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Abstract. Class-agnostic object counting aims to count objects of arbi-
trary classes with limited information (e.g ., a few exemplars or the class
names) provided. It requires the model to effectively acquire the char-
acteristics of the target objects and accurately perform counting, which
can be challenging. In this work, inspired by that text-to-image diffusion
models hold rich knowledge and comprehensive understanding of real-
world objects, we propose to leverage the pre-trained text-to-image dif-
fusion model to facilitate class-agnostic object counting. Specifically, we
propose a novel framework named CountDiff with careful designs, lever-
aging the pre-trained diffusion model’s comprehensive understanding of
image contents to perform class-agnostic object counting. The experi-
ments show the effectiveness of CountDiff on both few-shot setting with
exemplars provided and zero-shot setting with class names provided.

Keywords: Class-agnostic object counting · Text-to-image diffusion
model · Few-shot and zero-shot

1 Introduction

The task of object counting aims to accurately estimate the number of instances
of a specified object in an image. It is crucial for various real-life scenarios, such
as traffic surveillance [25], crowd monitoring [42], and wildlife conservation [28].
Many existing counting methods focus on specific classes such as crowd [20,41],
cars [15,26], and animals [28]. However, such methods usually rely on laborious
data annotations and the trained model often cannot be easily adapted to count
novel object classes. To alleviate these limitations, class-agnostic counting aims
to count objects of novel target classes with very few annotations required (e.g .,
a few exemplars or class names) [35,45]. Under this setting, a single model can be
employed to count a wide range of object categories at a low cost of annotation,
offering enhanced flexibility and applicability for diverse real-world scenarios.
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Specifically, some methods [24,34,35] count objects of arbitrary classes with
the information in the exemplars or repeating patterns in the image, while some
other methods [1,45] explore object counting based on the provided class names.

Despite lots of research efforts, achieving class-agnostic object counting is
still challenging. In particular, to adapt to counting objects of arbitrary classes,
the model needs to first effectively learn the characteristics of an arbitrary object
class from only a few exemplars (or the provided class names). Then, to accu-
rately find and count the specific target objects in the image, the model is fur-
ther required to have a thorough understanding of the detailed information in
the given image (e.g ., textures, shapes, and spatial locations of the objects).
This can be difficult, especially when the image contains numerous objects [47],
where the features of each object can be subtle.

On the other hand, recently, pre-trained text-to-image diffusion models (e.g .,
Stable Diffusion [36]) have shown unprecedented power in generating images with
rich details and reasonable spatial structures guided by user prompts [9,38,49].
The success of this line of works implies that, being able to accurately generate
images with large amounts of details, the pre-trained text-to-image diffusion
model has a comprehensive and detailed understanding of images, covering from
pixel-level contents to overall layouts (e.g ., object textures, object shapes, and
spatial structures and locations in the image) [17]. Importantly, having such
knowledge and understanding can be very beneficial for class-agnostic object
counting.

Inspired by the knowledge and understanding of text-to-image diffusion mod-
els toward image contents, in this paper, we aim to investigate leveraging such
understanding to boost the performance of class-agnostic object counting. How-
ever, using pre-trained text-to-image diffusion models to perform counting is not
straightforward, as such diffusion models are generally built for text-to-image
generation and cannot be directly applied to object counting in the image, i.e.,
though they hold rich knowledge, the knowledge is implicitly embedded in the
model. Thus, it can be challenging to effectively extract and leverage the desired
knowledge to facilitate counting. To cope with this issue, we delve deep into the
characteristics of text-to-image diffusion model and investigate strategies for its
effective utilization to facilitate class-agnostic counting.

A key advantage of text-to-image diffusion model (e.g ., Stable Diffusion)
lies in its ability to link the semantic information in text to image content. As
observed in [17], such ability can be explicitly reflected in the cross-attention
maps, which can highlight specific regions in the image based on text descrip-
tions. This inspired us that, leveraging this property of the diffusion model, we
can obtain cross-attention maps that can explicitly point out the useful regions
in the image to aid in performing class-agnostic counting. However, obtaining
such cross-attention maps can be difficult, because the image regions are acti-
vated in cross-attention maps based on the text inputs. This means that, to
obtain the cross-attention maps, we need proper text inputs to describe such
useful regions for counting the target objects. Yet, finding such proper text
inputs can be challenging: 1) As we need to perform counting for the target
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object class, the text input should contain specific information about the tar-
get objects. However, no such readily available text information is provided in
few-shot class-agnostic counting, and it can be difficult to precisely describe the
objects or object parts of interest in real-world scenarios. 2) There can also be
some general information that can facilitate counting objects of various classes,
which can be hard to describe in text. To tackle this challenge, instead of finding
such text descriptions, we propose to specifically learn embeddings that encodes
the instruction in the embedding space to obtain cross-attention maps that can
facilitate class-agnostic counting.

More specifically, in this paper, we aim to boost the performance of class-
agnostic counting by effectively extracting the knowledge in the pre-trained dif-
fusion model. To achieve this, we propose a novel framework named CountDiff
that can flexibly perform counting for both few-shot (with a few exemplars pro-
vided) and zero-shot (with class names provided) settings. The key design of
our CountDiff lies in activating the ability of text-to-image diffusion models to
facilitate class-agnostic counting. This is achieved by extracting knowledge from
the pre-trained diffusion model using embeddings that specifically encode useful
information. To better tackle this task, we propose to learn two embeddings to
properly describe such useful information. In the few-shot setting, first, to encode
the specific information of the target object in each image, CountDiff learns an
object-specific embedding by mapping the image information in the exemplars
to the text embedding space. In this way, the diffusion model can understand
the visual information of the target object in the exemplars. Then, as class-
agnostic object counting requires the model to have good generalization ability
for diverse object classes, we further propose to learn an object-agnostic embed-
ding to extract knowledge that can be shared for counting objects of different
classes. On the other hand, CountDiff can be flexibly switched to the zero-shot
setting by obtaining the object-specific embeddings using the provided class
names. Combining the power of both object-agnostic and object-specific embed-
dings, CountDiff can effectively extract knowledge from the cross-attention layers
that explicitly reveal useful information for class-agnostic counting.

Besides leveraging the cross-attention maps to point out image regions that
are useful for class-agnostic counting, we also take advantage of the rich semantic
grouping information in self-attention maps of the pre-trained diffusion model,
which can also benefit object counting. Moreover, in the few-shot setting, to
better extract knowledge for the target objects in the testing image, we apply a
lightweight test-time adaptation to further adapt (fine-tune) the object-specific
embedding to better represent the novel objects leveraging the provided exem-
plars. Leveraging the pre-trained diffusion model and our careful designs, Count-
Diff can effectively perform class-agnostic counting.

Inspired by the powerful capability of the text-to-image diffusion model, from
a new perspective, we investigate leveraging its comprehensive understanding of
image contents to explicitly highlight useful information for class-agnostic count-
ing. To achieve this, we propose a novel framework, CountDiff, with careful
designs that enable the pre-trained diffusion model to perform counting, taking
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advantage of the cross-attention and self-attention maps as well as the specifi-
cally learned embeddings. Our CountDiff achieves state-of-the-art performance
on both zero-shot and few-shot settings.

2 Related Work

Class-Specific Counting. Class-specific counting aims to count the objects
of a specific class in an image (e.g ., crowd counting [3,19,33,42], car counting
[15,26], and animal counting [2,28]). Most existing methods can be roughly cat-
egorized into two groups: detection-based methods that rely on object detectors
to localize and count the objects [7,18], and regression-based methods that pre-
dict density maps and obtain the final results by summing the pixel values in the
density maps [5,22,33]. Different from class-specific counting methods, in this
paper, we focus on class-agnostic counting.

Class-Agnostic Counting. Recently, class-agnostic counting has attracted
much research attention due to its flexibility. Specifically, in the few-shot setting
[6,11,21,24,27,35,40,43,46,47], a few exemplars of the target class are provided
in the image to specify the target object. To further reduce the annotations
required, exemplar-free class-agnostic counting was proposed [34], whereby no
exemplar is provided during inference. These methods usually identify target
objects automatically based on the general information in the image (e.g ., repet-
itive object patterns) and perform counting [14,44]. However, we cannot specify
the target objects for exemplar-free methods to count, which potentially lim-
its their practical use [45]. To address this limitation and meanwhile have low
requirements on annotations, more recently, zero-shot class-agnostic counting
that specifies the target of interest by its class name was proposed [45]. In this
work, we investigate few-shot and zero-shot class-agnostic object counting tasks
and develop a novel framework CountDiff that handles both tasks.

To facilitate the model to count an arbitrary class, existing few-shot
approaches usually extract the image and exemplar features using pre-trained
networks (e.g ., SwAV [4]) and match the exemplar features with the image
features to predict a density map. Gong et al . [11] proposed to incorporate a
pre-trained edge detection module to enhance class-agnostic feature learning.
Liu et al . [6] proposed a transformer-based counting method with a two-stage
training scheme to boost performance. Dukić et al . [43] proposed an iterative
prototype adaptation method with enhancement on the shape information of
the target objects. On the other hand, most zero-shot methods adapt to count-
ing objects of arbitrary classes leveraging semantic information extracted from
the class name with the help of the pre-trained CLIP model [30]. Xu et al .
[45] first extracted semantic information of the target object using CLIP and
then generated exemplar prototypes with a variational autoencoder. Jiang et
al . [16] proposed to align class names and image patches with patch-text con-
trastive loss. Different from these methods, in this paper, we take advantage of
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the detailed image understanding ability of pre-trained diffusion model (e.g., spa-
tial layout and locations of the objects), and propose specific designs to extract
useful knowledge for class-agnostic counting. To the best of our knowledge, we
are the first to leverage the cross-attention maps as well as the self-attention
maps in the pre-trained diffusion model with the help of the specifically learned
embeddings, to effectively perform class-agnostic counting.

Text-to-Image Diffusion Models. Recently, text-to-image diffusion models
have shown their strong ability and have been studied in various vision domains
[17,29,38,49,50]. Specifically, with the advent of pre-trained text-to-image dif-
fusion models (e.g ., Stable Diffusion [36], DALL-E [31,32], and Imagen [39]),
research studies have proposed to leverage such pre-trained models to further
improve specific image generation ability. For example, ControlNet [49] flexi-
bly manipulates the image generation process with a set of conditional controls
(e.g ., pose and depth). DreamBooth [38] fine-tunes a pre-trained diffusion model
to inject novel user-defined concepts to generate images of novel subjects. The
strong ability to generate photorealistic images implies that pre-trained diffusion
models contain rich and detailed knowledge, and can understand how real-world
objects should look like [8,17]. Inspired by this, in this work, we propose to
leverage the pre-trained diffusion model to benefit class-agnostic counting.

3 Method

3.1 Preliminaries: Text-to-Image Diffusion Models

Fig. 1. Visualization of cross-
attention and self-attention maps
in Stable Diffusion. (a) shows the
input image, (b) shows the cross-
attention map obtained using the
text input “seagulls”, and (c) shows
the 2D attention map of the
marked pixel location (pointed by
the red arrow) obtained from the
self-attention map.

Text-to-image diffusion models learn to recon-
struct a data distribution z0 from normally
distributed noise zT , by gradually denoising
zT in the reverse diffusion process conditioned
on the text input. In our framework, we adopt
the widely-used Stable Diffusion [36], which
has shown its power in generating photoreal-
istic images of diverse contents [10,12,38,49].
Specifically, during training, given an image
input I and a text input y, Stable Diffusion
first maps I into the latent space with a pre-
trained image encoder E , and encodes y into
the text embedding space with a text encoder
τθ. The conditional diffusion process is learned
by a diffusion model εθ that is a denoising
UNet [37]. At time step t, given the noisy
image latent zt and the text embedding τθ(y),
the objective is to accurately remove the noise ε added to the image latent E(I):

LLDM = EE(I),ε∼N (0,1),t

[
‖ε − εθ(zt, t, τθ(y)‖22

]
(1)
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Fig. 2. Best viewed in color. (a) Illustration of the class-agnostic object counting task
with few-shot (providing exemplars) and zero-shot (providing class name) settings.
(b) Illustration of the proposed CountDiff framework. For the few-shot setting, we
use the exemplar projector φE to obtain the object-specific embedding Eos from the
exemplars (following the green arrows), and construct the object-agnostic embedding
Eoa as a learnable vector. Then, given the input image and the embeddings, we extract
the attention maps (cross-attention map MCA, self-attention map MSA, and enhanced
attention map MEA) to obtain useful information for counting the target objects. The
attention maps are then sent to the regression head φR to predict the density map
D. CountDiff can also be switched to perform zero-shot class-agnostic object counting,
by obtaining the object-specific embedding leveraging the pre-trained text encoder
τθ (following the yellow arrows). In CountDiff, parameters of the pre-trained text-to-
image diffusion model are frozen. During training, the learning for both object-specific
and object-agnostic embeddings as well as the regression head are optimized such that
the embeddings can well encode the semantic information that is beneficial for class-
agnostic object counting and φR can generate high-quality density maps.

In this process, the interaction between the image content and the text
content is modeled in the cross-attention layers employed in the denoising
UNet. Specifically, in the l-th cross-attention layer, the query Ql

c is derived
from the noisy image latent zt, while the key Kl

c and value V l
c are obtained

from the text embedding τθ(y). The output of this layer is then computed as

SoftMax
(Ql

cKl
c
T

√
dl

)·V l
c , where dl denotes the projection dimension of Ql

c, Kl
c and

V l
c . Consequently, we can obtain the cross-attention map M l

CA, computed as:

M l
CA = SoftMax

(Ql
cK

l
c
T

√
dl

)
(2)

As the cross-attention map is obtained via computing the correlation between
the image content in Ql

c and the semantic text content in Kl
c, it can reflect

the correlation between the image and text [8,17]. As shown in Fig. 1 (b), the
cross-attention map explicitly depicts the semantically correlated image regions
corresponding to the text input.

Besides cross-attention layers, Stable Diffusion also has self-attention layers
in its UNet structure that can model the semantic association between image
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pixels. In the m-th self-attention layer, the query Qm
s , key Km

s , and value V m
s

are all derived from the noisy image latent zt. The self-attention map Mm
SA in

this layer can be obtained via:

Mm
SA = SoftMax

(Qm
s Km

s
T

√
dm

)
, (3)

where dm denotes the projection dimension of Qm
s and Km

s . As the self-attention
map is computed with the correlation between Qm

s and Km
s which are both

derived from the image contents, it can contain information about the semantic
association between each pixel and other pixels [17]. As shown in Fig. 1 (c), pixels
belonging to the same object tend to have higher correlations. Such semantic
grouping information can provide insight for class-agnostic counting.

3.2 Proposed CountDiff Framework

In class-agnostic object counting, generally the model is trained on a set of known
object classes Ctr, supervised by ground-truth density maps. Then, the model
is required to generalize to counting objects of novel object classes c ∈ Cte.
Specifically, as shown in Fig. 2 (a), in the few-shot setting, the target class is
specified by n exemplars, annotated by n bounding boxes {bi}n

i=1 in the image.
Meanwhile, in the zero-shot setting, the target class is indicated by the class name
yc. In this paper, our proposed CountDiff framework can be flexibly switched to
perform few-shot or zero-shot object counting as shown in Fig. 2 (b).

The key insight in CountDiff is that the cross-attention maps in the diffusion
model can explicitly reveal the semantic association between the image content
and the text input. Thus, given any image, we can leverage the cross-attention
maps to conveniently highlight useful information to count the target objects
with proper descriptions. However, it can be non-trivial to get such textual
descriptions during testing, such as small objects shown in the final two rows in
Fig. 4. To this end, we seek to exploit the text embedding space of the pre-trained
diffusion model and learn to encode such information in the embeddings.

As illustrated in Fig. 2 (b), CountDiff comprises the following processes. 1)
To extract useful information from the pre-trained diffusion model, we propose
to learn object-specific embedding and object-agnostic embedding in the text
embedding space. 2) Leveraging the learned embeddings, we extract relevant
knowledge for class-agnostic counting, such as cross-attention maps that high-
light useful information in the given image. 3) With the obtained attention maps,
we predict the density map via a regression head. Below, we first introduce
these processes in few-shot class-agnostic counting, and subsequently explore
how CountDiff can be flexibly switched for the zero-shot setting.

Embedding Set Construction. To facilitate few-shot class-agnostic counting,
we propose to learn two types of embeddings to extract knowledge: 1) to count
the target objects, we propose to learn an object-specific embedding Eos to extract
the specific knowledge of target objects; and 2) to enhance the generalization
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ability, we propose to further learn an object-agnostic embedding Eoa to extract
the general knowledge that can be shared in counting objects of different classes.
Below we introduce these two embeddings in detail.

As shown in Fig. 2 (a), in the few-shot setting, no text information is given
and only a few exemplars are provided to represent the target class. To enable the
diffusion model to comprehend the information of the target object represented
by the exemplars, we propose to project the visual information in the exemplars
into the text-embedding space.

Specifically, given an input image I and n exemplars (i.e., n bounding boxes
{bi}n

i=1 in this image), we first extract the image feature fimg and obtain the
exemplar features {fi}n

i=1 by RoI pooling. These exemplar features are then
passed to the exemplar projector φE as shown in Fig. 2 (b). The exemplar pro-
jector maps the visual features to text embedding space and obtains Eos as:

fi = RoIPooling(fimg, bi), Eos =
1
n

n∑
i=1

φE(fi), Eos ∈ R
de (4)

where de denotes the dimension of the text embedding in the diffusion model.
Via this manner, the object-specific embedding Eos is obtained, which links the
information in the exemplars to the text embedding space and represents the
semantic information of the target objects in this image.

Moreover, in class-agnostic object counting, there could exist some common
counting knowledge that can be shared for counting various object classes (e.g .,
repetitive object patterns in the image can be exploited to assist counting).
Ideally, during training, the model should acquire some common counting ability
that can be shared for counting novel classes during inference. Thus, to enhance
the learning of such general ability, we further incorporate an object-agnostic
embedding Eoa ∈ R

de , as shown in Fig. 2 (b).
Particularly, different from the object-specific embedding that is obtained as

an output of the projector φE for a specific input, the object-agnostic embedding
Eoa is designed as a learnable embedding, which is updated to apply to every
image as the model parameters. Thus, during training, it is pushed to capture
the general understanding that can contribute to counting for every object class.

After obtaining both the object-specific embedding Eos and the object-
agnostic embedding Eoa, we formulate an embedding set as E = {Eos, Eoa}.

Knowledge Extraction Using Object-Specific and Object-Agnostic
Embeddings. Now that we have constructed the embeddings, we then aim
to leverage them to extract knowledge from the pre-trained diffusion model.
Considering that the cross-attention layers in the diffusion model can explicitly
highlight the relevant image regions given the text input, we propose to extract
knowledge that explicitly highlights the relevant information for class-agnostic
object counting.

Specifically, as shown in Fig. 2 (b), given an input image I, we first encode it
into latent zimg = E(I) using the encoder E of the diffusion model and add noise
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to obtain the noisy latent z. The noisy latent z is sent into the denoising UNet
εθ, along with the embedding set E = {Eos, Eoa} containing the object-specific
and object-agnostic embeddings. Then, conditioning on E, we can extract cross-
attention map M l

CA from the l-th cross-attention layer as:

M l
CA = SoftMax

(Ql
cK

l
P

T

√
dl

)
,M l

CA ∈ R
hl×wl×2, (5)

where query Ql
c is projected from the image latent, and key Kl

P is derived from
the embeddings {Eos, Eoa}, and hl and wl represent the scale of the attention
map. The obtained MCA contains two 2D cross-attention maps corresponding
to Eos and Eoa respectively. As the diffusion model (e.g., Stable Diffusion) has
multiple cross-attention layers, following Eq. (5), we obtain cross-attention maps
for the embeddings over all the layers. Then, we resize and average these cross-
attention maps from different layers, and take the averaged result as the final
cross-attention map MCA ∈ R

h×w×2.

Fig. 3. Visualizations of attention
maps. (a) shows the input image,
(b) shows the cross-attention map
MCA obtained using the embed-
dings, (c) shows self-attention map
MSA at the pixel locations pointed
by the red arrows, and (d) shows
the enhanced attention map MEA.

Besides cross-attention maps, we also
leverage the self-attention maps in the pre-
trained diffusion model. As introduced in
Sect. 3.1, self-attention maps can encode the
semantic correlation between each pixel and
other pixels, which can reveal semantic group-
ing information to facilitate class-agnostic
counting. Via Eq. (3), we can obtain the self-
attention map Mm

SA for the m-th self-attention
layer. We also average self-attention maps
from different layers to obtain the final self-
attention map MSA ∈ R

h×w×h×w.
Moreover, as self-attention map reflects

the correlation between each pixel and other pixels, it inherently contains group-
ing information for all image contents, including the background. Thus, to incor-
porate the semantic information of the specific image contents encoded in the
embeddings, we apply cross-attention map MCA to self-attention map MSA and
obtain the enhanced attention map MEA ∈ R

h×w×2 via:

MEA(:, :, p) =
h∑

k=1

w∑
j=1

MCA(k, j, p)MSA(k, j, :, :), (6)

where MCA(k, j, p) is the attention value of pixel location (k, j) for the p-th
embedding, p ∈ {1, 2}, and MSA(k, j, :, :) ∈ R

h×w is the 2D attention map for
pixel location (k, j). Intuitively, this operation gathers the grouping information
of the pixels that are highlighted in the cross-attention map in a weighted sum
manner, and returns grouping information relevant to the semantic information
in the embeddings as the enhanced attention map [17].

As shown in Fig. 3, leveraging the embedding set, the attention maps can
explicitly point out the useful information in the image for class-agnostic count-
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ing. In the following, we describe how we leverage such information to effectively
perform class-agnostic object counting.

Obtaining Density Map Guided by Extracted Knowledge. We obtain
the density map by constructing a regression head φR and leveraging the knowl-
edge extracted with the pre-trained diffusion model, i.e., the cross-attention map
MCA, self-attention map MSA, and enhanced attention map MEA. In specific,
we rearrange MSA to M ′

SA ∈ R
(hw)×h×w, concatenate it with MCA and MEA

and pass the concatenated representations into the regression head. The pre-
dicted density map D is obtained via: D = φR([MCA,M ′

SA,MEA]). Finally, the
predicted number (n) of the target objects is calculated by summing the pixel
values in the predicted density map: n =

∑
k,j D(k, j).

To train our model, we calculate the normalized MSE loss between the
ground-truth density map Dgt and the predicted density map D following [43].
In addition, we incorporate the original loss of the diffusion model LLDM in
Eq. (1). Instead of updating the text encoder and diffusion model as in text-to-
image diffusion models, here we aim to leverage LLDM to guide the learning of
the embeddings. Intuitively, this can help to restrict the learned embeddings to
be within the text embedding space of the diffusion model. Overall, the objective
is formulated as:

LCountDiff =
1
N

‖dgt − d‖22 + λLLDM , (7)

where N is the number of the target objects, and λ is the weight of LLDM .

Test-Time Adaptation for Eos. Previous method [35] adopts test-time adap-
tation to improve the performance. Our CountDiff can also support a light-
weight test-time adaptation scheme to further adapt (fine-tune) the object-
specific embedding Eos such that it can better represent the novel objects for
few-shot class-agnostic counting.

In particular, during testing, after obtaining Eos using the exemplar projector
φE given the exemplars, we can then regard Eos as a learnable embedding with
initialized value, and conduct adaptation of Eos. As shown in Fig. 2 (a), in few-
shot setting, the few (n) exemplars indicated by bounding boxes in the image
are provided. Thus, though no ground-truth density map of the whole image
is available, we can generate the density map values within these n exemplar
boxes based on the center locations and sizes of the exemplar boxes, which can
be considered as a guidance signal. We denote the generated density map as Dg.
Also, we can obtain the masked predicted density map Dm containing predicted
density map values in the exemplar boxes areas by masking the predicted density
map D with the exemplar boxes. Then, we compare Dg and Dm to compute the
loss L only within the exemplar box areas. The object-specific embedding Eos

is fine-tuned via:
L =

1
n

‖Dg − Dm‖22,
Eos ← Eos − α∇Eos

(L),
(8)
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where α is the learning rate of this adaptation. Note that as Eos is initialized by
the output of the exemplar projector, it can have a good starting point and thus
it only needs very lightweight fine-tuning. More details are in Supplementary.

CountDiff for Zero-Shot Setting. CountDiff can also be flexibly switched to
perform zero-shot class-agnostic counting (providing class name yc) as shown in
Fig. 2 (b). This switch is conveniently achieved by changing the object-specific
embedding Eos. In the zero-shot setting, Eos is obtained using the provided
class name yc. As yc is in text form, we can leverage it to extract relevant
knowledge from the diffusion model. As shown in Fig. 2 (b), we take advantage
of the pre-trained text encoder τθ in the text-to-image diffusion model to obtain
the object-specific embedding: Eos = τθ(yc). Then, using the obtained object-
specific embedding Eos along with the object-agnostic embedding Eoa, we can
extract the attention maps via Eqs. (3), (5) and (6) and predict the density map
with the regression head φR.

3.3 Training and Testing

Few-Shot Setting. During training, each input image is provided with several
exemplars and a ground-truth density map. Using the ground-truth density map,
we can obtain loss for each image via Eq. (7). The loss is used to update the
exemplar projector φE , the learnable object-agnostic embedding Eoa, and the
regression head φR. During testing, we directly adopt the learned object-agnostic
embedding Eoa, and meanwhile use the trained φE to obtain the object-specific
embedding Eos. Then we extract the attention maps to predict the density map.
Moreover, to better represent the target objects with the object-specific embed-
ding, we apply test-time adaptation as formulated in Eq. (8) to fine-tune Eos

for a small number (r) of iterations. Using the updated Eos, we can obtain the
final predicted density map.

Zero-Shot Setting. During training, each input image is provided with the
class name of the target object in this image and the ground-truth density map.
The loss is computed as in Eq. (7) and is used to optimize the learnable object-
agnostic embedding Eoa and the regression head φR. During testing, given an
image of new objects, we obtain the object-specific embedding Eos using the pre-
trained text encoder of the diffusion model. Together with the object-agnostic
embedding Eoa learned at the training stage, we can extract knowledge from the
diffusion model and leverage such knowledge to predict the density map via the
regression head φR.

In summary, the differences between zero-shot setting and few-shot setting for
training and testing are: 1) in zero-shot setting, the object-specific embedding is
obtained by the pre-trained text encoder, while in few-shot setting, it is obtained
using the trained exemplar projector; 2) in zero-shot setting, as no exemplars
are provided, we do not apply test-time adaptation to further adapt Eos.
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4 Experiments

To evaluate the effectiveness of our proposed CountDiff, we conduct experiments
on the common class-agnostic object counting dataset FSC-147 [35] for both few-
shot and zero-shot settings. In addition, to further test its generalization ability,
we also evaluate CountDiff on CARPK [15].

4.1 Datasets and Evaluation Metrics

The FSC-147 dataset [35] is a large-scale dataset for class-agnostic object count-
ing. It contains 6135 images of 147 object classes. For each image, three bounding
boxes indicating the target objects are given. The class name of the target object
class in each image is also provided. There is no overlap between the target object
classes in the training, validation, and testing sets.

The CARPK dataset [15] is proposed for class-specific counting for cars, and
is used to evaluate the model’s ability for cross-dataset generalization. It contains
1448 images of different parking lots collected by drones.

Following previous works [35,40,43], we adopt the standard metrics for class-
agnostic object counting: Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) to evaluate the performance of our method.

4.2 Implementation Details

Our experiments are conducted on RTX 3090 GPUs. In our experiments, we
adopt Stable Diffusion [36] (version 1-4) as the pre-trained text-to-image diffu-
sion model. To obtain the noisy latent z, we add the noise to the image latent
using the DDPM scheduler [13]. We set h and w to 64. For both few-shot and
zero-shot experiments, the embedding dimension de is set to the text embedding
dimension of Stable Diffusion. During training, we adopt AdamW optimizer [23]
with a learning rate of 5e-4. We freeze the parameters of Stable Diffusion, and
train CountDiff for 100 epochs. We set λ in Eq. (7) to 0.005. The test-time adap-
tation for the few-shot setting is performed for r = 3 iterations with learning
rate α = 5e-5. See Supplementary for more implementation details.

4.3 Experiment Results on Few-Shot Setting

We evaluate CountDiff for the few-shot object counting on the common class-
agnostic counting dataset FSC-147. Following [35,40,43], during training and
inference, the model is provided with 3 exemplars for each input image. We report
the MAE and RMSE scores in Table 1. As shown, our CountDiff outperforms
previous methods on the few-shot setting, demonstrating its effectiveness.

To further evaluate the generalization ability, we also conduct cross-dataset
experiments on the CARPK dataset following the evaluation protocol in [43].
The results are shown in Table 2. Our CountDiff also achieves state-of-the-art
performances, demonstrating its generalization ability for different settings.
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Table 1. Few-shot results on FSC-147.

Method Validation set Test set
MAE RMSE MAE RMSE

FamNet [35] 23.75 69.07 22.08 99.54
CFOCNet [46] 21.19 61.41 22.10 112.71
RCAC [11] 20.54 60.78 20.21 81.86
BMNet+ [40] 15.74 58.53 14.62 91.83
SAFECount [47] 15.28 47.20 14.32 85.54
SPDCN [21] 14.59 49.97 13.51 96.80
CounTR [6] 13.13 49.83 11.95 91.23
LOCA [43] 10.24 32.56 10.79 56.97
Ours 8.43 31.03 9.24 53.41

Table 2. Few-shot cross-
dataset results on CARPK.

Method MAE RMSE
FamNet [35] 28.84 44.47
BMNet+ [40] 10.44 13.77
LOCA [43] 9.97 12.51
Ours 8.36 10.84

4.4 Experiment Results on Zero-Shot Setting

We evaluate CountDiff with the zero-shot setting (providing class names) on
FSC-147. As shown in Table 3, our CountDiff achieves the best performance
compared to the existing methods, demonstrating the effectiveness of our design.

We also observe that CountDiff achieves better performance in few-shot set-
ting compared to zero-shot setting (e.g ., on validation set, we achieve 8.43 on
MAE for few-shot setting as shown in Table 1 and achieve 15.50 on MAE for zero-
shot setting as shown in Table 3). A possible explanation can be, in the few-shot
setting, the model is provided with exemplars in the input image, which can
contain more detailed and specific information about the target objects in the
image than the general class name provided in the zero-shot setting, and thus
the learned embeddings can better represent the objects in this image.

Also, following [16,43], we conduct cross-dataset experiment for the zero-shot
setting on CARPK. As shown in Table 4, our method also achieves outstanding
performance on cross-dataset experiment, showing that CountDiff has good gen-
eralization ability.

Table 3. Zero-shot results on FSC-147.

Method Validation set Test set
MAE RMSE MAE RMSE

Xu et al . [45] 26.93 88.63 22.09 115.17
Shi et al . [48] – – 24.79 137.15
Jiang et al . [16] 18.79 61.18 17.78 106.62
Amini-Naieni et al . [1] 17.70 63.61 15.73 106.88
Ours 15.50 54.33 14.83 103.15

Table 4. Zero-shot cross-
dataset results on CARPK.

Method MAE RMSE
Jiang et al . [16] 11.96 16.11
Ours 10.32 12.92
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4.5 Ablation Study

We conduct experiments on FSC-147 in the few-shot setting to evaluate the
design of CountDiff. More experiments and visualizations on both few-shot and
zero-shot settings are in Supplementary.

Table 5. Evaluation on the embed-
dings.
Method Validation set Test set

MAE RMSE MAE RMSE
w/o Eos 18.10 59.68 17.45 108.31
using text for Eos 15.23 54.08 14.22 103.01
using CLIP for Eos 12.85 36.64 13.67 58.74
w/o Eoa 13.18 36.58 14.34 60.87
using text for Eoa 12.67 35.47 13.85 59.77
CountDiff 8.43 31.03 9.24 53.41

Evaluation on the Embeddings.
CountDiff utilizes two embeddings, i.e.,
object-specific embedding Eos and object-
agnostic embedding Eoa to extract knowl-
edge. To evaluate the design for Eos, we
train the following variants from scratch
and evaluate them: 1) w/o Eos that uses
only Eoa, 2) using text for Eos that
uses text embedding of ground-truth class
name as Eos, and 3) using CLIP for Eos

that uses pre-trained CLIP image encoder
to map the exemplars to embedding space for Eos. As shown in Table 5, CountD-
iff outperforms all these variants, showing the effectiveness of the object-specific
embedding. In specific, using text for Eos shows a decrease in performance,
which can be because the general class name can provide less specific informa-
tion compared with exemplars cropped from the input image. Also, CountDiff
outperforms the variant with Eos naively obtained using the off-the-shelf CLIP
image encoder, implying that Eos learned in our framework contains information
that can help counting.

Also, to evaluate the design for Eoa, we test the variants: 1) w/o Eoa that
uses only Eos, and 2) using text for Eoa that uses the text embedding of the
word “object” for Eoa. As shown in Table 5, CountDiff outperforms both variants.
This may be because, without Eoa, the model may not be able to leverage
general knowledge (e.g ., repetitive object patterns) to facilitate counting. Also,
the general knowledge may not be easily represented by text.
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Fig. 4. Qualitative results with few-shot setting on
FSC-147 dataset. In each row, we show the input
image with exemplar boxes (red), ground-truth den-
sity map, predicted density map, and the attention
maps obtained using the embeddings. The ground-
truth and predicted counting results are shown at
the top right corner of the density maps.

Qualitative Results. We
visualize the cross-attention
maps and enhanced atten-
tion maps obtained using the
embeddings, as well as the
predicted density maps for
few-shot settings in Fig. 4.
As shown, attention maps for
Eos can provide precise and
targeted information about
the target object, implying
that Eos can encode seman-
tic information for the spe-
cific target objects in each
image. Also, we observe that
the attention maps for Eoa

can show explicit information
about the objects, regardless
of the object classes (as shown
in the second row), implying
that Eoa can implicitly contain instructions to extract general knowledge for
class-agnostic counting.

5 Conclusion

In this paper, we have proposed a novel framework named CountDiff to leverage
the powerful capability of text-to-image diffusion model to perform class-agnostic
object counting. We design an object-specific embedding that encodes specific
information about the target object and an object-agnostic embedding that con-
tains general information that can be useful for counting different classes, which
are used to extract knowledge from the pre-trained diffusion model to facilitate
class-agnostic counting. Along with other designs, our CountDiff can achieve
state-of-the-art performance in both few-shot and zero-shot settings.

Acknowledgements. This work is supported by Lam Research (ND-00102-E0901-
E0901-000).
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