
Published in Transactions on Machine Learning Research (06/2025)

Mixture of Cache-Conditional Experts for Efficient Mobile
Device Inference

Andrii Skliar ∗† andrii@contextual.ai
Contextual AI

Ties van Rozendaal ∗† tvr@tivaro.nl
Qualcomm AI Research ‡

Romain Lepert romain@qti.qualcomm.com
Qualcomm AI Research ‡

Todor Boinovski todorb@qti.qualcomm.com
Qualcomm AI Research ‡

Mart van Baalen mart@qti.qualcomm.com
Qualcomm AI Research ‡

Markus Nagel markusn@qti.qualcomm.com
Qualcomm AI Research ‡

Paul Whatmough pwhatmou@qti.qualcomm.com
Qualcomm AI Research ‡

Babak Ehteshami Bejnordi behtesha@qti.qualcomm.com
Qualcomm AI Research ‡

Reviewed on OpenReview: https: // openreview. net/ forum? id= ul4W26KEKz

Abstract

Mixture of Experts (MoE) LLMs enhance performance by selectively activating specialized
subnetworks (“experts”) per input. While MoEs offer efficiency benefits through distributed
inference in typical high-throughput settings, deploying them on memory-constrained devices
remains challenging, particularly for sequential token generation with batch size one. In this
work, we optimize MoE for such constrained environments, where only a subset of expert
weights fit into DRAM. Through empirical analysis, we show MoEs can tolerate careful
deviations in expert selection with minimal predictive performance loss. Inspired by this
observation, we propose a novel cache-aware routing strategy that leverages expert reuse
during token generation to significantly improve cache locality. Evaluating on language
modeling, MMLU, and GSM8K benchmarks, our method reduces cache miss rates by over
50%, with negligible impact on perplexity (0.1%–3%) and downstream task accuracy (<0.1%).
Unlike prior methods limited by the optimal oracle cache bound, our approach surpasses
this theoretical limit by allowing slight flexibility in expert selection. Finally, we present
on-device results demonstrating 2× speedups on mobile hardware, offering a flexible and
training-free solution to extend MoE’s applicability across real-world applications.

∗Equal contribution
†Work conducted while employed at Qualcomm.
‡Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

1

https://openreview.net/forum?id=ul4W26KEKz

Published in Transactions on Machine Learning Research (06/2025)

1 Introduction

Mixture of Experts (MoE) models have emerged as a powerful approach in large language mod-
els (LLMs), offering advantages in scalability and efficiency (Fedus et al., 2022b;a). By selectively
activating a subset of experts for each input, MoEs handle diverse data distributions and capture
complex patterns more effectively than traditional dense models. Recent models such as DeepSeek-
V3 (DeepSeek-AI et al., 2024), Qwen2.5-Max (Yang et al., 2024), GPT-4 (OpenAI et al., 2024),

Gemini (Team et al., 2024), and Mixtral (Jiang et al., 2024) provide evidence for MoEs’ success in leveraging
specialized sub-networks to achieve superior performance. Simultaneously, small language models (SLMs)
with MoE architectures, such as OLMoE (Muennighoff et al., 2024), Phi-3.5-MoE (Abdin et al., 2024), and
Qwen-MoE (Qwen Team, 2024), have shown promise for server deployment due to their ability to maintain
high performance with fewer active parameters per token.

xPU

DRAM

Flash

NPUCPU GPU

Static model
parameters

Entire model parameters

Router

E1 E2 EN… EN-1E3

Cache
Prior

Expert Parameters

High Bandwidth
Communication (e.g. 60-67 GB/s†)

Low Bandwidth Communication (e.g. ~1 GB/s†)

Parameters cached in DRAM including
cached experts and static model
parameters (e.g. Router weights)

Uncached Experts (require Flash load)

FINAL
FIGURATI
USED IN
T M L R
revision

IL PAPERLR
U

Pri
or

(=0.2
)

Pri
or

(=0.5
)

Pri
or

(=0.8
)

LR
U

Pri
or

(=0.2
)

Pri
or

(=0.5
)

Pri
or

(=0.8
)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Re
la

tiv
e

Th
ro

ug
hp

ut

@12GB device @16GB device
Qwen-MoE 8bit

On-Device Token Generation Troughput

Qwen-MoE 4bit

Ca
ch
e-P
rio
r

Or
igi
na
l

Ro
uti
ng

λ=
0.2

Ca
ch
e-P
rio
r

Ca
ch
e-P
rio
r

λ=
0.5

λ=
0.8

Ca
ch
e-P
rio
r

Ca
ch
e-P
rio
r

λ=
0.2

Ca
ch
e-P
rio
r

Or
igi
na
l

Ro
uti
ng

λ=
0.5

λ=
0.8

Figure 1: Overview of our proposed cache-aware routing method. (Left) MoE models are hosted in slower
Flash storage due to their size, with only a subset of expert weights cached in faster DRAM. Our cache
prior method is cache-aware and adjusts expert selection to promote experts already in DRAM, significantly
reducing cache misses and improving inference efficiency. (Right) Throughput of our routing method for
the 4-bit and 8-bit quantized Qwen1.5-MoE models deployed on two mobile devices with 12GB and 16GB
available memory and cache size of 30 and 45 experts, respectively. Our proposed Cache-Aware Routing
method significantly enhances the token generation throughput compared to the baseline leveraging a Least
Recently Used (LRU) Cache. † https://en.wikipedia.org/wiki/Universal_Flash_Storage

Despite their advantages, deploying MoE models on memory-constrained devices like smartphones and laptops
presents significant challenges. One primary issue is that the parallelism techniques enhancing efficiency in
server deployments of MoEs are less applicable in on-device scenarios, where tokens are generated sequentially
with a batch size of one. This limitation prevents batching or parallel processing through expert sharding,
leading to increased latency and inefficiencies during inference. Additionally, MoE models have a significantly
larger memory footprint than dense architectures, complicating deployment on memory-constrained devices.

These models often exceed available DRAM, and loading model weights directly from flash storage is
detrimental to latency. To mitigate this, DRAM can be used as a cache for expert weights, but this approach
is only effective if the hit rate is high. Ideally, MoE models should have strong cache locality, with a small set
of experts being accessed repeatedly over long token sequences. This requires better strategies for expert
selection and cache optimization during inference.

Previous work has tried to improve MoE efficiency by pre-fetching experts based on hidden states from earlier
layers and using LRU caching to store recently used experts (Eliseev & Mazur, 2023; Yuan et al., 2024a).
However, these methods assume that expert selection follows predictable patterns and has a strong locality.
Temporal locality, in the context of MoE caching, refers to the principle that recently accessed experts are
likely to be accessed again in subsequent token generations. A key challenge, which we analyze empirically in
Section 4.6, is that state-of-the-art MoEs often lack strong temporal locality in expert selection, leading to

2

https://en.wikipedia.org/wiki/Universal_Flash_Storage

Published in Transactions on Machine Learning Research (06/2025)

inefficient Least Recently Used (LRU) caching strategies due to frequent evictions and reloads, which results
in a poor cache hit rate.

In this work, we aim to utilize already-trained, high-performing MoE models by incorporating cache locality
priors to make them more efficient for memory-limited devices. Our method increases expert reuse during
token generation, improving the cache hit rate. This approach is training-free and can be applied directly to
off-the-shelf MoE models, enhancing their efficiency for on-device deployment.

To enable efficient inference on memory-constrained devices, we first analyze the temporal locality in expert
selection across four SoTA MoEs. We demonstrate their sensitivity to expert dropping and random expert
swapping in Section 2.3, which shows the potential for exploring alternative routing strategies. Motivated by
these observations, we propose a method that manipulates router logits to increase the probability of selecting
cached experts, all without the need for additional training. In summary, this work makes the following
contributions:

• We demonstrate that state-of-the-art MoE models lack temporal consistency in expert selection, which
leads to suboptimal latency performance when caching strategies are employed. However, our findings
indicate that these models exhibit low sensitivity to variations in the selection of lower-weighted
experts, suggesting that lossy routing strategies can be implemented without substantial degradation
in overall performance.

• We propose a method to significantly improve the cache hit rate of experts, enhancing throughput
for token generation in existing MoEs without requiring additional training. Our approach strikes a
balance between cache hit rate (and token generation latency) and model accuracy under a fixed
memory budget.

• We report the performance of the proposed routing strategy for language modeling and present
evaluation results on MMLU and GSM8K benchmarks. Surprisingly, we show that imposing some
degree of routing consistency enhances benchmark scores while making these models more on-device
friendly.

• We present on-device results of our proposed approach on two different mobile devices with various
memory constraints, demonstrating a consistent speed-up of up to 2× compared to the original
routing with LRU caching. Our training-free method is adaptable and can be deployed across a
variety of real-world scenarios and diverse hardware configurations, making it suitable for devices
with different memory limitations.

2 Background and Motivation

In this section, we give an overview of MoE models, followed by a sensitivity analysis that looks at how
expert selection affects model performance, showing the potential for alternative routing strategies explored
in the next section.

2.1 Preliminaries of MoE

The sparse MoE layer consists of N expert networks E1, E2, . . . , EN and a routing network G that selects a
subset of experts based on their relevance to the input token x ∈ Rd. The output of the MoE layer during
inference is given by:

y =
∑

i∈r[:K]

wiEi(x), (1) r = argsort w, (2) w = σ(z) = σ(G(x)). (3)

Here, z = G(x) represents the logits assigned by the router to the experts, σ is the softmax function, and r
is a ranking vector of experts based on the weights, from which only the top-K experts are selected. The
weights assigned to each expert may be re-normalized after the top-K selection in Equation 1.

3

Published in Transactions on Machine Learning Research (06/2025)

In conventional MoEs, the top-K routing mechanism for selecting experts is dynamic and input-dependent,
which can cause significant variability in the experts chosen for each token. This inconsistency makes it
difficult to achieve high cache hit rates, as it reduces the chance that selected experts are already in the cache.
As shown in Table 2, cache lifetimes are short, and cache miss rates are high for all models using a simple
LRU caching policy.

2.2 MoE Deployment on Memory-Constrained Devices

Deploying MoEs on memory-constrained devices, like mobile phones, is challenging due to limited memory
resources. As shown in Figure 1 (Left), these devices typically feature a combination of DRAM and flash
storage, each with different speed and capacity characteristics. DRAM offers high bandwidth but limited
capacity, while flash storage provides larger capacity at the cost of slower access speeds.

MoE models are typically larger than dense models, therefore, not all parameters may fit into the limited
DRAM available on many devices. Static parameters, such as attention weights that do not change during
inference, can be stored permanently in DRAM. In contrast, due to the dynamic nature of expert selection,
only a subset of experts is loaded into DRAM at a time. To improve efficiency, recently used experts can be
retained in a cache, reducing the need to reload them from slower storage. For an effective caching strategy,
a high cache hit rate is important because it means experts are quickly available from DRAM, reducing the
overall latency. The cache hit rate is defined as the proportion of selected experts that are already in the
cache at the time of their selection. Let the cache set C denote the indices of experts currently stored in
DRAM, and r[: K] be the experts selected by the routing network. The cache hit rate can be expressed as:

hit rate = count(r[: K] ∩ C)
K

. (4)

The miss rate is simply 1− hit rate.

The goal of this work is to improve the expert cache hit rate without affecting the model’s predictive
performance. To achieve this, we propose functions that modify the ranking vector r used to select the top-K
experts without making any other changes to the MoE forward pass as shown in Equation 1. Our objective is
to create new ranking vectors that prioritize experts already in cache while minimizing any negative impact
on model performance. This allows for a model-agnostic method that can be universally applied.

2.3 MoEs Are Less Sensitive to Dropping Experts with Lower Scores

A key opportunity for making MoE models more cache-friendly without compromising task performance
is understanding how sensitive the models are to changes in expert selection. To explore this, we analyze
four different MoE architectures: DeepSeek-V2-Lite (DeepSeek-AI et al., 2024), Qwen1.5-MoE-A2.7B (Qwen
Team, 2024), Phi-3.5-MoE (Abdin et al., 2024), and Mixtral-8x7B (Jiang et al., 2024). Our results show that
these models can tolerate deviations in the expert selection, as long as the experts with the highest weights
are retained.

The left plot in Figure 2 illustrates the impact of completely removing (pruning) experts ranked at or above
a specified index on Wikitext perplexity. Removing the second highest ranked expert leads to a performance
drop across all four models. However, models with more active experts, like Qwen and DeepSeek, recover
quickly, allowing higher-ranked experts to be pruned with minimal performance loss.

To examine how the rank of an expert impacts performance while keeping the total number of active experts
constant, we replaced the expert ranked k with a randomly selected expert, as shown in the right plot of
Figure 2. The results show that swapping the top-ranked expert severely compromises model performance.
Replacing the second-ranked expert also causes noticeable degradation, but the model remains functional.
Beyond this, in granular MoEs (with a larger number of smaller active experts), the model becomes highly
resilient to expert selection changes. This suggests that while top-1 is critical for all MoEs, the top-2 expert
in standard MoEs such as Mixtral and Phi-MoE can be swapped without a major loss in perplexity. Granular
models maintain flexibility in expert selection and incur minimal performance loss by swapping the 3rd
highest ranked expert and beyond.

4

Published in Transactions on Machine Learning Research (06/2025)

1 2 3 4 5 6 7
Prune expert with rank k

4

6

8

10

12

14
W

ik
ite

xt
 P

er
pl

ex
ity

Expert Pruning

1 2 3 4 5 6 7
Randomly replace expert with rank k

Expert Resampling
Model

Qwen1.5-MoE-A2.7B
DeepSeek-V2-Lite
Phi-3.5-MoE-instruct
Mixtral-8x7B-v0.1

Figure 2: Expert sensitivity analysis. We show the effect of dropping or replacing experts as selected by the
router. The x-axis represents the expert rank (ordered by their scores) and the y-axis shows the Wikitext
validation perplexity (lower values indicate better performance). The dashed lines represent the baseline
perplexity of the MoE models.
The left figure illustrates the effect of dropping all experts ranked higher than k, whereas the right figure

depicts the impact of randomly replacing the expert at rank k.

Interestingly, further analysis (Appendix A) using a greedy search to find the optimal expert combination
suggests that the router’s predictions are often suboptimal. For Mixtral-8x7B, the router’s predicted top-2
experts yield the best performance only 28% of the time on average with a maximum of 38% in the last layer.
This supports the idea that lower-ranked experts can be replaced with little impact on performance. Taken
together, these findings highlight that while preserving the highest-ranked experts is crucial, MoE models
offer flexibility in expert selection—an insight we leverage throughout this work.

3 Cache-aware Expert Routing

In this section, we introduce our main method along with two simple baselines: Max Rank and Cumulative
Probability Threshold. These methods, progressively more refined, balance cache hit rate with downstream
task performance, improving model throughput and efficiency. All of our methods are general and training-free,
making them easily applicable to off-the-shelf MoE models for on-device deployment.

3.1 Max Rank Approach

In Section 2.3, we demonstrated that MoEs exhibit some robustness to the swapping of their experts with
random ones. Building on this insight, we aim to deviate from the standard top-K set of experts r[: K],
selected by the router and instead promote experts that are already present in the cache C. We first define a
general promotion operation that elevates the ranking of all experts in an ordered subset rsubset:

promote(rsubset; rall) := rsubset ⊕ (rall \ rsubset). (5)

Here ⊕ denotes the concatenation operation and the set subtraction \ preserves the order of it’s left operand.
Importantly, all sets in this context are ordered sets and maintain the order of elements as in their original
ranking. This ensures that the promotion operation is well-defined, as it preserves the relative ordering of
experts throughout.

A naive solution would be to simply promote all experts currently in the cache, but this approach does not
take into account the expert probability assigned by the router. Instead, we limit the promotion of elements
in the cache by a maximum allowed rank M such that the experts with the lowest router probabilities are
not chosen:

5

Published in Transactions on Machine Learning Research (06/2025)

rmax-rank := promote(r[: M] ∩ C; r). (6)

As observed in Section 2.3, certain top-J experts are crucial for model performance. To ensure these experts
are not overwritten by others in the cache, we always select them, even if they are not in the cache. This can
be achieved by adding a second promotion operation:

promote
(

r[: J]; promote(r[: M] ∩ C; r)
)

. (7)

Finally, the pseudocode for the max-rank algorithm with always keeping the top-J experts is shown in
Algorithm 1. Additionally, we provide an intuitive explanation of the algorithm with an example in Appendix
B.

Algorithm 1 Max Rank
Require: max-rank M , minimal-rank J , and original ranking r

1: r′ ← promote(r[: M] ∩ C; r)
2: r′ ← promote(r[: J]; r′)
3: return r′

3.2 Cumulative Probability Threshold Approach

A limitation of the max-rank routing strategy is that it does not take into account the distribution of all
expert probabilities G(x). For instance, an input where the most probable expert has a very high probability
will likely require a very low max-rank M to maintain good model performance. Conversely, for an input
with uniformly distributed router probabilities, there is no strong expert preference, allowing for a very high
max-rank M for better cache hit rates.

We address this issue in the cumulative probability threshold approach by dynamically choosing the max-rank
M for every layer and every input x. The process is conceptually similar to the sampling approach by
Holtzman et al. (2020) in which tokens are sampled from a dynamic set containing the vast majority of the
probability mass. We determine M by summing the sorted probabilities of the router outputs G(x) from
highest to lowest until a predefined cumulative probability threshold p is reached:

M = min i s.t.

i∑
j=1

G(x)[rj] ≥ p (8)

Using the set of M values found for each layer and each input, we apply the max-rank strategy from Equation
7 to select a new set of experts. We provide an schematic explanation of this approach in Appendix B. The
pseudocode for the cumulative probability threshold approach can be found in Algorithm 2. This method is
more dynamic as it accounts for the confidence in the router’s predictions. When the set of experts required
to reach the threshold is larger, it indicates less confidence from the router (flat distribution), allowing for
more flexibility in replacing a non-cached expert with the highest probability expert available within this set
that is already in the cache.

3.3 Cache-Prior Reranking

Although the cumulative threshold routing strategy dynamically adjusts the max-rank, it still imposes a hard
limit beyond which experts are not promoted. This may be suboptimal, especially for router distributions
with long tails, which may be better suited for making cache-friendly decisions.

To address this, we use a Cache-Prior that directly manipulates the router logits z = G(x) to increase the
probability of selecting experts already present in cache. Importantly, we use the manipulated logits z′ only

6

Published in Transactions on Machine Learning Research (06/2025)

Algorithm 2 Cumsum Threshold
Require: probability threshold p, minimal-rank J , original ranking r, and expert weights w

1: pcum ← 0
2: M ← 0
3: while pcum < p do
4: M ←M + 1
5: pcum ← pcum + w[r[M]]
6: end while
7: r′ ← promote(r[: M] ∩ C; r)
8: r′ ← promote(r[: J]; r′)
9: return r′

Model Params Experts Footprint (int4)

Active Total Shared Total Top-k Params min max

Mixtral-8x7B 13B 46.7B 8 2 176M 6,5 GB - 23,4 GB
Phi-3.5-MoE 6.6B 41.9B 16 2 79M 3,3 GB - 21,0 GB
DeepSeek-V2 2.8B 15.9B 2 (64+2) (6+2) 8.6M 1,4 GB - 8,0 GB
Qwen1.5-MoE 2.7B 14.3B 4 (60+4) (4+4) 8.6M 1,4 GB - 7,2 GB

Table 1: The MoE architectures used in our experiments. Column “Experts” / “Params” indicates the
number of parameters per expert. Column “Footprint” represents the total size of all model parameters and
the expert cache under int4 quantization, with the cache size bounded by k (minimum) and N (maximum).

to find a new ranking vector r′ as defined in Equation 2. We still use the unmodified router logits to compute
the expert weights used in Equation 1.

Figure 3 provides an overview of our proposed cache-aware routing method. Let the bitmask mt ∈ {0, 1}N

represent the state of the cache following the generation of the (t − 1)-th token, where each bit indicates
whether an expert is in the cache or not.

To ensure the top-J experts are always selected, regardless of their presence in the cache, we can optionally
add them to the bitmask mt. This results in an updated bitmask, m̃t. Using this updated bitmask, we then
boost the logits for the corresponding experts as follows:

z′ = z + λ ·∆avg · m̃t, (9)

where λ ∈ [0, 1] is a scaling factor that determines the influence of the cache state on the logits. This scaling
factor allows our method to interpolate between the original routing (λ = 0, equivalent to baseline cache hit
rate) and a fully cache-driven selection (λ = 1, potentially zero cache misses, but higher perplexity). ∆avg is
defined as:

∆avg = E
x∈X

E
t∈1...T

[max(z)−min(z))]. (10)

which represents the range in logits for this layer that we estimate using a running average over sequences
and tokens. In essence, our Cache-Prior method involves adding a fraction of the average logit range to
the experts that are already in the cache. By utilizing the true range of weights, our Cache-Prior becomes
adaptive, allowing a single hyperparameter to yield distinct effects across different layers and tokens. We
provide an ablation on the choice of ∆, including approaches for predicting it directly for each token, in
Appendix D and E.

4 Experiments

In this section, we evaluate the effectiveness of our Cache-Prior routing method and compare it to out
Pruning, Max-Rank, and Cumulative Sum Thresholding baselines, as described in Section 3. We implement
all methods on four state-of-the-art MoE models: DeepSeek-V2-Lite (DeepSeek-AI et al., 2024), Qwen1.5-

7

Published in Transactions on Machine Learning Research (06/2025)

8Confidential – Qualcomm Technologies, Inc. and/or its affiliated companies – May Contain Trade Secrets

𝒎𝑡
Binary cache state

Router 𝐺(⋅)

𝒙𝑡
LLM hidden state

Top-j 𝒎𝑡

𝒎𝑡+1

Next cache state
Expert mixing weights

Experts in cache

Uncached Experts

Experts selected

𝒛𝑡

LRU cache

Updated
Ranking Logits𝒛𝑡′

Top-k

+

𝒘𝑡

𝜆 ⋅ Δavg ⋅ 𝒎𝑡

𝜎(⋅)

Figure 3: Our proposed Cache-Prior routing method adds a bias to the logits only for in-cache experts mt,
encouraging their selection. The magnitude of the bias is determined by the average logit range, ∆avg, and
the tradeoff parameter λ. The updated logits, z′

t, are used only for re-ranking experts, while the expert
weights, wt, remain unchanged.

10 15 20 25 30 35
Cache Miss Rate (%)

8.08

8.10

8.12

8.14

8.16

8.18

8.20

8.22

W
ik

ite
xt

 P
er

pl
ex

ity

Qwen1.5-MoE-A2.7B with Cache Size: 30/60 experts

5 10 15 20 25
Cache Miss Rate (%)

7.10

7.15

7.20

7.25

7.30

7.35

DeepSeek-V2-Lite with Cache Size: 32/64 experts

Routing strategy
Original
Pruning
Max-rank
Cumsum-threshold
Cache-Prior

top-j=0
top-j=2

8 10 12 14 16 18 20 22
Cache Miss Rate (%)

4.9

5.0

5.1

5.2

5.3

5.4

W
ik

ite
xt

 P
er

pl
ex

ity

Phi-3.5-MoE-instruct with Cache Size: 8/16 experts

15 20 25 30 35 40
Cache Miss Rate (%)

4.60

4.65

4.70

4.75

4.80

4.85

4.90

4.95

5.00

Mixtral-8x7B-v0.1 with Cache Size: 4/8 experts

Routing strategy
Original
Pruning
Max-rank
Cumsum-threshold
Cache-Prior

top-j=0
top-j=1

0 50 100 150 200 250 300
Params fetched from flash (M / token)

0 50 100 150 200 250 300 350
Params fetched from flash (M / token)

0 200 400 600 800
Params fetched from flash (M / token)

0 1 2 3 4
Params fetched from flash (B / token)

Figure 4: Trade-off curves between Wikitext perplexity and cache miss rate for four MoE models with a
cache size set to half the total number of experts.

8

Published in Transactions on Machine Learning Research (06/2025)

15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0
Cache Miss Rate (%)

0.608

0.609

0.610

0.611

0.612

0.613

0.614

0.615

Ac
cu

ra
cy

Qwen1.5-MoE-A2.7B with cache size: 30/60 experts

10 15 20 25
Cache Miss Rate (%)

0.556

0.558

0.560

0.562

0.564

0.566

DeepSeek-V2-Lite with cache size: 32/64 experts

Routing strategy
Original
Max-rank
Cumsum-threshold
Cache-Prior

8 10 12 14 16 18 20 22
Cache Miss Rate (%)

0.776

0.778

0.780

0.782

0.784

0.786

Ac
cu

ra
cy

Phi-3.5-MoE-instruct with cache size: 8/16 experts

20 25 30 35 40
Cache Miss Rate (%)

0.698

0.700

0.702

0.704

0.706

0.708

Mixtral-8x7B-v0.1 with cache size: 4/8 experts

120 140 160 180 200 220 240 260 280
Params fetched from flash (M / token)

100 150 200 250 300 350
Params fetched from flash (M / token)

400 500 600 700 800 900
Params fetched from flash (M / token)

2.5 3.0 3.5 4.0 4.5
Params fetched from flash (B / token)

Figure 5: The trade-off between MMLU (5 shots) task accuracy and cache miss rate. For each method, points
along the curve form the Pareto front, showcasing the best achievable accuracy for a given cache miss rate.

MoE-A2.7B (Qwen Team, 2024), Phi-3.5-MoE (Abdin et al., 2024), and Mixtral-8x7B (Jiang et al., 2024),
with architectural details summarized in Table 1.

4.1 Experimental Setup

We conduct experiments on three tasks: language modeling (using the WikiText-2-raw-v1 dataset), MMLU,
and GSM8K. For WikiText, we report perplexity and cache miss rate, while for MMLU and GSM8K, we
report accuracy and cache miss rate. The MMLU dataset consists of multiple-choice questions across 57
subjects, and GSM8K evaluates multi-step reasoning for math problems. For all experiments, the cache miss
rate is computed using the Least Recently Used (LRU) eviction policy, unless stated otherwise in ablations.

To assess the trade-offs between model performance and cache miss rate, we vary DRAM cache size limits and
sweep hyperparameters for each method to generate Pareto fronts. All reported results in the trade-off plots
are point estimates, obtained from a single pass over the entire dataset. As our algorithm and baselines are
deterministic, repeated runs yield identical results. Each plot also includes the performance of the “Original
Routing” baseline, where no re-ranking strategy is applied, maintaining accuracy without trade-offs. In
contrast, our cache-aware routing methods balance accuracy with cache utilization.

4.2 Implementation Details

All routing strategies in this work use the LRU eviction policy for expert removal, where we impose an
eviction order by removing experts with higher router weights first, as MoE layers select top-K experts in
parallel. For the pruning baseline, experts ranked ≥ h (with 1 < h ≤ k) are discarded, and the cache miss
rate is normalized using k for a fair comparison with other methods.

9

Published in Transactions on Machine Learning Research (06/2025)

20 25 30 35 40
Cache Miss Rate (%)

0.595

0.600

0.605

0.610

0.615

0.620

0.625

Ac
cu

ra
cy

Qwen1.5-MoE-A2.7B with cache size: 30/60 experts

10 15 20 25 30
Cache Miss Rate (%)

0.35

0.36

0.37

0.38

0.39

DeepSeek-V2-Lite with cache size: 32/64 experts

Routing strategy
Original
Max-rank
Cumsum-threshold
Cache-Prior

8 10 12 14 16 18 20 22
Cache Miss Rate (%)

0.860

0.865

0.870

0.875

0.880

0.885

Ac
cu

ra
cy

Phi-3.5-MoE-instruct with cache size: 8/16 experts

20 25 30 35 40
Cache Miss Rate (%)

0.55

0.56

0.57

0.58

0.59

0.60

Mixtral-8x7B-v0.1 with cache size: 4/8 experts

150 175 200 225 250 275 300 325 350
Params fetched from flash (M / token)

100 150 200 250 300 350 400
Params fetched from flash (M / token)

400 500 600 700 800 900
Params fetched from flash (M / token)

2.5 3.0 3.5 4.0 4.5
Params fetched from flash (B / token)

Figure 6: The trade-off between GSM8K (8 shots) task accuracy and cache miss rate. For each method,
points along the curve form the Pareto front, showcasing the best achievable accuracy for a given cache miss
rate.

Each cache-aware routing strategy has a hyperparameter to balance cache miss rate and task performance. We
use the following values to generate Pareto curves: Pruning and Max-Rank use 0, 1, ..., K, while Cumulative
Sum Thresholding and Cache-Prior use 50 equidistant points in [0, 1]. For guaranteed top-J loading, we
set J = 1 for Mixtral and Phi-MoE models and J = 2 for the granular Qwen-MoE and DeepSeek-MoE
architectures.

For dataset preprocessing, we concatenate WikiText text into a single blob, split by "nn", and chunk it into
context lengths of 1024. For MMLU and GSM8K, we apply a few-shot approach (5 shots for MMLU and 8
shots with chain-of-thought for GSM8K). Our method is applied to the entire sequence for WikiText and
MMLU, and only during autoregressive generation for GSM8K.

4.3 Language Modeling Evaluation

We start with assessing the effect of our proposed cache-aware routing method on the language modeling
capabilities of MoE models. Figure 4 presents trade-off curves for perplexity versus cache miss rate of our
Cache-Prior approach compared to the Pruning, Max-Rank, and Cumsum-threshold methods with a cache
size equal to half the number of experts. The results show that our approach consistently outperforms all
baselines across all ranges of perplexity and cache miss rate. Among the baseline methods, Pruning performs
the worst, indicating that cache-informed expert replacement is essential for maintaining accuracy. Max-Rank
consistently surpasses Pruning, while Cumsum-Threshold consistently outperforms Max-Rank. Ultimately,
our Cache-Prior method Pareto-dominates all other approaches.

We also evaluate language modeling performance with only a quarter of experts cached, as shown in Figure
14 in Appendix D. Our method’s robustness to different cache sizes makes it appealing for deployment across
a range of devices.

10

Published in Transactions on Machine Learning Research (06/2025)

0.0

2.5

5.0

7.5

10.0

12.5

15.0
Ex

pe
rt

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ex
pe

rt

1000 1020 1040 1060 1080 1100
Token

0

10

20

30

40

50

Ca
ch

e
M

iss
es

Cumulative Cache Misses

Phi-3.5-MoE-instruct (layer 26) with Original Routing

Phi-3.5-MoE-instruct (layer 26) with Cache-Prior(λ=0.5)

Phi-3.5-MoE-instruct layer 26 Cache-Prior(λ=0.5)
Phi-3.5-MoE-instruct layer 26 Original Routing

Figure 7: Expert selection during token generation on a GSM8K sample (green: cache hit, red: cache miss,
blue: in cache).

4.4 Downstream Tasks Evaluation

Figure 5 and Figure 6 present results on the MMLU and GSM8K benchmarks, respectively. Our Cache-Prior
method’s Pareto curve consistently outperforms other methods, often showing significant cache miss rate
reductions with no accuracy loss compared to original routing. Increasing the cache bias λ improves cache
miss rates until a minimum is reached due to the top-J selection guarantee. We also observe that GSM8K has
noisier accuracy results, as can be expected for a generative task. Importantly, while accuracy may fluctuate,
adjustments to the hyperparameters for each routing method —namely M , p, and λ— consistently leads to a
predictable effect on cache miss rates.

Interestingly, we observe that improved cache consistency (reduced miss rate) can lead to increased accuracy
on both benchmarks. We hypothesize this may stem from an implicit regularization effect, where greater
temporal consistency in expert selection stabilizes predictions, although other factors likely contribute.

4.5 On-Device Deployment

To evaluate the effectiveness of our cache-aware routing technique in real-world scenarios, we deployed the
Qwen1.5-MoE-A2.7B model with our cache-aware routing on two mobile devices (12GB and 16GB RAM)
equipped with Qualcomm Snapdragon® processors running Android 14. Using llama-cpp (Gerganov, 2023)
for CPU-based deployment, we modified the implementation to add both LRU caching for experts and our
Cache-Prior algorithm. Additionally, we enabled memory locking (mlock) to prevent the Android OS from
offloading expert weights from memory.

We tested our approach in two settings: (1) deploying a 4-bit quantized model on a device with 12GB RAM
and (2) deploying an 8-bit quantized model on a device with 16GB RAM. In both cases, our method was

Snapdragon branded products are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

11

Published in Transactions on Machine Learning Research (06/2025)

Figure 8: of cache hit rate and prompt length on token generation throughput for the 4-bit quantized
Qwen1.5-MoE-A2.7B model on the 16GB device. (Left) Relationship between cache hit rate and relative
throughput (normalized to the LRU baseline of 1.0 for each cache size) for cache sizes of 30 and 45 experts
(out of 60), across varying λ values 0.1 − 0.9. (Right) Influence of prompt length on relative throughput
across varying λ values, with a cache size of 45 experts.

applied only during autoregressive generation, allowing the model to benefit from optimizations designed for
prompt processing.

In the first setting, we reserved 2GB of memory on the 12GB device, limiting available memory to 10GB
(shared with the OS). Here, the cache size was limited to 30 experts per layer (out of 60). In the second
setting, the 16GB device hosted the 8-bit quantized Qwen Model with a cache size limit of 45 experts per
layer. To determine these optimal cache sizes for each setting, we initially deployed the model on both
devices using the LRU caching policy across various cache sizes. Results, shown in Figure 13, indicate that
exceeding a certain cache size reduces available memory, causing the OS to offload uncached components
(e.g., KV-cache, activations) for each token, requiring reloading them from flash which significantly slows
down inference. We used the highest LRU throughput as a reference point (1x) to demonstrate the speedup
from our method independently of wall clock variations due to implementation specifics.

The quantitative results for both settings are presented in Figure 1 (Right). Box plots, computed over 10 runs
per experiment, show median, minimum, and maximum values. Our approach provides over a 2× speedup
on-device. Additionally, qualitative results in Table 3 in the Appendix demonstrate that this speedup has
minimal impact on the quality of generated text.

To quantify the relationship between cache hit rate and token generation throughput, we conducted an
experiment, deploying the 4-bit quantized Qwen model on the 16GB device and performed a sweep over
the Cache-Prior trade-off parameter λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. A random subset of the MMLU dataset,
comprising both short (40-60 tokens) and long (300-400 tokens) prompts, was used for these measurements.

Figure 8 (left) illustrates the relation between cache hit rate and relative token generation throughput for two
cache configurations: 30 experts and 45 experts cached per layer (out of 60 experts). For each configuration,
the throughput achieved with standard LRU caching and original routing (equivalent to λ = 0 where no
expert swapping occurs) serves as the baseline (relative throughput of 1.0). The results demonstrate a
near-linear positive relationship: as λ increases, the cache hit rate improves, leading to a corresponding
increase in throughput. This observed trend is logical as cache-hit rate linearly correlates with the number of
flash reads. As loading from flash is the major performance bottleneck, the number of flash reads should
correlate roughly linearly with the throughput.

Furthermore, Figure 8 (right) examines the influence of prompt length on throughput for a cache size of 45
experts. Across all values of λ, longer input prompts yield higher throughput (Similar trend is observed for
the cache size of 30 in Appendix F). This is likely attributable to the amortization of initial overheads (such

12

Published in Transactions on Machine Learning Research (06/2025)

as model loading and initial cache fills) over a greater number of generated tokens, and potentially more
stable expert usage patterns for longer sequences.

4.6 Temporal Consistency of Expert Selections

Figure 7 shows a qualitative visualization of cache hits/misses for a GSM8K sample (tokens 1000-1100),
comparing original routing and Cache-Prior (λ=0.5) methods, with cache miss rates of ∼23% and ∼15%,
respectively, for Phi-3.5-MoE-instruct. It is evident that the Cache-Prior method results in fewer cache misses
and longer cache lifetimes compared to the original routing baseline.

These observations are further supported by Table 2, which presents average cache miss rates and cache
lifetimes (the average number of time steps an expert remains in memory) for the Wikitext dataset. Longer
cache lifetimes indicate better memory efficiency.

Using the original routing, each expert in Qwen and DeepSeek models stays in memory for only 22 tokens.
With our method, experts remain in memory for 5 − 9× longer, reducing weight loading from Flash and
improving throughput. MoE models with fine-grained implementation (Ludziejewski et al., 2024)—where
the hidden dimension of each expert is smaller than a standard feed-forward layer (e.g., Qwen-MoE and
DeepSeek-MoE)—are more cache-friendly compared to conventional MoE architectures like Phi-MoE and
Mixtral.

Model Cache Size Routing Lifetime Miss Rate

Qwen1.5-MoE 30 / 60 Original 26 (±31) 35%
Cache-Prior 58 (±67) 16%

DeepSeek-V2 32 / 64 Original 19 (±17) 28%
Cache-Prior 76 (±90) 7%

Phi-3.5-MoE 8 / 16 Original 22 (±31) 22%
Cache-Prior 55 (±94) 9%

Mixtral-8x7B 4 / 8 Original 5 (±4) 40%
Cache-Prior 10 (±10) 21%

Table 2: Cache sizes (number of experts that fit in cache /
total number of experts in model), average cache lifetimes (in
number of tokens), and cache miss rates for LRU and prior
caching strategies with λ = 0.5 on the Wikitext validation set.

100M 1B500M 5B
Params fetched from flash (parameters / token)

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

W
ik

ite
xt

 P
er

pl
ex

ity

Model
Mixtral-8x7B-v0.1
DeepSeek-V2-Lite
Phi-3.5-MoE-instruct
Qwen1.5-MoE-A2.7B
Caching + Routing
Optimal + Original
LRU + Original
LRU + Cache-Prior

Figure 9: Tradeoff between language
modeling performance and the number of

parameters loaded from Flash memory
. “Optimal” represents the oracle cache

eviction bound.

4.7 Impact of MoE Design Choices on Caching Performance

While retraining MoE models with varying design choices is beyond this paper’s scope, our experiments offer
insights into how architectural choices in pre-trained MoEs affect deployment-time caching. The evaluated
MoE models (Table 1) represent diverse architectures, differing in granularity, routing mechanisms, expansion
rates, and the use of shared experts.

Granularity Our results suggest that model granularity (Ludziejewski et al., 2024) influences cache
efficiency, particularly when combined with our cache-prior reranking method. We observe that granular
MoEs (Qwen-MoE, DeepSeek-MoE) tend to be more resilient to the approximate routing introduced by
expert swapping compared to non-granular models like Mixtral. For instance, while Qwen-MoE and Mixtral
exhibit comparable initial LRU cache miss rates (35% and 40%, respectively) in Figure 4, our cache-prior
method halves Qwen-MoE’s miss rate with only a 0.5% perplexity increase. Achieving a similar miss rate
reduction for Mixtral incurs a much higher perplexity penalty (2.9%). DeepSeek-MoE demonstrates even
greater resilience, halving its baseline miss rate with a negligible perplexity increase (0.1%).

13

Published in Transactions on Machine Learning Research (06/2025)

Expansion Rate The expansion rate, defined as the ratio of activated expert parameters to the total
number of expert parameters (Ludziejewski et al., 2024), also appears correlated with cache performance. We
observe that models with lower expansion rates generally exhibit lower baseline cache miss rates. Specifically,
Phi-MoE, Qwen-MoE, and DeepSeek-MoE (all with an expansion rate of 0.125) tend to show better cache
characteristics under LRU compared to Mixtral (expansion rate of 0.25).

Top-K We observed no clear link between top-K and overall cache-friendliness (e.g., Mixtral vs. Phi,
both k = 2). However, models with smaller k (Mixtral, Phi) are more sensitive to top-1 expert swaps and
benefit more from guaranteeing top-1 expert loading (Figure 2 and Figure 4). In contrast, Qwen (k = 4) and
DeepSeek (k = 6) show greater resilience to expert swapping, although their use of shared experts might also
contribute to this behavior.

4.8 Ablation Experiments

In this section, we perform ablation experiments on the WikiText dataset to demonstrate the general
applicability of our method across a range of cache sizes, compare its performance to the theoretical bounds
of the optimal cache eviction policy, and justify our hyperparameter choices.

Optimal Cache Eviction As a theoretical upper bound for cache policy, we consider Belady’s algorithm
(Belady, 1966), which evicts the expert that will be needed farthest in the future. This lossless policy requires
perfect foresight of future router decisions, making it unattainable in practice but useful as an upper bound
on cache hit rate. Figure 9 shows that while Belady’s algorithm roughly halves cache miss rates compared to
LRU.

Conventional caching methods (e.g., LRU, Belady’s optimal) are lossless and thus cannot surpass the
theoretical cache hit rate bound set by the model’s own routing. In contrast, our approach introduces
controlled, lossy, reranking of experts, allowing the model to swap lower-ranked experts for in-cache ones, at
the cost of a small, tunable increase in perplexity. This design enables us to trade a negligible amount of
accuracy for a substantial gain in cache efficiency, even surpassing the oracle bound. As can be seen in Figure
9, our Cache-Prior method achieves similar or even lower miss rates with only minimal perplexity increases.

Cache Size We investigate whether our findings hold across different cache sizes, beyond our default of
half the total expert count. Figure 10 shows results for cache sizes ranging from one expert to all experts,
comparing LRU, optimal caching, and our Cache-Prior method (with an LRU cache). Unlike the first two
approaches, Cache-Prior introduces a perplexity trade-off controlled by λ. To standardize this comparison, we
select the λ value for each model and cache size that minimizes cache miss rate while keeping the perplexity
increase within specific thresholds (1%, 5%, and 10%, shown in different shades of purple).

As expected, when the cache size equals N , all experts fit in memory, and the miss rate drops to zero for
all methods. For the optimal cache baseline, reducing cache size to half the number of experts improves
performance over LRU, but the benefit diminishes as cache size shrinks further, becoming negligible for cache
sizes ≤ k.

In contrast, our Cache-Prior method consistently enhances performance, particularly at smaller cache
capacities. At the extreme of a cache size of one, even the optimal caching strategy yields only marginal
improvements. For models with high values of k, our method behaves similarly, as cache reuse still results in
k − 1 cache misses. However, for models with smaller values of k = 2, such as Mixtral and Phi, Cache-Prior
significantly improves cache hit rates, achieving up to a 20% reduction in cache misses even at the limit of
cache size = 1.

Remarkably, with just a 1% increase in perplexity, our Cache-Prior method outperforms the theoretical
optimal caching bound for all cache sizes and models, except Phi-3.5-MoE-Instruct. When allowing a 5%
increase in perplexity, our method surpasses the optimal bound across all models and cache sizes. This
demonstrates the effectiveness of Cache-Prior, as it can exceed the theoretical optimal caching performance
with only a minimal trade-off in downstream task performance.

14

Published in Transactions on Machine Learning Research (06/2025)

1
60

4
60

15
60

30
60

45
60

60
60

Cache Size (num experts / total experts)

0

20

40

60

80

100

Ca
ch

e
M

iss
 R

at
e

(%
)

Qwen1.5-MoE-A2.7B

1
64

6
64

16
64

32
64

48
64

64
64

Cache Size (num experts / total experts)

0

20

40

60

80

100

DeepSeek-V2-Lite

 Caching + Routing
Optimal + Original (0% perplexity cost)
LRU + Original (0% perplexity cost)
LRU + Cache-Prior (1% perplexity cost)
LRU + Cache-Prior (5% perplexity cost)
LRU + Cache-Prior (10% perplexity cost)

1
16

2
16

4
16

8
16

12
16

16
16

Cache Size (num experts / total experts)

0

20

40

60

80

Ca
ch

e
M

iss
 R

at
e

(%
)

Phi-3.5-MoE-instruct

1
8

2
8

4
8

6
8

8
8

Cache Size (num experts / total experts)

0

20

40

60

80

Mixtral-8x7B-v0.1

0 50 100 150 200
Cache Size (M params)

0 50 100 150 200
Cache Size (M params)

0.0 0.5 1.0 1.5 2.0
Cache Size (B params)

0 1 2 3 4 5 6
Cache Size (B params)

Figure 10: Cache size ablation on Wikitext. Cache size of half of the total number of experts N (highlighted
in bold) is used throughout the rest of this paper. Cache size of k is highlighted in blue.

Impact of Initial Cache State A potential concern with cache-aware expert routing is that the initial
cache content might bias the model to repeatedly select the same experts, thereby limiting diversity and
adaptability in expert selection. To investigate this, Figure 18 in Appendix G visualizes cache hits/misses for
a GSM8K sample at the start of prompt encoding, for the original routing and our Cache-Prior (λ = 0.5 and
λ = 0.8) method. We consider two scenarios: (1) the initial cache is empty and fills as experts are selected
during processing of the first few tokens, and (2) the cache is initialized with a random set of experts. We
provide more details on this ablation in Appendix G.

Our results show that, for moderate values of λ (e.g., 0.5), the initial cache state has minimal long-term
impact: after processing a few tokens, the distribution of expert activations and the cache state converge,
regardless of initialization. This indicates that the routing mechanism does not remain biased toward the
initial cache content, and the method remains robust to different initial cache states without degrading model
diversity or generation performance. In practice, the strength of the bias towards cached experts can be
controlled by the parameter λ. When using excessively larger λ values (e.g., 0.8), the model may become
overly reliant on the cached experts, potentially reducing predictive performance.

Varying the Number of top-J Experts As discussed in Section 4.2, we first select the top-J experts
(J < K) from the router’s normal top-K selection, then complement the remaining experts by favoring
those already in the cache, ensuring both critical experts and cache-efficient choices are included. Figure 4
shows the effect of varying J on language modeling performance. While baseline methods like Max-rank and
Cumsum-threshold experience a significant performance drop without loading the top-J experts, Cache-Prior
is more robust to changes in J . The impact on Cache-Prior is model-dependent, with minor improvements in
perplexity for models like DeepSeek, Mixtral, and Phi, and a slight decrease for models like QWEN. Given
that J > 0 benefits baseline methods and produces adequate results for Cache-Prior, we keep it fixed across
all methods.

15

Published in Transactions on Machine Learning Research (06/2025)

5 Related Work

Expert Caching Caching is a common optimization in MoE models, given their high memory requirements.
Most prior works rely on a cache with an LRU eviction policy (Eliseev & Mazur, 2023; Yuan et al., 2024b;
Yi et al., 2023; Hwang et al., 2024; Huang et al., 2023), while others adopt a least-frequently-used (LFU)
eviction policy (Xue et al., 2024a) or evict experts based on more dynamic and custom measures of expert
importance (Kamahori et al., 2024; Kong et al., 2023).

These methods manage expert storage and eviction without changing the model’s routing decisions or outputs
and thus also maintain identical performance. However, this constraint limits their effectiveness, as they
cannot change which experts are selected. To establish a performance upper bound, we include an optimal
cache baseline that assumes perfect foresight of future router decisions. While this is unattainable in practice,
we show that our method can surpass this theoretical bound with only a minimal increase in perplexity.
Unlike conventional caching strategies, our approach introduces a controlled trade-off between accuracy and
latency, enabling more flexible resource management.

Other lossy caching strategies include Adapt-MoE (Zhong et al., 2024), which dynamically adjusts cache sizes
per layer, and HOBBIT (Tang et al., 2024), which decides whether to fully load, skip, or use lower-bitwidth
versions of experts based on router confidence. However, both rely on complex prefetching mechanisms. In
contrast, our method is much simpler, requiring only a single hyperparameter to balance accuracy and latency
effectively.

Speculative Routing and Weight Prefetching Several approaches optimize MoE inference by prefetching
expert weights and using speculative routing (Cui et al., 2023; Xue et al., 2024b; Eliseev & Mazur, 2023; Du
et al., 2024). These methods improve cache hit rates by predicting which experts will be needed in advance.
For example, MoE-Infinity (Xue et al., 2024b) uses look-ahead routing and caches the most frequently used
experts. SiDA-MoE employs an offline-trained hash function to reduce expert selection overhead, though
at a significant cost to perplexity. Similarly, Eliseev & Mazur (2023) combines look-ahead routing with
LRU caching, requiring the pre-loading of multiple experts well in advance to optimize the overlap between
data movement and inference calculations. While this approach helps conceal memory transfer costs, it
can adversely affect model accuracy. Speculative routing to improve cache hit-rate without loss of accuracy
is particularly challenging on memory-constrained devices where token generation is more memory-bound
than compute-bound. In contrast, our method enhances routing consistency by exploiting locality priors,
achieving minimal increase in perplexity and significant latency improvements. Our approach is orthogonal
to speculative routing methods.

Efficient LLM Inference Techniques such as LLM quantization (Dettmers et al., 2022; Frantar et al.,
2023; Shao et al., 2024) and compression (Frantar & Alistarh, 2023) can significantly reduce the memory
footprint of large language models (LLMs). Recent studies have explored pruning or merging MoE experts
based on their utilization to conserve memory (Chen et al., 2022; Li et al., 2024; Lu et al., 2024), though
this can result in decreased performance. To facilitate the deployment of off-the-shelf MoEs on devices with
limited memory without a model surgery that would change the architecture, previous works have focused
on optimizations like offloading parameters to host memory (Alizadeh et al., 2024; Yu et al., 2024; Jung
et al., 2023; Rasley et al., 2020). These approaches employ dynamic scheduling strategies to offload sparse
parameters while maximizing the overlap between expert loading and computation. For instance, DeepUM
(Jung et al., 2023) records CUDA kernel execution patterns to predict which kernel is likely to be executed
next. However, MoE model execution patterns can vary significantly depending on the task and context. Our
proposed method enhances expert cache hit rates without requiring complex hardware implementations and
remains agnostic to the specific task being addressed.

6 Conclusion

In this work, we introduced a novel training-free, cache-aware expert routing approach for Mixture of Experts
models, designed to improve inference efficiency on memory-constrained hardware. By increasing cache hit

16

Published in Transactions on Machine Learning Research (06/2025)

rates through consistent routing, our method significantly reduces latency while preserving model accuracy,
achieving up to a 2× speedup over standard LRU caching on mobile devices.

Our experiments demonstrate that models remain robust to expert swapping, particularly when the top-1
expert is preserved. This suggests new possibilities for balancing performance with cache efficiency. To explore
this, we introduced three routing strategies, with our Cache-Prior method proving particularly effective.
Unlike prior work, which is fundamentally constrained by the optimal oracle cache bound, we show that
allowing minimal deviations in expert selection enables us to surpass this theoretical limit while maintaining
strong downstream task performance.

We conducted a comprehensive analysis across four state-of-the-art models—DeepSeek-V2-Lite, Qwen1.5-MoE-
A2.7B, Phi-3.5-MoE, and Mixtral-8×7B—on three tasks: WikiText, MMLU, and GSM8K. Our Cache-Prior
method achieves a substantial reduction in cache miss rates across all models, decreasing them by more than
50%, while incurring only a minimal increase in perplexity of 0.1%–3% on the language modeling task and
a negligible accuracy drop of less than 0.1% on downstream tasks. Additionally, our findings indicate that
granular MoE models, such as DeepSeek-V2-Lite and Qwen1.5-MoE-A2.7B, are inherently more cache-efficient.
This trend suggests a promising future for newer MoE architectures like DeepSeek v3 and Qwen2.5max,
which, despite being too large for mobile deployment today, could benefit from their cache-friendly structure.

Our method is highly adaptable, requiring no model retraining, making it suitable for a wide range of
hardware configurations. This adaptability reduces deployment costs and facilitates the practical application
of MoE models in real-world, resource-limited environments. A key feature of our approach is that it enables
explicit control over the trade-off between cache efficiency and predictive performance via the λ parameter.
While excessively large values of λ can introduce a brief, transient bias toward the cache state and may
encourage overuse of cached experts, this trade-off is tunable and can be adjusted to suit specific deployment
needs. In practice, moderate values of λ provide substantial cache efficiency gains with minimal impact on
accuracy.

In summary, our cache-aware expert routing approach not only enhances inference efficiency but also opens
new avenues for deploying large MoE models in resource-limited environments. This work paves the way for
more practical and cost-effective applications of MoE models, ensuring their scalability and adaptability in
diverse hardware configurations.

References
Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach, Amit

Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, and Misha Bilenko et al. Phi-3
technical report: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

Keivan Alizadeh, Seyed-Iman Mirzadeh, Dmitry Belenko, S. Khatamifard, Minsik Cho, Carlo C. del Mundo,
Mohammad Rastegari, and Mehrdad Farajtabar. LLM in a flash: Efficient large language model inference
with limited memory. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024,
Bangkok, Thailand, August 11-16, 2024, pp. 12562–12584. Association for Computational Linguistics, 2024.

Laszlo A. Belady. A study of replacement algorithms for a virtual-storage computer. IBM Systems journal, 5
(2):78–101, 1966.

Tianyu Chen, Shaohan Huang, Yuan Xie, Binxing Jiao, Daxin Jiang, Haoyi Zhou, Jianxin Li, and Furu Wei.
Task-specific expert pruning for sparse mixture-of-experts. arXiv preprint arXiv:2206.00277, 2022.

Weihao Cui, Zhenhua Han, Lingji Ouyang, Yichuan Wang, Ningxin Zheng, Lingxiao Ma, Yuqing Yang,
Fan Yang, Jilong Xue, Lili Qiu, Lidong Zhou, Quan Chen, Haisheng Tan, and Minyi Guo. Optimizing
dynamic neural networks with brainstorm. In 17th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 23), pp. 797–815, Boston, MA, July 2023. USENIX Association. ISBN
978-1-939133-34-2.

17

Published in Transactions on Machine Learning Research (06/2025)

DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr,
Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fuli
Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Hanwei Xu, and Hao Yang et al. Deepseek-v2:
A strong, economical, and efficient mixture-of-experts language model. arXiv preprint arXiv:2405.04434,
2024.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix multiplication
for transformers at scale. Advances in Neural Information Processing Systems, 35:30318–30332, 2022.

Zhixu Du, Shiyu Li, Yuhao Wu, Xiangyu Jiang, Jingwei Sun, Qilin Zheng, Yongkai Wu, Ang Li, Hai Li, and
Yiran Chen. Sida: Sparsity-inspired data-aware serving for efficient and scalable large mixture-of-experts
models. Proceedings of Machine Learning and Systems, 6:224–238, 2024.

Artyom Eliseev and Denis Mazur. Fast inference of mixture-of-experts language models with offloading.
arXiv preprint arXiv:2312.17238, 2023.

William Fedus, Jeff Dean, and Barret Zoph. A review of sparse expert models in deep learning. arXiv preprint
arXiv:2209.01667, 2022a.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models
with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39, 2022b.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in one-shot.
In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Optq: Accurate quantization for generative
pre-trained transformers. In The Eleventh International Conference on Learning Representations, 2023.

Georgi Gerganov. llama.cpp, 2023. URL https://github.com/ggerganov/llama.cpp. Accessed: 2024-10-31.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration.
In International Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=rygGQyrFvH.

Haiyang Huang, Newsha Ardalani, Anna Sun, Liu Ke, Hsien-Hsin S Lee, Anjali Sridhar, Shruti Bhosale,
Carole-Jean Wu, and Benjamin Lee. Towards moe deployment: Mitigating inefficiencies in mixture-of-expert
(moe) inference. arXiv preprint arXiv:2303.06182, 2023.

Ranggi Hwang, Jianyu Wei, Shijie Cao, Changho Hwang, Xiaohu Tang, Ting Cao, and Mao Yang. Pre-gated
moe: An algorithm-system co-design for fast and scalable mixture-of-expert inference. In 2024 ACM/IEEE
51st Annual International Symposium on Computer Architecture (ISCA), pp. 1018–1031. IEEE, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford,
Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel,
Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre
Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mixtral of experts. arXiv preprint
arXiv:2401.04088, 2024.

Jaehoon Jung, Jinpyo Kim, and Jaejin Lee. Deepum: Tensor migration and prefetching in unified memory. In
Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2, pp. 207–221, 2023.

Keisuke Kamahori, Yile Gu, Kan Zhu, and Baris Kasikci. Fiddler: Cpu-gpu orchestration for fast inference of
mixture-of-experts models. arXiv preprint arXiv:2402.07033, 2024.

Rui Kong, Yuanchun Li, Qingtian Feng, Weijun Wang, Xiaozhou Ye, Ye Ouyang, Linghe Kong, and Yunxin
Liu. Swapmoe: Serving off-the-shelf moe-based large language models with tunable memory budget. arXiv
preprint arXiv:2308.15030, 2023.

18

https://github.com/ggerganov/llama.cpp
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH

Published in Transactions on Machine Learning Research (06/2025)

Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mohit Bansal, and Tianlong Chen. Merge,
then compress: Demystify efficient SMoe with hints from its routing policy. In The Twelfth International
Conference on Learning Representations, 2024.

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan Huang, Bo Zhang, Junchi Yan, and Hongsheng Li. Not
all experts are equal: Efficient expert pruning and skipping for mixture-of-experts large language models.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 6159–6172, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.334.

Jan Ludziejewski, Jakub Krajewski, Kamil Adamczewski, Maciej Pióro, Michał Krutul, Szymon Antoniak,
Kamil Ciebiera, Krystian Król, Tomasz Odrzygóźdź, Piotr Sankowski, et al. Scaling laws for fine-grained
mixture of experts. In Forty-first International Conference on Machine Learning, 2024.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia Shi, Pete
Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia, Dustin Schwenk,
David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela, Ali Farhadi, Noah A. Smith,
Pang Wei Koh, Amanpreet Singh, and Hannaneh Hajishirzi. Olmoe: Open mixture-of-experts language
models. arXiv preprint arXiv:2409.02060, 2024.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, and Shyamal Anadkat et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2024.

Qwen Qwen Team. Qwen1.5-moe: Matching 7b model performance with 1/3 activated parameters, February
2024. URL https://qwenlm.github.io/blog/qwen-moe/.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimizations
enable training deep learning models with over 100 billion parameters. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3505–3506, 2020.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng Gao,
Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large language models.
In The Twelfth International Conference on Learning Representations, 2024.

Peng Tang, Jiacheng Liu, Xiaofeng Hou, Yifei Pu, Jing Wang, Pheng-Ann Heng, Chao Li, and Minyi Guo.
Hobbit: A mixed precision expert offloading system for fast moe inference. arXiv preprint arXiv:2411.01433,
2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, and Andrew M. Dai et al. Gemini: A family of highly capable multimodal models. arXiv
preprint arXiv:2312.11805, 2024.

Leyang Xue, Yao Fu, Zhan Lu, Luo Mai, and Mahesh Marina. Moe-infinity: Activation-aware expert offloading
for efficient moe serving. arXiv e-prints, pp. arXiv–2401, 2024a.

Leyang Xue, Yao Fu, Zhan Lu, Luo Mai, and Mahesh Marina. Moe-infinity: Offloading-efficient moe model
serving. arXiv preprint arXiv:2401.14361, 2024b.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2024.

Rongjie Yi, Liwei Guo, Shiyun Wei, Ao Zhou, Shangguang Wang, and Mengwei Xu. Edgemoe: Fast on-device
inference of moe-based large language models. arXiv preprint arXiv:2308.14352, 2023.

Dianhai Yu, Liang Shen, Hongxiang Hao, Weibao Gong, Huachao Wu, Jiang Bian, Lirong Dai, and Haoyi
Xiong. Moesys: A distributed and efficient mixture-of-experts training and inference system for internet
services. IEEE Transactions on Services Computing, 2024.

19

https://qwenlm.github.io/blog/qwen-moe/

Published in Transactions on Machine Learning Research (06/2025)

Xiaoming Yuan, Weixuan Kong, Zhenyu Luo, and Minrui Xu. Efficient inference offloading for mixture-of-
experts large language models in internet of medical things. Electronics, 13(11), 2024a. ISSN 2079-9292.
doi: 10.3390/electronics13112077.

Xiaoming Yuan, Weixuan Kong, Zhenyu Luo, and Minrui Xu. Efficient inference offloading for mixture-of-
experts large language models in internet of medical things. Electronics, 13(11):2077, 2024b.

Shuzhang Zhong, Ling Liang, Yuan Wang, Runsheng Wang, Ru Huang, and Meng Li. Adapmoe: Adaptive
sensitivity-based expert gating and management for efficient moe inference. arXiv preprint arXiv:2408.10284,
2024.

20

Published in Transactions on Machine Learning Research (06/2025)

Appendix

A Optimal Expert Selection

To investigate the accuracy of the router’s expert predictions, we conduct an experiment on Wikitext using
Mixtral-8x7B-v0.1. Iterating over layers, we fix the top-1 expert and systematically test all possible choices
for the second expert, finding the one that minimizes perplexity. The results, shown in Figure 11, reveal that
the router selects the optimal top-2 expert only 28% of the time on average. Although deeper layers improve
this accuracy, the best-performing router only correctly predicts the top-2 expert in just 38% of cases. This
suggests that while selecting the highest-ranked experts is important, router predictions are often suboptimal,
leaving room for flexibility in expert selection without significantly impacting performance.

2 3 4 5 6 7 8
Rank Predicted by router

0

5

10

15

20

25

30

35

Fr
eq

ue
nc

y
th

is
ex

pe
rt

wa
s o

pt
im

al
 (%

)

Mixtral-8x7B-v0.1 Layer 1

2 3 4 5 6 7 8
Rank Predicted by router

Mixtral-8x7B-v0.1 Layer 6

2 3 4 5 6 7 8
Rank Predicted by router

Mixtral-8x7B-v0.1 Layer 31

2 3 4 5 6 7 8
Rank Predicted by router

Mixtral-8x7B-v0.1 Layer 32

Figure 11: Agreement between router predictions and optimal expert selection across different layers of
Mixtral-8x7B-v0.1. The y-axis represents the frequency with which a predicted expert was actually the
optimal choice based on Wikitext perplexity.

B Intuitive Explanation of the Max Rank and Cumulative Sum Threshold Baselines

To provide further intuition, the Max Rank approach can be understood as follows. Rather than always
selecting the top-K experts with the highest router probabilities, we consider a slightly larger pool of candidate
experts, specifically, those ranked in the top M by the router. Among these, we give priority to experts that
are already present in the cache, promoting them to the front of the ranking. This increases the likelihood
that the selected experts are already loaded in fast memory, reducing cache misses and improving inference
efficiency. However, to avoid degrading model performance, we do not promote cached experts that fall
outside the top M router ranks, ensuring that only reasonably probable experts are considered. In effect, this
method balances the trade-off between cache efficiency and predictive accuracy by flexibly reordering the
selection within a controlled rank window.

1Confidential – Qualcomm Technologies, Inc. and/or its affiliated companies – May Contain Trade Secrets

(a) Max-Rank Approach

3 8 3 4 6 5

Top-2

1 662 5

0

0.2

0.4

Experts

0

0.2

Experts

Top-2 Top-2

Flat distribution (𝑀 = 5)Peaky distribution (𝑀 = 3)
Cache state

3 4 6

Router probabilities

Experts in Cache

Uncached experts

top-J Expert

(b) Cumulative Sum Threshold

Figure 12: Illustration of the Max Rank and Cumulative Sum Threshold Baselines.

To provide an example, suppose the router produces a ranked list of experts r = [E1, E2, E3, E4, E5, E6], and
the cache currently contains C = {E3, E4, E6} (See Figure 12a for an illustration). Let M = 4, K = 2, and
J = 1. The top M experts are [E1, E2, E3, E4]. The intersection with the cache yields [E3, E4]. Applying
the promotion operation, we reorder the list to obtain [E3, E4, E1, E2, E5, E6]. To ensure the top-J is always
included, we move them to the front in order while preserving the rest [E1, E3, E4, E2, E5, E6]. The top-K
experts selected for this token would then be E1 and E3.

21

Published in Transactions on Machine Learning Research (06/2025)

15 30 45 60 15 30 45 60
Number of Experts Cached in DRAM

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

Th
ro

ug
hp

ut

Qwen-MoE-4B
@12GB device

Qwen-MoE-8B
@16GB device

On-device performance of LRU at different Cache sizes

Figure 13: Throughput of the 4-bit and 8-bit quantized Qwen1.5-MoE models with LRU caching deployed on
two mobile devices with 12GB and 16GB available memory, respectively.

The procedure for expert swapping in the Cumulative Sum Threshold approach is based on the same principle,
however, the maximum rank M is dynamically determined by thresholding the cumulative sum of sorted router
probabilities. As can be seen in Figure 12b, for flat distributions, M is larger and for peaky distributions, M
takes smaller values.

C On-Device LRU Throughput

In Figure 13 we show on-device performance for various cache sizes. Similar to Section 4.5, we use best
LRU performance as a reference point of 1×. As can be seen, increasing cache size beyond 30 in case of
4-bit quantized model on 12GB device (left) and beyond 45 in case of 8-bit quantized model on 16GB
device (right) leads to decrease in performance. This is due to the fact that increasing cache size reduces
available memory, causing the OS to offload uncached components (e.g., KV-cache, activations) for each
token, requiring reloading them from flash which significantly slows down inference.

Given these results, we use same cache size of 30 for 4-bit and 45 for 8-bit quantized models in experiments
in Section 4.5.

D Smaller Cache Sizes

Throughout all the experiments in the paper, we use a cache size that is 1
2 times the total number of experts.

In Figure 14 we demonstrate performance of our approach for models with cache size equal to 1
4 of the total

amount. Our Cache-Prior method is outperforming all other methods across the board. Note that it is doing
so without any changes to method itself making it appealing for final user who might want to deploy it across
a range of devices. An aggregated overview of additional cache sizes can be found in Figure 10 in the main
text.

Logit Range Estimation In our method, the scaling factor λ is multiplied by a running average of the
logits range ∆avg, as shown in Equation 9. This estimate of the logit range is dynamic, depending on model
and input. To improve the estimate, we could alternatively calculate ∆avg over a calibration dataset. We
tested this by estimating the range over the entire Wikitext training subset. Results in Figure 15 show that
our running average performs comparably to estimates based on the full dataset, while also offering robustness
to out-of-domain data where logit ranges may differ from general text data (e.g., for a coding task).

22

Published in Transactions on Machine Learning Research (06/2025)

25 30 35 40 45 50 55
Cache Miss Rate (%)

8.100

8.125

8.150

8.175

8.200

8.225

8.250

8.275

W
ik

ite
xt

 P
er

pl
ex

ity

Qwen1.5-MoE-A2.7B with Cache Size: 15/60 experts

15 20 25 30 35 40 45 50
Cache Miss Rate (%)

7.15

7.20

7.25

7.30

7.35

7.40

7.45

7.50

DeepSeek-V2-Lite with Cache Size: 16/64 experts

Routing strategy
Original
Pruning
Max-rank
Cumsum-threshold
Cache-Prior

20 25 30 35 40 45
Cache Miss Rate (%)

5.0

5.1

5.2

5.3

5.4

5.5

W
ik

ite
xt

 P
er

pl
ex

ity

Phi-3.5-MoE-instruct with Cache Size: 4/16 experts

30 35 40 45 50 55 60
Cache Miss Rate (%)

4.65

4.70

4.75

4.80

4.85

4.90

4.95

Mixtral-8x7B-v0.1 with Cache Size: 2/8 experts

250 300 350 400 450
Params fetched from flash (M / token)

200 300 400 500 600
Params fetched from flash (M / token)

1.0 1.2 1.4 1.6 1.8
Params fetched from flash (B / token)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Params fetched from flash (B / token)

Figure 14: Wikitext Perplexity results for cache size that is one quarter the amount of experts.

10 15 20 25
Cache miss rate (%)

7.12

7.14

7.16

7.18

7.20

7.22

7.24

7.26

7.28

W
ik

ite
xt

 P
er

pl
ex

ity

DeepSeek-V2-Lite with Cache Size: 32 / 64 experts
avg Estimator

Precomputed Average
Running Average

Figure 15: Effect of different strategies for
estimating the logit range.

10 15 20 25
Cache miss rate (%)

7.125

7.150

7.175

7.200

7.225

7.250

7.275

W
ik

ite
xt

 P
er

pl
ex

ity

DeepSeek-V2-Lite with Cache Size: 32 / 64 experts
Routing Strategy

Cache-Prior
Learned Cache-Prior

Figure 16: Performance of our learned
Cache-Prior strategy on Wikitext.

E Learned Cache-Prior

In Section 3.3 we present our training-free Cache-Aware routing method. As shown throughout the paper,
the presented method is very strong and competitive across a range of scenarios.

However, it is also possible to make the proposed method learnable. To do so, we propose learning the
additive cache-prior term using a small cache MLP layer conditioned on the cache state. Specifically, we
implement this by employing a two-layer MLP that takes both the cache state and router logits as input,
outputting a single bias vector. This bias is then added to the router logits and used for the next step. The
loss function is optimized on the softmax outputs. We force weights assigned to experts that are in the cache

23

Published in Transactions on Machine Learning Research (06/2025)

but not in top-K to move closer to one while penalizing weights for those that are in top-K but not in the
cache to move closer to zero.

A downside of learnable cache-priors is that we are required to train many independent cache MLPs to obtain
trade-off points between cache hit rate and model accuracy. We conducted an experiment to verify the
effectiveness of learning this bias but did not observe notable improvements. This optimization is challenging
and the results were close to the cache-prior performance without outperforming it. Moreover, this approach
would be less beneficial in settings with multiple deployment targets. Therefore, the training-free nature of
our approach proves very advantageous for real-world applications.

Given the increased training expense, comparable performance and limited applicability, we skip this approach
for now, leaving it for future work.

F Impact of Prompt Length on Throughput

Figure 17 shows the influence of prompt length (short: 40-60 tokens; long: 300-400 tokens) on throughput for
the Qwen1.5-MoE-A2.7 model deployed with a cache size of 30 experts. Across nearly all values of λ, longer
input prompts yield higher throughput.

Figure 17: Influence of prompt length on relative throughput across varying λ values, for the Qwen1.5-MoE-
A2.7 running on the 16GB device with a cache size of 30 experts.

G Impact of Initial Cache State

In this section, we qualitatively assess how the initial cache state affects expert selection. Figure 18 visualizes
cache hits and misses for a GSM8K sample during the prompt encoding phase for the Phi-3.5-MoE-instruct
model. We compare both the original routing and Cache-Prior methods for a cache size of 8 experts across
four scenarios: (1) original routing with an empty cache, (2) Cache-Prior (λ = 0.5) with an empty cache, (3)
Cache-Prior (λ = 0.5) with a randomly initialized cache, and (4) Cache-Prior (λ = 0.8) with the same random
cache state as in (3). This setup allows us to examine the influence of both the initial cache content and the
λ parameter on expert selection. In all these setting, we set J = 1, for guaranteed top-1 expert loading.

Our results show that, for moderately large values of λ (e.g., 0.5), the initial cache state has minimal long-term
effect: after processing a few tokens, the distribution of expert activations and the cache state converge,
regardless of how the cache was initialized. This suggests that the routing mechanism is not persistently
biased toward the initial cache content. However, with excessively larger λ (e.g., 0.8), we observe that the
model tends to overly reuse experts in the cache, which may negatively impact predictive performance.

24

Published in Transactions on Machine Learning Research (06/2025)

0

5

10

15

Ex
pe

rt

Phi-3.5-MoE-instruct (layer 26) with Original Routing

0

5

10

15

Ex
pe

rt

Phi-3.5-MoE-instruct (layer 26) with Cache-Prior (=0.5)

0

5

10

15

Ex
pe

rt

Phi-3.5-MoE-instruct (layer 26) with Cache-Prior (=0.5) - Random Cache Init

0

5

10

15

Ex
pe

rt

Phi-3.5-MoE-instruct (layer 26) with Cache-Prior (=0.8) - Random Cache Init

0 20 40 60 80 100
Token

0

10

20

30

40

Ca
ch

e
M

iss
es

Cumulative Cache Misses
Phi-3.5-MoE-instruct (layer 26) Cache-Prior (=0.8) - Random Cache Init
Phi-3.5-MoE-instruct (layer 26) Cache-Prior (=0.5) - Random Cache Init
Phi-3.5-MoE-instruct (layer 26) Cache-Prior (=0.5)
Phi-3.5-MoE-instruct (layer 26) Original Routing

Figure 18: Expert selection during token generation on a GSM8K sample (green: cache hit, red: cache miss,
blue: in cache).

25

Published in Transactions on Machine Learning Research (06/2025)

H Qualitative On-Device Results

Table 3 presents sample text from our on-device autoregressive text generation experiment. It is evident that
incorporating our Cache-Prior method has minimal impact on the quality of the generated results. For more
details, refer to Section 4.5 of the main text.

Model Q4, Cache Size = 45 Q8, Cache Size = 30

Prompt Write a short poem inspired by “Numb” by Linkin Park
but about Mixture-of-Expert models.

Building a website can be done in 10 simple steps:
Step 1:

LRU The model is a type of artificial intelligence that uses
multiple machine learning algorithms to make predictions
or decisions. It’s designed to make better decisions faster
than an expert, but it can also make mistakes due to the
complexity of combining the decisions of different algo-

rithms.

In the realm of data and code,
Lies a model so bold and brave,
A mixture of experts, it’s its name,
Working together, making decisions, it thrives.

With algorithms galore, it’s a sight to behold,
Predicting and deciding, with speed and force,
Majestic in its complexity,
A marvel of modern science.

Get a website domain name. This is the address where
your website will live. You can choose a name that
describes your business or brand. It’s best to choose a
name that’s easy for people to remember and spell.
Step 2: Find a web hosting service. A web hosting service
is where your website files will be stored. There are many
different types of web hosting services to choose from,
including shared hosting, VPS hosting, and dedicated
hosting. You’ll want to choose a hosting

Prior,
λ = 0.2

The model predicts the probability distribution of the
next word (y_n) as a function of the previous word
(y_{n-1}) and the hidden state (h_{n-1})

(Verse 1)
In the depths of data streams, a secret blend of math,
Where words and words and words are churned into a
model, The Mixture-of-Experts reigns, a wiser way to
guess, The next word to fill the verse, the rhythm of the
next verse.

(Chorus)
Numb to the noise, numb to the noise,
Guided by an algorithm, the words flow like a guide,
Numb to the noise, numb to the noise,
Predicting the future with a pattern we can’t annoy.

Get a website name (the web address). You need to
choose a domain name (or URL) for your website, and
register it with a domain registrar. This is the address
that people will use to find your website on the internet,
such aswww.yourdomain.com.

Step 2: Get web hosting for your website. This is the
place where your website will live on the internet, and
where yourwebsite files will be stored. The most popular
option is to use a hosting company,

Prior,
λ = 0.8

The first part of the English language Wikipedia choose
Mixture-of-Expert models as the 2018 word. Mixture-of-
Expert models use multiple neural networks as expert
solutions. I’m not a poet, but here’s my attempt at a
very loose and free poetry style translation of the given
meaning.
A model so complex, Experts gather from near and far
The experts of yore, to bring their expertise, their might
A model to optimize, to help us all survive From AI to
the rescue, it’s transformation we’ll rejoice
In the mind of Chester and Patel, Expert insights to
bestow, Insights to empower,

Find a Domain Name Before you start building your
website, you will need to choose a domain name (the
name of your website). Your domain name is the
address that people will use to reach your website,
so you want to make sure it’s easy to remember
and spell and related to what your website is all
about. For example, if you’re building a website for
your dog grooming business, your domain name could be.

Step 2: Choose a Hosting Provider
Now that you have your

Table 3: Qualitative results of caching performance. We generate 100 tokens for each prompt.

26

	Introduction
	Background and Motivation
	Preliminaries of MoE
	MoE Deployment on Memory-Constrained Devices
	MoEs Are Less Sensitive to Dropping Experts with Lower Scores

	Cache-aware Expert Routing
	Max Rank Approach
	Cumulative Probability Threshold Approach
	Cache-Prior Reranking

	Experiments
	Experimental Setup
	Implementation Details
	Language Modeling Evaluation
	Downstream Tasks Evaluation
	On-Device Deployment
	Temporal Consistency of Expert Selections
	Impact of MoE Design Choices on Caching Performance
	Ablation Experiments

	Related Work
	Conclusion
	Optimal Expert Selection
	Intuitive Explanation of the Max Rank and Cumulative Sum Threshold Baselines
	On-Device LRU Throughput
	Smaller Cache Sizes
	Learned Cache-Prior
	Impact of Prompt Length on Throughput
	Impact of Initial Cache State
	Qualitative On-Device Results

