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Abstract001

Large language models (LLMs) are increas-002
ingly being adopted as the cognitive core of003
embodied agents. However, inherited halluci-004
nations, which stem from failures to ground005
user instructions in the observed physical en-006
vironment, can lead to navigation errors, such007
as searching for a refrigerator that does not008
exist. In this paper, we present the first system-009
atic study of hallucinations in LLM-based em-010
bodied agents performing long-horizon tasks011
under scene–task inconsistencies. Our goal is012
to understand to what extent hallucinations oc-013
cur, what types of inconsistencies trigger them,014
and how current models respond. To achieve015
these goals, we construct a hallucination prob-016
ing set by building on an existing benchmark,017
capable of inducing hallucination rates up to018
40× higher than base prompts. Evaluating 11019
models across two simulation environments,020
we find that while models exhibit reasoning,021
they fail to resolve scene-task inconsistencies—022
highlighting fundamental limitations in han-023
dling infeasible tasks. We also provide ac-024
tionable insights on ideal model behavior for025
each scenario, offering guidance for developing026
more robust and reliable planning strategies.027

1 Introduction028

Recent advances in the reasoning and gener-029

alization capabilities of large language models030

(LLMs) (Chang et al., 2024; Wei et al., 2022) have031

led to their increasing adoption as the cognitive032

core (Mai et al., 2023) of embodied agents (Zhang033

et al., 2024b; Kannan et al., 2024; Dorbala et al.,034

2023), enabling these systems to interpret instruc-035

tions in natural language and formulate action036

plans in complex environments. However, LLMs037

have well-known vulnerabilities (Liu et al., 2024;038

Chakraborty et al., 2024). Consequently, LLM-039

driven agents (Xiang et al., 2023; Yang et al., 2025)040

inherit not only the vast world knowledge and rea-041

soning capability of LLMs, but also their limita-042

Figure 1: Object hallucination rates (CO) on our hal-
lucination probing set in VirtualHome. Higher values
indicate more hallucination, with Scene Task Contradic-
tion triggering the highest rates in nearly all models.

tions (Jiao et al., 2024; Zhang et al., 2025); most no- 043

tably a persistent tendency to hallucinate (Perković 044

et al., 2024; Sriramanan et al., 2024). 045

While hallucination is a well-recognized limita- 046

tion of LLMs (Tonmoy et al., 2024; Rawte et al., 047

2023a), its manifestation in embodied agents is 048

qualitatively different. Unlike conversational sys- 049

tems, where hallucinations often result in factual 050

errors or incoherent replies (Zhou et al., 2023; Yu 051

et al., 2024a), hallucinations in embodied agents 052

stem from a failure to ground user-provided task 053

instructions in the observed physical environment. 054

This misalignment can lead to consequences far 055

more serious than a simple textual error. For ex- 056

ample, if a robot is instructed to “put the knives 057

in the dishwasher” but no dishwasher is present, 058

an LLM unable to reconcile the task with the ob- 059

served scene may hallucinate the existence of the 060

dishwasher, and include it in the generated plan 061

to follow the user instruction. This can cause the 062

robot to place sharp utensils in an empty cabinet or 063

try to press buttons on a bare wall, leading to phys- 064

ical damage, safety hazards, and wasted battery. 065

Such behaviors highlight the need for scene-task- 066

consistent planning in LLM-based agents. 067

Motivated by these limitations of current LLMs— 068

most of which are optimized to complete tasks 069
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<Task Description (xtd)>  
 Put the soap and clothes into the washing machine. Turn on the washing machine.

LLM
as 

Goal
Interpreter

<Scene Information (xs )>
washing_machine, initial states: ['CLOSED'], possible states: [ 'CLOSED',  'OPEN', 
'PLUGGED_IN']; soap, initial states: ['CLEAN'], possible states: ['CLEAN', 'DRY', 
‘WET']; clothes_jacket, initial states: ['DIRTY'], possible states: ['CLEAN', 'DIRTY']

{“node goals”: [
{“name”: “washing_machine”, “state”: “ON”}, 
{“name”: “washing_machine”, "state": 
“PLUGGED_IN”}],
 "edge goals": [{"from_name": 
"clothes_jacket", "relation": "ON", "to_name": 
"washing_machine"},
{"from_name": "soap", "relation": "ON", 
"to_name": "washing_machine"}]}

(A) Base Pipeline

(i) Distractor Injection 
(DistInj)

(B) Induced Hallucinations

(ii) Task Relevant Object Removal
(TaskObjRem)

# Injected 'refrigerator' as
distractor in task description

<Task Description>  
 Put the soap and clothes into the 

washing machine next to the refrigerator. 
Turn on the washing machine.

<Scene Information>
# Same as base prompt

# Removed washing_machine and 
soap from scene

<Scene Information>
clothes_jacket, initial states: ['DIRTY'], 
possible states: ['CLEAN', 'DIRTY']

{“node goals”: [...],
 "edge goals": [ ...
{"from_name": "refrigerator", 
"relation": "NEXT_TO", "to_name": 
"washing_machine"}]}

<Task Description>  
# Same as base prompt

# Synonymous objects to 
describe scene

     <Scene Information>
washer, initial states: ['CLOSED'], 
possible states: [ 'CLOSED',  'OPEN', 
'PLUGGED_IN'] 
detergent, initial states: ['CLEAN'], 
possible states: ['CLEAN', 'DRY', ‘WET']
coat, initial states: ['DIRTY'], possible 
states: ['CLEAN', 'DIRTY']

# Task in a contradictory 
scene

<Scene Information>
table, initial states: ['CLEAN'], possible 
states: [ 'CLEAN', 'DIRTY'] 
plate, initial states: ['CLEAN'], possible 
states: ['CLEAN', 'DIRTY']
dining_room, initial states: ['DIRTY'], 
possible states: ['CLEAN', 'DIRTY']

{“node goals”: [...],
 "edge goals": [
{"from_name": "clothes_jacket", 
"relation": "ON", "to_name": 
"washing_machine"}]}

{“node goals”: [
{“name”: “washer”, “state”: “ON”}],
 "edge goals": [
{"from_name": "detergent", 
"relation": "ON", "to_name": 
"washing_machine"}]}

{“node goals”: [
{“name”: “washing_machine”, “state”: 
“ON”}], "edge goals": [
{"from_name": "soap", 
"relation": "ON", "to_name": 
"washing_machine"}]}

Scene (xi) Base Prompt LTL Goal ({(ok,sgk), (oi, r, oj)})

Execute
the Task

<Task Description>  
# Same as base prompt

Task Description Modification 
(TaskDescMod)

Scene Information Modification
 (SceneMod)

LLM
as 

Goal
Interpreter

Scene
Parsing

<Task Description>  
# Same as base prompt

Your task is to understand natural language goals for a household robot ...

(iii) Synonymous Object Substitution
(SynonymSub)

(iv) Scene Task Contradiction
(SceneTaskCon)

Figure 2: Overview of our settings. (A) The base pipeline in the existing benchmark (Li et al., 2024b) begins
with a scene parser that extracts structured textual scene information from raw visual input. Combined with the
natural language task description, this is processed by an LLM to generate symbolic goals in Linear Temporal
Logic (LTL) (see subsection 3.1). (B) Examples of hallucinations. Output elements highlighted in red indicate
hallucinated content that is not grounded in the scene information, i.e., inconsistent with the observed environment.
These examples demonstrate that when inconsistencies arise between the scene information and the given task
description, the LLM fails to reconcile the two and generates incorrect plans or object references. Given the base
prompt, we systematically modify two core input components—the task description and scene information—to
elicit hallucinations. Our four controlled modifications of the base prompts are: under task description variation, (i)
Distractor Injection—adds non-existent objects to the task description; and under scene variation, (ii) Task Relevant
Object Removal—omits key objects from the scene; (iii) Synonymous Object Substitution—replaces scene objects
with synonyms; and (iv) Scene Task Contradiction—introduces conflicts between the task and scene.

under ideal conditions—we shift our focus to un-070

derstand their failure modes. Specifically, we aim071

to answer the following research questions: RQ1:072

To what extent do LLM-based embodied agents hal-073

lucinate under scene–task inconsistencies; what074

types of mismatches are more likely to trigger hal-075

lucinations; and what limitations do these failures076

reveal? RQ2: Does the absence of hallucination077

imply correct planning? What are the ideal behav-078

iors in these scenarios for more robust planning?079

Although prior works explore LLMs in embod-080

ied agents (Majumdar et al., 2024; Islam et al.,081

2023) and hallucinations in QA (Guan et al., 2024;082

Xu et al., 2025), studies on hallucinations in embod-083

ied agents, especially for long-horizon tasks, are084

limited. Existing efforts (Zhou et al., 2024) mainly085

study incidental cases from generic prompts, cap-086

turing only surface-level issues and overlooking the087

failure patterns behind hallucinations. To fill this088

gap, we present, to the best of our knowledge, the 089

first empirical study that systematically exemplifies 090

and quantifies hallucinations in long-horizon plan- 091

ning through controlled scene-task inconsistencies. 092

Because existing datasets either do not explicitly 093

aim to elicit hallucination in long-horizon embod- 094

ied tasks, or do not target embodied agent tasks, 095

we first construct a new probing set that is more 096

likely to cause hallucination. Constructing such 097

a probing set faces two main challenges: (i) how 098

to induce hallucinations and (ii) how to detect un- 099

wanted behaviors caused by hallucinations. We 100

solve these challenges by systematically modifying 101

base prompts from the existing LLM-based embod- 102

ied agent benchmark (Li et al., 2024b) to introduce 103

scene-task inconsistencies. Specifically, we modify 104

the two core components of each base prompt—the 105

task description and the scene information—to cre- 106

ate mismatches between user instructions and the 107
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observed environment (see Figure 2).108

With the new hallucination inducing probing set,109

we conduct an empirical study of popular LLMs.110

Overall, among our four controlled modifications,111

Synonymous Object Substitution yields the lowest112

hallucination rates, suggesting that models can rec-113

ognize objects conceptually belonging to the same114

category but often fail to maintain naming consis-115

tency, probably due to the inherent tendency of lan-116

guage models to favor varied phrasing over strict117

lexical alignment. In contrast, the highest halluci-118

nation rates occur under Scene Task Contradiction119

(see Figure 1), revealing the model’s inability to120

ground planning to perceived environments.121

We also empirically study the effectiveness of122

mitigation strategies (Peng et al., 2023; Yin et al.,123

2024). The result shows that, even with feedback-124

based self-correction, hallucinations in Scene Task125

Contradiction remain high, underscoring a funda-126

mental inability of models to recognize the infea-127

sibility of the task. Additionally, our small-scale128

experiments with vision-language models (VLMs)129

suggest that hallucinations are reduced when both130

image and text inputs are available, emphasizing131

the importance of cross-modal verification.132

In summary, our contributions are as follows:133

• We present the first study of hallucinations in134

LLM-based embodied agents for long-horizon135

tasks under scene–task inconsistencies. Our136

probing set, building on the existing bench-137

mark, elicits hallucination rates up to 40×138

higher than base prompts, effectively expos-139

ing hallucinations. Our designed scenarios140

can be leveraged to guide robust planning.141

• Our study, involving 11 models and a new142

hallucination probing set based on two simu-143

lation environments, reveals that among the144

four variants, Scene Task Contradiction in-145

duces the highest hallucination rates. The146

models exhibit signs of reasoning and do not147

blindly follow prompts; however, a prominent148

pattern is their inability to reject infeasible149

tasks—stemming from the trait that they do150

not know how to say “no”.151

• The absence of hallucination does not guaran-152

tee correct planning in scene-task inconsisten-153

cies. For instance, when instructed to turn on154

a washing machine that is not present, the155

models fail to reject the task and instead re-156

purpose available objects—such as turning on157

the shower—resulting in unsafe actions.158

2 Related Work 159

LLMs in Embodied AI. Use of LLMs in Embod- 160

ied AI ranges from high-level planners that decom- 161

pose instructions into subtasks, as shown in Say- 162

Can (Ahn et al., 2022); to multimodal reasoners 163

like PaLM-E (Driess et al., 2023). LLMs can also 164

serve as natural interaction interfaces between hu- 165

mans and robots (Cui et al., 2023). Such versatile 166

capabilities have led to the integration of LLMs 167

throughout the embodied AI stack, from percep- 168

tion processing (Kamath et al., 2021) to decision- 169

making frameworks combining internet knowledge 170

with embodied grounding (Song et al., 2023; Zawal- 171

ski et al., 2024; Ren et al., 2023; Huang et al., 2022). 172

Vision-Language Action (VLA) (Jiang et al., 2023; 173

Brohan et al., 2023; Kim et al., 2024) models fur- 174

ther extend these capabilities by jointly learning 175

representations among modalities like vision, lan- 176

guage, and physical action. Despite these advances, 177

these systems still face grounding challenges (Ma- 178

jumdar et al., 2024; Islam et al., 2023). 179

Hallucinations in LLMs. Hallucinations in LLMs 180

have been widely studied in text-only (Dhuliawala 181

et al., 2023; Agrawal et al., 2024). Recent works 182

extend these to multimodal LLMs (Bai et al., 2024; 183

Xu et al., 2025; Guan et al., 2024). Causes include 184

data quality issues, weak vision encoders, and lan- 185

guage model priors overriding visual evidence. Mit- 186

igation approaches include cross-checking (Yu 187

et al., 2024b), instruction-tuning (Liu et al., 2023), 188

self-correction (Peng et al., 2023), and others. 189

Hallucinations in Embodied AI. Recent studies 190

(Li et al., 2024a,b; Zhou et al., 2024) have exam- 191

ined incidental embodied AI hallucinations from 192

generic prompts, but these capture only surface- 193

level issues without revealing underlying failure 194

patterns. Other work (Yang et al., 2024b) investi- 195

gates object hallucinations using binary existence 196

questions, but such simplified formats fail to ad- 197

dress the complexity of long-horizon tasks that re- 198

quire complicated actions beyond mere QA. 199

3 Methodology 200

To conduct our study, we construct a new halluci- 201

nation probing set by systematically modifying an 202

existing embodied AI benchmark (Li et al., 2024b) 203

to introduce scene-task inconsistencies. 204

3.1 Preliminaries 205

Embodied Settings. Let xtd denote the user- 206

provided natural language task description and xi 207
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the corresponding visual observation captured by208

the agent’s camera about the environment. Let O209

denote the set of objects present in the scene and S210

the universal set of all states that any object can at-211

tain. A perception module P transforms the visual212

input xi into a structured linguistic representation213

xs that describes the scene in terms of tuples of214

the form (ok, s0k , spk), where ok ∈ O is the k-th215

object, s0k ∈ S is its initial state, and spk ⊆ S216

is the set of all possible states the object may at-217

tain. This representation captures both the current218

scene information and the potential state transitions219

available for objects, as formalized in Equation 1.220

xs = P(xi) = {(ok, s0k , spk) |
ok ∈ O, s0k ∈ S, spk ⊆ S}

(1)221

An LLM-based goal interpretation module L, pa-222

rameterized by θ, takes as input the combined con-223

text x = (xtd, xs) and outputs a structured goal224

specification in Linear Temporal Logic (LTL) (Li225

et al., 2024b), consisting of a set of node goals and226

edge goals, as illustrated in Figure 2 and Equation 2.227

A node goal (ok, sgk) specifies that object ok ∈ O228

should attain the goal state sgk ∈ spk . An edge229

goal is represented as a triplet (oi, r, oj), indicating230

that object oi is expected to hold the semantic rela-231

tionship r with object oj , where oi, oj ∈ O and r232

denotes relation (e.g., on, inside, next to).233

Lθ(xtd, xs) = {(ok, sgk)}, {(oi, r, oj)} (2)234

These symbolic goals are then passed to down-235

stream modules such as action planning and trajec-236

tory generation (Li et al., 2024b). We highlight that237

any misinterpretation of the LTL goal is critical,238

as errors at this stage will propagate through the239

downstream modules and impair task execution.240

Hallucination. Hallucination is commonly defined241

as an apparent perception in the absence of an ex-242

ternal stimulus (Ji et al., 2023). In the context243

of LLM-conditioned embodied agents, we define244

hallucination as the generation of content that is245

not grounded in the observed environment (Rawte246

et al., 2023b; Huang et al., 2025), i.e., outputs that247

reflect objects or states inconsistent with the given248

scene. Let Fobj(y) and Fstate(y) denote the sets of249

objects and states mentioned in the model’s out-250

put y. A hallucination occurs if any mentioned251

object or state is not supported by the input scene252

representation xs—specifically, as formalized in253

Equation 3, if any mentioned object does not exist254

in the scene (ok /∈ O) or the predicted state is not 255

from the allowed states (sgk /∈ S). 256

H(x, y) =


1 if ∃ok ∈ Fobj(y) with ok /∈ O

or ∃sgk ∈ Fstate(y) with sgk /∈ S,

0 otherwise

(3) 257

3.2 Hallucination Instances 258

Previous studies (Liu et al., 2023; Guan et al., 2024) 259

show that hallucinations arise when the user query 260

references objects absent from the image, suggest- 261

ing that inconsistencies between the scene and the 262

user-provided instruction are a key trigger. Inspired 263

by this, we extend an existing benchmark (Li et al., 264

2024b) to systematically understand hallucination 265

patterns by applying targeted transformations to 266

two core components of the base prompt: task de- 267

scription xtd and scene information xs, to introduce 268

scene-task inconsistencies. 269

A. Task Description Modification. In this set- 270

ting, we modify the task description xtd of the 271

base prompt while keeping the scene xs unchanged, 272

allowing us to examine how variations in user- 273

provided instructions can trigger hallucinations. 274

i⃝ Distractor Injection. We introduce distrac- 275

tors od (non-existent objects in the scene) into the 276

base prompt’s task description xtd without alter- 277

ing the core task intent. We employ a structured 278

prompt (see Appendix Figure 4) to query GPT- 279

4o (Achiam et al., 2023), which subtly inserts dis- 280

tractors into task descriptions and generates modi- 281

fied ones while preserving the original task intent. 282

A hallucination is detected if the model’s output ref- 283

erences the distractor object. As shown in Figure 2, 284

adding refrigerator as a distractor in a wash- 285

ing clothes task causes the model to hallucinate a 286

goal involving the refrigerator, even though it 287

is not present in the scene. The new prompt with 288

distractor injection is defined as Equation 4. 289

(x′td, xs),where x′td = xtd ∪ {od} and od /∈ O (4) 290

B. Scene Information Modification. We keep the 291

task description xtd fixed and modify the scene in- 292

formation xs to investigate hallucinations induced 293

by changes in the environment. 294

ii⃝ Task Relevant Object Removal. A task- 295

relevant object or is one in the ground-truth LTL 296

plan and critical to the success of the task. We 297

randomly remove task-relevant object or from the 298

structured scene information xs, creating cases 299

with missing task-relevant objects while keeping 300
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the task description xtd unchanged. A hallucina-301

tion is detected if the model’s output references the302

removed object. For example, as shown in Figure 2,303

removing washing machine from the scene while304

it is required by the task causes the model to hal-305

lucinate the washing machine in its goal output,306

whereas it correctly omits soap, indicating that not307

all object removals result in hallucination. The new308

modified prompt is defined as Equation 5.309

(xtd, x
′
s),where x′s = xs \ {or}, with or ∈ Otask (5)310

iii⃝ Synonymous Object Substitution. We replace311

scene objects ok in the scene information xs with312

commonly used synonyms o′k, creating a modified313

scene that remains semantically equivalent but uses314

different object names. We again prompt GPT-4o315

(see Appendix Figure 5), which generates famil-316

iar synonym replacements for scene objects while317

ensuring no subwords or fragments of the original318

object name are included in the synonym. A hal-319

lucination is detected if the model’s output reverts320

to using the original object name ok instead of the321

synonym o′k. For example, as shown in Figure 2, re-322

placing washing machine with washer and soap323

with detergent may cause the model to halluci-324

nate the term washing machine even though no ex-325

act match exists in the scene. The resulting prompt326

is formulated as shown in Equation 6.327

(xtd, x
′
s),where x′s = {o′k : o′k ∼ ok} (6)328

iv⃝ Scene Task Contradiction. We introduce con-329

tradictions between the task and the scene by ensur-330

ing that all objects required to complete the task are331

entirely absent from the scene information xs. This332

tests whether the model can recognize the infeasi-333

bility between the task description and the avail-334

able environment. We generate these contradiction335

cases by replacing all original scene objects with336

objects from an unrelated scene, while leaving the337

task description unchanged to simulate challenging338

grounding conditions. A hallucination is detected339

if the model’s output references any of the missing340

scene objects. For example, as shown in Figure 2,341

asking the robot to “put soap into the washing ma-342

chine” when only table and plate are present in343

the scene creates an intentional conflict between344

the task and the environment. The modified prompt345

is defined in Equation 7.346

(xtd, x
′
s),where x′s = xs \ Otask (7)347

Ground-Truth Preservation. We also aim to un-348

derstand how hallucinations may affect the success349

of tasks. Thus, we induce hallucinations within 350

the existing benchmark while ensuring that evalu- 351

ation remains aligned with the original LTL plans. 352

Specifically, our modified prompts fall into two 353

categories: (i) those maintaining the validity of 354

the original plans—as DistInj and SynonymSub— 355

because distractors or synonyms should not change 356

the ultimate goal, and (ii) those creating situations 357

where the correct response is to generate no plan— 358

such as TaskObjRem and SceneTaskCon—because 359

required objects are missing. This design allows us 360

to reuse the original ground truth for direct compar- 361

ison and maintain consistent evaluation criteria. 362

4 Experiments 363

4.1 Experimental Setup 364

Datasets. We evaluate long-horizon tasks that re- 365

quire multiple sequential steps across two simula- 366

tion environments: VirtualHome (Puig et al., 2018) 367

and BEHAVIOR (Li et al., 2023a). Table 11 in 368

the Appendix shows the prompt distribution in 369

our probing set, which contains 2,574 samples de- 370

signed to demonstrate task-scene inconsistencies. 371

Models. We evaluate 11 open and closed LLMs, 372

including models from LLaMA (Grattafiori et al., 373

2024), Qwen (Yang et al., 2024a), Gemma (Team 374

et al., 2024), Gemini (Team et al., 2023), 375

Claude (Anthropic, 2024), Mistral (AI, 2024), as 376

well as DeepSeek-R1 (Guo et al., 2025) distilled 377

versions of LLaMA and Qwen. To assess the role 378

of vision, we evaluate VLMs with the same lan- 379

guage backbones, including Qwen-VL (Wang et al., 380

2024a), Gemma-3 (Team et al., 2025), and LLaMA- 381

Vision. Smaller models are more suitable for run- 382

ning locally in robots, while large models represent 383

the state-of-the-art. See Table 12 for model cards. 384

Metrics. We adopt two widely used metrics origi- 385

nally proposed for image captioning: CHAIR (Cap- 386

tion Hallucination Assessment with Image Rele- 387

vance) (Rohrbach et al., 2018) and POPE (Polling- 388

based Object Probing Evaluation) (Li et al., 2023b). 389

Although used for visual grounding, both general- 390

ize naturally to text generation. CHAIR, defined 391

in Equation 8, quantifies the proportion of halluci- 392

nated items relative to all mentioned ones. 393

Ct =
|{hallucinated t}|
|{all t mentioned}| , t ∈ {states, objects} (8) 394

While CHAIR gives a holistic estimate, it can be bi- 395

ased by output length. For instance, if two outputs 396

hallucinate the same number of entities but differ 397

in length, CHAIR may unfairly penalize the shorter 398
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Table 1: CHAIR for object (CO ) and state (CS) hallucination (%), and the POPE (PO) for object hallucination (%),
evaluated on base and modified prompts. Higher value indicates more hallucination. Hallucinations are higher under
our modifications compared to the base prompts, demonstrating the effectiveness of our probing set in exposing
hallucination. Overall, SceneTaskCon produces the highest hallucination, while SynonymSub results in the lowest.
Gemini and Claude models are more resilient to hallucinations. Bold indicates the highest value in each column.

Env Models
Base Prompt

TaskDescMod SceneMod
DistInj TaskObjRem SynonymSub SceneTaskCon

CO CS CO CS PO CO CS PO CO CS PO CO CS PO

V
I
R
T
U
A
L

H
O
M
E

Llama-3-8B-Instruct 3.7 1.2 25.6 4.8 60.51 20.4 3.7 36.60 17.0 2.6 27.36 38.5 8.7 66.45
DS-R1-Distil-LLaMA-8B 19.7 4.7 48.6 7.5 56.85 37.6 5.7 38.49 40.2 5.9 30.78 57.1 9.3 63.36

Gemma-2-9b-it 4.4 5.4 27.1 9.9 81.02 31.7 8.7 46.56 16.2 6.1 28.34 52.6 15.0 66.78
Qwen-14B-Instruct 3.6 4.2 26.4 4.4 72.69 36.6 6.0 47.59 13.1 4.8 17.10 50.6 8.0 70.68

DS-R1-Distil-Qwen-14B 5.6 2.9 28.2 3.7 50.76 33.4 5.0 39.86 14.6 3.9 26.22 56.5 7.3 69.87
Llama-4-Scout-17B-16E-Instruct 1.6 0.7 6.3 3.3 18.88 21.1 9.2 36.25 14.3 1.3 26.38 48.2 8.9 67.26

Llama-3.3-70B-Instruct 1.5 0.2 12.8 0.2 21.02 22.8 1.9 46.74 8.0 1.0 21.82 37.6 0.8 60.10
Gemini 2.0 Flash 0.0 0.0 0.0 0.0 0.0 2.2 0.0 8.27 3.0 0.0 7.21 6.0 0.0 20.08
Gemini 2.5 Flash 0.5 0.0 0.6 0.0 0.2 22.4 0.0 50.86 5.7 0.0 7.82 36.0 0.0 61.89

Gemini 2.5 Flash (w/o thinking) 1.3 0.0 2.1 1.0 5.18 14.4 0.8 39.00 12.7 0.0 20.03 18.4 0.0 47.07
Mistral-Large-Instruct-2411 1.6 1.0 14.0 1.4 8.73 21.1 1.5 54.64 15.2 1.6 17.10 47.1 2.1 67.75

Claude 3.5 Sonnet 2.1 0.1 2.2 0.3 0.2 16.6 0.2 45.53 31.0 0.0 36.64 14.4 1.0 40.07

B
E
H
A
V
I
O
R

Llama-3-8B-Instruct 1.93 2.15 8.2 10.8 6.40 5.0 6.7 14.34 2.2 7.4 0.70 17.8 7.7 18.27
DS-R1-Distil-LLaMA-8B 1.26 8.16 13.9 27.2 25.25 6.8 13.3 28.84 20.4 10.1 21.39 60 19.6 25.65

Gemma-2-9b-it 0.87 1.8 11.6 5.7 9.43 10.8 4.8 22.80 11.4 2.8 5.74 73.1 8.2 19.74
Qwen-14B-Instruct 0.41 3.33 15.8 5.7 13.13 6.6 4.6 18.48 1.7 4.1 1.57 63.1 5.7 20.76

DS-R1-Distil-Qwen-14B 0.32 1.24 8.4 5.2 13.13 4.5 6.0 19.17 2.8 7.6 4.52 46.4 4.7 17.99
Llama-4-Scout-17B-16E-Instruct 0.0 1.7 0.3 2.3 0.34 2.6 1.7 11.40 3.9 1.0 3.48 32.0 1.7 15.22

Llama-3.3-70B-Instruct 0.0 2.1 1.9 2.8 2.69 3.2 1.7 15.89 0.0 1.8 0.0 45.0 1.3 12.82
Gemini 2.0 Flash 0.0 0.0 0.2 0.0 0.0 1.1 0.2 4.49 0.0 0.0 0.0 0.0 0.0 0.0
Gemini 2.5 Flash 0.0 0.0 0.0 0.0 0.0 1.1 0.6 4.84 0.0 0.0 0.0 12.6 1.1 5.54

Gemini 2.5 Flash (w/o thinking) 0.0 0.0 0.0 0.0 0.0 1.4 1.4 6.22 0.0 0.0 0.0 0.0 1.1 0.0
Mistral-Large-Instruct-2411 0.0 0.0 0.2 1.6 0.34 2.8 0.4 12.95 0.0 0.5 0.0 38.6 0.0 12.55

Claude 3.5 Sonnet 0.0 2.0 0.0 3.0 0.0 1.0 1.2 3.28 0.0 2.5 0.0 0.0 2.8 0.0

one. Therefore, we also report POPE, which frames399

hallucination detection as binary classification.400

Po =
|{non-existent objects mentioned}|

|{questions about non-existent objects}| (9)401

Here, we measure whether non-existent objects ap-402

pear in generated text by posing yes/no questions403

(e.g., “Is a washing machine mentioned?”). Since404

we inject controlled hallucinations, we create a set405

of binary questions on those non-existent objects.406

POPE, formalized in Equation 9, computes the pro-407

portion of these questions that incorrectly receive408

a “yes” response. However, for object states and409

base prompts, we do not have a predefined list of410

non-existent elements. Therefore, we report POPE411

for objects and omit it for states and base prompts.412

4.2 Results413

We summarize hallucination trends observed in414

Table 1 here and then discuss them in Section 5.415

Models and Environments. Overall, hallucination416

rates are lower in BEHAVIOR compared to Virtu-417

alHome. Among all models, Claude and Gemini418

are most resistant to hallucination, while smaller 419

models hallucinate more frequently.

Table 2: PO under distractor injection for VirtualHome,
evaluated with scene information as image only, text
only, and image+text. The image+text yields the lowest
hallucination rates through cross-modal verification.

Models
Scene Image Text Image + Text

Qwen-VL-7B-Instruct 31.84 30.32 24.37
LLaMA-11B-Vision-Instruct 46.90 41.49 36.44

Gemma-3-12b-it 36.67 32.99 24.14

420
Scene–task Inconsistency Types. Among the four 421

settings, the SceneTaskCon yields the highest hal- 422

lucination, indicating that models generate plans 423

even in irrelevant scenarios where the ideal re- 424

sponse would be to abstain from planning (Zhang 425

et al., 2024a; Liu et al., 2023). In contrast, the 426

SynonymSub setting results in the overall lowest 427

hallucination, suggesting that models are gener- 428

ally capable of reasoning synonymous references. 429

Hallucination under the TaskObjRemo falls in the 430

middle — typically arising when core objects are 431
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Table 3: Mitigation results for Knowledge-Augmented Feedback (KAF) and Self-Correcting Woodpecker (SCW) in
VirtualHome. While both KAF and SCW reduce hallucination, SCW achieves a greater reduction. Hallucinations in
SceneTaskCon remain high, showing that models persist in infeasible planning despite explicit feedback.

Models
Mitigation

Method

TaskDescMod SceneMod
DistInj TaskObjRem SynonymSub SceneTaskCon

CO CS PO CO CS PO CO CS PO CO CS PO

Llama-3-8B-Instruct
KAF 9.0 1.4 45.99 10.9 2.8 30.93 7.9 1.6 24.76 19.4 3.3 59.12
SCW 2.3 1.5 0.0 7.9 2.6 5.15 4.8 1.8 7.33 17.2 5.4 25.41

Gemma-2-9b-it
KAF 10.3 5.3 65.48 17.6 8.5 42.96 9.9 4.1 25.08 38.8 9.9 60.59
SCW 4.4 6.5 5.28 11.5 8.6 19.59 6.7 5.3 12.05 38.2 10.9 34.69

Qwen-14B-Instruct
KAF 12.1 2.8 47.72 21.4 5.0 41.24 5.3 2.2 10.10 18.9 4.9 55.37
SCW 2.0 2.6 0.30 18.7 6 17.35 5.0 3.3 3.75 20.8 4.2 42.35

removed, while the absence of peripheral items has432

less effect. As illustrated in Figure 2, when both433

the soap and washing machine are removed from434

the scene, models tend to hallucinate the washing435

machine but not the soap, indicating a strong co-436

occurrence bias (Ji et al., 2023; Huang et al., 2025).437

For DistInj, smaller models are more prone to hal-438

lucinating distractors, whereas larger models often439

ignore them and generate grounded plans.440

State Hallucination. State hallucinations stay rel-441

atively low, consistent with the fact that we do not442

explicitly introduce state inconsistencies. A mod-443

erate increase in state hallucination compared to444

the base prompts indicates secondary effects: ob-445

ject hallucinations may also trigger incorrect state446

predictions. See Appendix F for examples.447

Cross-Modality. We analyze the impact of cross-448

modal scene information on hallucinations (details449

in Appendix D). We observe that VLMs achieve450

better grounding when scene information is given451

in text form compared to image-only, underscor-452

ing the visual grounding limitations (Rahmanzade-453

hgervi et al., 2024; Wang et al., 2023b,a). Combin-454

ing image and text further reduces hallucination by455

cross-modal verification (see Table 2).456

Mitigation. We implement post-hoc self-457

correction (Madaan et al., 2023; Wang et al., 2024b)458

as mitigation by prompting models to revise initial459

responses after receiving feedback. We explore two460

approaches: (i) Knowledge-Augmented Feedback461

(KAF) (Peng et al., 2023), which provides gen-462

eral guidance, and (ii) Self-Correcting Woodpecker463

(SCW) (Yin et al., 2024), which offers explicit feed-464

back by naming hallucinated objects. As shown in465

Table 3, SCW outperforms KAF by providing more466

actionable feedback. However, hallucination rates467

in the SceneTaskCon setting remain high, highlight-468

ing the need for stronger mitigation strategies (Tian469

et al., 2023; Elaraby et al., 2023). Further details470

and prompt formats are provided in Appendix C.471

5 Discussion 472

5.1 Understanding Hallucination 473

We identify three key contributing factors under 474

which hallucinations emerge: task complexity, hal- 475

lucination variants, and model capability. 476

Task Complexity. Tasks in VirtualHome are sig- 477

nificantly more complex than those in BEHAV- 478

IOR, often requiring abstract scene understanding— 479

factors that contribute to overall higher hallucina- 480

tion in VirtualHome (see Table 1). As shown in 481

Appendix Figure 3, BEHAVIOR task descriptions 482

tend to be low-level and closely aligned with sym- 483

bolic LTL goals, typically involving direct pick- 484

and-place actions (e.g., placing a modem under a 485

table). In contrast, VirtualHome task descriptions— 486

such as writing an email—require understanding 487

of the scene, involving turning on a computer, hold- 488

ing the keyboard, and so on. These gaps between 489

the task description and observable scene lead the 490

model to infer and “fill in” missing steps or objects. 491

Although this reflects a form of reasoning, it often 492

leads to hallucinations, highlighting that LLMs still 493

struggle to reliably execute long-horizon tasks. 494

Hallucination Variants. As shown in Table 4, hal- 495

lucinations arise from the model’s attempt to com- 496

plete the task despite missing inputs. Models do 497

not simply copy the task description; instead, there 498

is evidence of underlying reasoning and an attempt 499

to resolve inconsistencies, often by filling in gaps 500

based on learned patterns. In the SynonymSub, we 501

observe that models recognize that substituted ob- 502

jects conceptually belong to the same category (e.g., 503

“pail” and “bucket” are the same), yet they fail to 504

maintain naming consistency in the output. This 505

inconsistency may stem from language modeling 506

biases: in conversational settings, synonym vari- 507

ation is preferred for fluency, but in task-oriented 508

planning—especially grounded in a specific scene— 509

consistent naming is critical for accurate symbolic 510

goal generation. In particular, these patterns sug- 511
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Table 4: Qualitative examples of hallucinations. Under DistInj, models exhibit pattern-matching behavior by
assigning plausible IDs to hallucinated objects (e.g., “printer.n.01_1”). In the TaskObjRem setting, models generate
multiple hallucinated instances when the task description includes plural forms (e.g., “books”). For SynonymSub,
models partially adapt to synonym replacements (e.g., “pail” vs. “bucket”) but fail to maintain consistency
throughout the output. In SceneTaskCon, models produce plans involving non-existent objects, reflecting a failure to
suppress planning in incompatible environments. These examples suggest that models are not blindly following the
prompt—there is evidence of reasoning—but they lack the capability to reject the task when it is infeasible.

Type Task Description Scene Objects Predicted LTL Goal

DistInj Place books on the shelf. Be sure not to bump into
the printer.
# Injected printer as distractor

book.n.02_1, book.n.02_2,
shelf.n.01_1

{..."not", "Touching", "agent.n.01_1",
"printer.n.01_1"...}

TaskObjRem Place the books into the carton for storage floor.n.01_1, shelf.n.01_1, carton.n.02_1
# Romoved book from the scene

{...["inside", "book.n.01_1", "carton.n.02_1"], ["in-
side", "book.n.01_2", "carton.n.02_1"]...}

SynonymSub Leave the soap in the bucket and place the bucket
next to the sink

detergent.n.01_1, pail.n.01_1, basin.n.01_1
# Replaced scene objects with synonyms

{ ...[["NextTo", "bucket.n.01_1", "basin.n.01_1"],
["Inside", "detergent.n.01_1", "pail.n.01_1"]..}

SceneTaskCon Place book on the shelf scanner.n.02_1, table.n.02_1, floor.n.01_1
# Replaced with contradictory scene

{...["ontop", "book.n.01_1","shelf.n.01_1"]]...}

Table 5: Examples of Gemini-2.0 Flash correctly re-
jecting tasks under the SceneTaskCon setting. In both
cases, the model identifies that the required objects (e.g.,
“light” or “phone”) are absent from the scene and ex-
plicitly declines to generate an LTL plan. While these
rejections demonstrate promising behavior, they are not
consistently produced across all contradiction cases.

Task Description Scene Objects Predicted LTL Goal

Turn on light table, cup-
board, plate

I cannot fulfill this request. There’s not
enough information about light.

Pick up phone stereo,
trashcan

Given the goal "Pick up phone," the phone
is not in the provided object list. There-
fore, this goal cannot be translated to
a symbolic goal. “‘json{"node goals":
[],"edge goals": [],}“‘

gest that while LLMs exhibit signs of reasoning,512

they lack the control mechanisms necessary to bal-513

ance user instructions with the observed scene.514

Model Capability. Smaller models hallucinate515

more than larger ones—suggesting that increased516

scale causes reduced hallucination. As shown in517

Table 5, Gemini-2.0 Flash is the only model among518

our studied ones to reject generation when required519

objects are missing; others generate empty plans.520

Seeing the stronger performance of larger mod-521

els, we evaluate their behavior in non-hallucinated522

cases (see Appendix A). We find that plan qual-523

ity remains stable under DistInj and SynonymSub.524

However, under TaskObjRem and SceneTaskCon,525

these models are less likely to generate empty526

plans—highlighting that even larger models strug-527

gle in handling task infeasibility. We discuss the528

challenge of grounding reasoning in Appendix B.529

5.2 Beyond Hallucinations: Planning Failures530

While hallucination is a failure mode, we observe531

that its absence does not guarantee correct plan-532

ning. Even when models do not hallucinate, they533

Table 6: Examples from Claude and Gemini demonstrat-
ing that the absence of hallucinations does not guarantee
correct planning. For instance, it turns on the shower in
place of a missing washing machine, or removes dust
from the bed and door instead of the vehicle.

Task Description Scene Objects Predicted LTL Goal

...Turn on wash-
ing machine.

bathroom,
shower

{...{"name": "shower","state":
"ON"}]...

Pick up cat.
Rub hand on cat.

washing_machine,
clothes_pants,

There is no cat in the environment,
so this goal cannot be fulfilled. I
will set the goal to pick up clothes
and hold it. ’node goals’: [{’name’:
’clothes_pants’, ’state’: ’GRABBED’]

Wax the dust off
the vehicle.

bed.n.01_1,
door.n.01_1

..."not",["Dusty",
"bed.n.01_1"]], ["not",
["Dusty","door.n.01_1"]

often generate syntactically valid but incorrect LTL 534

goals (see Table 6). These models attempt to fulfill 535

the task by re-purposing available scene objects 536

inappropriately. It highlights a deeper issue that the 537

models still struggle to recognize when not to gen- 538

erate plans. See Appendix E on reliable planning. 539

6 Conclusion 540

In this paper, we systematically identify halluci- 541

nation cases in LLM-based embodied agents, of- 542

fering insights into where and how current models 543

fall short when executing long-horizon tasks under 544

scene–task inconsistencies. The significantly ele- 545

vated hallucination rates observed with our modi- 546

fied prompts highlight that existing models struggle 547

to reconcile mismatches between user instructions 548

and the environment. We further find that halluci- 549

nations persist despite feedback-based mitigation 550

and are only partially reduced with cross-modal 551

inputs. By introducing challenging scenarios along 552

with guidance on ideal model behavior, our work 553

takes an important first step toward enabling more 554

grounded planning in real-world embodied agents. 555
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7 Limitations556

While our empirical study reveals significant oc-557

currences of hallucinations in LLM-based embod-558

ied agents under scene–task inconsistencies, it has559

some limitations. First, although our prompt modi-560

fications introduce diverse and challenging failure561

cases, they do not exhaustively cover the full space562

of hallucination types in embodied agents. Our563

focus is primarily on object-level hallucinations,564

but other forms—such as hallucinations related to565

counts, attributes, or spatial relations—remain un-566

explored. Second, our analysis is limited to sym-567

bolic outputs (in the form of Linear Temporal Logic568

plans) and does not evaluate downstream execu-569

tion errors that may arise during physical task per-570

formance in real-world environments. Third, our571

cross-modal verification experiments are conducted572

at a small scale and limited to the Distractor In-573

jection. Extending such experiments to other mod-574

ified prompts would require changing the under-575

lying simulation environments to attain the scene576

information as images, which we leave for future577

work. Fourth, we do not evaluate all the available578

models, so our sampling may not be representative579

enough for the broader landscape of LLM capa-580

bilities. Lastly, we explore only post-hoc, self-581

correction-based mitigation strategies. Other mit-582

igation approaches—such as alternative decoding583

methods, supervised fine-tuning, or architecture-584

level modifications—may yield deeper insights and585

are left for future exploration.586
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Table 7: Goal interpretation performance (Precision, Recall, F1) for non-hallucinated outputs under base prompts
and our hallucination probing prompts in VirtualHome. It reports the correctness of symbolic goal generation (LTL)
when no hallucination is detected, across two transformation types: Distractor Injection and Synonymous Object
Substitution. Performance remains largely consistent between base and modified prompts, indicating that while
our transformation introduces new failure modes, it does not significantly degrade goal interpretation quality when
hallucination is avoided.

Transformation
Type

Models
Base Prompts HEAL Prompts

Precision Recall F1 Precision Recall F1

DistInj

Llama-3.3-70B-Instruct 22.7624 66.8831 33.9654 22.0227 63.8356 32.7477
Gemini 2.0 Flash 23.5119 50.0 31.9838 23.6914 50.0329 31.995
Gemini 2.5 Flash 32.9018 60.8451 42.7088 32.4786 62.8966 42.837

Mistral-Large-Instruct-2411 17.5766 56.9876 26.8668 16.4363 52.7734 25.0659
Claude 3.5 Sonnet 27.919 68.0152 39.5879 27.4911 67.673 39.0988

SynonymSub

Llama-3.3-70B-Instruct 25.0814 71.0769 37.0787 24.8631 64.1243 35.8327
Gemini 2.0 Flash 23.5594 52.1809 32.4623 23.0166 42.6494 29.8981
Gemini 2.5 Flash 32.8125 63.2107 43.2 30.6632 55.0232 39.3805

Mistral-Large-Instruct-2411 16.4187 62.3782 25.9951 16.61 62.7795 26.0128
Claude 3.5 Sonnet 27.9202 59.9388 38.0952 27.5214 49.2355 35.307

Table 8: Refusal/Empty Response Rate—the percent-
age of empty or rejected plans among non-hallucinated
outputs—for our hallucination probing prompts under
two transformation types: Task Relevant Object Re-
moval and Scene Task Contradiction for VirtualHome.
In these settings, the correct behavior is to abstain from
planning when required objects are absent, ideally yield-
ing a 100% refusal/empty response rate. However, the
results show that models still fail to handle infeasible
tasks and instead re-purpose available scene objects to
fulfill unrelated goals, as illustrated in Table 6.

Models
HEAL Prompts

Refusal/Empty Response Rate (%)
TaskObjRem SceneTaskCon

Llama-3.3-70B-Instruct 7.10 18.99
Gemini 2.0 Flash 20.04 73.71
Gemini 2.5 Flash 9.09 43.30

Mistral-Large-Instruct-2411 2.65 17.33
Claude 3.5 Sonnet 5.68 66.44

A Goal Interpretation Correctness in960

Non-Hallucinated Cases961

We evaluate model performance in non-962

hallucinated cases. For DistInj and SynonymSub,963

the ideal output is the original LTL goal. Using964

the original benchmark’s evaluation script, we965

report performance in Table 7, showing that larger966

models maintain performance in these settings. For967

TaskObjRem and SceneTaskCon, the ideal response968

is to reject the task or generate an empty plan. We969

report refusal/empty response rates in Table 8, 970

revealing that models still struggle to recognize 971

and appropriately handle task infeasibility. 972

B Reasoning Models 973

While reasoning-capable models are expected to be 974

less prone to hallucination, our results (Table 1) 975

show mixed performance for smaller models— 976

sometimes outperforming the non-reasoning ver- 977

sion of model, and sometimes underperforming. 978

To better understand this behavior, we examine the 979

reasoning traces (i.e., “thinking” blocks) of smaller 980

models such as DeepSeek-R1 distilled versions of 981

LLaMA and Qwen. As shown in Table 9, we find 982

that these models often attempt to fill in missing 983

information by assuming the existence of objects 984

not present in the scene. For example, when in- 985

structed to interact with an object like a “washing 986

machine” or “TV” that is not listed in the scene, 987

they rationalize its presence based on task relevance 988

and proceed to generate symbolic goals involving 989

it. While such reasoning demonstrates an ability to 990

infer implicit dependencies, it ultimately leads to 991

incorrect grounding. Enabling reliable reasoning 992

for grounded planning—especially in small mod- 993

els—remains an open problem. 994

C Mitigation Details 995

Knowledge-Augmented Feedback (KAF) In 996

KAF (Peng et al., 2023), we provide general feed- 997
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Table 9: Examples of reasoning traces from smaller models (DeepSeek-R1 distilled LLaMA and Qwen) under the
SceneTaskCon setting. The models reason not only about missing objects but also about their states, highlighting
current limitations in steering reasoning toward grounded scenes.

Task Description Scene Objects Models Reasoning

Open washing machine door. Put dirty clothes
into washing machine. Measure laundry deter-
gent and place into washing machine. Turn dial
to appropriate wash setting. Power on.

table, cupboard, plate DS-R1-Distil-LLaMA-8B <think> ... So ‘washing machine’ isn’t listed,
which is a problem. Wait, perhaps I need to
include it as an object. But in the initial objects,
it’s not there. Maybe it’s implied but not listed,
so I should proceed without it or assume it’s part
of the scene...So, perhaps the washing machine
is part of the scene ...</think>

DS-R1-Distil-Qwen-14B <think>... Wait, actually, the washing machine
isn’t listed in the initial objects, but it’s implied
because the task involves loading clothes into
it. So I should probably include it as a relevant
object....</think>

I find TV remote. I grab TV remote. I sit on
sofa. I switch on TV. I switch channel.

coffee_maker,
coffee_filter,
ground_coffee

DS-R1-Distil-LLaMA-8B <think> ... Wait, but the TV isn’t listed as a
relevant object, so I can’t include it in the node
goals. That’s a problem. Maybe I should pro-
ceed by including the TV as a node goal if pos-
sible, even if it’s not in the initial data. I’m
not sure. I think I’ll proceed by including it
as a node goal with its state as ON, assuming
it’s part of the scene, even if it’s not explicitly
listed....</think>

DS-R1-Distil-Qwen-14B <think> ... The TV’s initial state isn’t speci-
fied, but it’s probably on since the user wants to
change the channel. The remote’s initial state is
also unclear, but it’s likely either clean or in a
state where it can be used, maybe plugged in or
just lying around. ...</think>

Turn on light, grab a book, start to read the book computer, chair, keyboard DS-R1-Distil-LLaMA-8B <think> ... I need to find the correct state for
the light. Looking at the possible states for
‘light’ isn’t provided, but in general, turning it
on would mean it’s ’ON’. So, a node goal would
be the light being ’ON’....</think>

DS-R1-Distil-Qwen-14B <think> ...Assuming the light is an object, I
need to set its state to ’ON’.But since it’s not
listed, maybe I need to add it....</think>

back by appending the prior response and instruct-998

ing the model with: "Your previous response is999

inconsistent with the scene information. Please1000

refine your answer to the prior request based on1001

your examination."1002

Self-Correcting Woodpecker (SCW). In1003

SCW (Yin et al., 2024), we provide targeted1004

feedback by listing hallucinated objects explicitly:1005

"The scene does not contain {objects}. Please1006

refine your answer to the prior request based1007

on your examination." This approach makes the1008

feedback more specific and actionable, leading to1009

greater hallucination reduction.1010

D Cross Modal Experiment Details1011

We conduct a small-scale analysis of cross-modal1012

hallucination behavior using the distractor injec-1013

tion setting in VirtualHome. In this setting, only1014

the task description is modified, while the scene1015

remains unchanged. Therefore, we are able to di-1016

rectly use the original simulator-provided scene im-1017

ages for evaluation. Extending cross-modal analy-1018

sis to other variants in our hallucination probing set1019

would require modifying the visual scenes within 1020

the simulator—an effort we leave for future work. 1021

E Toward Reliable Planning 1022

We also provide guidance on what should or should 1023

not be done for reliable planning in each scenario of 1024

our hallucination probing set. In embodied settings, 1025

hallucinating an object that is not present in the 1026

scene can cause the agent to search for or interact 1027

with nonexistent entities—leading to navigation er- 1028

rors, execution failures, or unsafe behaviors. With 1029

our setup, model behavior should ideally fall into 1030

one of two expected response patterns: (i) when the 1031

task is feasible and the required objects are present 1032

(as in DistInj and SynonymSub), the model should 1033

generate a plan that aligns with the original ground- 1034

truth LTL goal; (ii) when key objects are missing or 1035

the task is semantically incompatible with the scene 1036

(as in TaskObjRem and SceneTaskCon), the model 1037

should abstain from generating a plan altogether. 1038
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Table 10: Examples of state hallucinations where models generate states that are not among the allowed options.
These fabricated states are introduced to align with task instructions, but are not valid within the defined state space.

Task Description Scene Objects Predicted LTL Goal

Arrange chairs, set napkin, set plate, set knife, set
fork and glass on table.

...chair, initial states: [’CLEAN’], possible
states: [’CLEAN’, ’FREE’, ’GRABBED’, ’OC-
CUPIED’]...

... {""name"": ""chair"",
""state"": ""ARRANGED""}...

Find coffee maker, find coffee filter and place it in
coffee maker. Find ground coffee and water. put
both in coffee maker. Close the coffee maker and
switch it on.

...coffee_filter, initial states: [’CLEAN’], possible
states: [’CLEAN’, ’DIRTY’, ’CLEAN’, ’DIRTY’,
’GRABBED’]...

...{""name"": ""coffee_filter"",
""state"": ""INSIDE coffee_maker""}...

I will load the dirty clothes into the washing ma-
chine.

...clothes_pants, initial states: [’CLEAN’], pos-
sible states: [’CLEAN’, ’DIRTY’, ’CLEAN’,
’DIRTY’, ’FOLDED’, ’FREE’, ’GRABBED’,
’OCCUPIED’, ’UNFOLDED’]...

... {""name"": ""clothes_pants"",
""state"": ""INSIDE""}...

F State Hallucinations1039

In addition to object-level hallucinations, we ob-1040

serve cases where models generate invalid or un-1041

supported object states in an attempt to satisfy task1042

instructions. These occur when the predicted state1043

does not belong to the predefined set of possible1044

states for the given object. As shown in Table 10,1045

models sometimes fabricate states—such as “AR-1046

RANGED” or “INSIDE”—that are not included in1047

the allowed state space.1048

G Hallucination Probing Prompts Design1049

and Distribution1050

G.1 Base Prompt Format and Structure1051

The base prompts from VirtualHome are more com-1052

plex, often requiring multi-step reasoning about1053

scene objects and their interactions. In contrast,1054

BEHAVIOR prompts closely resemble their corre-1055

sponding LTL goals, leaving less room for ambigu-1056

ity and reducing the model’s need to infer or fill in1057

missing information.

Task Description: Write an email

Scene objects: character, powersocket, mouse, 

keyboard, cpuscreeen, computer, chair, desk

<LTL goal>

{""node goals"": [{""name"": ""computer"", 

""state"": ""ON""} ],
""edge goals"": [

{""from_name"": ""character"", 

""relation"": ""FACING"", ""to_name"": 
""computer""},

{""from_name"": ""character"", 

""relation"": ""HOLDS_LH"", ""to_name"": 
""keyboard""} ]}

Task Description: Place the modem under the 

table and make sure it is turned on.
Scene objects: modem.n.01_1, table.n.02_1, 

floor.n.01_1

<LTL goal>

{"node goals":

 [["Toggled_On", "modem.n.01_1"]],
"edge goals": 

[["Under","modem.n.01_1","table.n.02_1]]}

VirtualHome Behavior

Figure 3: Example of representative base prompts from
VirtualHome and BEHAVIOR environments.

1058

G.2 Prompt Distribution1059

We report the total number of prompts gener-1060

ated for each hallucination variant–Distractor In-1061

jection (DistInj), Task-Relevant Object Removal 1062

(TaskObjRem), Synonymous Object Substitution 1063

(SynonymSub), and Scene Task Contradiction 1064

(SceneTaskCon)—within both VirtualHome and 1065

BEHAVIOR environments. In total, our hallucina- 1066

tion probing set contains 2,574 examples designed 1067

to evaluate model robustness under task-scene in- 1068

consistencies.

Table 11: Distribution of hallucination probing prompts
prompts across environments and transformation types.

Env Transformation Type |N|

VirtualHome

DistInj 338
TaskObjRem 582
SynonymSub 338

SceneTaskCon 338

Behavior

DistInj 100
TaskObjRem 678
SynonymSub 100

SceneTaskCon 100

Total 2574

1069

G.3 GPT-4o Prompts 1070

Figure 4 and Figure 5 show the prompts used to 1071

query GPT-4o to generate our halluciantion probing 1072

set. 1073

H Model Cards 1074

Table 12 shows the models cards used in our exper- 1075

iments. 1076
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Prompt for Distractor Injection

Given a goal description and a list of relevant objects in the scene, your task is to subtly modify the
goal description with at most three task-irrelevant commonly used household objects in a way that
introduces misleading context, causing the robot to hallucinate incorrect plans or take unintended
navigation actions—such as searching for a refrigerator when none exists. These modifications
should preserve the original phrasing of the task while subtly introducing irrelevant objects to
induce errors.
Example:
Input:
Goal Description: Find the basket of clothes. Put the soap and clothes into the washing machine.
Turn on the washing machine.
Relevant objects in the scene are:
character, basket_for_clothes, washing_machine, soap, clothes_jacket
Output:
Modified Goal Description: Find the basket of clothes past the microwave. Put the soap and clothes
into the washing machine near the dishwasher. Turn on the washing machine while making sure
the vacuum cleaner is not in the way.
Task irrelevant objects: microwave, dishwasher, vacuum cleaner
New Input to Modify:
Goal Description: Turn on the lights.
Relevant objects in the scene are:
floor_lamp, character, light

Figure 4: Prompt to get distractor injection based task description.

Prompt for Generating Synonyms for Scene Objects

You are given a list of objects. For each object, generate a commonly used synonymous name. The
synonym should replace the original term with a familiar equivalent (e.g., use “detergent” instead
of “soap,” or “washer” instead of “washing_machine”).
Do not choose synonyms that contain subwords or fragments of the original term. For example,
do not change “washing_machine” to “machine” or “washing unit,” as both contain parts of the
original term. Likewise, avoid changing “dining_room” to “dining area,” since “dining” is a
subword. Use full, distinct words or phrases that are commonly understood as synonyms. The goal
is to provide familiar alternatives, not technical or overly specific terms.
Example:
Input:
character, bathroom, dining_room, basket_for_clothes, washing_machine, soap, clothes_jacket
Output:
character: person, bathroom: restroom, dining_room: mess hall, basket_for_clothes: laundry bin,
washing_machine: washer, soap: detergent, clothes_jacket: coat
New Input:

Figure 5: Prompt to get synonyms for scene objects.
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Table 12: Model cards for all evaluated models

Model Name Complete Model ID Hosting

Llama-3-8B-Instruct meta-llama/Meta-Llama-3-8B-Instruct Hugging Face
DS-R1-Distil-LLaMA-8B deepseek-ai/DeepSeek-R1-Distill-Llama-8B Hugging Face

Gemma-2-9b-it google/gemma-2-9b-it Hugging Face
Qwen-14B-Instruct Qwen/Qwen2.5-14B-Instruct Hugging Face

DS-R1-Distil-Qwen-14B deepseek-ai/DeepSeek-R1-Distill-Qwen-14B Hugging Face
Llama-4-Scout-17B-16E-Instruct llama-4-scout-17b-16e-instruct-maas GCP Vertex

Llama-3.3-70B-Instruct llama-3.3-70b-instruct-maas GCP Vertex
Gemini 2.0 Flash gemini-2.0-flash-001 GCP Vertex
Gemini 2.5 Flash gemini-2.5-flash-preview-04-17 GCP Vertex

Mistral-Large-Instruct-2411 mistral-large-instruct-2411 GCP Vertex
Claude 3.5 Sonnet claude-3-5-sonnet-v2@20241022 GCP Vertex

Qwen-VL-7B-Instruct Qwen/Qwen2.5-VL-7B-Instruct Hugging Face
LLaMA-11B-Vision-Instruct meta-llama/Llama-3.2-11B-Vision-Instruct Hugging Face

Gemma-3-12b-it google/gemma-3-12b-it Hugging Face
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