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ABSTRACT

Domain generalization aims to learn models robust to domain shift, with lim-
ited source domains at training and without any access to target domain samples
except at test time. Current domain alignment methods seek to extract features
invariant across all domains, but do not consider inter-domain relationships. In
this paper, we propose a novel representation learning methodology for time se-
ries classification that selectively enforces prediction consistency between source
domains estimated to be closely-related. Specifically, we view a domain shift as
a form of data transformation that preserves labels but not necessarily class re-
lationships, and we regularize the predicted class relationships to be shared only
by closely-related domains instead of all domains to prevent negative transfer.
We conduct comprehensive experiments on two public real-world datasets. The
proposed method significantly improves over the baseline and achieves better or
competitive performance in comparison with state-of-the-art methods.

1 INTRODUCTION

Increasing accessibility to data has spurred the use of data-driven machine learning methods, es-
pecially deep learning. In practical deployments, models need to be robust to data distribution
shifts between training and test data, also known as domain shift (Gulrajani & Lopez-Paz, 2021;
Hendrycks et al., 2020). Domain shift may occur as data collection is subject to resource constraints
and may not provide sufficient coverage, or is conducted in controlled settings that do not fully
assimilate real environments (Li et al., 2018; Zhang et al., 2020; Gupta et al., 2018).

Examples of domains are operating conditions for machine fault detection (Zheng et al., 2020),
human subjects for activity recognition (Wilson et al., 2020), product category for sentiment anal-
ysis (Ganin et al., 2016; Guo et al., 2018; Balaji et al., 2018), art styles for image classification (Li
et al., 2019; Mancini et al., 2018; Somavarapu et al., 2020; Li et al., 2018; Carlucci et al., 2019), and
different equipments and practices of data collection (Dou et al., 2019; Gong et al., 2019; Mahajan
et al., 2020). Taking machine fault detection for example, a domain shift occurs when the available
samples for training are collected when the machine is operating under a limited set of conditions
(source domains), while at test time the machine is subject to a different condition (target domain)
where faults may manifest differently from those in the training conditions.

We consider the domain generalization problem in time series classification in this work, where we
want to learn a model robust to domain shift without any access to target domain samples during
training. This differs from domain adaptation where unlabelled target domain samples are available
for training. While there are many works studying domain generalization in image classification
tasks (Hendrycks et al., 2020; Gulrajani & Lopez-Paz, 2021), there is limited literature and limited
evaluation of existing methods for time series classification. We find it important to fill this gap
to develop suitable methods for time series applications. We work in the conventional setting with
multiple source domains, and where all domains share the same label space.

In this paper, we view domain shifts as data transformations that are label preserving, but do not
necessarily preserve class relationships. For example, in classifying between ‘walking’ and ‘run-
ning’ actions, samples from subjects who tend to walk at a faster pace are expected to generate more
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class confusion. Hence, we assume there exists latent inter-domain relationships, such that similar
domains should result in similar predicted class relationships.

We propose selective cross-domain consistency regularization to encourage similar model predic-
tions on source domains that are estimated to be more closely related to each other. We further use
domain-wise time series data augmentation to increase robustness to time series perturbations. Our
consistency regularization is applied on the logits (pre-softmax classifier outputs). As far we know,
existing domain generalization methods regularize on either features or soft label predictions (Ganin
et al., 2016; Li et al., 2018; Sun & Saenko, 2016; Ben-David et al., 2010; Dou et al., 2019; M. &
H., 2020; Gulrajani & Lopez-Paz, 2021; Wang & Deng, 2018; Wang et al., 2020b; Ahmed et al.,
2021) or on logits in conjunction with features (Kim et al., 2021), which we find empirically pro-
duce worse generalization in our time series classification experiments. Moreover, we regularize
subsets of source domains separately based on their similarity, instead of regularizing all source do-
mains together as common in existing domain alignment methods (Gulrajani & Lopez-Paz, 2021;
Wang et al., 2021), to prevent negative transfer. Figure 1 and 2 provide an overview of our proposed
method. We introduce two versions of the method for when auxiliary domain metadata is avail-
able or unavailable. When such metadata is available, inter-domain relationships amongst source
domains can be directly inferred based on application-specific knowledge. Otherwise, we estimate
latent relationships by the inherent prediction similarity amongst source domains.

Our contributions in this work are:

• We propose a new domain generalization methodology for time series classification that se-
lectively enforces prediction consistency between source domains estimated to be closely-
related, which helps to calibrate the model from being over-confident in its predictions;

• The proposed method is easy to implement with domain-wise time series data augmentation
and logit regularization on top of empirical risk minimization. We provide two versions for
when source domain metadata are known or unknown to estimate domain relationships;

• We provide new benchmark evaluation results of existing domain generalization methods
on two public time series datasets, and we show that the proposed method demonstrates
better or competitive performance compared to state-of-the-art methods.

Figure 1: Overview: Considering multiple source domains, our proposed method applies time se-
ries augmentations on input samples and enforces prediction consistency between similar domains
through selective regularization of logits (pre-softmax classifier outputs). We encourage similar
domains to share predicted class relationships, while allowing diverse predicted class relationships
across dissimilar domains.

2 RELATED WORKS

There is limited literature on domain generalization for time series classification. We include liter-
ature on general domain generalization in the review. Aside from one line of work that ensemble
model predictions (Mancini et al., 2018; Vinyals et al., 2016; D’Innocente & Caputo, 2019; Guo
et al., 2018) which is potentially not scalable with multiple source domains, domain generalization
methods mainly attempt to learn more robust representations with a single model. In the following
we discuss related works according to strategies used to learn these representations.
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(a) Convention (b) Proposed method

Figure 2: Conventional domain alignment methods align all source domains equally and can result
in over-regularization. Our proposed method allows greater diversity in output predictions.

Data augmentation and generation: Enriching training sample diversity naturally helps the model
to generalize. (Volpi et al., 2018; Shankar et al., 2018; Stutz et al., 2019) generates new samples
by adversarial perturbation of original training samples, and (Yan et al., 2020; Wang et al., 2020a)
interpolate between samples of different domains. Due to advancements in style transfer (Jing et al.,
2020) and generative adversarial networks (Goodfellow et al., 2014), many image augmentation
techniques are developed (Hendrycks et al., 2020; Zhou et al., 2020; Nam et al., 2019; Gong et al.,
2019). However, advanced techniques for image augmentation may not readily apply to time series.

Learning domain-invariant features: An approach to learn invariant features that do not carry any
domain-specific information is to train the feature extractor such that the same classifier is optimal
for all domains (Arjovsky et al., 2019; Rosenfeld et al., 2020). A large number of works learn in-
variant features by aligning the distribution of representations from all source domains (Albuquerque
et al., 2020; Li et al., 2018; Mahajan et al., 2020). This technique builds on theoretical results in
domain adaptation where the target risk is bounded by a divergence between source and target do-
mains (Ben-David et al., 2010; Ganin et al., 2016). Some works directly minimize the distance
between the learned features or soft labels of source domains by a distance measure or adversarial
networks (Motiian et al., 2017; Wilson et al., 2020; M. & H., 2020; Li et al., 2018; Long et al.,
2018), and some others use meta-learning to simulate domain shift during training (Balaji et al.,
2018; Dou et al., 2019; Li et al., 2018). However, theoretical results from domain adaptation cannot
apply directly since target domain samples are not available.

Robustness: By deliberately perturbing the model during training, the model learns to be more
robust to domain shifts at test-time. (Li et al., 2019) episodically switches the feature extractor or
classifier to domain-specific counterparts, and (Huang et al., 2020) zeros out features associated with
the highest gradient in the final classification layer so that the model learns more diverse features.
Another branch of work aims to minimize the worst-case risk over all domains such that the training
objective is a weighted average of source domain losses (Sagawa et al., 2019; Krueger et al., 2020).
However, the worst-performing domain may be improved at the cost of other domains.

3 PROPOSED METHOD

In this section, we introduce our proposed method that applies selective cross-domain consistency
regularization on top of supervised task loss and stochastic augmentations of time series inputs. We
cover the two scenarios where regularization selection can be made based on domain metadata or
learned when such metadata is not available.

3.1 PRELIMINARIES: NOTATIONS

We denote total N observed samples from M source domains as {(xn,yn, dn)}Nn=1, where for
the n-th sample, xn and yn are the predictor and response respectively, and dn ∈ {1, . . . ,M}
is the domain label. yn is a one-hot vector of the true class label in L classes. Samples in each
domain d are independently and identically distributed (i.i.d.) according to a domain-dependent
data distribution as (x,y) ∼ P (X ,Y|D = d). We denote the number of samples in domain d as
Nd, and

∑M
d=1Nd = N . Domain labels {dn} are not available at test-time.
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A neural network model is composed of feature extractor f(·) parameterized by Θ that yields learned
features z = f(x; Θ), and classifier h(·) parameterized by Ψ that yields logits output g = h(z; Ψ).
Soft labels or vector of estimated class probabilities are obtained by applying softmax function on
the logits i.e. s = softmax(g) where s[i] = exp(z[i])∑L

`=1 exp (z[`])
. The final predicted class is the one

with the highest probability in s.

3.2 SELECTIVE CROSS-DOMAIN CONSISTENCY REGULARIZATION

We consider a domain shift as a form of data transformation that is label-preserving, but does
not necessarily preserves class relationships. As a toy example, consider vector input x =
[x1, x2, . . . , xr]

T , r > L and ground-truth model that is an identity map on the first L elements of
the input i.e. logits g = h(f([x1, x2, . . . , xr]

T )) = [x1, x2, . . . , xL]T . We can view x1, x2, . . . , xL
as features with true correlations with class probability. Augmenting xL+1, . . . , xr is guaranteed
to preserve both original label and class relationship, but augmenting elements in x1, . . . , xL can
change class relationships even when label is preserved. Unlike artificial data augmentations where
we can control the perturbations introduced while preserving class-correlated information we want
to retain in the data, there is no guarantee that such information is preserved through naturally-
occurring domain shifts. For instance, some features can be obscured in different domains. We
hypothesize, however, that class-correlated information is shared across domains to different extents
according to latent inter-domain relationships.

More formally, for xd
(i) ∼ Pd(i)` and xd

(j) ∼ Qd(j)` , we aim to learn model parameters such that
E
x∼Pd(i)

`

[h(f(x; Θ); Ψ)] = E
x∼Qd(j)

`

[h(f(x; Θ); Ψ)], for closely-related domains d(i) and d(j), for
each class `. This helps to prevent the model from being over-confident in its predictions due to
overfitting on spurious features of individual domains, and increase robustness to domain shifts.

We propose a selective logit regularization Ω(Θ,Ψ) such that the learned model is encouraged to
preserve prediction consistency between similar domains:

Ω(Θ,Ψ) =

M∑
d(i)=1

M∑
d(j)=1

w(d(i), d(j))

L∑
`=1

‖ḡ(d
(i),`) − ḡ(d

(j),`)‖22 (1)

where ḡ(d
(i),`) is the mini-batch average of logits for domain d(i) class `, which we refer to as

the class-conditional domain centroid. Weights w(d(i), d(j)) ≥ 0 depends on pairwise domain
similarity between domains d(i) and d(j) to impose greater regularization on more similar domains.
We describe estimation procedures for w(d(i), d(j)) in Section 3.3.

The final objective function is then:

L(Θ,Ψ) = LCE(Θ,Ψ) + λΩ(Θ,Ψ) where LCE(Θ,Ψ) = −
N∑
n=1

yn · log(sn) (2)

and LCE(Θ,Ψ) is the supervised classification cross-entropy loss.

3.3 REGULARIZATION SELECTION BASED ON ESTIMATED DOMAIN RELATIONSHIPS

Inter-domain relationships need to be determined in order to select closely-related domains for con-
sistency regularization. We consider two scenarios: when domain metadata is available, and when
it is not; domain metadata are descriptions of source domains to provide (possibly limited) context
of the environments in which data is collected.

3.3.1 FIXED SELECTION

With expert knowledge of the application, users can directly use available metadata to infer relation-
ships and group the domains into clusters. Domains across clusters do not share class relationships
and hence are not regularized. We denote the function clust : {1, . . . ,M} → {1, . . . ,K} as the map
from domain index to cluster index for K clusters, and Sc = {d|clust(d) = c, d ∈ {1, . . . ,M}} the
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set of domains in cluster c. The consistency regularization function in Equation 1 can be restated as

Ω(Θ,Ψ) =

K∑
c=1

∑
d(i)∈Sc

∑
d(j)∈Sc

1

2|Sc|

L∑
`=1

‖ḡ(d
(i),`) − ḡ(d

(j),`)‖22 =

K∑
c=1

∑
d∈Sc

L∑
`=1

‖ḡ(d,`) − γ(c,`)‖22

(3)

where γ(c,`) =
1

|Sc|
∑
d∈Sc

ḡ(d,`) (4)

We refer to γ(c,`) of cluster c class ` as the class-conditional cluster centroid. The equivalence
between Equation 1 and 3 is by setting w(d(i), d(j)) = 1

2|S|c if both d(i) and d(j) are in cluster c ∈
{1, . . .K}, and 0 otherwise. The scaling factor ensures that when domain centroids are equidistant
to their cluster centroids, the amount of contribution each cluster makes to the regularization term
Ω(Θ,Ψ) is proportional to its size.

3.3.2 LEARNED SELECTION

When no domain metadata is available, we propose estimating domain relationships by inter-domain
distances during training. We measure the distance between two domains for class ` as the squared
L2 distance between their class-conditional domain centroids, and d(j) is defined as the nearest
neighbor domain to d(i) if it is nearest to d(j) for the most number of classes. We estimate the
nearest neighbor domain as the most similar domain to d(i) at fixed intervals during training (every
100 iterations in our experiments), and we enforce prediction consistency between each domain and
its nearest neighbor domain. That is, we set the weights w(d(i), d(j)) as per Equation 5 if d(j) is the
nearest neighbor and 0 otherwise, where:

w(d(i), d(j)) =
1

L

L∑
`=1

exp

(
−‖ḡ(d(i),`) − ḡ(d(j),`)‖22

2ξ2

)
(5)

by applying RBF kernel on the inter-domain distance with hyperparameter ξ. We block gradients on
the weights to prevent the weights and inter-domain distance function in Equation 1 from updating
in opposing directions.

3.4 DOMAIN-WISE TIME SERIES AUGMENTATION

To achieve additional robustness to data perturbations, we apply time series augmentations on the
input samples at training with 0.5 probability. For each source domain, we sample an augmentation
function from a pre-defined distribution at each iteration, and apply the function on all samples from
the domain. The domain-wise augmentation simulates potential test-time domain shifts.

Table 1: Time series augmentations.

Augmentation General Expression
mean shift amean(x) = x− µ+ µnew
scaling ascale(x) =

(
x−µ
σ

)
∗ σnew + µ

masking amask(x[i]) =

{
x[i] w.p. 0.9

µ w.p. 0.1

We consider 3 time series augmenta-
tions, namely mean shift, scaling and
masking, in Table 1. The choice of
augmentations depends on the dataset to
avoid perturbing characteristics known
to be important for classification. We
provide augmentation details for each
dataset in Section 4.

4 EXPERIMENTS AND RESULTS

We compare with baseline ERM and state-of-the-art domain generalization methods: Group-
DRO (Sagawa et al., 2019), VREx (Krueger et al., 2020), IRM (Arjovsky et al., 2019), Interdomain
Mixup (Yan et al., 2020), RSC (Huang et al., 2020), MTL (Blanchard et al., 2021), MLDG (Li et al.,
2018) and Correlation (Arpit et al., 2019). We also reformulate 4 popular domain adaption methods
for domain generalization following (Gulrajani & Lopez-Paz, 2021): MMD-DG (Li et al., 2018),
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CORAL-DG (Sun & Saenko, 2016), DANN-DG (Ganin et al., 2016) and CDANN-DG (Li et al.,
2018; Long et al., 2018).

We evaluate the proposed method on two real-world datasets for fault detection and human activity
recognition. For each dataset, we use leave-one-domain-out evaluation where we treat each do-
main as the unseen target domain in turn and train with rest as source domains. Each source-target
combination is ran over 3 seeds (0, 1 and 2) and consequently splits where 80% source samples are
randomly chosen for training and the remaining 20% are used for validation, and 80% target samples
are randomly chosen for testing. For each split, each method is tuned with 20 random hyperparam-
eter configurations, and the best configuration is selected by the highest validation accuracy. The
largest regularization hyperparameter is picked when there is a tie. Overall, on a single dataset, we
run each method 60× (number of domains) times to ensure comprehensive evaluation. All methods
use the same backbone networks. We use convolutional neural network (CNN) as feature extractor
and fully-connected network (FCN) as classifier. We use Adam optimizer with learning rate 0.001
and weight decay 5 × 10−5, and batch size 32 per domain. Models are trained for 3000 iterations,
with learning rate reduced by a factor of 10 after 2400 iterations. Further details of backbone net-
works and hyperparameters are provided in the Appendix.

Table 2: Domain attributes. Each row of domains is regularized in fixed regularization selection.
(a) Bearings

Loc. Loading torque
0 1 2 3

Drive A B C D
Fan E F G H

(b) HHAR

User Phone model
Nexus S3 S3 mini S+

User 1 A B C D
User 2 E F G H
User 3 I J K L

4.1 FAULT DETECTION

The Bearings dataset1 from Case Western Reserve University is widely used for predictive mainte-
nance. It contains vibration signals at 12kHz sampling rate to detect rolling element bearings faults
in rotating machines (Smith & Randall, 2015). We extract samples of length 4096 by a sliding win-
dow with stride 290 (Zhang et al., 2017). There are 1 healthy class and 9 fault classes: inner-race
fault (IF), outer-race fault (OF), and ball fault (BF) with each further divided into dimensions 0.007,
0.014 and 0.021 inches. We apply a combination of mean shift, scaling and masking data augmen-
tations by setting µ = x̄, µnew = 0, σ = sd(x) and σnew = 1 in Table 1. Samples are augmented
with probability 0.5, and additional augmentations beyond the first one are applied with probability
0.5 to allow a mixture of perturbations. There are 8 domains: drive end and fan end location with
each operated at 0, 1, 2, and 3 loading torques as in Table 2. For fixed regularization selection, con-
sistency regularization is applied on domains with the same location. From domain generalization
performance in Table 3, the proposed method improves over the baseline ERM in almost all cases.
On average, ERM has accuracy 82.2%, and the proposed method attains the best performance across
all methods with 87.9% and 89.1% given fixed and learned regularization selection, respectively.

4.2 HUMAN ACTIVITY RECOGNITION

The HHAR dataset (Stisen et al., 2015) consists of multi-channel sensor readings to classify six
activities, namely Biking, Standing, Sitting, Walking, Stair down, and Stair up. Following a recent
work in domain adaptation (Wilson et al., 2020), we focus on accelerometer readings in the x,
y and z direction on smartphones and extract samples of length 128 by a sliding window with
no overlap. All samples are scaled by 1

20 so that readings for all 3 channels approximately fall
between -1 and 1. For this application, mean and standard deviation are known to be important
features for classification and activities such as Standing are sensitive to abrupt changes in sensor
readings (Seto et al., 2015), hence we apply limited data augmentation i.e. scaling with µ = 0,
σ = 1 and σnew ∼ Unif(0.8, 1.2). To keep the number of domains to a limited level suitable for
leave-one-domain-out evaluation, we use 12 domains as in Table 2: the first 3 users each with 4

1https://csegroups.case.edu/bearingdatacenter/pages/
welcome-case-western-reserve-university-bearing-data-center-website
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Table 3: Bearings: Classification accuracy on target domain using leave-one-domain-out testing and
training on remaining domains.

Method Accuracy (%)
A B C D E F G H Avg

ERM 65.4 93.8 96.0 71.2 68.4 83.0 94.0 86.2 82.2 ± 1.2
IRM 60.7 87.0 89.2 76.0 62.8 80.9 92.8 88.5 79.7 ± 1.8
GroupDRO 55.7 70.0 77.8 74.8 60.7 59.2 65.6 50.5 64.3 ± 2.2
Interdomain Mixup 62.0 86.5 96.8 76.0 82.0 95.4 97.7 87.2 85.4 ± 1.3
MLDG 62.8 77.6 85.9 72.8 63.3 58.5 60.7 55.0 67.1 ± 5.4
MTL 35.3 64.5 66.6 48.3 47.6 48.2 36.7 44.9 49.0 ± 2.1
Correlation 46.5 79.0 90.0 69.1 71.5 85.5 80.5 83.9 75.7 ± 1.9
VREx 63.8 90.5 97.2 81.6 70.3 83.9 92.0 84.3 83.0 ± 1.1
RSC 62.4 94.4 98.0 86.5 73.4 87.4 97.3 85.7 85.6 ± 2.5
DANN-DG 56.2 84.7 92.2 80.2 70.0 79.1 89.1 90.5 80.3 ± 2.3
CDANN-DG 56.0 80.8 94.8 80.2 70.7 81.4 90.3 84.0 79.8 ± 3.3
CORAL-DG 62.5 77.9 90.0 76.0 63.1 79.2 74.5 83.0 75.8 ± 3.6
MMD-DG 53.9 67.7 84.2 67.6 63.2 74.3 74.7 56.7 67.8 ± 3.5
proposed (fixed sel.) 86.8 95.3 97.6 79.8 77.4 82.7 93.4 90.8 87.9 ± 0.6
proposed (learned sel.) 89.1 97.9 97.1 75.8 81.5 85.3 94.4 91.8 89.1 ± 1.1

phone models. For fixed regularization selection, consistency regularization is applied on domains
with the same user. From domain generalization performance in Table 4, the proposed method
improves over the baseline ERM in almost all cases, and has the best performance of 88.5% on
average. The second-best performing method RSC encourages learning more diverse features by
feature masking, and applying the proposed method on RSC by alternating between the two methods
further improves average performance to 88.9% given fixed regularization selection. We chose the
alternating procedure (Zhang et al., 2021) so that strategies from the two methods do not directly
interfere with each other.

Table 4: HHAR: Classification accuracy on target domain using leave-one-domain-out testing and
training on remaining domains.

Method Accuracy (%)
A B C D E F G H I J K L Avg

ERM 86.4 91.6 81.0 91.7 71.3 96.9 96.4 85.9 85.0 88.1 86.6 89.5 87.5 ± 0.5
IRM 87.2 92.0 80.0 90.5 71.7 96.5 96.6 85.3 84.3 88.4 87.3 89.6 87.4 ± 0.5
GroupDRO 80.4 76.7 52.4 74.6 63.6 77.3 76.6 75.0 86.3 86.8 82.8 70.3 75.2 ± 1.2
Interdomain Mixup 80.2 68.9 61.4 69.7 55.3 71.1 81.4 64.7 87.8 85.0 84.9 71.5 73.5 ± 2.0
MLDG 81.7 75.8 58.8 79.3 58.4 70.7 70.9 68.0 86.8 87.7 84.7 70.4 74.4 ± 0.9
MTL 79.6 75.8 60.9 77.1 62.8 75.7 80.2 72.7 85.7 81.1 79.3 71.9 75.2 ± 0.3
Correlation 80.3 91.0 81.7 87.9 69.1 95.4 95.8 88.5 85.1 85.6 88.6 88.9 86.5 ± 0.5
VREx 87.1 90.6 80.5 92.2 71.0 96.5 96.7 85.5 85.5 88.7 87.5 90.2 87.7 ± 0.3
RSC 87.3 90.5 84.4 92.2 73.9 96.7 96.9 86.2 86.8 87.5 88.5 90.1 88.4 ± 0.1
DANN-DG 84.7 89.5 72.4 92.8 71.2 95.1 94.8 84.2 81.6 84.3 84.9 86.7 85.2 ± 1.2
CDANN-DG 85.6 86.0 79.8 89.6 72.4 93.6 95.6 83.0 81.3 87.0 83.4 85.8 85.2 ± 0.6
CORAL-DG 80.5 76.8 58.4 74.3 62.5 77.5 85.8 74.2 86.8 79.7 86.2 69.1 76.0 ± 0.5
MMD-DG 81.9 74.0 52.9 75.4 60.3 76.8 79.0 74.6 86.9 85.6 83.7 68.9 75.0 ± 0.4
proposed (fixed sel.) 87.4 91.0 80.7 94.6 75.7 96.5 97.1 86.2 85.0 89.2 89.1 89.8 88.5 ± 0.2
proposed (learned sel.) 87.3 90.6 85.3 93.5 76.0 96.1 96.7 86.0 85.1 88.1 88.6 88.9 88.5 ± 0.3
RSC
+ proposed (fixed sel.) 87.2 89.9 86.0 93.6 75.6 96.6 96.4 86.1 85.7 88.6 90.4 90.6 88.9 ± 0.0
+ proposed (learned sel.) 86.3 89.0 84.3 93.3 74.4 96.8 96.9 86.8 87.0 86.7 90.4 89.2 88.5 ± 0.4

5 FURTHER ANALYSIS

We perform ablation studies and further experiments to verify the effects of each component in the
proposed method.

Ablation study: In Table 5, we see that applying data augmentations and consistency regularization
individually improves model performance over ERM for both datasets. Performance increases fur-
ther when both strategies are applied together. The synergy between the strategies may be explained
by the smoothness assumption in semi-supervised learning, which states that two samples that are
close in the input space should share the same labels, and consequently preferentially learns decision
boundaries in low-density regions (van Engelen & Hoos, 2019).
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Table 5: Effect of regularization and time series augmentation strategies.
(a) Effect of regularization and / or time series augmen-
tation strategies

Strategy Avg Accuracy (%)
Regularization Augmentation Bearings HHAR

7 7 82.2 87.5
7 3 86.5 88.1

(fixed sel.)
3 7 87.1 88.5
3 3 87.9 88.5

(learned sel.)
3 7 86.8 88.3
3 3 89.1 88.5

(b) Augmentation effects on Bearings,
without consistency regularization

Augmentation Avg Accuracy (%)
None 82.2
Mean shift 83.0
Scale 82.4
Mask 82.4
All 86.5

Effect of selective cross-domain consistency regularization: To further study the effect of reg-
ularization in isolation, we apply the proposed method with fixed regularization selection and
without time series augmentations. We experiment with 3 distance functions, namely squared
L2 distance, cosine distance and KL-divergence, either between individual samples and cluster
centroids or between domain and cluster centroids. Regularization is applied on the features
z, logits g or soft labels s. Comparing the generalization performance in Table 6, domain-
level regularization tends to have higher accuracy, possibly because it allows greater diversity
of representations in each domain. Regularizing on logits results in higher accuracy for most
cases. It allows more flexibility since both feature extractor and classifier are directly regular-
ized while preserving class-relationships. Soft labels are normalized logits and have limited vari-
ability across source domains for further alignment. The feature space is generally much larger
than the logit or label space, and hence possibly more difficult for effective alignment. We ob-
serve that all choices of distance functions and representations attain better performance than ERM
(82.2%), with regularization of logits at the domain-level achieving the best accuracy of 87.1%.

Table 6: Bearings: Average classification ac-
curacy of proposed method with fixed consis-
tency regularization using different regulariza-
tion functions (squared L2 distance, cosine dis-
tance, KL-divergence) between samples or do-
mains and cluster centroids, without time series
augmentations.

Avg Accuracy (%)
Sample-level Domain-level

Regularize on L2 cos KL L2 cos KL

Features z 83.9 84.9 N/A 85.4 82.3 N/A
Logits g 86.2 84.2 N/A 87.1 85.9 N/A
Soft labels s 82.9 83.3 82.8 82.5 83.8 83.8

Next, we study how different cluster assign-
ments affect domain generalization performance
on each target domain in the Bearings dataset
in Table 7. Consistency regularization tends to
improve performance over ERM across all tar-
get domains. While regularization with 4 clus-
ters and 1 cluster both improves average accu-
racy over ERM by 2.2% and 3.4% respectively,
regularization with 2 clusters achieves the high-
est improvement of 4.9%. Domains in each of
the two clusters contain data collected from the
same machine location, and hence can be ex-
pected to be closely-related with similar class re-
lationships. This shows we can improve domain
generalization performance given good cluster
assignments.

Table 7: Bearings: Target domain classification accuracy of the proposed method given different
cluster assignments for fixed regularization selection, without time series augmentations. Placing
each domain in a separate cluster is equivalent to ERM.

Cluster assignment # clusters Accuracy (%)
A B C D E F G H Avg

{A},{B},{C},{D},{E},{F},{G},{H} 8 65.4 93.8 96.0 71.2 68.4 83.0 94.0 86.2 82.2
{A,B},{C,D},{E,F},{G,H} 4 61.2 93.3 97.3 79.6 70.3 91.4 94.3 87.5 84.4
{A,B,C,D},{E,F,G,H} 2 66.8 92.4 96.9 85.4 78.3 90.6 94.4 92.5 87.1
{A,B,C,D,E,F,G,H} 1 65.8 97.0 97.1 80.5 79.4 86.8 92.3 86.1 85.6
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(a) ERM; Marked by class (b) ERM; Marked by domain

(c) Proposed; Marked by class (d) Proposed; Marked by domain

Figure 3: Bearings: t-SNE plots of features from ERM (top row) and proposed method for fixed
regularization selection, no time series augmentation (bottom row) trained with target domain H,
marked by class (left column) and domain (right column; blue is drive-end, red is fan-end).

Figure 4: Bearings: Reliability diagram
for ‘BF:0.007’ class of ERM and pro-
posed method for fixed regularization
selection, no time series augmentation
trained with target domain H.

Drive-end Fan-end

(a) Bearings
User 1 User 2 User 3

(b) HHAR

Figure 5: For each i, j entry, shade corresponds to propor-
tion of runs domain j is the nearest neighbor of domain i
at end of training. Diagonal entries are set to 1.

We visualize the features learned by ERM and the proposed method in t-SNE plots in Figure 3,
where the last domain H is the unseen target. Domains from the same location (i.e. drive or fan
end) tend to cluster even in ERM, but not consistently across classes. For instance, ‘normal’ class
has 3 clusters in ERM, and is regularized by the proposed method such that domains from the same
location are closer to each other. Model calibration is also improved as seen in Figure 4.

Visualization of learned domain relationships: The performance of the proposed method depends
on the estimation of inter-domain relationships when domain metadata are not provided. Figure 5
plots the proportion of runs each pair of domain is estimated to be closest neighbors at the end of
training, with the diagonal entries set to 1. For Bearings, the estimated clusters approximately match
the manually specified ones in Table 2. For HHAR, the variation between phone models (i.e. Nexus
and S3 versus S3 mini and S+) appears larger than that between some users (i.e. User 1 versus User
3). Domain relationships estimated from data can be different from those inferred from metadata
descriptions and can contain finer measures of inter-domain similarity, and hence may be a more
preferable approach to set the selective consistency regularization. In fact, using learned selection
obtains higher accuracy (89.1%) than using fixed metadata-inferred selection (87.9%) for Bearings.

6 CONCLUSION

In this work, we introduced a representation learning method for domain generalization for time
series classification. We applied time series augmentations to improve robustness, and selective
consistency regularization to enforce similar predictions for similar domains. From comprehensive
experiments, we showed that the proposed method significantly improves over baseline ERM and
performs better than or comparably to state-of-the-art methods. For future work, we will study
incorporating techniques from computer vision literature that benefit generalization for time series.
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A IMPLEMENTATION DETAILS

We provide additional details on the implementation for our experiments and the datasets used.

A.1 HYPERPARAMETERS

We fix learning rate 0.001, weight decay 5 × 10−5, and batch size 32 per domain. Models are
trained for 3000 iterations, with learning rate reduced by a factor of 10 after 2400 iterations. All
other hyperparameters are tuned by random sampling from distributions in Table 8. All experiments
are run using Adam optimizer with the NVIDIA container image for PyTorch, release 20.03.

Method Hyperparameter Distribution
IRM Regularization λ

Iterations of penalty annealing
10Unif(−1,5)

b10Unif(0,4)c
GroupDRO Group weight temperature η 10Unif(−3,−1)

Interdomain Mixup Beta shape parameter α 10Unif(−1,1)

MTL Embedding averaging proportion {0.5,0.9,0.99,1}

MLDG Meta-learning loss β 10Unif(−1,1)

Correlation Regularization λ 10−5

CORAL-DG, MMD-DG Regularization λ 10Unif(−3,−1)

DANN-DG, CDANN-DG Discriminator learning rate
Discriminator weight decay
Discriminator Adam β1
Discriminator steps
Discriminator gradient penalty
Adversarial regularization λ

10Unif(−5,−3.5)

10Unif(−6,−2)

{0, 0.5}
b2Unif(0,3)c
10Unif(−2,1)

10Unif(−2,2)

VREx Regularization λ
Iterations of penalty annealing

10Unif(−1,5)

b10Unif(0,4)c
RSC Feature drop percentage p

Batch percentage
Unif(0, 0.5)
Unif(0, 0.5)

proposed Regularization λ
RBF kernel parameter ξ

10Unif(−3,−1)

10Unif(−2,2)

Table 8: Setup for hyperparameter tuning.

A.2 DATASETS AND NETWORK ARCHITECTURES

We provide details on the sample size of the datasets. Backbone network architectures used for each
dataset is given in Table 9.

Bearings: All domains have the same number of samples. For each domain, the sample size of
each class is ‘normal’: 416, ‘IF:0.007’: 371, ‘BF:0.007’: 409, ‘OF:0.007’: 417, ‘IF:0.014’: 387,
‘BF:0.014’: 408, ‘OF:0.014’: 398, ‘IF:0.021’: 407, ‘BF:0.021’: 383, ‘OF:0.021’: 404. We use a
6-layer CNN as feature extractor and a 3-layer FCN as classifier.

HHAR: Sample size differs across domain according to availability of data per user and device, as
in Table 10. We use a 3-layer CNN as feature extractor and a 1-layer fully-connected network as
classifier (Liu et al., 2016).
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(a) Network for Bearings

Layer Operation Specifications
Convolution Conv

BatchNorm
LeakyReLU

8 (filter: 64× 1, stride: 2, pad: 1)

Convolution
(3 times)

Conv
BatchNorm
LeakyReLU

8 (filter: 3× 8, stride: 2, pad: 1)

Convolution Conv
LeakyReLU

8 (filter: 3× 8, stride: 2, pad: 1)

Convolution Conv 8 (filter: 8× 8, stride: 1, pad: 1)

Fully connected FC 32

Fully connected
(2 times)

FC
ReLU

32

Fully connected FC 10

(b) Network for HHAR

Layer Operation Specifications
Convolution Conv

BatchNorm
LeakyReLU

128 (filter: 8× 3, stride: 1, pad: 1)

Convolution Conv
BatchNorm
LeakyReLU

256 (filter: 5× 128, stride: 1, pad: 1)

Convolution Conv
BatchNorm
LeakyReLU

128 (filter: 3× 256, stride: 1, pad: 1)

Pooling Average pooling 1 (filter: 121, stride:121)

Fully connected FC 6

Table 9: Backbone network architectures for each dataset. Convolution operation is abbreviated as
‘Conv’ and fully connected operation is abbreviated as ‘FC’.

Domain Class
Biking Standing Sitting Walking Stair

down
Stair
up

A 626 933 652 676 874 778
B 346 468 316 341 435 376
C 175 234 162 176 207 212
D 298 237 264 226 223 275
E 999 682 681 771 692 1013
F 487 387 312 407 370 495
G 234 196 161 199 186 245
H 385 251 267 298 253 331
I 539 817 628 768 723 857
J 293 427 312 374 358 445
K 147 213 168 211 164 244
L 275 229 264 265 248 300

Table 10: HHAR: Sample size distribution per domain.
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B FURTHER EXPERIMENT RESULTS

We additionally evaluate on a more challenging setting where target domain conditions are not
combinations of source domain conditions. For Bearings, we use only domains from drive-end
location, so each domain has a distinct loading torque. For HHAR, we use only domains from the
first user, so each domain has a distinct phone model. We fix the hyperparameter of our proposed
method with learned selective regularization to λ = 0.01 and ξ = 0.1. From Table 11 and 12, our
proposed method outperforms ERM on all target domains in Bearings, and on average in HHAR.

Method Accuracy (%)
A B C D Avg

ERM 84.4 94.9 98.9 86.0 91.0 ± 3.5
proposed (learned sel.) 93.9 97.8 99.0 88.7 94.8 ± 3.8

Table 11: Bearings drive-end domains: Classification accuracy on target domain using leave-
one-domain-out testing and training on remaining domains. Standard error is taken over 3 seeds.
Train/test sample splits in all domains are also varied by seed.

Method Accuracy (%)
A B C D Avg

ERM 79.0 80.5 71.5 80.3 77.8 ± 0.6
proposed (learned sel.) 78.7 81.8 70.8 82.0 78.3 ± 0.6

Table 12: HHAR user 1: Classification accuracy on target domain using leave-one-domain-out
testing and training on remaining domains. Standard error is taken over 3 seeds. Train/test sample
splits in all domains are also varied by seed.

Ablation study: We study the effect of neighbor domain selection and weight function in learned
selective regularization on Bearings. Hyperparameters are fixed at λ = 0.01 and ξ = 0.1. In
Table 13, regularizing each domain with its nearest neighbor achieves higher accuracy than regular-
izing random pairs of domains. While nearest neighbor selection and a fixed weight of 1 has best
accuracy in this study, we note that the RBF hyperparameter ξ can be tuned and the RBF weight
approaches 1 as ξ → 0.

Selected neighbor Weight function Avg Accuracy (%)
Random 1 80.9
Random RBF (ξ = 0.1) 81.2
Nearest 1 84.9
Nearest RBF (ξ = 0.1) 83.2

Table 13: Bearings: Regularization strategies of the proposed method for learned selective regular-
ization, without time series augmentation.
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