (D-29) holds
in the second case, which completes the proof of (D.T7). O

D.2 THREE PHASES TRAINING

In the previous section, Lemma accurately characterizes the training dynamics of Wg) and

W%)Q Specifically, it demonstrates that WS) = C1(t)V*, where C(t) is always upper bounded

A - x -
by (1 + 5(Aé)f)3(t)) Kp(lt)(ggg;_l))C’l (t). Next, we will show that the update pattern of C1 ()

differs across three distinct phases. In the first phase, C (¢) monotonically increases, approaching
Cj (t) while p(t) remains close to 5. In the second phase, C;(t) remains in a neighborhood of
C5(t), while p(t) monotonically increases. This increase exhibits modes characteristic of a tensor
power progression, continuing until p(t) reaches 5%-. In the third phase, the p(t) will eventually
converges to %, and Cj(t) converges to 1, leading the loss also to converge. The formal proof is
provided as follows.

Lemma D.13. Under the same conditions with Theorem [3.1} there exist t; = ©(n~1), such that
C1(t1) > 0.95 - Cf(t1), and p(t) < # forall t < t;.

Proof of Lemma|D.13] Notice that when C(t) < C7(t), C1(t) is monotonically increasing. Let ¢;
be the first time such that C(¢) > 0.95 - C5(t). For the conclusion regarding p(t) with ¢ < ¢1, we
first assume it holds and utilize it to demonstrate other conclusions, and lastly prove it by induction.
Since p(t) almost remain unchanged for all ¢ < ¢;, we can obtain that 0.975-C5 (t') > 0.95-C{ (")
for all ¢/, < ¢1 (This conclusion is proved in following Lemma [D.14). Therefore for all ¢ < ¢;

nDFy" (1 B 01<t>) _ nDF;" <1 Gt - > _ nDF;"
Kp(t) Cf (t) N Kp(?f) (?99755 C* (tl - 1) N 40Kp(t)7

Ci(t+1)=-Ci(t) =
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where the last inequality holds by Ci (il D) < 0.95. On the other hand, it is straightforward that

Ct+1)-C(t) < "I?}Zt) Additionally, when 5 < p(t), p(t1) < 1+DD_1/4, we can obtain that

e If o(+) is the identity map, then

R 1
o =70 =9(5)
Crim) - —15 o1) — o).

Kp(t)F")  Kp(t1)(Dp(t1) — 1) + 1 — Kp(t1)
o If o(-) is the ReLU activation function, then

FYp(t) | p(t) K(D = K)p(t) 1 1
3 :7+7arctan( T Kp(t) ) RO ) (1—Kp(t)) :@( TK);

Kp(t) 4 2w
(t1) o(,/L
Cih) = —3 s = W) —o(/2)
Kp(t)F™  Kp(t)(Dp(t:) — 1) + 1 — Kp(t1)

%)

If o(-) is the Leaky ReLU activation function, then

B (LRt (1)t

VK (D — K)p(t (1- k) B
Kp(t) 4 2 amtan( 1 - Kp( ) ) o K(D - K) (1= Kp(t)
1
- 757
7" )

\ B _ D
Cilt) = i = R onm) -1 71—t~ O W k)

Therefore, we conclude that

o) — g(y1), if o(-)is identity map;
O(n)
) D
. 0.95-Ci(t1) oWE) _ =0(n~1), ifo(-)is ReLU activation function;
1= 1 t1—1 - (7]\/7)
P20 80 o)
=0(n~1), ifo(-)is Leaky ReLU activation function.
o(n/B)
Next we prove that p(¢1) < HDJS v by induction. Assume it holds at ¢-th iteration, then by

Lemma|[D.9 we can derive that

_. MD D+1
"2 - K)\V DK

ACs(t) + ACs(1)

and consequently

D?p(t)(1 — Kp(t)) 3Mn
Ap(t) < AC,(t) + ACs(t)) < ——.
PO S s (A0 + ACs0) < S
Therefore, we can eventually conclude that
ti—1 —1/4
M 1+ D
O S R - e

where the last inequality is derived by our condition that D = €(poly(}M)) in Theorem This
completes the proof. O
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Lemma D.14. Forall ¢/,t" < ¢;, where ¢; is defined in Lemma|D.13| it holds that 0.975 - C5 (¢') >
0.95 - C5(t").

Proof of Lemma Notice that by the definition of Cy (¢), it is entirely determined by p(iAnd

for all ¢/,t" < t;, we all have & < p(t'),p(t") < %. With Lemmaand Lemma , we
can further derive that

o If o(+) is the identity map, then

D — K)p( D-K 1
Ci(t) = (, ol ), < —5 ——<1+D7%
DKp(t) —2Kp(t)—|—1 m—K(l—D_/)
(D — K)p(t") D-K
HAE 12 =1
Cilt) DKp(t')? —2Kp{t')+1 ~ D - K
It immediately concludes that
1
0.975 - CF(t") = 0.95- C{(t') > 45 — D™% >0,

as D > Q(1).
e If o(-) is the ReLU activation function, then

1 /D-—K | (D—K)p(t)
T K + 2p

2(D — K)F{"

= Kp(@) (DEp(E)? —2Kp(t) +1) 1— Kp(t)
1 /D-K (D—K) ) Kp(t )( \/W_F(D K)p(t))
<LK, T

D— K D — K
g +1+—+

where the penultlmate and last inequalities hold by utlhzlng Lemma and % < p(t) <
#, D > Q(poly(K )) in the conditions of Theoremm Similarly, we can also obtain that

oD — )" /PR

O* t// — >
1) Kp(t")(DKp(t")? — 2Kp(t") + 1) — 1+ DKp(t")?

2 D K l D KDK //22l D_K—l’
7V \ aV K

where the penultimate and last 1nequa11t1es hold by utilizing Lemma and % < pt) <
1+D_'/*
D

, D > Q(poly(K )) in the conditions of Theorem n Based on these two results, it
is straightforward that

1 D-K

== _3>0,

0975 CT(#") = 0.95- C{ () > o1/ =
T

as D > Q(poly(K)).
* If o(-) is the ReLU activation function, then
/ 1-x)®> /D— 1+£%)(D—K)p(t’
*(t/>_ Q(D—K)F?Et) < ( 7\') DKK+(+ )(2 ple)
T 1+ R2)Kp(t) (DEp(t)? — 2Kp(t') +1) ~ (1+K2)(1 - Kp(t'))

(1-x)? |D-K
- (14K K

+ 2;

2D — K)F" N S NE
(14 K2)Kp(t")(DKp(t')? = 2Kp(t') +1) ~ (1+r)2(1+ DKp(t")?)

Ci(t) =
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(1-kx)? |D-K
Z(l+f€2)7T K - b

Combining these results directly leads to

1— k)2 D-K
) LOF(ENY — 0.95 - CF () > (
0.975-C;(t") —0.95- C;(t') > Wi+ VK

as D > Q(poly(K)).
This completes the proof. O

Lemma successfully demonstrate that at the initial phase of training, C4(t) will mono-

tonically increases until 0.95 - C;(¢), while p(t) remains smaller that 10" Ryrthermore,

once Cy(t) reaches 0.95 - C(¢), it never falls below this threshold again. Combined with

the conclusion demonstrated in Lemma that Cy(t) is always upper bounded by (1 +

5 Aé‘;‘itf);( o) Kp(lt;(gz 8—1) )Ci (t), we can claim that Cy(¢) will always remain inner a neighbor-

hood around C7(t). The following lemma provides a formal illustration.

Lemma D.15. Under the same conditions as Theorem [3.1] and with ¢; as defined in Lemma[D.13]
for all ¢t > t;, the following holds:

LA(t) 1— Kp(t) .
al= [0'95 (- 500+ B T o = )] a0

where A(t) and B(t) are defined same as in Lemma[D.3]

Before we prove Lemma|[D.T3] we first introduce the following lemma, which will be utilized in the

proof of Lemma [D.15]
Lemma D.16. For Cj (t) defined in Lemma|[D.2] it always holds that

3(D - K + KC{(t))
2(DKp(t)? — 2Kp(t) + 1 — KAp(t))

Ci(t+1) < Cr(t) + Ap(t). (D31)

2
VDK’

In addition, C () is monotonically decreasing when p(t) >

Proof of Lemma|D.16] We prove this lemma by considering o(-) as the identity map, ReLU activa-
tion function, and Leaky ReLU activation function, respectively.

o If o(+) is the identity map, then

_ (D —K)pt+1) < (D= K)pt) + (D - K)Ap(t)
DEp(t+ 1)2 — 2Kp(t + 1) + 1 — DEp(t)? — 2Kp(t) + 1 — 2K Ap(t)
D - K + KC(t) -
DEp(t)? = 2Kp() + 1 — Kap() ~P):

Ci(t+1)

<Cr(t) +

In addition,

. D-K
Ci(t) = DK 1 ?
which is obviously decreasing when p(t) > \/;7.

e If o(-) is the ReLU activation function, then

(L — t+1) +2(D— t+1)arctan ( Yo P74 oD ) =2PUAD)
(D—K)p(t+1) +2(D—K)p(t+1) (mpmn) (D— ) =Ee)

—Kp(t+1) K(D-K
Ci(t+1) = ( )

2n(DKp(t+1)2 —2Kp(t+ 1)+ 1)
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< —Kp(?)
- 2n(DKp(t)? — 2Kp(t) + 1) — 2n K Ap(t)

Q(D—K)%HW(D—K)M@)
T R (DEp(0)? — 2Kp(t) + 1) — 27K Ap(7)

3(D - K + KCi(t))
2(DKp(t)? — 2Kp(t) + 1 — KAp(t))

m(D—K)p(t)+2(D—K)p(t) arctan (M)

< Ci(t) + Ap(t).

In addition,

e = D_K . (D—K) arctan (7”1(1(_?(;131)(”) w/%(l—Kp(t))
T 2(DKp(t) + 515 —2K) m(DKp(t)+ 5 —2K) m(DKp(t)+ {5 —2K)’

where all these three terms are monotonically decreasing w.r.t. p(t), when p(t) > \/;7. This
2

VDK’

demonstrates that C (¢) is monotonically decreasing when p(t) >

* If o(-) is the Leaky ReLU activation function, then by a similar calculation process,
Ci(t+1)
7(1+5)2(D—K)p(t+1) + 2(1—k)2(D— K)p(t+1) arctan (—W)
2(1+k?)m(DKp(t+1)2 —2Kp(t+1) +1)
(1-k)*(D-K)(1—-Kp(t + 1))
(1+r2)m(DKp(t+1)2 —2Kp(t+1)+1)\/K(D-K)

7(1+r)2(D—K)p(t)+2(1— k)2 (D— K)p(t) arctan (@)

1-Kp(t)
ST ) (DEp(®)? — 2Kp(t) + 1) — 2n(1+#2) K Ap(?)

2(1-@%1)-1()% +37(14k)2(D—K)Ap(t)

2(1+r2)m(DKp(t)? — 2Kp(t) + 1) — 27 (1+K2) K Ap(t)
3(D— K+ KC{(t))
2(DKp(t)? — 2Kp(t) + 1 — KAp(t))

+

<Cr(t) + Ap(t).

In addition,
v K(D-K)p(t)
(].+K/)2(D _ K) (1—1‘43)2(D_K) arctan (w)

(1+12) (DEp()+ 5 —2K) | 7 (1+2) (DKp(t) + 7y —2K)

(1-r)%/ PR (1= Kp(t))

m(1+52) (DEp(t)+ 55 —2K)

Ci(t) = ;

where all these three terms are monotonically decreasing w.r.t. p(t), when p(t) > \/1?)7' This
2

demonstrates that C (¢) is monotonically decreasing when p(t) > NGYR

This completes the proof. O
Now, we are ready to prove Lemma[D.T5]

Proof of Lemma|D.15] We first prove the first part of (D.30), i.e. Ci(t) > 0.95 - Cf(¢) for all
t > ty, by induction. To establish the conclusion, we consider two cases at the ¢-th iteration: (i).
when C1(t) > 0.975 - C;(¢). (ii). when 0.95 - C5(t) < Cy(t) < 0.975 - Cy(t). For the first case,
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when p(t) < Nﬁ’ Lemma shows that C1(t) < Cf(t), implying that C1(t + 1) > C1(¢).
Then we can derive that

3(D - K + KCi (1))
~ 2(DKp(t)? — 2Kp(t) + 1 — KAp(t)

Ci(t+1) >Cy(t) > 0.975- CE(t) > 0.975 - CF(t + 1) )Ap(t)

3(D—K ) \
% >0.975- C(t+1) — 0.025 > 0.95 - CF(t + 1),

where the third inequality holds by applying the lower bound of C7(t) demonstrated in Lemma
m The

The forth inequality holds as Cj(t) < /£, and Ap(t) < 2 guaranteed by Lemma
penultimate inequality holds as D > Q(poly(K)), and the last inequality holds as C7(t) > 1.
When p(t) > Nﬁ’ the upper bound of C (¢) established in Lemma can help to derive that
DA~ Kp(t))

5K2p(t)?(Dp(t) — 1)

>0.975- CF(t+1) —

Ci(t+1) >Ci(1)

. 3(D — K) AnDA(t)
>0.975- Cf (t +1) = =5 — ST (Dp(d) 1)
D-K D
>0.975- Cf(t+1) — % — |/ o5 = 0.975- Cf (¢ 4 1) — 0.025 > 0.95 - Cf (¢ + 1).

Here, the second inequality applies the previously obtained lower bound for C(t). The third in-

equality holds as A(t) < Kp(t)?, and p(t) > 5 \/71}[)7' The penultimate inequality is derived by

D > Q(poly(K)) and n < O(MD~5/2) in the condition of Theorem These results demon-
strate that under the first case, C1(t + 1) > 0.95 - C5(t + 1). Let’s consider the second case, where
0.95- C5(t) < Ci(t) < 0.975 - C5(t). Under this case, it is obvious that C (¢ + 1) would be larger
than C1(t), and by the updating rule, we have

(t) (t) *

DF" . uDF{ 3(D — K + KCi (1))

D8 0.95- Ci(t - Aplt
W0Kp(D) ~ O I0Kp® ~ 2(DEp0)? —2Kp(0) + 1 - Kap() P

) D 3MD3(1 — Kp(t)) D+1
>0.95- Cy () + Up(t)(so - V/D(D? - 1)(D — K)K? \/7)

. D AM
>0.95 - C(t) + np(t) (80 e

Ci(t+1) >Ci(t) +

> >0.95- C7(t).

Here, the second inequality holds by (D.31), the third inequality holds since F3(t) > Kp(n)* by

2
DR t)];:;;(—;g)cﬁ(i)l( A5 (D) < 2D, and applying the conclusion of upper bound of

Ap(t) demonstrated in Lemma Besides, the last two inequalities is guaranteed by D >
Q(poly(M, K)). This finishes the proof of Cy(t) > 0.95 - Cj(t) for all ¢ > ¢1. In the next,

we prove the second part of (D-30), i.e. Cy(t) > (1 — 5(}4&;‘_&%@)) Kp(iigzg—l) )Ci (t). In fact,
2

we only need to consider the scenario where p(t) > \/[2)7. This is because when p(t) < NGTR

Lemma

1A L Kp) 41— Kp(t)
5(A(t) + B(t)) Kp(t)(Dp(t) — 1) ~ 5(Kp(t) +2. /K- Kp(t)))(Dp(t) ~1)
> 10\/D17Kp(t) > 0.05.
Therefore, C1(t) > 0.95 - Cj () guarantee that Cy(t) > (1 — 5(Aé€?—$—tj)9(t)) Kpé)_(gggg_l))Cf(t)
holds when p(t) % \/LQTK' When p(t). '2 ﬁ, we also consider two CilSCSZ (i). when C1(t) > (1 -
et o) Ko ui=n) Ci (0)- Q). when (1~ 5653y wommn=m) C1(H) < Ci(t) <

(1 L 24@) 1-Kp(t)
5(A(t)+B(t)) Kp(t)(Dp(t)—1)

_ AnDA()(1 = Kp(t))
5K2p(t)?(Dp(t) — 1)

)Cik (t). Then, for the first case, at the ¢ + 1-th iteration, we have

Ci(t+1) >Ci(t)
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v

5(A(t )+ B(t)) Kp(t)(Dp(t) - 1)) " 5K2p(t)*(Dp(t) — 1)
4A(t+1) 1—Kp(t+1) ;
( a 5(A(t+1)+ B(t+1)) Kp(t+1)(Dp(t+1)1))Cl(t+1)
2A(t) L= Kp(t) o py  A1DAWM(L = Kp(t))

AnDA(t)(1 — Kp(t))
1

v

5(AW)+B®) Kp() (Dpt)—1) ) ™ 5K2p(0)2 (Dp(t) - 1)
A(t)  Ap(t)(2DKp(t)+ DK Ap(t)— )C* 0
A(t)+B(t) K2p(t)?(Dp(t) — 1) '
4A(t+1) 1— Kp(t+1) .
(1= S D BT o DB =T D
_Kp(t)  (Ci() 4D  DCi(®)Ap(t)
K <>( p(t) - )( 5 "5 Dp(t) - >
4A(t+1) 1—Kp(t+1)
(1 A(t+1)+ B(t+1)) Kp(t+1)(Dp(t +1) — 1))Cl(t+1)

n — Kp(t) (1 42 >
Kp(t )(Dp( )= \5  5VD* VD3
Z(l 4A(t+1) 1—-Kp(t+1) )Ci"(t 1),
5(A(t+1)+ B(t+1)) Kp(t+1)(Dp(t +1) — 1)
In particular, the third inequality is obtained by replacing the the lower bound of

At 1-Kpl(t . e . .
A(t)fr])g(t) Kp(t)(Digt; 1y in Lemma , and utilizing C;(¢t) > C¥(¢t + 1) when p(¢ )(t) ﬁ,

which is demonstrated in Lemma The forth inequality is derived by the facts AL BE iJrB(t) > é

when p(t) > \/137’ A(t) < Kp(t ) , and utilizing the upper bound of Ap(t) in Lemma Lastly,

the penultimate inequality is derived as 1 < C7(t) < 1/ , Ap(t) < DO/Z, and 7 < O(D~%/?),
This demonstrates that the second part of (D.30) holds at ¢ + 1-th iteration for the first case. On

the other hand, for the second case, Cy(t + 1) would be strictly larger than C;(¢), and it can be
demonstrated that

Ci(t+1) >Ci(t) +

MDA()(1 ~ Kp(t))
5K2<>2( p(t) 1)
)

_ 4A(t 1 — Kp(t) 2nDA(t)(1 — Kp(t))
(1 5(A400) + B() Kp(O)(Dp(t) - )G+ S 2 (Dr ()~ 1)
4A(L+1) 1— Kp(t+1) §
><1 a 5(A(t+1)+ B(t+1)) Kp(t+1)(Dp(t + 1) — 1))01 (t+1)
N 2DAR)(1 - Kp(t))  A(t)  Ap(t) (2DKp(t)+ DK Ap(t)—K) o )
5K2p(t)2(Dp(t) —1)  A(t)+B(t) K2p(t)?(Dp(t) — 1) '
4A(t+1) 1— Kp(t+1) X
=\~ 5(A(t+ 1)+ B(t+1)) Kp(t+ 1)(Dp(t + 1) — 1)>01 (t+1)
N 77(1 — Kp(t)) (D B 2DM(1 — Kp(t)))
Kp(t)(Dp(t) —1) \ 5 VK7 (Dp(t) —1)
4A(t+1) 1— Kp(t+1) §
TSt D+ B D) Kpt - D(Dp(+ 1) - 1))01 (t+1),

2aDM (1—Kp(t )
\/FEDP(;(I))) < (’)(%) < O(D). This demonstrates that

under the second case, we still have

4A(L+1) 1—Kp(t+1)
Cit+1) > (1-
it+1) 2 ( 5(A(t+1) + B(t+ 1)) Kp(t + 1)(Dp(t + 1) — 1)

where the last inequality holds as

Jeite+ 1,
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which finishes the proof of (D.30). O

Lemmas|D.15] m and-together establish matching lower and upper bounds for Cl( ) after ¢;. Based
on these bounds, we can derive a precise training time at which p(t) achieves 57 K This result is
formally presented in the following lemma.

Lemma D.17. Under the same conditions as Theorem , there exists T = @(MKiDz)
N> m=1 Vi3
such that p(T*) > 1.

Proof of Lemma Notice that Lemma [D.15]and Lemma D.5] guarantee that
0.95-Cy(t) < Cy(t) < (dm+1) - Cy(t)
forall t > t4. The left hand side inequality is straightforward, and the right hand side holds because:

when p(t) < 52—, C1(t) < Cf(t) < (4 +1) - G} (t); when p(t) > ;==
Cu(t) < (1 5 (fff)B DT é)ZDIZ(”S)_ 1)>Cf(t) < (dm+1)-CIt).
On the other hand, Lemma[D-T3]and Lemma|D:3]also guarantee that
0= (1+ 57305+ ) T ot = 3)) 5
‘“”ze‘smﬁfgmwwé@ﬁﬁlnym“ (D32

These two lower and upper bounds of C (t) allow us to apply Lemmato derive lower and upper
bounds for ACy(t) + AC5(t) as

94 + 1) Dp(t) (1= Kp(0)* Sl IVl .
10K (D — K)VD(DKp(t)2—2Kp(t)+1)

19Dp(t) (1 = Kp(t))" Yopy IVal3 .
300K (D — K)VD(DKplty2—2Kp(t)£1) 1 (D.33)

ACQ(t) + AC:),(t) <n

ACy(t) + ACs(t) >

where we replacing M with fo:l |V, |13 to match the presentation in our Theorem With
these bounds in hand, we denote 7 as the first time such that p(¢) > ﬁ Then forall t; <t <T*,
by applying Lemma [D.9|and the upper and lower bounds of AC5(t) + AC3(t) obtained in (D-33),
it can be derived that

D?p(t) (1 — Kp(t))

M "
77(87T +2) 3 Vi3

2 .

Ar) < =05 pe ) (AC:(H) + ACy(1)) < KvVDK PO
p(t)(1 — Kp(t)) >y v mHz 2
Ap(t) > a7y (AC (1) + ACs(t)) > ==l 2 0K p(t)2.

Notice that the iterative rules for p(t) satlsfymg the assumptlons in Lemma [F.11} By applying
Lemmawnh the initialization that = < p(t1) S =, we can obtained that

50D2K D’K
T —t; < ————— + 10087 + 2)(logD — logK) < @<M2>
N Vi3 12 m=1 IVil3
D?K D’K
T —t > (logD—logK)>@<>.
350 Sy V73 N e [VilI3
; * _ D?K _ D?K ; ;
This results demonstrates that 7% = ¢; + @<n T ”2) 6(77 S |vn HQ) This finishes the
proof. O

In the next, we provide the analysis for the last stage that p(t) eventually converges to % This result
is formally presented in the following lemma.
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Lemma D.18. Under the same conditions as Theorem for any 7' > T%*, where T* =

() (%) as defined in Lemma|D.17| it holds that
m=1 IVmll2

1 20D(D — K) 1 D(D - K)

— — <p(T) < —=-— . (D.34)
K K
VB SN Va3 - T) 2e\/nEK SN Vi lB(T - T*)
In addition, it holds that
1 2 1 2
_ < Z(1 = — (1 —
PDCUT) = 2| < 5 (1= Kp(D)) + 1 (1 = Kp(D)
_ 201 _ 12
< 40K (D — K) 400D%(D — K) D.35)

M * *
VK S v 3@ —1e) 1 e VR IBT - T7)

Proof of Lemma([D.I8] With the bounds established in Lemma and the fact that lfpl((g(t) =

exp (— W), the upper and lower bounds of AC»(t) + AC3(t) obtained in (D.33) can be

rewritten as

M * |2 5
ACH(t) + AC (1) < T 2om=1 Vinllz — 25 (204 050).

K3v/D3 ’
St IVil3 — 2 (cattrrosm)
ACy(t) + ACs(t) > n=m=2 2" VD \ 2 3.
A0+ G0 2 1%k D3

The upper and lower bounds of AC(t) + AC5(t) match the assumptions of Lemma By
applying the lemma, we can obtain that for all 7" > T,

M *
\/5 (77 Zm:l ||VmH§

Co(T) + Co(T) > Y 10g (T_T*)+6K3§>;

2 200K3D?
o) + Co(T) < ST e IVal | VD (ST Yy VR 1 oy | o
2 3 =7 KS\/ﬁ 9 g K32 .
Replacing this result into the formula of p(7'), we have
1 1
p(T) - K+(D7K) _ Cy(T)+C3(T) = K+(D—K) (_ 1 (77271\:,1,:1 vy 3 (T—T*)))
exp NG €xp 2 108 \ " %00K3 D2
1 20D(D - K)
- K M
VB SN Va3 - T
On the other hand, we can also derive that
1
p(T7) < - -
K+ (D o K) exp ( _ %log (877"72;2:52”"771“% (T _ T*) + e%\/ﬁ) _ n4w Z}%i:éilvm”g)
1 D(D - K)
S - —

K Mo .
2e/nk YN Vo 3T —T*)

This finishes the proof of (D.34). With this condition holds, by checking the definition of C} (1),
we can obtain that
1 1— Kp(T) )
1+ (1— Kp(T ( - <CHT) <1+
WSO )~ - o) =G0
Plugging this result into (D:32), we derive that

14 (1= 500) (g ~ ) <G < 1+ (0= 500) (g5 + )

which immediately leads to the final conclusion of (D-33).

1 - Kp(T)
Kp(T)
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Now, we are ready to prove Theorem [3.1]

Proof of Theorem[3.1] We first prove the first conclusion.

F: Zlii(SE?z ; i)2 \/DK(KP(T))ZJFD(DK)W

D

- (1- Kp(T

K(D - K)

-

A )
VIS a3 - %)

where the last inequality holds by applying the upper and lower bounds of p(T") derived in
Lemma [D.18] This finishes the first conclusion of Theorem 3.1} Notice that in Lemma [D.T8] we
have derived that |C}(T) — 1| = ©(1 — Kp(T)), which directly imply that

WD v =0T — 1| V* AV #,
Wy, |- = 1C(T) = 1| V*]|r = Zm1IIV T IV*r

where the last inequality holds by applying the upper and lower bounds of p(T") derived in
Lemma This finishes the second conclusion of Theorem 3.1} For the third conclusion, notice

that
WD w@y _ 1 kS (D) @)\’
(Wy 7 KQ)_izz]E Ymi—o Z(WVWXn)S i
m=1i=1 i1=1
1 o o D T )\ 1
=5 2 B ([0, - o S wihxsl) ) [+ SELEIE.
m=1i=1 i1=1

where the last term is essential Lop¢, and the last inequality holds by the independence between X
and & and the fact that £ is zero-mean. Since this equation holds, in the next, we directly deal with

E(Wg); WE{TC))) — Lopt. We first prove the upper bound. By utilizing the fact that |0 () — o (y)| <
|z — y| for all z,y € R, we can derive that

D 2
LW ;WD) = Lopy = Z ZEK ‘0<Z<W%’X”1>Sg>) ]

m=1 =1 i1=1

M D )
1 1 . C1(T)(1 — Kp(T) .
S§ ZE[((K _Cl(T)p(T)) ‘Z’.<V77l’le>+ .(D—K ) -Zv<vm7XZ1> .
m=11i=1 i eGi Tl
2l 2.,
Notice that Zfz)m ~ N(0,0%,,), where o7, = K|vi|3(L - Cu(T)p (T)) and Zé,];)m

_ lvilzCi(1)? (1 Kp(T))?

N(0, 03 m) where a% B , and they are independent. Based on the upper
bounds derived in Lemma | we can ﬁnally derlve that

M
COW W)~ Lope <5 ZZE[(zﬁm IR SRR SN
m=1

m=1 =1
DE(1 o Qil\ 2, DO (1 - Kp(T))* i vl
2 \x Gl Vmll2 2(D - K) L Tmi2
_._ kD!
C—————————.
(T -T7)

where the last inequality holds by applying the upper bounds for (+ — C1(T)p(T)) ? and p(T) de-
rived in Lemma|D.T8] This completes the proof for upper bound. On the other hand, denote Z3 ,,, ; =

Yivect (Vi Xi) ~ N(0, Klvill3) and Zy i = 355, ¢ (Vi %) ~ N(0,(D — K)|[vimll3).
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and Z\") . = p(T)Zsm; + 52D 7, . ;. Then, by utilizing the fact that |o(z) — o(y)| >

5,m,i , =
|z —y| - L{z>0,y>0}, We can further derive that

L(ngT)§ ng)) — Lopt

1 M D D 2
=3 228|170, o X witxsih)) ]
BT e
m=1i=1 L
>3 i_l iE (<z1< = TP s~ PR ) 21{23,,,",»0}ﬂ{z;ﬁz,poj
Z% i ED:E <<11( - Cl(T)p(TDZ&m’i -4 (T)L()l__gp(T)) Z‘*’m’i)zﬂ{zs,m,iz()}]1{24,m,1:20}]1{zé?li,izo}]
m=1 i=1
:% i ZD:IE ((Il( -~ Cl(T)p(T))Z&mJ CI(T)(l:gp(T Z4)m’l>2]l{zg 20} 1 (Zy 1>0}]
m=1 i=1

=1 1
M L. Cy(T)| & — Cu(T)p(T)|(1 — Kp(T
B Z Z 1( ) 74 1( )p( )|( p( ))E[Z3,m,iﬂ-{Z31mﬂ¢20}]E[Z4,m,i]l{Z4ymyi20}]

m=1 i=1 D=k
o Yot [V [3DCL(T)2(1 — Kp(T))
- 8(D — K)
S Val3DCU(T)| 4 — CUT)P(D)| (L~ Ep(T)) VE(D — K)

27(D — K)

Yo IVmlBDCH(T) (1 = Kp(T))? (ca(T) _2VE(D- K))

= 2(D - K) 4 D

St Vw300~ Ep(T)* KD

- 16(D — K) = (T —T*)

where the last inequality holds by applying the lower bound of 1 — Kp(T) demonstrated in
Lemma [D.18] This completes the proof. O

E PROOF OF THEOREM[3.2] AND DISCUSSION OF THE WORST CASE EXAMPLE

In this section, we provide a complete proof for Theorem [3.2] and a worst-case example can attain
the upper bound in Theorem 3.2} We first prove Theorem3.2]in the following.

Proof of Theorem[3.2] We first upper bound the OOD loss by the sum of three terms as
Loon(W{; W) = JE[|Y — TR(EZ: W W3]
fE[nY FX) + f4(X) = TRZ; W WD)

L2 (15 ®) - TRE W W)

+E[Y - f4(X), f*(X) — TF(Z; Wi Wil )]

:*E[IIY — [ X)NE] +

<SEIY ~ £ (R3] + 3E[I7(X) - TREZ W W3]
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VENY - (X I2]E[I£+(X) - TF(Z W W) 2],

where the last inequality holds by Cauchy-Schwarz inequality. Based on this decomposition, it is
critical to derive the upper bound for E [||'Y — f*(X)|[|%] and E[|| f*(X)—TF(Z; wil, ngg) 1%].
For the first term E [||§' - f*(X)H%] , we have

E[IY - £ (X)lIF] < 2E[IY|F] +2E[I £ (X)IF]-

By the assumption that each column of Y satisfying that E[[|¥,,||2] < &, it is straightforward that
E[['Y%] < D¢. On the other hand, we have

Bl @R =3 Y e[ @R <3 3 Mallgies sy
Fl = Vi m QvXZ> ]
i=1 m=1 i=1 m=14 @Gt
<3y 3 ElREIE ol <DES v
- i=1 m=14cG a m=1 e

For the second term E[|| f*(X) — TF(Z; wil, WEKTC)Q) 12.], we can derive that

IE[nf*(fc) ~ TF(Z; W W13

5 2
ZEK< 1(T)p(T)) Z (Vs Xiy) + D_K Z <an,3“q1>> ]

m=1 i=1 i1€G? i1 ¢G?
M D 2
<03 S Ivili( 5 -Gl >p<T>) S Bl 3
m=1 i=1 ileGi
M D (
+DY Y IIlelz Z E[lI%: 113]
m=1i=1 i1 ¢ G
KDb¢ )
<O ———).
(n(T - 1)

Here the first inequality holds by |o(z) — o(y)| < |z — y|. The second inequality is established

by the fact (Y22, a;)? < D22, a2 for all scalar a;’s and (v7,,%;,)2 < ||vZ,||I2[|%,, ||2. Lastly,
the third inequality is derived by replacing the conclusions in Lemma [D.I8] Combining all these
derived terms into the three terms derived as the upper bound for OOD loss, we have,

KY Vil | KD )
n(T —1T%) n(T —1T%)

1 S S
Loon(Ws WiLL) - JE(IY - (R[] < 0 D
Let the upper bound derived above smaller than €, we can derive that

T O(KD%? S Vi3 ) o (KDG@ et ||vm2)
€ 62

U ne?
This completes the proof. O

In the next, we discuss the construction of the worst case ? such that EOOD(Wg‘/); WgQ) ) —
%E[H{f - f*(f()”%] > ¢ for some T, = @(%f) (assuming ||[vy,]l2 = 1 and £ = ©(1) for
simplicity). In fact, this 7, can be different with the 7, defined in Theorem @], but at the same
order w.r.t. €, hence a matching result.

By the conclusions in Lemma , we know that & — p(T) = O(——L—) and |p(T)C1(T)

VnKMT
i| < O(—=2—). Therefore, there exists an absolute constant ¢’ such that _AKp)
Kl = Y\ArmT [p(D)CL(TD)— 5| =
>

dD. In addition, we let A, ; to denote the event such that [}, .qi(vy,, X))l
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max{ 2| > ieqi (Vi Xiy )|, 1}, We can assume the probability of Ay, ; is larger than an abso-
lute constant. In fact, such an assumption can be easily verified on many specific distributions like

Gaussian distributions. With these notations in hand, we can design Y such that its (m, 7)-th entry
is generates as ?m,i = Sign(zi1¢ci (Vi X)) Lya,, o+ f*(i)m,i . Given this construction, we
can deduce that
B[(Y — f*(X), f*(X) = TR(Z: Wy W)
M D
E

(Fors = £ Es) (5 - @00 T k)

m=1 i=1 i1 EG?

C1(T)(1 — Kp(T))

+
-]
|
=
e
%*
!
<

Ci(T)(1

M D .
e

D3 |MK MK
| T Ellga, ] =0 D% — ).
2 nT nl

Replacing the T with T, = @( M ;;D ’ ) we can finally conclude that

v
N

v

T, T 1 - * [N
Loon(Wy s Wigg) = SE[I[Y — f*(X)[7]

~ ~ ~ ~ MK ¢
ZE[(Y — f*(X). /*(X) = TF(Z: Wy s W) > e(DB,/an,/MZ{) = 0.

This validates that the upper bound is indeed attained under our construction.

F TECHNICAL LEMMAS

In this section, we present and prove the technical lemmas we used in the proof of the previous
sections.

F.1 CALCULATION DETAILS OF EXPECTATIONS

We introduce the details regarding
Lemma F.1 (Calculation of Fj(a) defined in (D.2)). Let 2 ~ N(0, a), then it holds that

e If o(-) is the identity map, then
Elzo(x)o'(z)] = a.
* If o(-) is ReLU activation function, then

Elzo(z)o’ (z)] = <.

2
o If o(-) is Leaky ReLU activation function, then
1 2
Efzo(z)o’ (z)] = %

Here,  is the coefficient of the Leaky ReL.U activation function when the input is smaller than 0.

Proof of Lemma(F1] The first conclusion for the identity map is straightforward. When o(-) is the
ReLU activation function, we can rewrite that zo(z)o’(z) = 2 - 2150y - Lz>0y = 562]1{9320}.
Therefore, we have,
E[z? a
Elzo(z)o’' (z)] = E[z°1{,50] = [2 ) =5
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Besides, when o(-) is the Leaky ReLU activation function, we can rewrite that zo(x)o’(z) =
21,50y + K22* 1,0} Therefore, we have,

Elwo(z)o’(z)] = E[lel{zzo}] i H2E[x21{z<0}] _ (1+ m; E[z?] _ (1 +2/-€) Ch

which finishes the proof. O

Lemma F.2 (Calculation of F5(a,b) defined in (D.3)). Let 21 ~ N(0,a), z2 ~ N(0,b) be two
independent Gaussian random variables, then it holds that

o If o(+) is the identity map, then
Elxio(z1 + 22)0" (21 + 22)] = a.
* If o(-) is ReLU activation function, then

E[z10(z1 + 332)0/(1‘1 +x9)] = a

5
e If o(-) is Leaky ReLU activation function, then

1+x%a

Elz10(21 + 22)0’ (21 + 22)] = %

Here, « is the coefficient of the Leaky ReL.U activation function when the input is smaller than 0.

Proof of Lemma(F2] The first conclusion for the identity map is straightforward. For the next two
cases, we first introduce some definitions. Let z3 = z7 + w2 ~ N(0,a + b). Then we have
Cov(z1,z3) = E[(z1 + 2)z1] = a, and E[z1|73] = S5 73. Consequently, when o(-) is the ReLU
activation function,

E[xlcr(zl -+ 1172)0'/(.’21 -+ IEQH = E[I1x3]—{w320}] = ]E[]E[xlzg]].{wszoﬂl‘g]]
a a a

= — E[221 =—  R[z?] = =.

ool 2] = 5 Elesl = 5

In addition, when o () is the Leaky ReLU activation function,

E[z10(z1 + 2)0" (x1 + x2)] = E[z1231 {5,501 + KZE[$11‘3]1{I3<0}]
= E[E[mlxg,]l{mgzoﬂxg]] + K2E[E[$1x31{13<0}|$3”
a K2a (1+r%a
= mE[xgﬂ{xgzo}] + mE[iUgﬂ{mw}] =5
This completes the proof. O

Lemma F.3. Let z; ~ N (0, a), 2 ~ N(0,b) be two independent Gaussian random variables, then
it holds that

e If o(+) is the identity map, then

Elzi0(z1)0’(z1 + 22)] = a.
e If o(-) is ReLU activation function, then

Elzio(21)0’ (z1 + 22)] = % + 2(;_<arctan <\/§> + ﬂ). (FD

And there exist the following matching lower and upper bounds:

(a avab ) v <a bvab

(F2)

(VIS

1" 2n(a+b) 2 2r(a+ b)> < Elmio(@n)o’(z + )] <
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* If o(-) is Leaky ReLU activation function, then

Elw10(21)0" (21 + 2)] = & +4“)2a 44 _27’:)2“ (arctan (ﬁ) + ﬁ) (F3)

And there exist the following matching lower and upper bounds:

]E[xla(xl)a’(xl + 1‘2)] < w;
, (1+r)2a (1-r)?avab (1+x>a  (1—k)*bVab
E[zio(z1)o’ (21 + x2)] > ( 1 2r(a + b) ) v ( 2 B 27(a +b) )
(F.4)

Here, & is the coefficient of the Leaky ReL.U activation function when the input is smaller than O.

Proof of LemmalF3] The first conclusion for the identity map is straightforward. When o(-) is
ReLU activation function, we can rewrite that z10(21)0” (1 + #2) = 211,501 L (s, 42,50} Let

z1 = % and zo = %, then we have,
Elz10(z1)0’ (21 + 22)] = ¢ E[z7 112, 50y L( Jaz, 4 vBzps0}) - (E.S)
I
For I, by denoting A = %, we can obtain that

I :/ / 22¢(21)p(22)dz1dzo :/ 220 (\z1) ¢(21)d21,
0 —Azy 0

where ¢(-) and ®(-) are the cumulative distribution function (c.d.f.) and probability density func-
tion (p.d.f.) for the standard Gaussian distribution respectively. We can denote that I(\) =
Jo° #2® (A21) ¢(21)dz1. Then, by the Leibniz integral rule, we have

Iy (™, o 21
X _/0 APha)p(za)dz = 27r(1+)\2)2/0 serde= T ey

Additionally, since 1(0) = , we can derive that
1 1 A 1 1 a Vab
I=-+—(arctanA+—>— ) ==+ —( arct 2 F.6
4+27r(arcan +1+)\2> 4+2w<arcan( b)+a+b) (F6)

Applying the result of into (E.5)), we finishes the proof of (E.1). In the next, we derive the upper
and lower bound for I;. By the property of c.d.f., we know that ®(z) < 1 for all z € R, which
implies that

> 1 1
1< / 2¢(21)dzy = —E[23] = =.
o 2 2

Additionally, by Mills ratio, we further obtain 1 — ®(z) < ¢(z)/z for all z > 0. Based on this
result, we can obtain that

1z [0 (1- G5 )4 = § - 5 [T aeeonaen,

where the second term can be calculated by

/00 (z1)¢(Az1)d —1/00 g = /OO Fgpy !
; 210(21 21 21_27r | z1€e 21_27r(1+)\2) | z1€e Zl_27r(1—|—)\2)'

Plugging this result into the preceding inequality, we can derive that

1 b3

= —
~ 2 2m/ala+d)
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Combining all these results and (E6), we finally conclude that
1 Vab 1 b3 1
-+ —— |V z——F—F—— ) < I < - F.7
<4+2ﬂ(a+b)> <2 277\/5((1—&-17)) =3 D

Applying the result of (F77) into (F3)), we finishes the proof of (F.2). In addition, when o () is the
Leaky ReL.U activation function, we can similarly derive that

E[ﬂ?ld(l‘l)g’(q;l + 1‘2)] = G,]E[Z%]I{ZIZO}]1{\/521+\/52220}] + a/dE[Z%]l{Zl<0}]l{ﬁz1+\/gz220}]
+akEF 11250y Ly aa 4 Vo <oy] T AR ELRT L1 <y L sy VBea<oy)
= (1 +KZ)GE[zfn{ZIZO}1{ﬁ21+ﬁ2220}] +sz[zfﬂ{ZKO}11{ﬁz1+ﬁz220}],

where the last equality holds by the symmetry of z; and z5. By applying a very similar calculation
process, we can obtain that

0 1 1 a Vab
El21 (21 <0) 1 {/az, +-vBea0)) =/ 21® (A21) ¢(21)dz = 1 2 (arctan< b) o b)'

—00

By replacing this result into the previous calculation, we can immediately prove (F3). And (F4) can
be directly derived from (E.2]).

Lemma F4. Let 21 ~ N (0,a), 22 ~ N(0,b) be two independent Gaussian random variables, then
it holds that

e If o(+) is the identity map, then
E[.’EQU(I’l)OJ((El + (EQ)] =0.

* If o(-) is ReLU activation function, then

bvab
E / -
[z20(z1)0 (21 + 22)] 3(a+ )
e If o(-) is Leaky ReLU activation function, then
1 — k)%2bVab
E ! _ (1 =r)ybvab .
[xo0(z1)0" (1 + 22)] 3(a+ )

Here, « is the coefficient of the Leaky ReL.U activation function when the input is smaller than 0.

Proof of Lemma([F4] The first conclusion for the identity map is straightforward. When o(-) is
ReLU activation function, we can rewrite that z20(21)0" (21 + 22) = 21221 5,501 1 {2, 4-25>0}-

Let z; = % and 29 = %2, then we have,

\/E’
E[(L’QO’((El)al(iﬂl + 1'2)] = \/(%E[le2]]‘{2120}]]‘{\/Ezl+\/52220}] . (FS)

I

For I, by denoting \ = \/@ , it can be calculated by

I = A ‘/_)\Z1 2122¢(Zl)¢(22)d2’1d22 :A Zl¢(21) (/_'/\21 22¢(2’2)ng> d21

oo 1 o0 z% oo 1 o0
= — e 2dzg |dz = — e *d d
/0 219(21) (\/ﬂ//\z1 k2 22> 21 /o 219(21) (m/ﬂ;% 22> 21

R ,z%u;x%d B 1 B b
- e AT oA+ A2 2n(at b)

2 Jo
Now applying the results of (F9) into (E.8), we finish the proof when o (-) is the ReLU activation
function. In addition, when o (-) is the Leaky ReLU activation function, we can derive that

Elzoo(z1)0’ (21 + x2)]

(F.9)
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=VabE[z1221 (2,50} L{ /o, 4 viez0p) + VOURE[Z120 112, <0y L ey 1 vBen 503
+ /VabE[z1 201 12,50 L oy 4 Vomp<oy) + 5 VOE[21201 (2, <0} Lz 1 Bz <03)
=(1+ ,‘@2)\/%1[2[2122]1{2120}]l{\/azl+\/gz220}] + 25@E[Z1Z21{21<0}]l{\/EzlJr\/EzzZO}]’

where the last equality holds by the symmetry of z; and z5. In addition, by a similar calculation
process, we can obtain that

I (CRv G\ 1 b
E[le2]]'{zl<0}]]'{\/Ezl—&-\szQzO}} = % [m z1€e 2 le = _27r(1 T )\2) = —27T(a n b)

Consequently, we can finally obtain that

(1 -2k +&2)bvVab (1 — k)?bvab
2m(a + b)  2m(a+b)
which finishes the proof. O

Elxeo(z1)0’ (x1 + 22)] =

Then, based on the conclusions of Lemma and Lemma we can immediately obtain the
following lemma as a corollary.

Lemma F.5 (Calculation of F5(a,b) defined in (D4)). Let 1 ~ N(0,a), z2 ~ N(0,b) be two
independent Gaussian random variables, then it holds that

o If o(-) is the identity map, then
E[(z1 + z2)o(21)0’ (21 + 22)] = a.

* If o(-) is ReLU activation function, then

N
o
N———
_|_
E
S

a a
E[(z1 + 22)o(z1)0’ (21 + 22)] = 1+ o, arctan

And there exist the following matching lower and upper bounds:

a a Vab a bvab a b
- -4+ — | <E ! <o < =
2\/<4-i- 27r> < [(x1+x2)a(:z:1)a(x1+x2)]_2+27T(a+b) _2+47r

e If o(-) is Leaky ReLU activation function, then

E[(z1 + z2)o(z1)0’ (21 + 22)] = (L+r)%a + (1-r)a arctan (\/E) + m_

4 21 21

And there exist the following matching lower and upper bounds:

K 2(1 K 2a —K 2 a
Elxio(z1)o’ (x1 + 22)] > (1+2 ) v ((1+4) + (1 2)7Tﬁ>;
, (1+s%)a  (1-rk)*0Vab _ (1+x*a  (1—r)D
Elzio(z1)o’ (21 +22)] < D

Here, & is the coefficient of the Leaky ReL.U activation function when the input is smaller than 0.

Lemma F.6 (Calculation of Fy(a, b, c) defined in (D:3)). Let 21 ~ N(0,a), zo ~ N(0,b), x5 ~
N (0, ¢) be three independent Gaussian random variables, then it holds that

o If o(-) is the identity map, then

Elzi0(z1 + 22)0’ (21 + 2 + 23)] = a.

* If o(-) is ReLU activation function, then

b b
Elxi0(z1 + x2)0" (21 + 22 + 3)] :Z+;T<arctan< aj >+ a$:+)cc>'
And there exist the following matching lower and upper bounds:
a a (a—|—b)c) <a ac? > , a
-+ ———— V|- < Elzio(x1 + x2)0' (1 + 22 + 23)] < =
<4 2m(a+ b+ c) 2 vatblatbro) [z10(21 + 22)0" (21 + 22 + 23)] < 3
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* If o(-) is Leaky ReLU activation function, then

Elor10(n + 22)0" (@1 + 7 + 35)) = L0 (L= r)%a <arctan <\/“ + b) AU b)c>.

4 2m c a+b+c
And there exist the following matching lower and upper bounds:
Elzi0(z1 + x2)0’ (21 + 2 + 3)]

o ((l—km)Qa N (1-k)3a (a+b)c) y ((1—|—/§2)a 3 (1—k)2ac? )

- 4 2m(a+b+c) 2 2rva +b(a+b+c))’
(1+x%)a
—
Here, « is the coefficient of the Leaky ReL.U activation function when the input is smaller than 0.

Elxi0(z1 + 22)0’ (21 + 22 + 23)] <

Proof of Lemma(F6] The first conclusion for the identity map is straightforward. When o(-) is

ReLU activation function, we can rewrite that xi0(x; + x2)o’(z1 + 22 + x3) = z1(x1 +
x2)1{11+m220}ﬂ{z1+12+m320}. Additionally, let x4 = x1 + 25 ~ N(O, a+ b) and z = \/24—% ~
N(0,1). Then we have Cov(z1,z4) = E[(z1 + z2)x1] = a, and E[z1|x4] = #bm' Therefore, we
have

Elzi0(z1 + x2)0’ (21 + 2 + 3)]

=E[z1 (21 + 22) Lz, 40520} L{z) +2otas 03] = E[E[21(21 4 22) 12, 420>0) Loy +a0ta0>0} 121, T2]]

T+ x
:E|:1'1($1+"E2)1{x1+m220}(1)< 1\/6 2>:| =K E{xlx‘ll{“ZO}@(\;E) .’E4j”
E

:aibE{xiﬂ{“M}@(ﬁﬂ = aE[z* 11501 P(N\2)] = a/o Z0(A2)¢(2)dz,

I

where A = ‘IT“’ By the similar process in the proof of Lemma we can obtain that

1 1 A 11 a+b (a+0b)c
I=>+—(arctanA+—— ) = =+ —( arctan |/
4+27r(arcan +1+/\2> 4+27r<ar°an( c >+ at+bte

and

1 (a+b)c 1 2 1

-+ |V |z - <I<-.

4 2m(a+b+c) 2 2mva+bla+b+c) 2
Plugging these results into the previous equation of expectation, we finish the proof when o (+) is the
ReLU activation function. In addition, when o (-) is the Leaky ReLU activation function, we have

Elxio(z1 + 22)0’ (21 + 22 + 23)]
=E[z1(z1 + 22) Lz, 40,50} Loy +aotas>01] + KE[@1(21 + 22) L0, 42,<0) Ly 429425 >0}]

+ kE[z1 (21 + 22) 1{sy 122501 L{ar +aatas<0}) + £ E[@1(®1 4 22) L 420 <03 Liwy tastws<0}]
=(1+ £*)E[z1 (21 + 22) Lo, 42220} Loy 4005 20)) + 26E[21 (21 + 22) Lo, 40 <0) Lz +oa-tzs >0}
By utilizing a similar calculation process, we have

0
E[ml(xl + -T2)]]-{acl+w2<0}1{w1+$2+w320}] :a/ 22(13(/\25)(;5(2)(12

— 00

:ﬂ_i arctan \/a—l—b +\/(a+b)c .
4 27 c a+b+ec

Plugging this result into the previous calculations, we finish the proof. And the upper and lower
bounds for Leaky ReLLU activation function can be directly derived by comparing the formulas. [
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Lemma F.7 (Calculation of F5(a, b, c) defined in (D-6)). Let 21 ~ N(0,a), z2 ~ N(0,b), x5 ~
N (0, ¢) be three independent Gaussian random variables, then it holds that

o If o() is the identity map, then
Elzeo(z1)0’(z1 + 22 + x3)] = 0.

* If o(-) is ReLU activation function, then

by/a(b+c)

Elzoo(z1)0’ (x1 + 22 + 23)] = 2r(a+b+c)

o If o(-) is Leaky ReLU activation function, then
(1 —k)2b\/a(b+ c)
2n(a+b+c)

Here, & is the coefficient of the Leaky ReL.U activation function when the input is smaller than 0.

Elzgo(x1)0’ (z1 + 22 + 23)] =

Proof of LemmalF7} The first conclusion for the identity map is straightforward. =~ When
o(-) is ReLU activation function, we can rewrite that zgo(x1)o’(z1 + 22 + z3) =
21221 {4, >0y L{z, 422 +as>0}- Then we have

Elzao(z1)o’ (21 + 22 4 23)] = Elz1221 15, >0} L {2, 425425 >0}]

=E [$1x21{$1 20}]1{331+$2+3?320} |1, xQ}

xr1 + o
=E 1 | ——=
S
oo (oo}
1+ o
= x1x2<1>< >¢($1)¢(f£2)d$1d1‘2
| [omen(2
oo 1 2 (o) 1 22
:/ T e (/ $2¢<x1 +332> 6_2’12>de> dx,
0 2ma o Ve 27b
We can utilize the integral by parts to derive that
1+ o _ =3 b xr1 + o _ / 1+ o
de™ 2 — 4/ —@
“Var / ( ) N 7NV "Var Ve
(12+b+011) 2
\/’/ (.1_1+.L2) \/7/ 2(b+L) dzy = e —atey
27r(b +c)

Now substitute this result of I back into the outer integral for the calculation for expectation, then
we have

8

b B
Elzoo(z1)o’ (21 + 22 + 23)] = / Tie” T I dg
[z20(21)0" (21 + 22 + 3)] /el 10 1 1
L e R (e
" oralbtoatbte (b+c)

_ by/a(b+c)

2r(a+b+c)

This finish the proof when o(-) is ReLU activation function. In addition, when o(-) is Leaky ReLU
activation function, we can derive that

]E[(L'gO’(l’l)O'/((El —+ X2 —+ xg)]
=E[z1721 2,50} Lz, 4astas>0}] T KE[T1221 15, <0} Lz, 4agtas>0})

=+ KE[xlxﬂl{JhZO}]]‘{I1+902+a:3<0}} + ﬁQE[x1x21{$1<0}]]'{$1+902+$3<0}]
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=(1+ “2)E[$1x21{r1 >0} 1{z1+12+1320}] + 2”E[x1m21{m1 <0} 1{11+z2+1320}]'
By applying a similar calculation process, we can derive that

_ed e}
T1e 2 2(b+c)dx1:

by/a(b+ c)

b 0
[351302 {z1<0} L{z1+x2+ 320}] o a(b+c) [m 27(a+ b+ c)

Applying this result, we finish the proof. O

LemmaF.8. Letz; ~ N(0,a), zo ~ N(0,b) be two independent Gaussian random variables, then
it holds that

o If o(-) is the identity map, then

Elo(z1)o(z1 + 22)] = a.

* If o(+) is ReLU activation function, then

Elo(z1)o(z1 + x2)] = % + % arctan (ﬁ) + ‘g;;b

 If o(+) is Leaky ReLU activation function, then

Elo(z1)o(z1 + x2)] = (1+K)%a + (1-r)a arctan (\/§> + M. (F.10)

4 2w 2w

Here, k is the coefficient of the Leaky ReL.U activation function when the input is smaller than 0.

Proof of Lemma[F'8] The first conclusion for the identity map is straightforward. When o(-) is
ReL.U activation function or leaky ReLU activation function, we can utilize the fact that xo’(z) =
o(x) to re-write that

Elo(z1)o(z1 + 22)] = E[(z1 + 22)0(21)0" (21 + 22)] = E[(21 + 22)0(21)0" (21 + 22)].
And this term has already been calculated in Lemma[F.5] Hence we finish the proof. O

F.2 ARITHMETIC INEQUALITIES

Lemma F.9. Let a, b, c be three positive scalars, it holds that

c c be
> - =
a+b " a a2
Proof of Lemma [F9|
c_ _e___be o b
a+b a  (a+ba = a?
This completes the proof. O

Lemma F.10. Let a, b, ¢ be three positive scalars, it holds that

c <E+ be
a—b " a (a—0)?

Proof of Lemma[F10)|

This completes the proof. O
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F.3 SEQUENCE ITERATION BOUND

The following lemmas characterize the increase of a positive sequence with matching lower and
upper bounds. Similar conclusions and proofs can be found in [Jelassi et al.| (2022); |Cao et al.
(2023); Meng et al.|(2024); Zhang et al.|(2024a};2025)). We include the proof here for completeness.

Lemma F.11. Consider a positive sequence {x; }$2,, satisfying the following iterative rules:

Tip1 > Te+1-c1 -

Tppr < xp4n- o xd,

b

where co > ¢; > 0 are positive constants. For any v > x¢, let T}, denote the first index ¢ such that
x; > v. Then, for any constant ¢ > 0, the following bounds on 7, hold:

1+¢  (1+)%log(3x)
+

q—1
1C1T C1

T, <

, (F11)

and

1 log (%)
T, > — 0, F.12
= 05 et A+ Q) (F.12)

Proof of Lemmal|FI1] To prove the bounds, let 7, be the first iteration such that z; > (1 + ¢)9x.
Furthermore, define g* as the smallest integer satisfying (1 + ¢ )9" o > v. This implies
log (-~ log(=
g(35) <g < ()
log(1 4 ¢) log(1+¢)
For t = 771, we use the lower bound iteration:

+ 1.

Ti—1
or > a0+ Y neraf > xo + Tinerxd,
t=0
from which we can deduce that
T — Xo
ne

Ti < (F.13)

Utilizing the upper-bound iteration for z7; and the condition 27, —1 < 2¢(1 + (), we get
rr < aqoa Fneerd ) <ao(l+C) + neaxd(1+ )7 (F.14)
Combining the results from (F.I3) and leads to

I SN s
_nclxg_l c1

The case for g > 1 is handled similarly. Using the lower bound iteration from 74_; to T, — 1:
Ty—1
v, 2@, 4 Y naw! > ey, +ne(Ty - T-)rg(1+Q9 D, (R15)
t=Ty—1

and the difference x7, — x7,_, can be upper bounded using the upper bound iteration and z7, 1 <
zo(1+¢)9 and z7,_, > zo(1+ ()9 "

v, —xr,_, <x7,_1+ nczx%—g -z, <C(1+ ¢)9 g + negxd (14 ¢)9%. (F.16)
Combining (EI3) and (EI6), we derive that
1+ ()¢
(7 A p— MR Vil Y E17)
neixzd™ (1 + ¢)le=Dle-1) c1
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Taking a telescoping sum of the results of (F.I7) from g = 1to g = g* and by the fact that 7, < Ty~
we finally get (F.11). For the lower bound, we proceed similarly starting with ¢ = 7. We use the
upper bound iteration:
Ti—1
xr <z + Z neaxd < xo + Tineaxd (1 + )%
t=0

Substitute that z; — x9 > (zo, we get

T > %. (F.18)
neazy (14 )4
A similar derivation for g > 1 using the upper bound iteration gives:
Ty—1
v, Swr o+ Y neer] < wy, A+ nea(Ty = Ty-n)ad(1+ ()% (F.19)
t=Ty—1

The difference x7, — 27, , can also be lower bounded by utilizing the fact that x7, | 1 < zo(1 +
Qs
T, =TT, 2T, — LT, -1 — 7702:@-:171 > C(1+¢)9 g — neard (1 + C)(gfl)q. (F.20)
Combining the results from and (F20), we obtain that,
¢ 1
nesxd Y1+ C)9la—+L  (14Q)7

Taking a telescoping sum of the results of (E21I) from g = 1to ¢ = ¢g* — 1 and by the fact that
Ty > Tg+—1, we finally get (E12). O

Lemma F.12. Let x; be a positive sequence for ¢ > 0. Assume x; satisfies the iterative formula

Ty > Tyo1 + (F21)

Tpy1 = X + cre” 2T

for given constants c;, co > 0. Then, for all ¢ > 0, the sequence x; is bounded as follows:

1 1
P log(cicat + €770) < xp < cre” 20 4 - log(cycat + €9270).
2 2

Proof of Lemmal|FI2] First, we establish the lower bound for ;. We introduce a continuous-time
sequence z,, t > 0 defined by the integral equation with the same initial value.

t
T, =5+ cC1- / e & dr,  zy = . (F.22)
0

Observe that z, is clearly an increasing function of ¢. Hence, we obtain
t+1
Ty =2, +C1e / e~ 2Erdr
t

t+1
Sz ta / e~ “%dr
t

=z, + c1 exp(—caz,)

for all ¢ € N. By comparing the preceding inequality with the iterative formula for {z;}, the
comparison theorem implies that x; > z, for all ¢ € N. Equation (E.22) possesses an exact solution
given by

1
x, = — log(cicat + €°270).

C2

Thus, we have

CQIo)

1
xy > — log(cieot + €
C2

57



Under review as a conference paper at ICLR 2026

for all t € N. This concludes the derivation of the lower bound.

Next, we derive the upper bound for z;. We have

t—1
=20+ - E e~ 2
7=0

t
_ caxQ
<zo+c- E e log(cicoT+e )
7=0
t

1
=x9+cC1 - g _—
¢ Cc1C2T + ec2%o
=

c 1
=20+ ——+cio Yy

ec2To 1 C1C2T + ec2%o
=

t
1
< o+ — +01~/7d77
0

ec2%o Cc1CoT ~+ ec2%o
where the second inequality utilizes the lower bound for z; derived in the first part of the lemma’s
result. Consequently, we obtain
C1

1 1
xy < xo+ + . log(cieat + €9270) — . log(e®2™)
2 2

esz()

1
= c1e” 2% + —log(creat + €7270).
C2

This completes the proof. O

G PROOF OF THE CASE WHEN D = K

In this section, we provide the theoretical results for the special case D = K. Under this setting, the
ground-truth softmax scores reduce to a trivial rank-one structure that S* = % 1p1},. Consequently,

the initialization Wg?)Q = 0py p already yields S(0) = % 1p1], achieving an exact recovery of S*
at the start of training. As a result, the gradient with respect to W i remains zero throughout the
optimization, and the problem effectively reduces to optimizing the single parameter matrix Wy,.
Under this reduced setting, the loss becomes strongly convex in Wy, and gradient descent enjoys
a linear convergence rate, which is much faster than the ©(1/7") rate established in Theorem [3.1

Since Theorem [3.1] provides matching upper and lower bounds and is therefore tight and can not be
improved, this linear convergence phenomenon is exclusive to the degenerate case D = K. This
explains why the proof strategy for Theorem [3.1]does not extend to the D = K setting.

Now, we present the following Theorem [G.1]to characterize the loss convergence when a one-layer
transformer is supervised by a teacher model f*(-) with S* = % 1pl),.

Theorem G.1. Suppose that n < 1 then for any t > 0, the excess loss is minimized as

® w® Yot Vell3 o1
LW W) = Lop < Sm=lImm2emnt=),

Before we provide the proof for Theorem|[G.1] we first provide and prove the following lemma.

Lemma G.2. Under the same conditions of Theorem[3.1] there exist a time dependent non-negative
scalar C'(t), such that

WS’)m =C(t)- vy, forallm e [M]; (G.D
and C(t) has the following closed formulation:
Ct) = (1-nkh 1),
where the function F (+) is defined in (D.2). In addition, Wg?Q remains zero throughout the training.
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Proof of Lemma[G.2] W.L.O.G., we assume that v}, is already normalized, and T',, =
Vi, &m2s s €m.a) € R be an orthogonal matrix with v,,, being its first column. We prove
this lemma by induction. Since these two conclusions holds at initialization with C'(0) = 0. It is
sufficient to prove that VWV,ME(W@; W%)Q) =c(t)- v}, and VWKQE(Wg); W%)Q) = 0, when

assuming wg,)m =C(t) v}, and Wg?Q = 0. Notice that WE,?Q = 0 implies that Sff)t = 1/D for
all 7/, € [D]. By the gradient calculations demonstrated in LemmaD.1} we have

D D
Ve LWV Wigg) = =3 3 E
D
(S st
D (t)
<W m’xil> xi1
Ym,,iOJ< Z %) D

I
M
Fgc

=1 i1:1 i1:1
I
D D (t) D (t)
<W\/maxi > <vaaxi >
30 E[o((0 M )or (3 PR |62
11=1 i1=1 i1=1

Iz

For I, we have

t
Y vg'< i <W€/7)7n7 Xi1>> I‘mr;;,xh
m,i D D

11=1

(X, a( 3 <ng);; X“>) <V7”5‘“>] Vi

D (w® Xi, <
77000, 0 (35 el ) ot “>] s

i1=1

[f*(X)]mo—’< 5 <W(vt,1g xz-1>> <v:nl,)xh>] -

i1=1

The first quality holds as £ is mean-zero and independent with X, and the last equality holds as the
orthogonality between v}, and &, , implies that (v} ,x;,) is independent with (&, x,x;, ) for all

wi  x.
iniz € [D]. Notice that [f*(X)], , = 5o(XF_,(Vi.xy,)) and o/ (7, MvmXaly —
a’(%t) Zi?:l(vfn,xﬁ) = U’(Zf?:l(vf,b,xh)). Consequently, (£, x,%;,) is a mean-zero

W(t) X4 .
Gaussian random variable, and independent with both [f*(X)] m,; and o’ ( 25:1 <‘“751>) si-
multaneously, implying that

D W(t) Xi1
[f*(X)} m 1,0'/( Z W) <£m,ka Xi1>‘|

D W(t) Xi1
[f*(X)}m ia/( Z <V’”’g>>‘| E[<€m,kaxi1>] =0.
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Based on previous results, by plugging [f*(X)] = = %U(Z£:1<an»xi1>) and utilizing the
definition of Fy(a) in (D.2), we can further derive that

o XD: XD: E[;}U( XDj<v:‘,L,xi1>>a’< ZD: <w<v”gxu>> <vm,Dx“>] -

i=111=1 i1=1 i1=1

D

a(i(v;7x“)>0'<§: L Xi, ) > (Vi xi, ] Vi = Fy(1) v,

i1:1 il 1 21:1

1
)
D

The second equality is derived by fact that o (ax) = ao(z) and o’(azx) = o'(x) if a > 0. Then we
can conclude the final result by the definition of F} (a) in (D.2)). Similar to the process of handling
I, we have the following for I5:

D D (1) D (®)
)% y Xiy Wiy X
12 = E E[O’( E 7< Vim ! >>O'/< E 7< Vim >>FITLF7VLXL1]

i1=1 i1=1 i1=1
D

C(t) J< Z(V:‘mxil>)g’( i(v;,xh)) i(vfn,x“}] cvr, = C(t)Fi(1) - vy,

= —FE
i1=1 i1=1 i1=1

D

Plugging the calculation results for I; and I into (G.2), we can immediately derive that
VWVME(WS); W%)Q) = c(t) - v},, which, as we stated previously, directly conclude (G.I). In
addition, we can further calculate that

wiin) = C(t+1)-vi, = (CO +nF (1)1 - C1)) - Vi,
which implies C'(¢) possesses the updating rules as:
Clt+1)=C@t)+nFi(1)(1-C(1)).
Subtracting 1 on both sides of the equation above and rearranging the terms, we can obtain that
1-Ct+1)= (1=nF )1 =-nC@1) =... = (1 —nF (1) (1 -1C(0)) = (1 —nF(1)".

This proves the closed formulation of C; (£). In the next, we prove that V., E(WS); W%)Q) =0.
By Lemma[D:1] we have

\/BVWKQﬁ(WS)§ W%)Q)

_ ;iiE {[f*(x)]mﬂ}—a< ZD: W)}f’( ZD: <W$)me>>

m=1i=1 11=1 11=1
Z Z Wvaxn p11 pi2)p;r‘|
21 112 1
| MoD r D<W$) xi,) D D . T
= - ﬁ Z ZE [f*(X)]m’ZOJ( Z %) Z Z<W§/,)m7xil>pi1pz—'r
m=11i=1 L i1=1 11=11io=1 i
I3
1 L& T Do twil) %)\ s o '
59 33l IS INEID SRS D o) B AR L,
m=1i=1 [ i1=1 i1=149=1 ]
Iy
M D T D (t) D (t) D D
1 <W 'm7XZ > <W m’Xi >
e 23| 2 T ) (0 ) 3 S e
m=1i=1 | “Ni=1 i1=1 i1=1149=1
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(t) D (t) D

e o3l 3 Mo (52 M) S5 S5

11=1 i1=11i2=1

Ig

(G.3)

In the next, we discuss the value of Is, Iy, I, and I respectively. For I3, it can be calculated as

D D D
0<Z<Vm7xll )J ( Vm?X’Ll ) vaxi1>‘| pi1 Zp;r
=1 i=1

i1=1 i1

(S iom (S ions] S oo

11=1 i1=1

The second equation holds as E[ ( Z£=1 (v xi))o' ( Z£=1 (Vi X)) Z£=1 (v, X, >] takes
identical value for all iy € [D] as they follows the same distribution. Similarly, for I, we can
calculate it as

_C(t) M
= 2P
—MC ZpQsz.

i0=1

J(i_ o) ( i) i 3w 3 o7

121

This implies that Is = I. Through a similar calculation, we can also get

Is = MC’2 przp% .

’Lzl

Plugging the results that I3 = Iy, and I; = I into (G.3), we immediately concludes that
VWKQL(Wg); W%)Q) = 0. This completes the proof. O

With the conclusions of LemmalG.2] we are ready to prove Theorem [G.I]

Proof of Theorem|G.1} Since we have demonstrated in Lemma that W%)Q = 0, implying
S® = L1p1],. We can decompose and simplify the loss as

O ) _ L S TN
LWy, ;WKQ) D) Z Z]E (Ym,i U< Z D>) ]

11=1

(1700, —o( 3 el

i1=1

1
+ §EU|5||2F]7

where the last term is essential Lop¢, and the last inequality holds by the independence between X
and & and the fact that £ is zero-mean. Since this equation holds, in the next, we directly deal with

C(WS); W?Q) — Lopt. By utilizing the fact that |o(2) — o(y)| < |z —y| forall z,y € R, we can

derive that
D <W(t) Ny > 2
V,m> 1
(1000 o2 =5=2)]

LW W)~ Lo~ 13 S
7,1—1

m=1i=1

61



Under review as a conference paper at ICLR 2026

Si)gj\iﬂi ((1-0@)) i§<vfmxil>>2 N (1—C(t))2§%_1|vm||§.

Notice that we have derived 1 — C(t) = (1 — nFy (1)) < e ?FiE=D < e=nt=1)/2 i
Lemma where the last inequality holds as F} (1) > % demonstrated by Lemma Plugging
this result into the upper bound above, then we completes the proof.

O

H ADDITIONAL EXPERIMENTS

In this section, we present additional experimental results on transformer learning of bilinear teacher
models under more general training data distributions.

Each batch of training data (X,,, Yn)fj:1 is generated with X, drawn from either (i). a Student-t
distribution with df = 5; or (ii). a mean-centered Gumbel distribution with [oc = 0 and scale = 1.
We then repeat the learning experiments for the six types of teacher models described in Section 4]
Except for the change in the input data distribution, all other configurations remain identical to those
in the Gaussian-data experiments.

The results are demonstrated in the following Figures[6] [7} [8] and[9] FigureandHreport the results
when training data are generated from Student-T distribution, while Figure [8|and [9|report the results
when training data are generated from mean-centered Gumbel distribution. We could observe that
all these results seems almost identical to those demonstrated in main body. Specifically, for both
different distributed training data, we can still observe that the curves of training loss have slopes
approximately —1 on their tails, and the curves of O.0.D. loss have slopes approximates —0.5.
These results empirically shows that the ©(1/T') convergence rate for training loss and O(1/v/T)
convergence rate for O.0.D. loss still hold, even the model are trained on Gaussian data. In addition,
we can also observe that the trained softmax attention scores S(7) perfectly replicate the patterns of
S*, almost identical to the results obtained on Gaussian data.

Excess loss over iterations (log-log) N Excess OOD loss over iterations (log-log) Cosine similarity between Wy, and V"

—— ReLUCNN 10
—— Leaky ReLU CNN

—— ReLUGCN

—— Leaky RelLU GCN 08
— sTs
— GsLP

1

—— ReLU CNN
—— Leaky ReLU CNN

2 —— ReLUGCN
—— Leaky ReLU GCN
—— sTs

— ReLUCNN
—— Leaky ReLU CNN
—— ReLUGCN

02 —— Leaky RelU GON
— sT8

= &P — ostP

8o
Loop =g 2 I¥a =" ()3

10 10" 10° 10" 10° 10’ 10° 10° 10 10° o 20000 40000 60000 80000 100000
Herations Herations. terations

(a) Excess training loss (log-log) (b) Excess OOD test loss (log-log) (c) Cosine similarity

Figure 6: Excess training loss, excess OOD test loss (both in log-log scales), and cosine similar-
ity between the value matrix Wy, of one layer transformer (2.4), and ground truth value matrix
V*. These results are presented for experiments where training data is generated from Student-T
distribution.
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Figure 7: Heatmap of attention score matrix S(7) when the training loss converges. These results
are presented for experiments where training data is generated from Student-T distribution.
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Figure 8: Excess training loss, excess OOD test loss (both in log-log scales), and cosine similarity
between the value matrix Wy, of one layer transformer (2.4)), and ground truth value matrix V*.
These results are presented for experiments where training data is generated from mean-centered
Gumbel distribution.
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Figure 9: Heatmap of attention score matrix S(7) when the training loss converges. These results are
presented for experiments where training data is generated from mean-centered Gumbel distribution.
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